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Abstract 
 

Architecture development is an important part of the systems engineering process because the 
system architecture forms the foundation on which the rest of the system design is based. In 
addition, the system architecture plays a key role in determining the behavior of the system and 
represents a set of design decisions made to solve a design problem. Because modern systems 
are increasingly complex and software-intensive, they require architectures that fully consider 
system-level interactions and unsafe behaviors and ensures that the responsibilities necessary to 
ensure safety are carried out effectively. Furthermore, the architecture development process 
should organize design information in a way that assists system designers and reviewers with 
managing system complexity and developing an understanding of the system design and its 
underlying rationale.  
 
This thesis proposes a new top-down, safety-driven approach to architecture development that 
is based on systems theory and incorporates a hazard analysis at the beginning of the design 
process to drive the identification of system-level requirements. This approach ensures that the 
system and its environment are analyzed as a whole and emergent properties such as safety are 
considered as early as possible. Using a structured process and appropriate types of abstraction, 
this new approach to architecture development facilitates obtaining more information about 
how the system needs to behave before creating a series of candidate architecture options and 
assessing the tradeoffs between them.  
 
The proposed approach is applied to create a conceptual architecture for a human pilot and 
automated flight controller performing medevac flights in Degraded Visual Environments (DVEs). 
This example illustrates how the new approach can be used to develop architectures in a top-
down, safety-driven manner and shows how the design information obtained using this new 
approach can be used to make more informed architectural decisions. 
 
 
Thesis Supervisor: Nancy G. Leveson, Ph.D. 
Title: Professor of Aeronautics and Astronautics 
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Chapter 1 Introduction 
1.1 The Role of System Architecture in Systems Engineering 
 
Architecture development is an important step in the system engineering process because the 
system architecture forms the foundation on which the rest of the system design is based. Figure 
1 shows a simplified version of the Systems Engineering Vee Model that illustrates when 
architecture development is done in the overall system life cycle.  
 

 
 

Figure 1: The Systems Engineering Vee model (adapted from [1] - [3])  

 
As shown in Figure 1, after the system requirements are defined, the system architecture is 
developed before creating the detailed design and developing the software and hardware for the 
system. The system architecture thus represents the beginning of what will eventually be the 
complete design for a system and can significantly influence downstream system design activities 
[4]. Although good system architecture does not guarantee the success of a system, a poor or 
inadequate system architecture will almost certainly compromise a system’s ability to meet its 
requirements and operate successfully [5]. 
 
The system architecture also plays a central role in determining the behavior of a system [4]. Not 
only does the system architecture define the structure and relationships between the system 
elements ([2], [4], [6], [7]) but it also defines the fundamental concepts or properties of a system 
in its environment [6]. As such, architectural decisions can have a lasting impact on properties of 
the system such as safety. Once the basic architectural decisions have been made, they may be 
difficult or impossible to change [8]. It is therefore important that the system architecture is 
created carefully to ensure that the completed system design exhibits all the desired properties 
and behaviors while minimizing the possibility of undesirable system behavior occurring. 
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Especially for human-engineered systems, the system architecture also represents a set of design 
decisions [5] made to solve a design problem and achieve the goals of the system. The 
architecture development process should therefore support informed decision making by 
assisting system designers in incrementally obtaining and aggregating information about the 
system and the behavior and properties it must exhibit [2]. A system designer can then use that 
information to better understand how the system needs to be designed ([2], [4]), systematically 
create alternative architectures and evaluate the benefits and tradeoffs between them. This 
enables more informed decisions to be made when selecting the best architecture for further 
system development ([2], [9]). 
 

1.2 Limitations of Current Methods for Developing System Architectures 
 
Current methods for architecture development are not adequate for today’s increasingly 
complex sociotechnical systems because they rely on decomposition to create system 
architectures and manage complexity. This results in three limitations that make developing a 
good system architecture challenging when they are used to design modern complex systems.  
 
 
Limited Early Consideration of System Interactions and Emergent Properties 
 
The first limitation is that current methods for developing system architectures incorporate 
limited consideration of the interactions between system components, especially during the 
early stages of system design. This is because current methods begin creating system 
architectures by decomposing systems into their constituent functions and parts before system-
level interactions are fully analyzed. As a result, the desirable system interactions that should be 
achieved or the undesirable system interactions that should be avoided are only analyzed later 
in the design process. For these same reasons, the properties that emerge from the interactions 
between system components, which are known as emergent properties, are also not fully 
analyzed until after an initial architecture has been created. When architectures are created in 
this way, there may be inadequacies or flaws in the identified system requirements and the 
system architecture does not exhibit the desired emergent properties such as safety.  
 
Instead of starting with a decomposition of the system into its parts, the architecture 
development process should begin with an analysis of system interactions and emergent 
properties as early as possible so that the results can be used to drive architecture development. 
This ensures that emergent properties such as safety are designed into the system from the 
beginning and that adequate system requirements are identified to prevent undesirable system 
behavior from occurring. 
 
 
Does Not Always Ensure that the Identified Responsibilities Can Be Carried Out Effectively 
 
The second limitation is that current methods for architecture development do not always ensure 
that the identified responsibilities can be carried out effectively. Current methods for 
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architecture development create system architectures by decomposing the system requirements 
into functions or responsibilities and assigning them to the components of the system. The 
architecture development process therefore begins to focus on the design of individual 
components before determining how the rest of the system needs to be designed to ensure that 
the identified responsibilities can be carried out effectively. As a result, supporting requirements 
may be overlooked and the assigned responsibilities can become more difficult than intended or 
even impossible to carry out. Consequently, constraints may not be adequately enforced or 
functions may not be adequately performed and losses may occur. 
 
Instead, the architecture development process should facilitate obtaining more information 
about what is needed to carry out the identified responsibilities before beginning to create 
system architectures. This ensures that the architecture development process is informed by not 
only the responsibilities that the system must perform but also how the system needs to be 
designed to ensure that the responsibilities can be carried out. 
 
 
Does not Assist with Managing Complexity and Understanding the System Design 
 
The third limitation of current methods for concept and architecture development is that they 
do not adequately assist with managing complexity and understanding the system design and its 
underlying rationale. Today’s sociotechnical systems are increasing in complexity as more 
functionality and performance is demanded of them [5] and they are becoming increasingly 
interconnected and software-intensive. However, as complexity increases, system designers and 
reviewers may face difficulty managing that complexity when designing or reviewing a system 
([3], [5]). For example, system designers may not be able to consider the entire system or identify 
all the possible interactions between parts of the system if the number of elements and 
interactions exceeds their cognitive capabilities. Similarly, those reviewing or assessing the 
system may not be able to fully understand all the functions of the system or assess whether 
unsafe interactions have been fully considered if the system complexity is too great. 
 
Current methods for architecture development manage complexity using decomposition of the 
system and its requirements into hierarchies of parts or functions. As a result, design information 
is organized in a way that focuses on the breakdown of a system into its constituent elements 
and contains insufficient information about why that breakdown or system design was chosen. 
When architectures are created in this way, it becomes more difficult for system designers to 
understand complex system designs and the underlying rationale or intent information as they 
develop and refine the system architecture. Similarly, it becomes more difficult for reviewers and 
assessors to identify flaws or inconsistencies in the system design.  
 
Instead of using decomposition to manage complexity, the architecture development process 
should use appropriate types of abstraction to guide the design process and help system 
designers and reviewers to reason about the system design and make informed design decisions. 
In addition, the design information should be organized in an easily accessible way and include 
assumptions and design rationale alongside the design information. This ensures that it is as easy 
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as possible for system designers and reviewers to identify and locate the information they need 
to understand how the system was designed and why. 
 
 

1.3 Research Objectives and Approach 
 
This research aims to create a new approach to developing system architectures that addresses 
the limitations of current methods, can be applied as early as possible and is appropriate for 
today’s increasingly complex systems. This thesis proposes a structured method for creating and 
assessing architecture options that applies a systems-theoretic approach and appropriate types 
of abstraction to guide the design process and organize the design information. The proposed 
method also integrates a hazard analysis method called Systems Theoretic Process Analysis 
(STPA) into the architecture development process and uses the results to drive the identification 
of system requirements and inform the creation of a conceptual architecture for a system.  
 
Chapter 2 begins with a summary of current methods for creating system architectures and the 
reasons that they are no longer adequate for today’s complex systems. This is followed by a 
discussion of the need to instead take a systems-theoretic approach and manage complexity 
during system design and assessment. Then, a systems-theoretic approach to modeling accident 
causality called Systems Theoretic Accident Model and Processes (STAMP) and the hazard 
analysis method called Systems Theoretic Process Analysis (STPA) are described. The application 
of STPA to creating conceptual architectures is also reviewed. Finally, a human-centered 
approach to creating system specifications and organizing design information called Intent 
Specifications is described. 
 
In Chapter 3, the new approach to architecture development is presented. First, an overview of 
the method is provided and then each step of the method is described along with information 
about how each step should be carried out.  
 
Finally, in Chapter 4, the new approach is demonstrated using a case study that develops a 
conceptual architecture for a pilot and automated flight controller performing medevac flights in 
degraded visual environments (DVEs). Although this research demonstrates this new method for 
architecture development using an example of medevac flights in DVE, this approach to concept 
and architecture development can also be applied to other types of complex sociotechnical 
systems as well.  
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Chapter 2 Background 
 

2.1 Current Methods for Developing System Architectures 
 
Given the importance of developing a good system architecture, several major organizations that 
are engaged in systems engineering practice have published guidance documents and standards 
describing how system architectures should be developed. However, as was outlined in Chapter 
1, these methods for developing system architectures are no longer appropriate for today’s 
increasingly complex systems.   
 
This section summarizes the guidance published by the National Aeronautics and Space 
Administration (NASA), the International Council on Systems Engineering (INCOSE) and the 
International Standards Organization (ISO) to show how system architectures are expected to be 
developed today. The shortcomings of these methods will then be discussed to illustrate the need 
for a new approach to improve our ability to engineer complex systems in the future. 
 

2.1.1 Overview of Current Methods for Developing System Architectures 
 
NASA Systems Engineering Handbook 
 
The NASA Systems Engineering Handbook is intended to provide general systems engineering 
guidance for anyone working at NASA and describes best practices that should be incorporated 
into programs and projects of all sizes at NASA [7]. In the handbook, NASA describes the technical 
processes that are necessary to develop and realize the system using what it calls the Systems 
Engineering Engine. This Systems Engineering Engine contains three sets of processes: System 
Design Processes, Technical Management Processes and Product Realization Processes. It is the 
System Design Processes that are used to create the system design [7]. 
 
The System Design Processes begin by defining and baselining a set of stakeholder expectations, 
the Concept of Operations and the criteria that define how the success of the system will be 
evaluated. Once the stakeholder expectations have been established, they are decomposed to 
obtain a set of technical requirements for the project that define all aspects of the system 
including functional, performance and interface requirements. Once these requirements have 
been validated, the functions necessary to meet each requirement are identified and then 
decomposed and allocated to system elements to create a conceptual architecture for the 
system. It is also at this stage that the functional and subsystem interfaces are defined. The 
conceptual architecture and technical requirements are then used to perform downstream 
design activities where the solution is defined and the subsystem specifications are created. 
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ISO 15288: Systems and Software Engineering – System Life Cycle Processes & INCOSE Systems 
Engineering Handbook 
 
ISO 15288 is an international standard that establishes a framework for describing the processes 
that should be carried out in the life cycle of manmade systems. The framework provides generic 
descriptions of the processes and requirements and is intended to be used by organizations to 
construct their own life cycle models for their specific product or application [9]. Based on ISO 
15288, INCOSE published the INCOSE Systems Engineering Handbook to summarize the process 
descriptions and requirements contained in ISO 15288 and elaborate on the practices and 
activities necessary for each process [2]. One part of the system lifecycle processes called the 
Technical Processes are used to define the system requirements and design the system as well 
as operate, sustain and eventually dispose of the system. The technical processes begin with the 
identification of business and stakeholder requirements. These requirements are then 
transformed into system requirements which are then used to define alternative architecture 
options. One architecture is then selected to proceed with detailed design and implementation 
followed by integration, verification and validation before the system is put into operation. After 
the system is placed into operation, maintenance processes are implemented to sustain the 
system during operations and disposal processes are carried out when the system is removed 
from operation at the end of its life ([2], [9]). 
 
The technical processes are used to create the system architecture by starting with identifying 
the business and stakeholder requirements for a project. Once the business and stakeholder 
requirements are established, they are used to define system requirements ([2], [9]). This 
involves starting with the top-level system requirements and decomposing them into lower-level 
requirements as well as identifying what are called nonfunctional requirements, which are 
requirements associated with system characteristics such as safety and security [2]. Once the 
system requirements have been established, they are then used to create alternative 
architecture options. This is done by first defining the system boundary and the interfaces with 
external entities before decomposing the system into architectural entities such as functions, 
system elements or nodes. Concepts, properties or behaviors that are significant for making 
architectural decisions are also decomposed and allocated to these architectural entities. The 
architecture is then mapped to the system design by identifying the system elements that 
correspond to the architectural entities, defining the interfaces and interactions between the 
system elements and then allocating the requirements to the system elements ([2], [9]). In 
addition, as part of defining the system architecture, emergent properties should be considered 
by analyzing the interactions between system elements to identify undesirable interactions that 
should be avoided and desirable ones that should be reinforced [2]. 
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2.1.2 Shortcomings of Current Methods 
 
The guidance provided in these methods for developing system architectures have several 
shortcomings that make these methods inadequate for designing increasingly complex, software-
intensive systems.  
 
Firstly, system requirements are developed with limited consideration of system interactions and 
undesirable system behavior. In the methods described in all three documents, the system 
requirements are developed based on the stakeholder needs and business requirements with 
minimal guidance on how to ensure that desirable system behavior and properties are achieved 
and undesirable ones are avoided. It is only after an initial decomposition of the system is 
performed that these methods begin to fully consider system interactions and undesirable 
system behavior. Emergent properties are thus also not considered or analyzed until later in the 
design process. As a result, when these methods begin to fully analyze system interactions or 
emergent properties, they are either checking for the existence of unintended system 
interactions or checking if the desired system interactions and emergent properties have been 
achieved instead of designing them into the system from the beginning.   
 
 Modern systems are increasing in both complexity and the number of interactions between 
components and it is becoming more difficult to use these current methods to identify a 
complete set of system requirements and avoid undesirable system behavior. This is because 
modern systems have too many components and interactions to consider if system interactions 
and undesirable system behavior are analyzed only after an initial decomposition is performed. 
Furthermore, modern systems are increasingly reliant on interactions between components to 
achieve the desired system properties. As a result, it is no longer possible to decompose a system 
into components that are assumed to behave independently and then analyze and design the 
interactions later. Instead, system interactions and undesirable system behavior should be 
analyzed as early as possible so that adequate system requirements can be identified at the 
beginning of the design process. This ensures that desirable system behaviors and emergent 
properties are designed into the system and undesirable system behaviors are avoided. 
 
Secondly, architectures are created with limited consideration for how to ensure that the 
necessary responsibilities can be carried out as effectively as possible. In the methods described 
by all three documents, architectures are created by decomposing the system requirements into 
sub-requirements. Then, the system is decomposed into its constituent elements and the 
requirements are allocated to the system elements to create an architecture. By relying on 
decomposition to create architectures, the architecture development effort becomes focused on 
designing each component to achieve its assigned responsibilities before more information is 
obtained about how the system needs to be designed to enable those assigned responsibilities 
to be carried out as effectively as possible. As a result, supporting requirements that are 
necessary to carry out a responsibility effectively may be either overlooked or only identified 
later in the design process. Examples of these include missing feedback or inadequate 
performance requirements imposed on sensors that the system relies on for feedback data.  
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Today’s systems, however, are expected to exhibit increasingly complex behaviors that require 
an increasing number of supporting requirements to be satisfied to ensure that those behaviors 
are achieved. If these supporting requirements are only considered after the system is 
decomposed, they can quickly exceed the cognitive capabilities of system designers to 
comprehend and analyze completely. Instead of starting with a decomposition of the system, the 
architecture should start with an analysis of how the system needs to be designed to achieve the 
system requirements. That information can then be used to inform architecture development to 
ensure that the system architecture enables the identified responsibilities to be carried out as 
effectively as possible.  
 
Finally, these methods for developing system architectures offer minimal guidance on how to 
manage system complexity and organize design information in a way that assists system 
designers and reviewers with understanding the system design and the underlying rationale. In 
all three documents, the methods for architecture development focus primarily on decomposing 
a system into its parts and functions. Furthermore, while all three documents recognize the 
importance of documenting assumptions and design rationale, they only offer vague guidance as 
to how the assumptions and design rationale should be documented. As a result, system 
architectures are created and documented primarily in terms of their parts and functions with a 
focus on what the system contains. Information about why the design was chosen is therefore 
either difficult to find or missing. Consequently, it can be challenging for system designers to 
locate the design information they need to guide their design decisions or for reviewers to 
understand the design and its underlying rationale. 
 
When designing highly complex systems, however, the large amount of design information 
associated with the system makes it even harder to manage complexity and use the design 
information to understand the system and make informed design decisions. As a result, it 
becomes even more challenging for system designers to reason about their design when creating 
and assessing architecture options for a system. Similarly, it also becomes even more challenging 
for system reviewers or assessors to develop an understanding of the system design and identify 
any flaws or inconsistencies in it. For these reasons, the architecture development process should 
instead structure the design process and organize design information using appropriate types of 
abstraction that facilitate reasoning about the system design. In addition, rationale and 
assumptions should be documented alongside design decisions. Together, these would assist 
system designers and reviewers with managing system complexity and make it as easy as possible 
for them to identify and locate the information they need to understand how the system was 
designed and why.   
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2.2 Systems Theory and Emergent Properties 
 
To understand and analyze a system, the approach underlying that analysis must be appropriate 
for the type of system being analyzed. In his book An Introduction to General Systems Thinking, 
Gerald Weinberg states that there are three types of systems [10] as shown in Figure 2: 

1. Those that exhibit organized simplicity 
2. Those that exhibit unorganized complexity 
3. Those that exhibit organized complexity 

 

 
Figure 2: The three types of systems defined by degree of randomness and complexity (from [8]) 

 
Some systems involve low complexity and highly structured interactions between the 
components. These systems are said to exhibit organized simplicity and we have traditionally 
used decomposition to design and analyze these systems. This approach assumes that each 
component operates independently and that the behavior of components is the same when 
examined individually as when they operate as part of an integrated system [8]. However, 
engineered systems today are too complex for this type of approach to be successful. 
 
Other systems involve high complexity but are uniform and random enough in their behavior that 
they can be analyzed using statistical or probabilistic approaches. These systems are said to 
exhibit unorganized complexity. Unfortunately, the new types of complex systems we are 
building today involve interactions between the components that are not random or uniform and 
thus statistical or probabilistic approaches are also not appropriate for these systems ([8], [10]). 
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Instead, modern engineered systems fall into the third category of systems: systems that exhibit 
organized complexity. Systems that exhibit organized complexity are defined as having both high 
complexity as well as highly structured interactions between the components. As a result, they 
are too complex to be analyzed using decomposition and too structured to be analyzed using 
statistical approaches ([8], [10]).  
 
Systems theory was created to cope with systems that exhibit organized complexity [8]. Instead 
of analyzing a system statistically or decomposing a system and analyzing the parts separately, a 
systems-theoretic approach requires consideration of the whole system, including the social and 
technical aspects. In addition, systems theory states that some properties of a system arise from 
the structural relationships between the parts of the system as well as the interactions between 
those parts [8]. Such properties are known as emergent properties and can only be analyzed by 
considering the entire system and not by only looking at the components. Safety and many other 
important system qualities in today’s systems are emergent. For these reasons, it is necessary to 
take a systems-theoretic approach and consider the whole system when analyzing modern 
complex systems to ensure that emergent properties are designed into a system.  
 

2.3 Management of Complexity and Hierarchical Abstraction 
 
As the complexity of modern systems increases, it is becoming more important than ever to 
manage complexity during both the design process as well when the system is being reviewed. 
Complexity is not an objective feature of a system and can be managed by viewing the system 
from a level of abstraction with less resolution [11]. This can be done using the concept of 
stratified hierarchies to model complex systems in terms of a hierarchy of levels where each level 
is more complex than the one below. Using this type of model, emergent properties are only 
characteristic of a particular level and are not reducible to lower levels [12]. 
 
There are two main types of hierarchical abstraction: part-whole and means-ends abstraction 
([11], [12]). Part-whole abstraction involves breaking the system down into its constituent 
components or more detailed functions. In part-whole abstractions, the information contained 
at each level of the hierarchy is refined by information at a lower level. Conversely, information 
at a lower level is abstracted or aggregated at a higher level. In essence, each level describes 
what the system must do and the lower level describes how the system does what it is supposed 
to do [12]. Functional decomposition or the physical decomposition of a system into its 
components are commonly used examples of part-whole abstraction.  
 
By contrast, in means-ends abstraction, information contained at each level of the hierarchy 
describes the goals that the next lower level of the hierarchy must achieve (Figure 3). In other 
words, the ends described by each level of the hierarchy are achieved using the means described 
at the next lower level. In this way, each level describes what a system must do, the level above 
describes why they must be done and the level below describes how they will be done.  
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Figure 3: Illustration of means-ends abstraction with examples (adapted from [11]) 

Instead of representing a system in terms of its parts, means-ends abstraction represents a 
system in terms of the goals that must be achieved and captures information about intent or 
design rationale. This intent information is important because it is difficult if not impossible to 
infer later if this intent information is not identified and recorded during architecture 
development [12]. Furthermore, the intent information can be used by system designers to guide 
their lower-level design decisions ([5], [12]) as well as by reviewers to understand and assess the 
system. Means-ends abstraction can therefore be an especially useful type of abstraction for 
guiding the design process because it captures intent information and facilitates goal-oriented 
reasoning about a system [12]. In addition, it can help system designers and reviewers reason 
about the system and understand the underlying intent as the system is being designed or 
assessed. 
 

2.4 STAMP and STPA 
 
A system can be analyzed for emergent properties such as safety using a hazard analysis to 
identify hazards and unsafe behaviors. However, traditional hazard analysis methods and 
approaches to safety are inadequate for today’s complex systems because they were developed 
60-75 years ago when systems were simpler than they are today and exhibited at least some of 
the following characteristics [8]: 
 

• Relatively little use of software 

• A relatively traditional relationship between an automated system and the human 
operators who interact with it 

• Accidents largely resulted from component failures  

Functional Purpose 
System objectives and goals, stakeholder needs 
 
Abstract Function 
High-level functional descriptions and concepts 
 
Generalized Functions 
Blackbox descriptions of functions, more detailed 
functional descriptions 
 
Physical Functions 
Electrical/mechanical/software processes and 
components 
 
Physical Form 
Physical appearance, materials, structural connections 
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Based on these characteristics, traditional hazard analysis methods (e.g. Fault Trees, Failure 
Modes and Effects Analysis) use linear chains of events as the underlying accident causality model 
and focus on the identification and prevention of component failures to ensure the safety of a 
system. As a result, traditional approaches to safe system designs typically call for the use of 
redundancy and backup systems to mitigate the effects of component failures [8].  
 
By contrast, current and future systems are increasing in complexity and do not exhibit the same 
characteristics as older, simpler systems. Modern systems not only increasingly rely on the use 
of software to carry out their functions but may also have non-traditional relationships between 
the automated system and the humans who may be interacting with it. For example, the FAA’s 
Urban Air Mobility (UAM) program describes the use of human-automation teaming where 
human operators must work together in tandem with automation [13] instead of the human 
operator simply supervising or commanding the automated system. For these reasons, accidents 
involving these systems have more complex causation than a simple linear chain ([8], [14]). 
Instead of simply resulting from component failures, accidents may occur due to design flaws, 
requirements flaws and even organizational factors despite every component performing as 
intended [14]. For these reasons, traditional safety engineering approaches and hazard analysis 
methods are no longer sufficient to ensure safety in current and future complex sociotechnical 
systems [8]. 
 
To address these shortcomings and account for these new types of causes of accidents, a 
relatively new accident causality model called Systems-Theoretic Accident Model and Processes 
(STAMP) was created. It is based on systems theory and models systems as a whole, including 
not just the technical aspects such as hardware and software but also humans and other social 
and organization aspects as well. This holistic view of a system and the interactions between its 
components enables STAMP to consider other types of accidents and causes that traditional 
techniques do not consider including non-linear or indirect causes, new kinds of human error, 
design and requirement flaws and dysfunctional interactions between components in addition 
to component failures [14]. STAMP also takes a more generalized view of accidents and losses. 
Although a loss may involve human death or injury, it may also involve other types of losses such 
as equipment, mission, financial or information losses [8]. As a result of this broad view of losses, 
STAMP-based methods can be used to analyze not only safety and security but also other 
emergent properties as well [8].  
 
Recognizing that emergent properties such as safety arise from the interactions between the 
system components, STAMP treats safety as a control problem instead of a component reliability 
problem [8]. Instead of focusing on maximizing component reliability and availability, accidents 
or unacceptable losses can be prevented by identifying and enforcing sufficient constraints on a 
system’s behavior and the interactions between the system components as shown in Figure 4.  
 
 



 24 

 
Figure 4: A controller enforcing controls on a system's behavior and the interactions between its components (from [14]) 

Under this paradigm, a controller enforces these system constraints by applying appropriate 
control actions to control a system’s behavior or the interactions between its components. In 
turn, the controller receives feedback about the effect of those controls on the system to 
complete the control loop between the controller and the controlled process. This concept of 
control is interpreted broadly. Although the controls could be technical or physical controls, they 
may also be social or organizational controls [14]. The system design must then ensure that these 
controls and control actions are adequately implemented to enforce the safety constraints for 
the overall system. 
 
Based on this concept of safety as a control problem, STAMP models the controls in a system 
using a hierarchical safety control structure that contains a controlled process and the various 
controllers that can influence or control the system’s behavior. Figure 5 shows a generic control 
structure that includes the control structure during system development (left side) and once the 
system is operational (right side).  
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Figure 5: The control structures for a system during system development (left side) and once the system is operational (right 

side) (from [14]) 

 
As shown in Figure 5, the control structure includes not only the human controllers and the 
system being controlled but also several layers of controllers above them such as project 
management personnel, government regulatory agencies and personnel involved in operations 
management and maintenance. This holistic view of the system ensures that the system and the 
environment in which it is designed, operated and maintained is included in the analysis.  
 
Another important aspect of STAMP is its recognition of the importance of process models and 
the need for appropriate types of feedback to maintain and update these process models. Every 
controller needs to have a model of the controlled process that it can use to determine what 
control actions are necessary to keep the system operating as intended [8] (Figure 6).  
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Figure 6: Illustration of a simple control loop involving a controller with a control algorithm and a process model (from [14]) 

 
If the controller is automated, this process model may be part of the software running on that 
controller. For example, the autopilot on a commercial aircraft must have a process model for 
the current state of the aircraft to decide what flight control inputs to apply to achieve a desired 
heading and speed. If the controller is human, these process models are usually referred to as 
mental models that exist in the mind of the human controller. For example, a pilot flying an 
aircraft requires a mental model of the aircraft and how it works to help them determine what 
control inputs to provide to the aircraft to achieve the desired flight path [8].  
 
Process models are important for the safe operation of a system because they are used by 
controllers to make decisions and select appropriate control actions [8]. Controllers must receive 
adequate types of feedback to keep them updated over time [8]. When there are inconsistencies 
in the process models, accidents can occur. For example, if a controller’s process model of the 
controlled process is inconsistent with the actual controlled process, the controller may issue a 
control action that is unsafe in the context of the actual state of the controlled process. 
Alternatively, if the process models shared between multiple controllers are inconsistent with 
each other, controllers may issue conflicting control actions or control actions that do not 
adequately enforce the safety constraints [15]. It is therefore important when designing the 
system that consideration be given to the process models and the types of feedback that are 
needed by each controller to maintain an accurate process model of the controlled process and 
keep it updated. For these reasons, STAMP recognizes that process models are an important part 
of implementing effective controls to ensure safety. 
 
Based on this theoretical foundation, a new hazard analysis technique called Systems-Theoretic 
Process Analysis (STPA) was created and Figure 7 shows the basic steps in STPA.  
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Figure 7: The STPA Process (from [14]) 

STPA analyzes the control loops in a safety control structure to proactively identify potential flaws 
and causes of accidents during development before an actual accident occurs. As shown in Figure 
8, STPA is used to identify Unsafe Control Actions (UCAs) and how they can be caused by flaws in 
the four main parts of a control loop [14]: 
 

1. Unsafe controller behavior 
2. Inadequate feedback or information received by the controller 
3. Flaws in the control path 
4. Other factors related to the behavior of the controlled process  

 

  
Figure 8: Illustration of how STPA identifies UCAs and the loss scenarios based on flaws in the four main parts of a control loop 

(from [14]) 

Since the STAMP model considers new causes of accidents such as requirement errors in addition 
to component failures, STPA is therefore able to identify many types of hazardous scenarios that 
are not included or poorly handled by traditional hazard analysis techniques and the analysis 
results can be used to drive the identification of system requirements that are necessary to 
prevent the identified scenarios from occurring [8]. In addition to being used to perform analyses 
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for safety and security, STPA has also been applied to analyze other emergent properties 
including scalability [16] and maintainability [17].  
 
In addition, because STPA analyzes the system as a whole, including both the technical as well as 
the human and organizational aspects, STPA is flexible enough to incorporate domain-specific 
knowledge or knowledge from other engineering disciplines into the analysis of the system. As a 
result, extensions of STPA have been developed for human controllers supervising automated 
systems [18] as well as for the analysis of teams of human or automated controllers that must 
act in a coordinated manner to ensure safe shared control over a system [15]. The extension for 
human controllers incorporates human factors considerations to refine the model of the human 
controller in the control structure and it also provides additional guidance during UCA and 
scenario generation. These can therefore help an analyst to consider possible flaws and errors 
that might occur when the human operator updates their mental models, in the mental models 
themselves or during control action selection [18].  
 
 

2.5 Using STPA to Generate a Conceptual Architecture 
 
In addition to being flexible enough to incorporate knowledge from other engineering disciplines 
into the analysis, the flexibility of STPA also enables it to analyze systems even during the earliest 
stages of the design process when little information about the system design is available. When 
an STPA analysis is incorporated into the design process as early as possible, safety relevant 
information can be used to drive the design process, allowing safety to be designed into the 
system from the beginning. This approach was demonstrated by Leveson [3], who showed how 
STPA can be used to analyze an initial high-level control structure model of the system called a 
Conceptual Architecture. The STPA analysis results can then be used to inform and guide the 
refinement of that Conceptual Architecture [3]. Instead of treating STPA as an analysis activity 
that is separate from the architecture development effort, this method integrates STPA into the 
architecture development process. The unsafe control actions and loss scenarios identified by 
STPA can then be used to drive the identification of system requirements and the design of the 
system. Eventually, the refined conceptual architecture can then be used to create the physical 
architecture. This method therefore has the potential to minimize the need to change design 
decisions later by identifying safety-relevant information up-front before making architectural or 
design decisions.  
 
 

2.6 Intent Specifications 
 
So far, this chapter has described how systems theory and appropriate types of abstraction as 
well as STAMP and STPA can be applied to perform top-down, safety-driven architecture 
development in a way that facilitates informed decision making by system designers and 
reviewers. However, just developing the concept and architecture using these approaches is not 
enough and the architecture development process must also be supported by the use of a 
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specification approach that similarly facilitates gaining an understanding of the system and 
incorporates intent information and design rationale [3]. To do this, the same concepts of 
systems theory and hierarchical abstraction can also be applied to the creation of system 
specifications to ensure that the system can be easily understood and evaluated during both 
safety assurance and certification activities as well as when maintaining and evolving the system 
after it is placed into operation  
 
Based on these ideas, Leveson created the concept of an Intent Specification [12]. Intent 
Specifications are a theoretical approach to system specifications and the information that 
should be included in them that aims to be human-centered and enhance human understanding 
and problem-solving. These goals are achieved by organizing information using three types of 
abstraction: Part-Whole, Refinement and Intent (Figure 9). These types of abstraction are used 
because they correspond to the different ways in which a user of the specification may want to 
use the specification to reason about the system and navigate a problem space.  
 

 
Figure 9: An Illustration of the form of an Intent Specification (from [19]) 

As shown in Figure 9, the horizontal dimensions represent part-whole abstraction and refinement 
that allows users to view the system at different levels of detail. The vertical dimension then 
represents the different levels of intent at which the system can be viewed. The highest levels 
assist stakeholders and system engineers in reasoning about system goals, requirements and 
constraints and the lowest levels assist component implementers and system operators in 
reasoning about how the system works [12]. By organizing information using these three types 
of abstraction, Intent Specifications can support both top-down and bottom-up approaches to 
troubleshooting or reasoning about the system, allowing users to easily find the information they 
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need when they need it to solve a problem, perform system maintenance or change and evolve 
the system [12].  
 
The vertical dimension of an Intent Specification contains seven levels of intent starting at the 
Program Management level and ending at the Operations level [12]. At each level, information 
relevant for that particular perspective of the system is captured and serves as the intent or goals 
to be achieved by the system at the next lower level. So, for example, information relevant for 
customers of the system serve as the goals for the system as viewed by the system engineers. 
This in turn serves as the goals for the system as viewed from the perspective of its architecture 
and later from the view of the component engineers. In addition, Intent Specifications also 
emphasize the inclusion of design rationale and assumptions underlying design decisions 
alongside the design information to assist with understanding why a design decision was made 
[12]. As a result, Intent Specifications facilitate goal-oriented problem solving by enhancing the 
user’s ability to understand and reason about the system and how it was designed. 
 
Another way in which Intent Specifications enhance human understanding and problem solving 
is that they combine different types of information relevant to the design of a system into an 
integrated specification. In addition to the system requirements, safety and other design-related 
information can all be included in an Intent Specification, allowing it to serve as a central location 
to store and retrieve all design-related information. This makes design information easier to 
access when needed instead of distributing that information across multiple documents and 
repositories [12]. In addition, Intent Specifications contain links between related information 
contained in other parts of the specification to ensure that related information can be easily 
located and maintained by the user of the specification when needed [12]. As a result of these 
features, an Intent Specification enhances human understanding and problem solving because it 
can serve as the central location to store and retrieve all design-related information and provides 
traceability to help a user of the specification locate relevant information when needed. 
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Chapter 3 A New Method for Top-Down, Safety-Driven Architecture 
Development 

 

3.1 Overview of the Method 
The new top-down, safety-driven approach to concept and architecture development being 
proposed has four steps as shown in Figure 10 that are designed to incrementally guide a system 
designer in thinking about the system in increasing levels of detail before eventually creating 
architecture options and assessing tradeoffs. 
 

 
Figure 10: Overview of the new safety-driven approach to concept and architecture development 

 
Although Figure 10 shows the four steps as a linear sequence, this method should not be assumed 
to proceed in a linear fashion with no allowance for iteration. It is likely that a project 
implementing this approach will need to iterate on the information generated in each step and 
revisit earlier steps to make changes as the design process proceeds.  
 

3.2 Step 1: Analyze the System and Its Environment 
 
As shown in Figure 10, the method begins with an analysis of the system and its environment 
using STPA. It is important that the design process begins with an analysis of the system and its 
environment before the system itself is designed so that those interactions can be accounted for 
in the system design. For example, before the architecture of an aircraft is developed, it is 
important to understand how that aircraft will interact with other aircraft in the airspace as well 
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as with other controllers such as dispatchers or mission planners. This provides an opportunity 
to identify any requirements or constraints imposed by the environment on the system or any 
requirements or constraints that the system might impose on its environment.  
 

3.3 Step 2: Define Solution-Neutral System Requirements 
 
Once the STPA analysis has been performed, the analysis results (i.e. the UCAs and loss scenarios) 
can be used to define solution-neutral, system-level requirements that will mitigate or eliminate 
the UCAs and loss scenarios. It is extremely important that these requirements are both solution-
neutral and stated at the system level to ensure that the requirements do not make assumptions 
about the solution or implementation of the constraints at this stage in the architecture 
development process that later need to be changed. This also avoids unnecessarily constraining 
the possible solutions or implementations that will fulfill the requirements and successfully 
enforce the constraints. The requirements should therefore only describe what constraints must 
be enforced to mitigate or prevent the loss scenarios from occurring and should not describe 
how the constraints should be implemented or who (i.e. which component in the system) should 
be enforcing those constraints. As a result, a more systematic and informed decision can be made 
about which component in the system should fulfill each requirement later in the architecture 
development process when more information is available. 
 

3.4 Step 3: Define System-Level Behavior 
 
Once the system-level requirements are defined, they become the basis for defining system-level 
behavior. In this new approach to architecture development, system-level behavior is the 
behavior of the system that is required to carry out the responsibilities and enable the system to 
fulfill the system-level requirements that were identified. It is important to note that the system-
level behavior is defined without considering the system components that will implement that 
behavior. This is done to assist system designers with first gaining insight into how the overall 
system needs to behave before creating and assessing architecture options that will implement 
that desired system behavior.  
 
The information contained in the system-level behavior describes how a control loop should be 
designed to ensure that a responsibility can be carried out as effectively as possible to adequately 
enforce the necessary constraints on the system’s behavior. The system-level behavior 
information therefore consists of five parts that describe the various aspects of how a basic 
control loop needs to operate. The five parts of system-level behavior are shown in blue in Figure 
11 overlayed on top of a basic control loop containing a controller and a controlled process. 
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Figure 11: Illustration of the five parts of system-level behavior in blue 

Starting at the controller in Figure 11, system-level behavior definition begins by translating the 
system-level requirements into the responsibilities that the system must carry out. For each 
responsibility, the decision-making strategy and the process model contents can be defined. The 
decision-making strategy describes at an abstract level how the system is expected to make the 
decision(s) necessary to carry out the responsibility. Based on the decision-making strategy, the 
information that the system needs in its process model to carry out the associated responsibility 
can be identified. These first two parts of the system-level behavior thus defines how the 
controller needs to behave to fulfill the system requirements. 
 
The next two parts of the system-level behavior define the control actions and feedback that the 
controller needs to effectively control the controlled process. Using the decision-making strategy, 
the control actions can be refined into more specific or detailed ones. The parts of the process 
model can also be used to identify the feedback necessary to maintain and update the process 
model parts and the sources of that feedback.  
 
At this point, however, the information identified thus far only offers a static view of this control 
loop. To include the dynamic and temporal aspects of operating this control loop, the last part of 
system-level behavior is to identify timing requirements that describe the speed and frequency 
that each responsibility will need to be carried out by the system.  
 
By defining the aspects of the system-level behavior in this way, each aspect of designing an 
effective control loop is considered in turn to ensure that the system design implements 
adequate control over the system’s behavior. In addition, because the system-level behavior is 
driven by the system-level requirements which are in turn derived from the hazard analysis 
results, this approach to architecture development supports goal-oriented problem solving and 
ensures that the architecture meets the system-level requirements and implements the 
necessary constraints to ensure that safety or other emergent properties are achieved. Although 
defining the system-level behavior information in this order (illustrated in Figure 12) is not strictly 
necessary, this order can serve as a systematic way to consider each aspect of a control loop and 
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how it should be designed to enable the responsibilities to be carried out effectively. As before, 
although Figure 12 is drawn as a linear sequence, iterative refinement of the system-level 
behavior information is expected. 
 

 
Figure 12: The order in which system-level behavior information should be defined 

 

3.5 Step 4: Create and Assess Architecture Options 
 
Once the system-level behavior information has been generated, it can be used to inform the 
creation and assessment of architecture options using a 2-part architecture creation process as 
illustrated in Figure 13.  

 
Figure 13: The 2-part architecture creation process and its inputs and outputs 
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As shown in Figure 13, the system-level behavior information is an input to the architecture 
creation process. It consists of the set of responsibilities that the system must carry out, the 
necessary parts of the process model and supporting information about how the system needs 
to be designed to ensure that the responsibilities are carried out as effectively as possible. This 
information can now be used in conjunction with human factors and other considerations to 
inform the creation and assessment of a series of candidate architecture options. 
 
The architecture creation process itself has 2 parts. For each part, a series of candidate 
architecture options are created by using human factors and other considerations in addition to 
the system-level behavior information to decide how the process model parts and responsibilities 
should be assigned to controllers in the architecture. The rationale and assumptions are also 
recorded alongside each assignment. These architecture options can then be analyzed and the 
tradeoffs between them assessed to ultimately select one option to carry forward for further 
system development. This method of creating architecture options ensures that relevant 
perspectives from other engineering disciplines are incorporated when creating the architecture 
options and assigning the responsibilities and process model parts. 
 
The 2 parts of the architecture creation process are: 

1. Part 1: Create and assess architecture options for the overall system  
2. Part 2: Using the selected architecture for the overall system (from part 1), create and 

assess architecture options for each controller in the overall system 
 
Since the system-level behavior information is defined for the overall system and not for any 
individual component in that system, the first step in the architecture creation process is to 
evaluate how those responsibilities and process model parts could be assigned to components in 
the overall system before proceeding to create architectures for each of the components. To 
illustrate this, Figure 14 shows a generic example of a system containing three controllers and a 
controlled process as well as five responsibilities that have been defined for this system.  
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Figure 14: Generic illustration of Part 1 of the Architecture Creation Process 

 
To create an architecture option, the five responsibilities defined for this system must be 
allocated to the system components. So, as illustrated in Figure 14, one example of an 
architecture option might be one where:  

• Responsibility 1 is assigned to controller 1 

• Responsibility 2 is shared between controllers 1 and 3 

• Responsibilities 3 and 4 are assigned to controller 3 

• Responsibility 5 is assigned to the controlled process 
 
The result of this part of the architecture creation process is the creation of a series of 
architecture options for the overall system that can then be analyzed individually using further 
STPA or other analyses to determine the benefits and costs of each option. Based on the tradeoffs 
that are identified, one of the candidate architecture options will be selected for further system 
development in the next part of the architecture creation process.  
 
Once the architecture for the overall system has been selected in Part 1, Part 2 creates the 
architecture options for each component by starting with the process model parts and 
responsibilities assigned to that system component in the selected architecture from Part 1. 
Similar to Part 1, these process model parts and responsibilities are then assigned to sub-
components within the component that is being designed. Continuing the example from Part 1 
that was illustrated in Figure 14, the architecture of controller 3 can be created as illustrated in 
Figure 15. 
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Figure 15: Generic illustration of Part 2 of the Architecture Creation Process 

 
As shown in Figure 15, the architecture for controller 3 starts with responsibilities 2, 3 and 4 that 
were assigned to it in Part 1 (Figure 14). Architecture options are now created by assigning those 
responsibilities to sub-controllers 3.1 and 3.2 which are subcomponents of controller 3. One 
example of a candidate architecture for controller 3 might be: 

• Responsibility 2 is assigned to sub-controller 3.1 

• Responsibility 3 is shared between sub-controller 3.1 and 3.2 

• Responsibility 4 is assigned to sub-controller 3.2 
 
As with Part 1, the result of this part of the architecture creation process is a series of architecture 
options for the component being designed and these architecture options and the tradeoffs 
between them can be analyzed using further STPA or other analyses. Based on these analyses, 
one candidate architecture option will be selected for further development, completing one 
iteration of refinement of the system architecture.  
 
Since systems can be composed of subsystems that are themselves systems containing further 
subsystems within them, the definition of a system is recursive [20]. For this reason, this new 
approach to architecture development can be applied recursively to incrementally refine the 
system and each subsystem and component contained within it until the detailed system design 
is complete. 
 
To summarize, this chapter describes a new approach to architecture development and how the 
concepts and methods reviewed in Chapter 2 were applied. In the next chapter, this new 
approach to architecture development will be demonstrated for a system that enables medevac 
flights in poor visibility conditions to be conducted.   
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Chapter 4 Case Study: Creating a Conceptual Architecture for 
Performing Medevac Flights in Degraded Visual 
Environments (DVEs) 

 

4.1 Case Study Overview 
 
In this case study, a conceptual architecture for the human pilot and automated software-
enabled controller (ASEC) will be developed for an Emergency Medical Services (EMS) Air 
Ambulance performing medevac flights in Degraded Visual Environments (DVEs) using the new 
approach described in Chapter 3. 
 
Although flights under maximum visibility conditions are always preferable, there are emergency 
situations in which an Air Ambulance service may need to perform a flight to evacuate a patient 
under reduced or degraded visibility conditions such as rain, fog or snow. Such conditions are 
known as DVEs [21] and flights under DVE conditions are widely recognized as risky operations 
for pilots [22] due to the spatial disorientation they can cause [21]. There is therefore a need to 
find ways to reduce the risks and increase safety for pilots operating medevac flights in DVEs to 
enable these flights to be carried out as safely as possible.  
 
In response to this need, numerous solutions have been proposed. For example, many aircraft 
manufacturers are considering the inclusion of heads-up displays and pilot cueing systems [23] 
as well as synthetic vision systems that integrate the data from aircraft sensors to help pilots re-
acquire information they would have otherwise obtained visually and avoid disorientation [24]. 
Although these solutions are necessary to address specific challenges that pilots face when 
operating aircraft in DVEs, it is also important to clearly identify the overall system-level 
requirements that must be satisfied and the responsibilities that the human pilots and the 
automated systems must perform to ensure safe flight in DVEs.    
 
This case study thus aims to develop a conceptual architecture for this system in a top-down, 
safety driven manner using this new approach to architecture development, starting with the 
overall system that is necessary to plan and execute medevac flights safely. This overall system 
will be called the Flight Operations System (FOS) and is modeled after the procedures and 
guidelines for air ambulance operations that are published by several public health departments 
and emergency medical services councils in California ([25], [26]) and New York [27]. Information 
published by the FAA in its advisory circular regarding air ambulance operations [28] and in title 
14 of the Code of Federal Regulations (14 CFR) Part 135 that governs air ambulance operations 
is also incorporated into this example as needed. 
 
By applying each of the four steps in the new approach, this case study will show how the FOS 
can be systematically analyzed to identify the system requirements and necessary system-level 
behavior so that the information obtained can be used to create and assess architecture options 
for the FOS first and then for the human pilot and ASEC. The case study will then present the 
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tradeoffs between architecture options that should be considered when selecting a conceptual 
architecture for the pilot and ASEC to carry forward for further system development.  
 
This case study also organizes the design information that is generated using an Intent 
Specification. Since this case study represents architecture development occurring during the 
early stages of system development, the Intent Specification that is created will include 
information that is primarily contained in levels 1 and 2 of an Intent Specification (i.e. the 
Customer View and System Engineering View) and will show how information might be 
structured within each level.  

 
Intent Specification Level 1: Customer View 
 

4.2 Step 1: Analyzing the System and Its Environment 

4.2.1 Defining Purpose of the Analysis, System Boundary and System Goal 
 
The purpose of this analysis is to determine how responsibilities can be divided up between the 
human pilot and Automated Software-Enabled Controller (ASEC) on board an air ambulance to 
ensure the safe execution of medevac flights in DVEs. The system boundary for this analysis will 
therefore be called the Flight Operations System (FOS). 
 
The FOS contains the following components: 
 

Table 1: Description of Components in the FOS 

# Component Description 

1 Aircraft Subsystems This includes all the hardware and components that constitute 
the physical aircraft that will be flown 

2 Piloting Controller This is an abstracted controller that encompasses both the 
Human Pilot and ASEC that together must maintain safe and 
stable flight. Although a conceptual architecture will eventually 
be created for the human pilot and ASEC as distinct elements 
of the system, this case study begins by combining them into 
an abstracted controller so that their architecture can be 
systematically generated 

3 Maintenance Personnel The personnel that carry out maintenance of the aircraft 

4 EMS Operations & Air 
Traffic Control (ATC) 

This group includes local or county EMS dispatch/operations 
centers, operations centers run by air ambulance service 
providers as well as standard ATC that controls access to the 
airspace and manages aircraft throughout their flight 
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This system has just 1 goal: 
 
G-1: To enable aircraft to be safely flown through an airspace where collision hazards may not be 
directly visible or visual surveys cannot be conducted due to the presence of man-made or 
natural obscurants 
 

4.2.2 Initial Assumptions and Constraints 
 
The following is a small set of initial assumptions and constraints that are used in this case study 
to describe the capabilities that air ambulances are assumed to have and the conditions under 
which medevac flights might occur. 
 
Data Access Assumptions 
These data access assumptions are based on operational procedures described in [28] - [30]: 
 

AA-1. Aircraft may have access to common databases of obstacles, terrain and air traffic in the 

vicinity of the planned route of flight  

AA-2. Aircraft may be able to make and receive updates of obstacle and terrain data in flight 

AA-3. Aircraft must have and maintain radio and data communications with local or county 

EMS operations centers, air ambulance service provider operations centers as well as 

with ATC 

Environmental Assumptions 
The following assumptions are made about the environment in which this system will operate 
as described briefly in [22] and [28]: 
 

EA-1. The system will operate in urban and suburban locations  

EA-2. Weather conditions include any of the conditions defined as part of standard 

Instrument Meteorological Conditions (IMC) that are described in 14 CFR §135  

EA-3. The system may operate in both daytime and nighttime conditions 
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4.2.3 STPA Step 1: Losses, System-Level Hazards & System Constraints 
The first step in performing an STPA analysis is to list the losses, system-level hazards and system 
constraints for the FOS.  
 
Losses 
The losses that are relevant for the FOS are: 
 
L-1: Loss of life or injury 
L-2: Loss or damage to aircraft or equipment 
L-3: Nonachievement of mission 
 
Hazards 
From these losses, the following hazards are derived: 
 
H-1: Aircraft is uncontrollable [L-1, L-2, L-3] 
H-2: Structural integrity of the aircraft is violated [L-1, L-2, L-3] 
H-3: Violation of minimum aircraft separation standards [L-1, L-2, L-3] 
H-4: Operating the aircraft is harmful to human health [L-1] 
H-5: Aircraft is unable to conduct mission tasks [L-3] 

System Constraints 
The following are the system constraints that are derived from the system-level hazards: 
 
SC-1. The aircraft must remain controllable by the piloting controller at all times [H-1] 

SC-2. Aircraft airframe integrity must be maintained at all times [H-2] 

SC-3. Aircraft must satisfy minimum separation requirements from other aircraft and objects 

[H-3] 

SC-4. If the aircraft violates minimum separation requirements, the violation must be 

detected and measures taken to prevent collision [H-3] 

SC-5. Aircraft environment must remain safe for human occupants of the aircraft at all times 

[H-4] 

SC-6. Aircraft must be able to conduct mission tasks [H-5] 

 

4.2.4 STPA Step 2: Safety Control Structure 
Once the losses, system-level hazards and system-level constraints have been identified, the next 
step is to model the system using a safety control structure. Figure 16 shows the control structure 
for the FOS where each of the four components within the system boundary as listed in Section 
4.2.1 are shown as controllers in the control structure along with the control actions and 
feedback that are passed between them. In addition, since a key aspect of operating aircraft in 
DVEs is the ability to quantify weather conditions and detect other objects and aircraft in the 
airspace, the operational environment is included in this control structure and provides direct 
feedback to both the pilot who makes direct visual observations and to the aircraft subsystems 
where sensors are used to sense the environment.  
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Figure 16: Control Structure with Abstracted Piloting Controller Highlighted 

 

Since this STPA analysis will be used to generate system-level requirements for the FOS and 
create a conceptual architecture for the FOS and Piloting Controller, this control structure starts 
at a high level of abstraction so that the system and its environment can be first considered as a 
whole. For these same reasons, the human pilot and automated controllers on-board the aircraft 
are combined into an abstracted controller called the Piloting Controller. By doing this, the initial 
STPA analysis can be used to identify all the responsibilities and control actions needed for this 
abstract controller before dividing the responsibilities up between a human and automated 
controller. The benefits and tradeoffs of the different ways to divide up these responsibilities can 
then be analyzed later when more information is available. 
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Initial Safety Responsibilities 
Even during the early stages of system development, it is possible to define an initial set of 
responsibilities, albeit at a high level of abstraction, that must be enforced by the components in 
the control structure to ensure safety. As the STPA analysis proceeds, these responsibilities will 
be gradually refined. The initial list of high-level responsibilities for each component of the FOS 
includes the following: 
 
R-1. Aircraft Subsystems 

R-1.1. Execute actuator movements commanded by the Piloting Controller to control the 

aircraft [SC-1] 

R-1.2. Provide information regarding the telemetry of the aircraft (e.g. airspeeds, physical 

position) to the Piloting Controller [SC-1] 

R-1.3. Provide information regarding the position and speed (when relevant) of other aircraft 

and objects in the vicinity of the aircraft to the Piloting Controller [SC-3, SC-4, SC-6] 

R-2. Maintenance Personnel 

R-2.1. Ensure that the aircraft receives required preventative maintenance [SC-1] 

R-2.2. Ensure that all maintenance is completed and personnel clear of the aircraft when the 

aircraft is ready to depart [SC-3, SC-5, SC-6] 

R-2.3. Ensure that the aircraft is configured appropriately [SC-1, SC-6] 

R-3. Piloting Controller 

R-3.1. Control the aircraft to satisfy minimum separation requirements from other aircraft 

and objects at all times [SC-3] 

R-3.2. Maintain an updated model of the environment, state of the aircraft and the state of 

the airspace around the aircraft throughout all phases of flight [SC-1, SC-3] 

R-3.3. Ensure that actuator commands sent to the aircraft subsystems does not exceed the 

capabilities of the airframe [SC-2] 

R-3.4. Manage and control the aircraft to carry out the mission [SC-6] 

R-4. EMS Operations and ATC 

R-4.1. Provide the Piloting Controller with all available information needed to safely control 

the aircraft [SC-1, SC-2, SC-3, SC-6] 

R-4.2. Coordinate air traffic in controlled airspaces and maintain a coherent operating picture 

of controlled airspaces [SC-1, SC-3, SC-4, SC-5, SC-6]   

R-4.3. Provide the Piloting Controller with all mission information and constraints to 

successfully execute the mission [SC-6] 
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4.2.5 STPA Step 3: Unsafe Control Actions (UCAs) 
The third step in STPA is to analyze the control actions in the control structure to identify unsafe 
control actions (UCAs) and the associated controller constraints necessary to prevent the UCAs 
from occurring. Table 2 shows some examples of UCAs that were identified for the Actuator 
Movements control action provided from the Piloting Controller to the Aircraft Subsystems. 
Additional UCAs for the Actuator Movements control action can be found in Appendix A. 
 

Table 2: Example UCAs for Actuator Movements Control Action 

Control 
Action 

Providing Not Providing  Too Early/Too Late Applied Too 
Long/Stopped 
Too Soon 

Actuator 
Movements 

UCA-1.1: 
Piloting 
Controller 
provides 
actuator 
movements 
during takeoff 
when the 
aircraft is not in 
a safe 
departure state 
[H-3, H-4, H-5]  
 
UCA-1.2: 
Piloting 
Controller 
provides 
actuator 
movements 
that steers the 
aircraft toward 
another aircraft 
or object [H-3] 

UCA-1.5: Piloting 
Controller does 
not provide 
actuator 
movements when 
violation of 
minimum 
separation is 
imminent [H-3] 
 
UCA-1.6: Piloting 
Controller does 
not provide 
actuator 
movements during 
critical phases of 
flight [H-1, H-3] 

UCA-1.7: Piloting 
Controller 
provides actuator 
movements too 
late during takeoff 
after takeoff 
clearance is 
granted when 
another aircraft or 
obstacle has 
entered the 
airspace near the 
aircraft [H-3] 
 
 
UCA-1.8: Piloting 
Controller 
provides actuator 
movements too 
late when the 
aircraft is near 
another aircraft or 
obstacle [H-2, H-3] 

UCA-1.10: 
Piloting 
Controller 
applies actuator 
movements for 
too long during 
takeoff after it 
has passed the 
desired altitude 
[H-1, H-3] 
 
UCA-1.11: 
Piloting 
Controller stops 
providing 
actuator 
movements too 
soon during 
takeoff before 
the desired 
altitude is 
reached [H-3] 
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4.2.6 STPA Step 4: Identify Loss Scenarios 
The next step in STPA is to identify the loss scenarios based on these UCAs. To do this, a new 
approach to scenario generation described by Cabosky [29] was used to help manage the 
potentially large number of scenarios that would be generated and reduce repetition. In addition, 
this new approach to scenario generation should help to ensure that as many causal factors as 
possible are considered in the loss scenarios. This is important because the system-level 
requirements will be generated in later steps based on these loss scenarios and therefore good 
coverage of the causal factors by the loss scenarios should ensure that the set of system-level 
requirements obtained will be as complete as possible. This new approach to scenario generation 
uses guide words based on four basic scenario types to assist with identifying loss scenarios [29]: 

1. Unsafe Controller Behavior 
2. Unsafe Feedback Path 
3. Unsafe Control Path 
4. Unsafe Controlled Process Behavior 

 
Using this new approach to scenario generation, a wide variety of different scenarios were 
identified and some examples of loss scenarios are identified for UCA-1.2 (Table 3) and UCA-1.5 
(Table 4). More examples of loss scenarios are shown in Appendix B. 
 
UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward 
another aircraft or object [H-3] 
 

Table 3: Example Loss Scenarios for UCA-1.2 

Scenario 
Type 

Scenario ID Scenario 

Unsafe 
Controller 
Behavior 

CS-1.2.1-1.1 Despite receiving feedback that there was another aircraft or 
object nearby, DVE conditions cause more noise in sensor data 
than is normally present, making the useful feedback more 
difficult for the piloting controller to distinguish from the noise or 
increasing the likelihood that the piloting controller wrongly 
decides that the sensor data shows no useful 
feedback/detections. As a result, the piloting controller has the 
wrong process model of the state of the environment, the aircraft 
or the airspace around the aircraft and wrongly believe that the 
airspace nearby the aircraft is clear to pilot toward. The piloting 
controller therefore selects actuator movements that pilot the 
vehicle toward the other aircraft or object [SLR-13, SLR-19] 
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Scenario 
Type 

Scenario ID Scenario 

Unsafe 
Controller 
Behavior 
(Cont’d) 

CS-1.2.1-1.4 Despite receiving feedback that there was another aircraft or 
object nearby, the piloting controller receives an input from 
another aircraft or external controller that indicates that the 
airspace nearby the aircraft is clear. If the pilot assumes that the 
external controller/input is providing accurate information, they 
may disregard the seemingly conflicting feedback that does 
indicate that another aircraft or object is nearby. As a result, the 
piloting controller wrongly updates its process model of the 
airspace nearby the aircraft and selects actuator movements that 
pilot the vehicle toward the other aircraft or object [SLR-3, SLR-15] 

CS-1.2.1-3 Despite receiving feedback that there was another aircraft or 
object nearby, the piloting controller is forced to make a quick 
decision to avoid violating minimum separation. In making this 
quick decision, the piloting controller does not fully account for all 
objects and aircraft in the airspace. As a result, the piloting 
controller tries to avoid one object/aircraft and collides with 
another aircraft/object instead. [SLR-17, SLR-18] 

Unsafe 
Feedback 
Path 

CS-1.2.2-1 The piloting controller receives feedback that did not indicate that 
another aircraft or object was nearby because DVEs degrade or 
obscure sensors or the sensor suite was not designed to operate 
in the current DVEs. As a result, the piloting controller receives 
wrong, incomplete or missing feedback about the environment, 
DVE conditions or the state of the aircraft which the piloting 
controller uses to update its process model, leading to wrong 
process models [SLR-2, SLR-15, SLR-19] 

Unsafe 
Control 
Path 

CS-1.2.3-1 The piloting controller does not provide actuator movements that 
pilots the aircraft toward another aircraft or object but actuator 
movements to do so are received by the aircraft because an 
adversary spoofs the actuator movements sent from the piloting 
controller and causes the aircraft to believe the piloting controller 
has sent actuator movements [SLR-11] 

Unsafe 
Controlled 
Process 
Behavior 

CS-1.2.4-1 Actuator movements are not received by the aircraft but the 
aircraft still violates minimum separation because DVE conditions 
(e.g. wind gusts) move the aircraft toward the other aircraft or 
object with enough force or at a high enough rate that the piloting 
controller is unable to react quickly enough or with appropriate 
amplitude to correct the disturbance [SLR-22] 
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UCA-1.5: Piloting Controller does not provide actuator movements when violation of minimum 
separation is imminent [H-3] 
 

Table 4: Example Loss Scenarios for UCA-1.5 

Scenario 
Type 

Scenario ID Scenario 

Unsafe 
Controller 
Behavior 

CS-1.5.1-1.1 Despite receiving feedback that violation of minimum separation 
is imminent, the piloting controller is unable to select new 
actuator movements quickly enough to avoid violation of 
minimum separation. This might occur if the piloting controller 
recognizes the imminent violation too late or takes too long to 
select new actuator movements. As a result, the piloting 
controller is unable to select new actuator movements before 
the violation of minimum separation occurs [SLR-23] 
 

Unsafe 
Feedback 
Path 

CS-1.5.4-1 Actuator movements are received by the aircraft but the aircraft 
still violates minimum separation because the piloting controller 
may have the wrong process model of the environment 
conditions and selects actuator movements that are insufficient 
to effect the desired change in flight path [SLR-25] 
 

 
The example scenarios shown in Table 3 and Table 4 thus illustrates the broad range of causal 
factors that are considered in the loss scenarios. Not only do the loss scenarios consider how 
unsafe behavior at different points in the control structure can lead to a hazard or loss but they 
also consider how the environment the system operates in (e.g. DVE conditions, external inputs) 
could contribute to the occurrence of a hazard or loss. For example, CS-1.2.1-1.1 and CS-1.2.2-1 
describe how the effects of DVEs on feedback could lead to inadequate or conflicting feedback. 
CS-1.2.1-3 and CS-1.5.1-1.1, on the other hand, describe how unsafe decision-making could lead 
to an unsafe control action being issued. Even cybersecurity considerations can be included in 
scenarios such as CS-1.2.3-1. In addition, multiple causal factors can contribute to the occurrence 
of a loss or hazard. For example, in CS-1.2.4-1 and CS-1.5.4-1, DVE effects combined with 
inadequate decision-making can collectively lead to an unsafe control action. These loss scenarios 
therefore demonstrate the wide variety of causal factors that can and should be considered prior 
to identifying the necessary system-level requirements.   
 
Once the loss scenarios have been generated for all UCAs, the first step in this new approach to 
architecture development is complete. In the subsequent steps, these STPA results will be used 
to define requirements and system-level behavior information that will inform the creation and 
assessment of architecture options. 
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4.3 Step 2: Defining Solution-Neutral, System-Level Requirements 
 
The next step in this new approach to concept and architecture development is to identify the 
solution-neutral, system-level requirements that are necessary to ensure safety and prevent the 
UCAs and loss scenarios identified in the STPA analysis conducted in Step 1 from occurring. As 
discussed in Chapter 3, it is important that these requirements are both solution-neutral and 
stated at the system level to ensure that these requirements describe what constraint must be 
enforced instead of how that constraint should be implemented or who should be enforcing that 
constraint.  
 
The solution-neutral, system-level requirements are generated by identifying one or more 
suitable constraints that, when enforced by some means, would mitigate or prevent the 
scenarios from occurring. The identified constraints are then written in standard requirements 
language (e.g. “shall” statements). Figure 17 and Figure 18 demonstrate how these solution-
neutral, system-level requirements are generated using two examples of a UCA and loss scenario 
and their associated requirement.  
 

UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward 
another aircraft or object [H-3] 
 
CS-1.2.2-1: The piloting controller receives feedback that did not indicate that another 
aircraft or object was nearby because DVEs degrade or obscure sensors or the sensor suite 
was not designed to operate in the current DVEs. As a result, the piloting controller receives 
wrong, incomplete or missing feedback about the environment, DVE conditions or the state 
of the aircraft which the piloting controller uses to update its process model, leading to 
wrong process models [SLR-2, SLR-15, SLR-19] 

 
Requirement: The FOS must receive all data required to determine the state of the 
environment and conditions around the aircraft under all DVE conditions at all times 
 

Rationale/Assumptions: This requirement ensures that the piloting controller has the 
information it needs to make decisions and is never making decisions by using guesses 
or assumptions that might turn out to be incorrect. This requirement assumes that it is 
possible to make this guarantee without exception using a combination of engineering 
design techniques when creating the detailed system design. If this assumption is 
invalidated, the associated causal scenario may not be fully prevented and further 
requirements may be necessary to avoid unsafe system behavior. 

 
Figure 17: Example 1 of how solution-neutral, system-level requirements are generated 
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UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward 
another aircraft or object [H-3] 
 
CS-1.2.4-1: Actuator movements are not received by the aircraft but the aircraft still violates 
minimum separation with the nearby aircraft or object because DVE conditions (e.g. wind 
gusts) move the aircraft toward the other aircraft or object with enough force or at a high 
enough rate that the piloting controller is unable to react quickly enough or with appropriate 
amplitude to correct the disturbance [SLR-22] 

 
Requirement: The FOS must be able to respond quickly enough and with an appropriate 
magnitude to disturbances to prevent unintended movement of the aircraft. 
 

Rationale/Assumptions: This requirement ensures that clear expectations are 
established as to how quickly the FOS must be able to respond to disturbances and 
how much disturbance the FOS must be able to reject to maintain safe flight. This 
requirement assumes that it is possible to define a uniformly-applicable set of worst-
case conditions under which the FOS must be able to maintain safe and stable flight. If 
this is not possible, this requirement may have to be modified to account for multiple 
types of worst-case DVE conditions. 
 

Figure 18: Example 2 of how solution-neutral, system-level requirements are generated 

 
As shown in Figure 17 and Figure 18, the two identified requirements are stated at the system 
level because they simply state what the FOS as a whole must do instead of identifying a 
particular component of the FOS. The two identified requirements are also solution-neutral 
because they simply state what constraint is necessary to mitigate or prevent the loss scenario 
and do not state how the constraint will be implemented or achieved.  
 
It is also worth noting that, since the definition of these requirements represents one type of 
design decision that is being made, it is important to record the rationale and assumptions so 
that anyone reviewing or modifying the system in the future can understand why the 
requirement was generated and evaluate the validity of the underlying assumptions. 
 
By applying this method for each causal scenario in the STPA analysis results, a full set of system-
level requirements can be generated. Table 5 shows the set of requirements generated for this 
case study as a simple list for compactness and the full details for these requirements including 
the underlying rationale and assumptions can be found in Appendix C.  
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Table 5: System-Level Requirements List 

Req ID System-Level Requirement 
 

SLR-1 The FOS must be able to determine if any feedback it is receiving about the aircraft’s 
mission readiness, state of the aircraft and the airspace around it is too old 

SLR-2 The FOS must account for prevailing DVE conditions and their possible effect on 
feedback sources when making use of feedback information 

SLR-3 The FOS must verify the accuracy of any inputs from another aircraft/controller 

before updating process models based on that input 

SLR-4 The FOS must confirm that all aspects of the aircraft state match the safe departure 
state prior to departure 

SLR-5 The FOS must always be able to determine if the state of the aircraft changes 
between the time that it was checked and departure 

SLR-6 The FOS must confirm that data provided to it about the expected safe departure 
state of the aircraft has been fully specified 

SLR-7 The FOS must ensure that all relevant personnel are aware of any changes to the 
expected safe departure state of the aircraft  

SLR-8 The FOS must process all feedback to make a deliberate decision if it is to be 
ignored/dropped  

SLR-9 The FOS must ensure that it is receiving all data required to determine the expected 
safe departure state and determine the current state of the aircraft under all DVE 
conditions at all times 

SLR-10 The FOS must ensure that flight crews are aware of the most updated state of any 
maintenance tasks on the aircraft 

SLR-11 The FOS must ensure that only authorized actuator movements are executed 

SLR-12 All FOS equipment and systems must be able to operate in the expected DVE 
conditions 

SLR-13 The FOS must be able to distinguish useful detections/feedback from the noise that 
might be present in feedback data under all DVE conditions at all times 

SLR-14 The FOS must be able to process sensor data and use it to update its process model 
sufficiently quickly (within TBD seconds) 

SLR-15 The FOS must receive all data required to determine the state of the environment 
and conditions around the aircraft under all DVE conditions at all times 

SLR-16 The FOS must always be able to determine if the state of the airspace changes 
between the time that it was checked and the commencement of a maneuver 

SLR-17 The FOS must take into account the current and future movements of other aircraft 
in the vicinity when selecting actuator movements 

SLR-18 The FOS must ensure that aircraft movements are selected such that sufficient 
reaction time is available to react and prevent violation of minimum separation if 
intent or movements of the other aircraft are different than expected 

SLR-19 The FOS must be able to detect all objects and other aircraft in the environment 
under all DVE conditions at all times 
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Req ID System-Level Requirement 
 

SLR-20 The FOS must be able to detect slow or subtle changes in the state of the aircraft 
under all DVE conditions at all times 

SLR-21 The FOS must select actuator movements that minimize the risk of violation of 
minimum separation when information about the state of the airspace is in a 
degraded condition (e.g. delayed) 

SLR-22 The FOS must be able to respond quickly enough and with an appropriate 
magnitude to disturbances to prevent unintended movements of the aircraft 

SLR-23 The FOS must be able to respond quickly enough to avoid violations of minimum 
separation 

SLR-24 The FOS must ensure that a viable path is always available to avoid a violation of 
minimum separation 

SLR-25 The FOS must select actuator movements that are sufficient and appropriate to 
effect the desired change in flight path under the given environmental conditions 

SLR-26 The FOS must ensure that actuator movements avoid all possible violations of 
minimum separation 

 
 

4.4 Step 3: Defining System-Level Behavior 
 
The next step in this new approach to concept and architecture development is to use the 
system-level requirements to define the system-level behavior information that describes what 
is necessary from a control loop perspective (Figure 11) to ensure that the constraints described 
by the requirements are adequately enforced by the system. Table 6 summarizes how each 
aspect of the system-level behavior information should be defined. 
 

Table 6: Descriptions of the Five Aspects of System-Level Behavior Information 

System-Level Behavior Aspect Description 

Define Controller 
Responsibilities 

Translate the system-level requirements into responsibilities 
 

Define decision-making 
strategy 

Describe at a high level of abstraction how a controller 
makes a decision 
 

Refine Control Actions Refine abstracted control actions into more specific ones 
 

Determine process model 
parts and required feedback 

Identify the process model parts needed to support decision-
making and the sources of feedback needed to support 
process model updates 
 

Define timing requirements Determine how often and how quickly a function must be 
carried out 
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For each system-level requirement, these five aspects must be defined to obtain the system-level 
behavior for the system being designed. The following sub-sections will show how to generate 
the system-level behavior information using requirements SLR-19 and SLR-23 as examples. Full 
details for the system-level behavior generated for this case study can be found in Appendix D. 
 

4.4.1 Defining Responsibilities 
 
The first step in defining system-level behavior information is to translate each requirement into 
a responsibility that the system must carry out. Like the system-level requirements, the 
responsibilities should be solution-neutral and stated at the system level to avoid making 
incorrect assumptions about how the responsibilities will be implemented until later in the 
architecture development process. To do this, most requirements can be translated into 
statements of responsibilities by removing the first few words of the requirement and retaining 
just the part of the requirement that states the constraint as illustrated in Table 7. 
 

Table 7: Translating system-level requirements into responsibilities 

Req ID System-Level Requirement Resp. ID Responsibility 

SLR-19 The FOS must be able to detect 
all objects and other aircraft in 
the environment under all DVE 
conditions at all times [SR-18] 
 

SR-18 Detect all objects and other aircraft in 

the environment under all DVE 

conditions at all times [SLR-19] 

 

SLR-23 The FOS must be able to 
respond quickly enough to avoid 
violations of minimum 
separation [SR-22] 
 

SR-22 Respond quickly enough and with 

appropriate magnitude to select and 

effect the desired change in flight 

path under the given environmental 

conditions [SLR-23, SLR-25] 

 
Responsibilities also do not necessarily have to be related one-to-one to the system-level 
requirements. In some cases such as SR-22, a responsibility can be associated with multiple 
system-level requirements and vice versa. It is also important that traceability is included (shown 
in the square brackets in Table 7) along with each requirement and responsibility to ensure that 
anyone reviewing this information in the future can determine which requirements each 
responsibility is derived from and vice versa.  
 
The 24 responsibilities generated for this case study are as follows: 
 
SR-1. Determine if feedback received about the aircraft’s mission readiness, state of the aircraft 

and the airspace is too old [SLR-1] 

SR-2. Account for prevailing DVE conditions and their possible effect on feedback sources when 

making use of feedback information [SLR-2] 
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SR-3. Validate the inputs or feedback received from other controllers before using that input or 

feedback to update process models [SLR-3] 

SR-4. Confirm that all aspects of the aircraft state match the expected safe departure state 

before providing actuator movements to depart [SLR-4] 

SR-5. Determine if the state of the aircraft changes between the time that it was checked and 

departure [SLR-5] 

SR-6. Confirm that data about the expected safe departure state of the aircraft has been fully 

specified and received [SLR-6, SLR-9] 

SR-7. Ensure that all relevant personnel are aware of any changes to the expected safe 

departure state of the aircraft [SLR-7] 

SR-8. Process all feedback to make a deliberate decision if it is to be ignored/dropped [SLR-8] 

SR-9. Ensure that all data needed to determine the state of the aircraft, state of the airspace 

and the environmental conditions around the aircraft under all DVE conditions is available 

at all times [SLR-9, SLR-15] 

SR-10. Ensure that flight crews are aware of the most updated state of any maintenance tasks 

on the aircraft [SLR-10] 

SR-11. Ensure that only authorized actuator movements are executed [SLR-11] 

SR-12. Be able to operate in the expected DVE conditions [SLR-12] 

SR-13. Distinguish useful feedback from noise in feedback data [SLR-13] 

SR-14. Process sensor data and use it to update its process model sufficiently quickly [SLR-14] 

SR-15. Determine if the state of the airspace changes between the time that it was checked and 

the commencement of a maneuver [SLR-16] 

SR-16. Account for the current and future movements of other aircraft in the vicinity when 

selecting actuator movements [SLR-17] 

SR-17. Ensure that aircraft movements are selected such that sufficient reaction time is available 

if intent or movements of other aircraft are not what was expected, even if no violation of 

minimum separation is initially expected [SLR-18] 

SR-18. Detect all objects and other aircraft in the environment under all DVE conditions at all 

times [SLR-19] 

SR-19. Detect slow or subtle changes in the state of the aircraft under all DVE conditions at all 

times [SLR-20] 

SR-20. Select actuator movements that minimize the risk of violation of minimum separation 

when information about the state of the airspace is in a degraded condition (e.g. delayed) 

[SLR-21] 

SR-21.   Respond quickly and with appropriate magnitude to disturbances to prevent unintended 

movement of the aircraft [SLR-22] 

SR-22. Respond quickly enough and with appropriate magnitude to select and effect the desired 

change in flight path under the given environmental conditions [SLR-23, SLR-25] 

SR-23. Ensure that a viable flight path is always available to avoid any violations of minimum 

separation [SLR-24] 

SR-24. Select a viable flight path that avoids all violations of minimum separation [SLR-26] 
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4.4.2 Defining Decision-Making Strategies, Refined Control Actions and Required Process 
Model Parts 

 
Once the responsibilities are defined, the next step is to define the decision-making strategy, 
refined control actions and process model parts. It is important that the decision-making strategy 
is defined first before the refined control actions and required process model parts are defined 
because the decision-making strategy serves as the basis for refining a control action or 
identifying required process model parts. Table 8 shows how the decision-making strategy, 
refined control actions and process model parts should be recorded for SR-18 (associated with 
SLR-19) and SR-22 (associated with SLR-23).  
 

Table 8: Decision-Making Strategy, Refined Control Actions and Process Model Parts for SR-18 and SR-22 

Resp. 
ID 

Responsibility Decision-
Making 
Strategy 

Refined 
Control 
Action(s) 

Required Process Model 
Contents 

Rationale and 
Assumptions 

SR-18 Detect all 
objects and 
other aircraft 
in the 
environment 
under all DVE 
conditions at 
all times [SLR-
19] 

Use data 
from 
<sensor 
choices> to 
measure 
the position 
and speed 
of objects 
and aircraft 
in the 
airspace 
 

N/A All process model 
contents in Current 
Weather Conditions and 
Current Airspace State 

<Rationale for sensor 
choices based on 
anticipated objects 
and DVE conditions 
and other 
performance 
parameters> 
 
<Assumptions about 
minimum object size 
and DVE conditions> 

SR-22 Respond 
quickly 
enough and 
with 
appropriate 
magnitude to 
select and 
effect the 
desired 
change in 
flight path 
under the 
given 
environmental 
conditions 
[SLR-23, SLR-
25] 

Normal 
decision 
making 
process 
needed to 
select 
actuator 
movements, 
however 
decision 
making 
must 
happen 
more 
quickly 

Roll 
Pitch 
Yaw 

Model of Current 
Weather Conditions 

• Outside air 
temperature 

• Wind speed  

• Visibility 
 
Model of Current 
Aircraft Navigation State 

• Air speed 

• Altitude 

• Position 
 
Model of System 
Behavior 

• Guidelines for 
aircraft handling 
in DVEs 

 

Assumes the “rules” 
for selecting actuator 
movements will be 
the same whether in 
DVE conditions or not 
but those decisions 
will need to be more 
responsive to 
disturbances caused 
by some DVE 
conditions than 
normal 
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To define the decision-making strategy, the responsibility should be used to decide what 
decision(s) are required to carry out the responsibility and how the system as a whole should 
make those decision(s). For example, SR-18 describes the responsibility for detecting all other 
aircraft and other objects in the airspace under all DVE conditions. The decision-making strategy 
might therefore be to use a sensor suite to measure the position and speed of objects and aircraft 
in the airspace. Although this decision-making strategy is currently too abstract to perform a 
detailed system design with, this level of abstraction is useful at this stage in architecture 
development because it provides just enough detail to consider refinements to the control 
actions and determine the process model parts and feedback that are necessary. At later stages 
in the architecture development process, this decision-making strategy can then be further 
refined to include a sufficient level of detail to implement it. Examples of decision-making 
strategies can be found in the third column of Table 8. 
 
Once the decision-making strategy is defined, refined control actions and the process model parts 
required to support decision-making can be defined. The decision-making strategy can be used 
to determine what process model parts might be needed to enable effective decision-making. 
So, for example, in SR-22, the Piloting Controller will need to know the current weather 
conditions (e.g. wind speed, ambient temperature), the current navigation state of the aircraft 
(e.g. current airspeed, current altitude, current position) and the model of system behavior (e.g. 
how much roll, pitch and yaw is required to achieve a desired flight path). The refined control 
actions can also be defined in a similar manner by considering what the output of the decision-
making strategy might be. For example, in SR-22, since the responsibility is to respond quickly 
enough and with appropriate magnitude to effect a change in flight path, the output of that 
decision is likely going to be roll, pitch and yaw inputs. Therefore, the original “Actuator 
Movements” control action defined at the start of the STPA analysis in Section 4.2 can be refined 
to be “Roll, Pitch and Yaw”. Examples of refined control actions and required process model parts 
can be found in the fourth and fifth columns of Table 8 respectively. 
 
Since the decision-making strategy, refined control actions and process model parts all represent 
design decisions being made, it is also important that this information be recorded along with 
the underlying rationale and assumptions to ensure that it these decisions can be more easily 
understood and reviewed by a reviewer, assessor or system maintainer. Examples of the 
rationale and assumptions can be found in the last column of Table 8. 
 

4.4.3 Defining Sources of Feedback 
 
After defining the decision-making strategy, refined control actions and required process model 
parts for each responsibility, it is now possible to collate all the process model parts together so 
that the size of the whole process model and all its parts can be visualized together. This 
visualization can then be used to identify the source of the feedback that is necessary to update 
and maintain each part of the process model. So, for example, for the model of current weather 
conditions, since weather conditions should be measured using temperature or wind speed 
sensors that are included as part of the aircraft subsystems, the temperature and wind speed 
parts of the process model would be updated using feedback of the same name originating from 
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the aircraft subsystems. As with the other parts of the system-level behavior information, 
because this represents a design decision being made about the system, this information should 
be recorded along with the underlying rationale and assumptions. Table 9 shows how feedback 
information should be recorded, using the Current Navigation State and Current Airspace State 
parts of the process model as examples.  
 

Table 9: Feedback Information for Current Navigation State and Current Airspace State 

Process Model 
Part 

Required 
Information 

Source of 
Information 

Rationale/Assumptions  

Current Aircraft 
Navigation State 

Current Air Speed 

Aircraft subsystems 

As with today’s aircraft, 
these parameters will 
continue to be measured 
using sensors on the 
airframe 
 

Current Altitude 

Current Position 

Current Airspace 
State 

IDs, Positions and 
Speeds of other 
aircraft and 
objects 

Aircraft Subsystems 
 
Reports from other 
controllers 
 
EMS Operations and 
ATC 
 

As with today’s aircraft, 
these parameters will either 
be measured using current 
methods (e.g. radar 
contact) or may be 
reported via other 
communications channels 
(e.g. verbal radio 
communication) from other 
parts of the system 
 
 

Time of last 
feedback 
measurement  

Aircraft Subsystems 
This assumes that 
timestamps associated with 
sensor data are used 

 
 
In total, eight process model parts were identified for this case study: 

1. Current Aircraft Mission Readiness 
2. Current Aircraft System State 
3. Current Aircraft Navigation State 
4. Expected Safe Departure State 
5. Current Weather Conditions 
6. Current Airspace State 
7. Anticipated Future Airspace State 
8. Model of System Behavior 
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4.4.4 Defining Timing Requirements 
 
Finally, as discussed in Section 3.4, up to this point, the system-level behavior only contains static 
information about what is required to carry out the identified responsibilities and the temporal 
aspects of carrying out the responsibilities have not been made explicit. Therefore, the last part 
of the system-level behavior information is to specify these temporal aspects.  
 
In this case study, before identifying the timing requirements, the identified responsibilities were 
divided into two types: Feedback Validation Responsibilities and Non-Feedback-Validation 
Responsibilities. Feedback Validation Responsibilities are responsibilities that involve the 
validation of feedback prior to using them to update the process model and examples include 
validating any inputs from other controllers before using them or accounting for the negative 
effects of DVE conditions on feedback sources (e.g. sensors) prior to using that feedback to 
update the process model. On the other hand, Non-Feedback-Validation Responsibilities are all 
other responsibilities that do not involve the validation of feedback and examples include 
accounting for the intent of other aircraft when selecting actuator movements and selecting 
actuator movements quickly and with appropriate magnitude to execute the desired flight path. 
The reason for dividing the responsibilities into these two groups is that the timing requirements 
for feedback validation responsibilities might be different depending on the type of feedback 
whereas non-feedback-validation responsibilities do not have this dependency. As such, for 
Feedback Validation Responsibilities, timing requirements are defined for each pair of 
responsibilities and process model parts whereas Non-Feedback-Validation Responsibilities are 
simply defined for each responsibility.  
 
To define timing requirements, the frequency and speed with which the responsibility must be 
carried out should be considered by answering two key questions: 

1. How often does this constraint need to be enforced? (Frequency) 
2. How quickly does a decision about this responsibility need to be made? (Speed) 

 
Similar to the other parts of the system-level behavior information, since these timing 
requirements represent design decisions being made, they should also be recorded along with 
the underlying assumptions and rationale. 
 
Table 10 shows how timing requirements are defined for Non-Feedback-Validation 
Responsibilities by answering the 2 questions above using SR-18 (associated with SLR-19) and SR-
22 (associated with SLR-23) as examples.  
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Table 10: Example Timing Requirements for Non-Feedback-Validation Responsibilities 

Resp. ID Responsibility Timing Requirements Rationale/Assumptions 

SR-18 Detect all objects and 
other aircraft in the 
environment under all 
DVE conditions at all 
times [SLR-19] 
 

Based on sensor performance 
characteristics and time needed 
after detections are made to plan 
and execute a flight trajectory, it 
is necessary to update the 
process model of the current 
state of the airspace at a rate of 
<TBD> Hz. This defines how often 
this responsibility has to be 
carried out. 
 
Based on this update rate, sensor 
data and any other inputs must 
be integrated into a coherent 
picture of the current state of the 
airspace within <TBD> seconds. 
This defines how quickly a 
decision has to be made for this 
responsibility 
 

This assumes that <TBD> 
seconds are required after 
detections are made to plan 
and execute a trajectory 
based on those detections. 

SR-22 Respond quickly 
enough and with 
appropriate 
magnitude to select 
and effect the desired 
change in flight path 
under the given 
environmental 
conditions 
 

Based on worst case detection 
ranges and the dynamics and 
handling characteristics of the 
aircraft, a change in flight path 
must be decided and executed 
within <TBD> seconds  
 
  

This assumes aircraft 
dynamics and handling 
characteristics are <TBD> 
and the worst case 
detection ranges are <TBD> 
as defined in <TBD> 
document 
 
 

 
By contrast, Feedback Validation Responsibilities are defined in a matrix consisting of the process 
model parts written in the rows and the responsibilities written in the columns. Each cell in this 
matrix therefore defines the timing requirements for a given responsibility for a particular 
process model part.  

Table 11 shows how timing requirements are defined for two Feedback Validation 
Responsibilities (SR-2 and SR-3) for two process model parts (Current Aircraft Navigation State 
and Current Weather Conditions). 
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SR-2: Account for prevailing DVE conditions and their possible effect on feedback sources when 
making use of feedback information [SLR-2] 
 
SR-3: Validate the inputs or feedback received from other controllers before using that input or 
feedback to update process models [SLR-3] 
 

Table 11: Example Timing Requirements for Feedback Validation Responsibilities 

Process Model 
Part 

Feedback Responsibilities Rationale/Assumptions 

SR-2 SR-3 

Current Aircraft 
Navigation State 

Since navigation state 
must be updated every 
<TBD> seconds, then all 
navigation-related 
feedback must be 
evaluated every <TBD> 
seconds as well.  
 
In addition, the decision 
as to whether prevailing 
DVE conditions might 
have negative impact 
must be made within 
<TBD> seconds 
 

When an external input 
regarding the aircraft’s 
navigation state is 
received, it must be 
validated within <TBD> 
seconds to ensure that 
navigation state update 
rate of <TBD> seconds is 
maintained. 
 
External inputs regarding 
the aircraft’s navigation 
state are expected to be 
received at a very 
infrequent rate. 

The required navigation 
state update rate was 
determined based on 
<TBD>. 
 
The expectation that the 
rate of receipt of external 
input for the aircraft 
navigation state is 
infrequent assumes that 
the only external input 
the Piloting Controller 
might receive is verbal 
input from another 
aircraft or a controller 
performing a function 
similar to that of Air 
Traffic Control 
 

Current Weather 
Conditions 

Since weather conditions 
must be updated every 
<TBD> seconds, then all 
weather-related 
feedback must be 
evaluated every <TBD> 
seconds as well.  

External weather inputs 
are expected to be 
received every <TBD> sec 
and must be processed at 
the same <TBD> rate to 
keep weather conditions 
updated every <TBD> 
seconds 

This assumes external 
weather inputs 
generated by <TBD> 
weather reporting 
systems are received at 
the aircraft every <TBD> 
seconds 

 
It is worth noting that because these timing requirements require decisions in other parts of the 
system-level behavior information to have been made (e.g. choice of sensors), some information 
described in the timing requirements in Table 10, Table 11 and Appendix D are written with 
“<TBD>” used as a placeholder. Eventually, the “<TBD>” placeholders should be replaced with 
the required information or numerical values once the necessary decisions have been made. 
 
Once these timing requirements have been defined, this concludes the definition of system-level 
behavior.  
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Intent Specification Level 2: System Engineering View 
4.5 Step 4, Part 1: Creating and Assessing Architecture Options for the Overall 

System 
 
As described in Section 3.5, the first part of the 2-part architecture creation process involves 
creating and assessing architecture options for the overall system (i.e. the FOS). First, an overview 
of the architecture options is provided in Section 4.5.1. Then, the assignments for each 
architecture option are shown and each architecture is analyzed individually in Sections 4.5.2 to 
4.5.5. Finally, in Section 4.5.6, the two architecture options are compared and the benefits and 
tradeoffs between them are discussed to conclude part 1 of the architecture creation process.  
 

4.5.1 Overview of Architecture Options 
In this section, two architecture options will be presented for the FOS: 

• Option 1: The Existing Flight Operations System (FOS) 

• Option 2: The Enhanced FOS 
 
Option 1 represents the simplest system for executing a mission where Maintenance personnel 
maintain the aircraft, EMS Operations and ATC assist with planning the mission and ensuring the 
aircraft has access to the airspace and the piloting controller is primarily responsible for all 
aspects of executing the mission and safely flying the aircraft. A key aspect of this architecture 
option is that the piloting controller detects and updates the current and future state of the 
airspace using only a-priori information from maps and other databases available to emergency 
services personnel and assumes limited ATC support (e.g. in uncontrolled airspace). 
 
By contrast, architecture option 2 is a modified version of option 1 where EMS Operations and 
ATC can assist with maintaining and updating the current and future state of the airspace in which 
the mission is being executed. For example, EMS Operations and ATC could take advantage of 
data or verbal reports from other flight crews or other emergency responders who might also be 
responding to the scene of an emergency to assist the Piloting Controller in maintaining and 
updating a shared understanding of the locations of hazards such as cell towers, terrain features 
and other objects and hazards. As such, the Piloting Controller’s ability to maintain an updated 
model of the current and future state of the airspace is enhanced because EMS Operations and 
ATC can assist the Piloting Controller in maintaining an updated model of the current and future 
state of the airspace by incorporating additional information that the Piloting Controller would 
not otherwise have access to.  
 
For all the responsibility and process model assignments, the names of the controllers they are 
assigned to will be abbreviated as follows: 

• EMSATC: EMS Operations and ATC 

• MP: Maintenance Personnel 

• PC: Piloting Controller 

• AS: Aircraft Subsystems 
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4.5.2 Architecture Option 1: The Conventional Flight Operations System 
 
As described in the overview, this architecture option represents an architecture for the FOS 
where the Piloting Controller is primarily responsible for flying the aircraft and executing the 
mission. As a result, most of the process model parts and responsibilities are assigned to the 
Piloting Controller and only a few are shared with other controllers in the system. The assignment 
of process model parts will be shown first followed by the assignment of non-feedback-validation 
responsibilities and finally the assignment of feedback validation responsibilities. While only 
examples of the responsibility assignments are shown in this section, full details for this 
architecture option can be found in Appendix E. 
 
Assignment of Process Model Parts 
The assignments for each of the eight process model parts identified in the system-level behavior 
information are shown in Table 12 along with the underlying rationale and assumptions for each 
assignment. 
 

Table 12: Assignments of Process Model Parts for Part 1 Architecture Option 1 

Process Model 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

Current Aircraft 
Mission 
Readiness 

 X X  

Since maintenance personnel will prepare and 
maintain the aircraft on behalf of the piloting 
controller, this process model is shared between 
them 

Current Aircraft 
System State 

  X X 

Since the aircraft subsystems assist the piloting 
controller in monitoring the state of the aircraft 
subsystems (e.g. engine status, hydraulic system 
status), the aircraft system state is shared between 
the piloting controller and aircraft subsystems 

Current Aircraft 
Navigation State X  X  

Since EMS Operations and ATC is likely monitoring the 
progress of the mission, the aircraft navigation state 
will be shared with it and the Piloting Controller. 

Expected Safe 
Departure State 

X X X  

For any mission, EMS Operations and ATC establishes 
the mission plan and the maintenance personnel will 
determine the maintenance state of the aircraft when 
it will be needed for the mission. All of this 
information will also be needed by the piloting 
controller to perform pre-flight and departure checks. 
As a result, this information is shared by all three 
controllers  
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Process Model 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

Current 
Weather 
Conditions 

  X  
Since these process model parts are used and 
updated constantly in real-time during a flight, the 
piloting controller must be assigned all of them. In 
addition, it is assumed in this architecture option that 
no other controller is equipped to assist the piloting 
controller in maintaining these process model parts 

Current Airspace 
State 

  X  

Anticipated 
Future Airspace 
State 

  X  

Model of 
System Behavior 

X  X X 

Not only does EMS Operations and ATC set some of 
the parameters based on aircraft acquired and other 
factors, EMS Operations and ATC must also use some 
of the parts of this process model part to plan the 
mission. The aircraft subsystems and piloting 
controller must also know about some of these parts 
of the process model to control the aircraft and 
execute a mission  

 
For this architecture option, all the process model parts are assigned to the Piloting Controller 
because they are primarily responsible for flying the aircraft and will therefore need all of the 
process model parts at some point during the flight to carry out all the necessary responsibilities. 
In addition, while most of the process model parts are only assigned to the Piloting Controller 
because they need to be carried out continuously during flight, some process model parts are 
shared with other controllers in the FOS. For example, the Current Aircraft Mission Readiness 
process model part is shared with the maintenance personnel because the maintenance 
personnel need to know the state of the aircraft to ensure it is ready for a mission but the Piloting 
Controller also needs to have this process model part so that it knows when the aircraft is ready 
to depart on the mission. Similarly, the expected safe departure state of the aircraft is shared 
with EMS Operations and ATC who plan the mission and manage the airspace, the Maintenance 
personnel who need to know how the aircraft should be configured for the mission and the 
Piloting Controller who needs to know what state their aircraft should be in before departing.    
 
Assignment of Non-Feedback-Validation Responsibilities 
 
As described in Section 4.4.4, the non-feedback-validation responsibilities are a subset of the 
responsibilities identified for the FOS that do not describe constraints on how feedback should 
be validated before it is used to update the process model parts. As might be expected, since the 
Piloting Controller is primarily responsible for flying the aircraft in this architecture option, most 
of the responsibilities related to safe flight are assigned only to the Piloting Controller and some 
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examples are shown in Table 13. This is because only the Piloting Controller has direct access to 
the required feedback (e.g. sensor and detection data) defined in the system-level behavior to 
be able to carry out these responsibilities at the required speed and frequency defined in the 
timing requirements of the system-level behavior.  
 

Table 13: Flight-Related Non-Feedback-Validation Responsibilities Assigned Only to the PC in Part 1 Architecture Option 1 

Resp. 
ID 

Responsibility 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

SR-4 Confirm that all aspects 
of the aircraft state 
match the expected safe 
departure state before 
providing actuator 
movements to depart 
[SLR-4] 

  X  

Since the piloting controller is 
primarily responsible for controlling 
the aircraft and executing the 
mission, this related responsibility 
for making final confirmation that 
the aircraft is in a safe departure 
state before departing should also 
be assigned to the piloting controller 

SR-15 Determine if the state of 
the airspace changes 
between the time that it 
was checked and the 
commencement of a 
maneuver [SLR-16] 

  X  

Since the piloting controller is 
primarily responsible for controlling 
the aircraft and this responsibility 
relates to how to maintain safe 
control of the aircraft, it is assigned 
to the piloting controller 

SR-16 Account for the current 
and future movements of 
other aircraft in the 
vicinity when selecting 
actuator movements 
[SLR-17] 

  X  

All of these responsibilities relate to 
selecting appropriate flight paths 
and actuator movements, all of 
which are within the scope of the 
piloting controller’s responsibility 
for maintaining safe control over the 
aircraft. As such, these 
responsibilities are all assigned to 
the piloting controller 

SR-22 Respond quickly enough 
and with appropriate 
magnitude to select and 
effect the desired change 
in flight path under the 
given environmental 
conditions [SLR-23, SLR-
25] 

  X  

SR-24 Select a viable flight path 
that avoids all possible 
violations of minimum 
separation [SLR-26] 

  X  
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By contrast, some responsibilities are either shared between the Piloting Controller and other 
controllers in the FOS or not assigned to the piloting controller at all. Examples of these 
assignments for this architecture option are shown in Table 14. 
 

Table 14: Part 1 Architecture Option 1 Assignment of Other Non-Feedback-Validation Responsibilities 

Resp. 
ID 

Responsibility 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

SR-6 

Confirm that data 
about the expected 
safe departure state of 
the aircraft has been 
fully specified and 
received [SLR-6, SLR-9] 

X  X  

Since the expected safe departure state 
is dependent on the needs of a specific 
mission, EMS Operations and ATC must 
be assigned responsibility for planning 
the mission. However, the piloting 
controller could also confirm that the 
information it receives is complete 
 

SR-7 

Ensure that all relevant 
personnel are aware of 
any changes to the 
expected safe 
departure state of the 
aircraft [SLR-7] 

X    

Assuming that changes are likely to 
either come from EMS Operations and 
ATC or need to be approved by EMS 
Operations and ATC, then EMS 
Operations and ATC will be informed of 
any changes that are needed and 
therefore is in the best position to 
disseminate any changes should 
assigned to EMS Operations and ATC 
 

SR-11 

Ensure that only 
authorized actuator 
movements are 
executed [SLR-11] 

   X 

Since the execution of actuator 
movements to move actuators is 
performed by the aircraft subsystems, 
the responsibility for only executing 
authorized actuator movements is 
assigned to the aircraft subsystems 
 

SR-18 

Detect all objects and 
other aircraft in the 
environment under all 
DVE conditions at all 
times [SLR-19] 
 

  X X 

Under DVE conditions, the piloting 
controller’s direct observations will 
need to be augmented by a sensor 
suite that is part of the aircraft 
subsystems 

 
Some responsibilities such as SR-7 and SR-11 are not assigned to the Piloting Controller at all 
because they describe constraints that are more easily enforced by another controller in the FOS 
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instead of the Piloting Controller. For example, SR-11 is only assigned to the aircraft subsystems 
because the aircraft subsystems interact directly with the physical actuators and hardware on 
the aircraft and the piloting controller does not. On the other hand, some responsibilities such as 
SR-6 and SR-18 are shared because both the Piloting Controller as well as the other controller can 
play a role in carrying out that responsibility For example, SR-18 is assigned to both the piloting 
controller and aircraft subsystems in this architecture option because the aircraft subsystems 
contain the sensors which perform the data collection and some basic interpretation of that 
sensor data to produce detections and the piloting controller integrates all the individual 
detections and resolves any conflicting feedback to produce a single coherent set of detections.  
 
Assignment of Feedback Validation Responsibilities 
 
Finally, the feedback validation responsibilities also need to be assigned to the controllers in the 
FOS. As described in Section 4.4.4, the feedback validation responsibilities are the subset of the 
responsibilities identified for the FOS that describe constraints on how feedback should be 
validated before it is used to update the process model parts. As such, for these responsibilities, 
an assignment is made for each pair of process model part and responsibility. So, for example, a 
separate assignment is defined for SR-1 for each of the eight process model parts.  
 
Similar to the non-feedback-validation responsibilities, since the piloting controller is primarily 
responsible for integrating the various sources of feedback to fly the aircraft safely, all of the 
feedback responsibilities for almost every process model part is assigned to the piloting controller 
in this architecture option. In some cases, however, no assignment is made because the 
responsibility is not expected to be applicable for that process model part. For example, although 
it is necessary to account for the effects of DVE when making use of feedback about the current 
state of the airspace, it is not necessary to do so when making use of feedback about the expected 
safe departure state because the type of feedback that will be received is not expected to be 
affected by DVE. In instances like these, “N/A” is used to indicate that no assignment is made and 
the rationale for why the responsibility is not applicable for that process model part is described 
in the rationale/assumptions column. Some examples of feedback validation responsibility 
assignments for this architecture option are shown in Table 15. 
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Table 15: Assignment of Feedback Validation Responsibilities for Part 1 Architecture Option 1 

Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-2 

Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 

 

Aircraft Mission Readiness N/A 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 

 
 

Since this responsibility 
depends on prevailing 
weather conditions during 
the flight, this responsibility 
must be carried repeatedly 
and in real-time. As such, 
the piloting controller is the 
only controller equipped to 
do this.  
 
This assumes that feedback 
for aircraft mission 
readiness, expected safe 
departure state and model 
of system behavior will not 
be affected by DVE and 
hence no assignment is 
made for these parts  

SR-3 

Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

EMSATC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Similar to SR-1, the piloting 
controller is in the best 
position to decide when 
feedback is too old since 
these process model parts 
are used to fly the aircraft or 
select a flight path.  
 
This includes the model of 
system behavior which 
could have its parameters 
updated based on input that 
needs to be validated 
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Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-9 

Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

Aircraft Mission Readiness PC 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure State N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 
 

Similar to SR-2, these 
responsibilities have to be 
performed repeatedly 
during flight as described in 
the timing requirements 
section. As such, the piloting 
controller is the only 
controller in the system that 
is equipped to do this.  
 
These assignments assume 
that continuous feedback is 
not expected for the 
expected safe departure 
state and model of system 
and hence this responsibility 
does not apply for those 
process model parts. 
 

SR-13 

Distinguish useful 
feedback from 
noise in feedback 
data [SLR-13] 

Aircraft Mission Readiness PC 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure State N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 
 

SR-14 

Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

EMSATC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Similar to SR-2, these 
responsibilities have to be 
performed repeatedly 
during flight as described in 
the timing requirements 
section. As such, the piloting 
controller is the only 
controller in the system that 
is equipped to do this.  
 
These assignments assume 
that continuous feedback is 
not expected for the 
expected safe departure 
state and model of system 
and hence this responsibility 
does not apply for those 
process model parts. 
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Architecture Option 1 Control Structure 
The resulting control structure for this architecture option is shown in Figure 19. 
 

 
Figure 19: Part 1 Architecture Option 1 Control Structure  
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4.5.3 Architecture Analysis of Option 1 
 
There are two key observations that can be made about this architecture option that could 
inform architectural decision making. The first is that this architecture option imposes high 
workload and capability requirements on the Piloting Controller. Since the Piloting Controller 
carries out most of the responsibilities related to safe flight in this architecture option, most of 
the additional DVE-related requirements are assigned to it. As a result, the workload and 
capability requirements imposed on the Piloting Controller are significantly increased compared 
to flying in non-DVE conditions because it must now meet these new requirements. Examples of 
loss scenarios and the associated responsibilities that are assigned to the Piloting Controller that 
illustrate the increased workload or capability requirements are shown in Table 16. 
 

Table 16: Scenarios and Responsibilities Showing Increased Workload or Capability Requirements 

Scenario 
ID 

Scenario Resp. 
ID 

Responsibility 

CS-1.1.1-
1.1.2 

The piloting controller believes it is receiving 
conflicting feedback because DVE conditions have 
degraded the accuracy of or obscured some (but 
not all) feedback sources. The piloting controller 
therefore chooses to ignore the conflicting 
feedback, believing that it is a false positive or 
erroneous. The piloting controller is especially 
susceptible to this if the majority of sources appear 
to agree that no aircraft is present and fewer 
sources appear to show otherwise. As a result, the 
piloting controller updates its process model based 
only on what it wrongly believes to be the correct 
feedback. [SLR-2] 

SR-2 Account for prevailing 
DVE conditions and their 
possible effect on 
feedback sources when 
making use of feedback 
information [SLR-2] 

CS-1.2.1-
1.1 

DVE conditions cause more noise in sensor data 
than is normally present, making the useful 
feedback more difficult for the piloting controller 
to distinguish from the noise or increasing the 
likelihood that the piloting controller wrongly 
decides that the sensor data shows no useful 
feedback/detections. [SLR-13, SLR-19] 

SR-13 Distinguish useful 
detections/feedback 
from the noise that might 
be present in feedback 
data under all DVE 
conditions at all times 
[SLR-13] 

CS-1.5.4-1 The piloting controller may have the wrong process 
model of the environment conditions and selects 
actuator movements that are insufficient to effect 
the desired change in flight path [SLR-25] 

SR-22 Respond quickly enough 
and with appropriate 
magnitude to select and 
effect the desired change 
in flight path under the 
given environmental 
conditions [SLR-23, SLR-
25] 
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SR-2 is an example of an additional responsibility that is imposed on the Piloting Controller 
because it is flying the aircraft under DVE conditions. If DVE conditions were not present, the 
Piloting Controller would not need to account for DVE conditions when making use of feedback. 
By contrast, SR-13 and SR-22 are examples of existing responsibilities that are made more difficult 
to carry out due to the presence of DVE conditions. Even in the absence of DVE conditions, the 
Piloting Controller would still be required to distinguish useful feedback from noise and select 
actuator movements that are sufficient and appropriate to effect the desired change in the flight 
path. However, due to the presence of DVE conditions, these requirements are harder to satisfy 
because DVE conditions might decrease the signal to noise ratio for some sensors and require 
the Piloting Controller to consider a larger number of factors in a shorter amount of time when 
selecting actuator movements. As such, these responsibilities illustrate how the presence of DVE 
conditions increases the workload and capability requirements of the Piloting Controller by either 
making existing requirements harder to satisfy or imposing new additional requirements that the 
Piloting Controller must satisfy.  
 
The second key observation is that this architecture option imposes stringent performance and 
feedback requirements that may be difficult or impossible to meet. As a result, there is an 
increased risk that architectural decisions may need to be changed if it is later found during 
detailed system design that the system requirements cannot be met. Since most of the feedback 
validation responsibilities are assigned to the Piloting Controller and the Piloting Controller is 
reliant on sensor data to detect objects and other aircraft in the airspace, the performance of the 
Aircraft Subsystems and the ability of the Piloting Controller to use that feedback to maintain an 
updated process model of the state of the airspace is extremely critical to ensuring the safe 
operation of the FOS. If the Piloting Controller or the feedback that it relies on from the Aircraft 
Subsystems is unable to meet the stringent requirements, the Piloting Controller will be 
vulnerable to unsafe behavior during flight in DVE conditions. Consequently, if the stringent 
performance and feedback requirements are difficult or impossible to meet, not only could the 
safety of this architecture be compromised but there is also an increased risk that architectural 
decisions may need to be changed to make them achievable. Table 17 contains three scenarios 
along with the associated responsibilities that are assigned to the Piloting Controller that 
illustrate examples of the performance and quality requirements that must be met. 
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Table 17: Scenarios Suggesting Stringent Performance and Quality Requirements 

Scenario ID Scenario Resp. 
ID 

Responsibility 

CS-1.2.1-1.1 DVE conditions cause more noise in 
sensor data than is normally present, 
making the useful feedback more 
difficult for the piloting controller to 
distinguish from the noise or 
increasing the likelihood that the 
piloting controller wrongly decides 
that the sensor data shows no useful 
feedback/detections. [SLR-13, SLR-
19] 

SR-13 Distinguish useful feedback from 
noise in feedback data [SLR-13] 

CS-1.2.1-1.3 DVE causes delays in the piloting 
controller interpreting the sensor 
data and using the sensor data to 
update its process model. As a result, 
the piloting controller has the wrong 
process model of the airspace 
around the aircraft until it is able to 
update its process model. [SLR-14] 

SR-14 Process sensor data and use it to 
update its process model sufficiently 
quickly [SLR-14] 

CS-1.2.2-1 DVE degrades or obscures sensors, 
leading to wrong, incomplete or 
missing feedback about the 
environment, DVE conditions or the 
state of the aircraft. This could also 
be caused by a sensor suite that was 
not designed to operate in a 
particular set of DVE conditions [SLR-
2, SLR-15, SLR-19] 

SR-2 Account for prevailing DVE conditions 
and their possible effect on feedback 
sources when making use of 
feedback information [SLR-2] 

SR-9 Ensure that all data needed to 
determine the state of the aircraft, 
state of the airspace and the 
environmental conditions around the 
aircraft under all DVE conditions is 
available at all times [SLR-9, SLR-15] 

SR-18 Detect all objects and other 
aircraft in the environment under 
all DVE conditions at all times 
[SLR-19] 

 
By combining the responsibilities listed in Table 17 with the system-level behavior defined for 
each responsibility, the requirements imposed on each component of the system to enable the 
Piloting Controller to carry out these responsibilities are illustrated in Figure 20. 
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Figure 20: Performance Requirements for Each Part of the System 

As shown in the “Piloting Controller” box in Figure 20, the Piloting Controller is responsible for 
carrying out responsibilities SR-2, SR-9, SR-13, SR-14 and SR-18 as assigned in this architecture 
option. Using the system-level behavior information defined for these responsibilities, three key 
aspects must be implemented in the system design. Firstly, to carry out these responsibilities 
effectively, the Piloting Controller must receive feedback about the current weather conditions 
and the positions, IDs and speeds of other aircraft and objects in the airspace so that it can keep 
its process model parts updated. Secondly, the Piloting Controller should receive all that feedback 
from the Aircraft Subsystems. Finally, that feedback needs to meet the expected performance 
and quality requirements defined in the system-level behavior in order for the Piloting Controller 
to receive adequate feedback to carry out its assigned responsibilities effectively. As listed in the 
“Aircraft Subsystems” box in Figure 20, examples of the performance and quality requirements 
that the Aircraft Subsystems must meet to provide adequate feedback to the Piloting Controller 
include: 

• Detecting all the weather conditions defined in SR-2  

• Providing updated sensor data at the required update frequency as defined in SR-9 and 
with latencies/delays no greater than the thresholds defined in SR-14 

• Achieve the minimum signal strength and signal to noise ratios defined in SR-13 

• Achieve the sensor performance (e.g. resolution, range) as defined in SR-18 
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This therefore shows that, for the four scenarios shown in Table 17 to be adequately mitigated 
or prevented, the Piloting Controller and Aircraft Subsystems need to meet all the performance 
and feedback requirements shown in the above diagram.  
 
In this architecture option, however, it may be difficult for the Piloting Controller and Aircraft 
Subsystems to fully meet these requirements under all conditions since the Piloting Controller is 
solely responsible for carrying out the five system-level requirements described above using only 
the sensors on the aircraft as its primary feedback source. For example, if not carefully designed, 
the Aircraft Subsystems might not be able to sense power lines reliably in DVE conditions because 
they may be too small to be detected by candidate sensors under DVE conditions. In addition, it 
may be very expensive or difficult to integrate sensors that could perform all the required 
detections. As such, by relying solely on the Aircraft Subsystems and Piloting Controller to detect 
and maintain an updated state of the airspace, this architecture places stringent requirements 
that must be met by the Aircraft Subsystems and Piloting Controller.  If it is discovered during 
detailed system design that the stringent requirements cannot be met, however, architectural 
decisions may need to be changed. 
 
 

4.5.4 Architecture Option 2: The Enhanced Flight Operations System 
 
An alternative architecture to that shown in option 1 is an architecture that provides the Piloting 
Controller with access to additional information from other sources that it can use to maintain 
its process model of the current and future state of the airspace. This would allow the Piloting 
Controller to avoid being entirely dependent on real-time sensing of the environment. One 
possible way to do this is to create a common situational database that can be updated based on 
reports from other first responders or other air crews responding to the emergency scene. This 
type of architecture will therefore be analyzed in this architecture option.  
 
For compactness, only the process model parts and responsibilities that have different 
assignments than in architecture option 1 will be shown. Any process model part or responsibility 
that has the same assignment in both architecture options will not be shown again. For all the 
responsibility and process model assignments, the names of the controllers they are assigned to 
will be abbreviated as follows: 

• EMSATC: EMS Operations and ATC 

• MP: Maintenance Personnel 

• PC: Piloting Controller 

• AS: Aircraft Subsystems 
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Assignment of Process Model Parts 
 
In this architecture option, only two of the process model parts have different assignments 
compared to option 1. For the Current Airspace State and Anticipated Future Airspace State, 
instead of only being assigned to the Piloting Controller, these two process model parts are now 
shared with EMS Operations and ATC as shown in Table 18. These process model parts are shared 
because EMS Operations and ATC assist the Piloting Controller in maintaining and updating these 
parts of the process model in this architecture option and thus need these process model parts 
assigned to them.  
 

Table 18: Modified Assignments of Process Model Parts in Part 1 Architecture Option 2  

Process Model 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

Current Airspace 
State 

X  X  In this option, EMS operations and ATC are equipped 
to assist the piloting controller in maintaining the 
current and future state of the airspace in which the 
mission will be taking place. As a result, they share 
these process model parts.  

Anticipated 
Future Airspace 
State 

X  X  

 
 
Assignment of Non-Feedback-Validation Responsibilities 
For the assignment of non-feedback-validation responsibilities, two responsibilities have 
different assignments in this architecture option compared to architecture option 1 and they are 
shown in Table 19. 
 
For SR-4, the Maintenance personnel are now assigned to help the Piloting Controller to confirm 
that the aircraft state matches the expected safe departure state instead of requiring the Piloting 
Controller to perform this responsibility on their own.  
 
For SR-18, EMS Operations and ATC now share this responsibility and can assist the Piloting 
Controller in identifying other aircraft or objects in the airspace and anticipating what the future 
state of the airspace might be. For example, EMS Operations and ATC might have access to radar 
data of the airspace near the emergency scene or video footage of the emergency scene that the 
Piloting Controller would not have access to. As a result, EMS Operations and ATC can provide 
updates to the shared process model of the current or anticipated future airspace state for the 
Piloting Controller. 
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Table 19: Modified Assignments of Non-Feedback-Validation Responsibilities for Part 1 Architecture Option 2 

Resp. 
ID 

Responsibility 
Assigned to 

Rationale/Assumptions 
EMSATC MP PC AS 

SR-4 

Confirm that all aspects 
of the aircraft state 
match the expected 
safe departure state 
before providing 
actuator movements to 
depart [SLR-4] 

 X X  

Instead of the Piloting Controller 
being the only controller assigned 
this responsibility, the maintenance 
personnel can assist the piloting 
controller in confirming that the 
aircraft is configured and that the 
necessary maintenance is performed  

SR-18 

Detect all objects and 
other aircraft in the 
environment under all 
DVE conditions at all 
times [SLR-19] 

X  X  

Since the EMSATC personnel are 
assisting in providing the Piloting 
Controller with information about 
the current and anticipated future 
state of the airspace, then the 
EMSATC personnel share this 
responsibility with the PC 

 
 
Assignment of Feedback Validation Responsibilities 
 
Similarly, for the assignment of feedback validation responsibilities, only two responsibilities 
have different assignments in this architecture option compared to architecture option 1 and 
they are shown in Table 20. 
 
For SR-1, when determining if some feedback is too old, EMS Operations and ATC shares that 
responsibility because they are better positioned to assess and validate some types of feedback. 
For example, when deciding whether feedback about hazards in the vicinity of the emergency 
scene should be used to update the process model of the state of the airspace, EMS Operations 
and ATC may be better able to decide when that feedback should be considered out of date. For 
SR-9, EMS Operations and ATC may be better equipped than the Piloting Controller to detect 
some objects and aircraft in the airspace and can relay that information to the Piloting Controller. 
For these reasons, EMS Operations and ATC can share these responsibilities and assist the 
Piloting Controller in updating their process model of the current and anticipated future airspace 
state by using and validating additional sources of feedback. 
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Table 20: Modified Assignments of Feedback Validation Responsibilities for Part 1 Architecture Option 2 

Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-1 Determine if 
feedback received 
about the 
aircraft’s mission 
readiness, state of 
the aircraft and 
the airspace is too 
old [SLR-1] 

 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

PC 

Current Weather Conditions PC 

Current Airspace State PC 
EMSATC 

Anticipated Future Airspace 
State 

PC 
EMSATC 

Model of System Behavior EMSATC 
 

For all parts except current 
and anticipated future 
airspace state, the 
rationale is the same as in 
option 1.  
 
For current airspace state 
and anticipated future 
airspace state, EMS 
Operations and ATC is 
equipped to assist the 
Piloting Controller in 
determining if feedback 
about the current and 
future airspace state is too 
old. This is needed because 
EMS Operations and ATC 
has access to other data 
sources that the piloting 
controller does not have 
that can help when direct 
observation is hindered by 
DVE conditions 

SR-9 Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

N/A 

Current Weather Conditions PC 

Current Airspace State EMSATC 
PC 

Anticipated Future Airspace 
State 

EMSATC 
PC 

Model of System Behavior N/A 

 
 

Similar to SR-1, EMS 
Operations and ATC can 
also help the Piloting 
Controller to ensure that 
some of the data sources 
necessary to maintain the 
models of the current and 
future airspace state are 
always available. 
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Architecture Option 2 Control Structure 
The resulting control structure for this architecture option is shown in Figure 21. 
 

 
Figure 21: Part 1 Architecture Option 2 Control Structure 
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4.5.5 Architecture Analysis of Option 2 
For this architecture option, several of the scenarios identified in the STPA analysis conducted in 
Section 3 need to be updated to reflect the responsibilities and process model parts that are now 
shared in this architecture option. Table 21 shows two example loss scenarios that need to be 
updated. 
 

Table 21: Examples of Scenarios to be Updated for Architecture Option 2 

Scenario ID Scenario 

CS-1.2.1-1.2.2 The piloting controller believes it is receiving conflicting feedback because DVE 
conditions have degraded the accuracy of or obscured some (but not all) 
feedback sources. The piloting controller therefore chooses to ignore the 
conflicting feedback, believing it is a false positive or erroneous 
 

CS-1.2.1-1.4 If another aircraft or controller external to the aircraft providing airspace 
guidance is in contact with the aircraft and wrongly believes that the airspace 
nearby the aircraft is clear (for any of the same reasons above) or if a-priori 
data indicates that no ground obstacles are present, the piloting controller 
may assume that the external controller/a-priori data is providing accurate 
information and disregard the onboard sensors in favor of the guidance 
provided by the external controller. If the piloting controller is human, this 
may also contribute to confirmation bias, causing the piloting controller not 
to look for any other evidence that another aircraft or object is nearby. As a 
result, the piloting controller wrongly updates its process model of the 
airspace nearby the aircraft [SLR-3, SLR-15] 
 

 
For CS-1.2.1-1.2.2, now that the process model of the current airspace state is shared between 
EMS Operations and ATC and the Piloting Controller, there are more ways that this scenario could 
occur because the shared process model itself can be an additional source of potential conflicts. 
Not only could the Piloting Controller receive conflicting feedback due to DVE conditions 
degrading the feedback sources but the shared process model itself could now also conflict with 
the feedback. This scenario therefore needs to be updated to include the shared process model 
between EMS Operations and ATC and the Piloting Controller as a potential source of conflicting 
feedback that the Piloting Controller will need to resolve. 
 
Similarly, for CS-1.2.1-1.4, the shared process model of the current airspace state is now an 
additional contributing factor that could lead a pilot to disregard the onboard sensors. In addition 
to another controller (e.g. pilot in another aircraft) providing input, the shared process model 
essentially serves as another input. Based on either of those inputs, the Piloting Controller could 
decide to disregard the onboard sensors because they assumed that those inputs are more 
accurate than the sensor data being received. This scenario therefore needs to be updated 
because the shared process model between EMS Operations and ATC and the Piloting Controller 
could lead the Piloting Controller to wrongly ignore real-time sensor feedback.  
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These updates to the loss scenarios therefore demonstrate how sharing the process model of the 
current airspace state between EMS Operations and ATC and the Piloting Controller makes these 
scenarios more difficult to prevent because sharing the current airspace state process model 
introduces additional ways in which the Piloting Controller could receive conflicting feedback or 
be led to wrongly ignore feedback. As a result, it will be even more important to ensure that 
sufficient constraints are placed on the Piloting Controller’s behavior to prevent these updated 
loss scenarios from occurring.  
 
In addition to updating existing scenarios to account for additional causal factors introduced by 
this architecture option, a control action was also added from EMS Operations and ATC to the 
Piloting Controller as shown in the control structure (Figure 21). This control action was added 
because EMS Operations and ATC is sharing situational information with the Piloting Controller 
to help it keep its process model of the current and future airspace state updated. It is therefore 
necessary to also perform an STPA analysis on this new control action to determine how the 
addition of this control action could result in unsafe system behavior. Although a full analysis will 
not be performed in this case study, some example UCAs and scenarios are shown below to 
illustrate how the STPA analysis might be done. 
 
Table 22 shows some example UCAs that are associated with the “Updated Situational 
Information” control action. 
 

Table 22: UCAs for Updated Situational Information Control Action 

Control 
Action 

Providing Not Providing Provide too 
early/too late 

Applied too 
long/Stopped 
too soon 

Updated 
Situational 
Information 

UCA-2-1: EMS 
Operations and ATC 
provides updated 
situational information 
when the situational 
information does not 
accurately represent 
the state of the 
airspace [H-1, H-3, H-5] 
 
UCA-2-2: EMS 
Operations and ATC 
provides updated 
situational information 
that is difficult to 
read/interpret [H-1, H-
3, H-5] 
 

UCA-2-5: EMS 
Operations and 
ATC does not 
provide 
updated 
situational 
information 
when such 
information is 
not available to 
the PC from an 
alternative 
source 

UCA-2-6: EMS 
Operations and 
ATC provides 
updated 
situational 
information too 
early before an 
impending 
change is 
made/occurs  
 
UCA-2-7: EMS 
Operations and 
ATC provides 
updated 
situational 
information too 
late after an 

N/A  
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UCA-2-3: EMS 
Operations and ATC 
provides updated 
situational information 
that is either not self-
consistent or conflicts 
with other data 
sources 
 
UCA-2-4: EMS 
Operations and ATC 
provides updated 
situational information 
for the wrong part of 
the airspace 
 

actuator 
movement has 
been selected 
based on 
incorrect 
situational 
information 

 
 
Loss scenarios can then be generated for each of the UCAs identified. Some example loss 
scenarios are as follows: 
 
UCA-2-1: EMS Operations and ATC provide updated situational information when the situational 
information does not accurately represent the state of the airspace 
 
 
CS-2-1-1: EMS Operations and ATC provide updated situational information despite receiving 
feedback that indicates that the situational information does not accurately represent the state 
of the airspace. This might occur if: 
 

• Although feedback was received that indicates that the situational information is 
inaccurate, the inaccurate version is provided before the process model can be updated 
with the new information 

• Although EMS Operations and ATC recognized that the situational information does not 
accurately represent the state of the airspace, EMS Operations and ATC decide that either 
it is accurate enough to use or that the inaccurate information is better than no 
information and provides that situational information as an update anyway. 

• When EMS Operations and ATC receive situational information updates (e.g. from 
previous missions, from reconnaissance aircraft), if it has no way to evaluate the accuracy 
of that information, the EMS Operations and ATC might assume that the information is 
accurate and not recognize that the situational information it is receiving contains 
inaccuracies even though the inaccuracies are detectable in the data 
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CS-2-1-2: EMS Operations and ATC receive feedback that does not indicate that the updated 
situational information does not accurately represent the state of the airspace. This might occur 
if: 
 

• When inaccuracies are observed by users of the data, those inaccuracies are not reported 
back to the EMS Operations and ATC (e.g. due to time constraints if they are observed 
during a flight) 

• The EMS Operations and ATC might not have the resources/capability to perform an 
independent assessment of the situational information it receives and is therefore either 
unable to evaluate the accuracy or is forced to assume a level of accuracy 

 
CS-2-1-3: EMS Operations and ATC do not provide updated situational information but updated 
situational information is received by the Piloting Controller. This might occur if: 

• Although the EMS Operations and ATC correctly recognize that the updated situational 
information does not accurately represent the state of the airspace, another aircraft or 
controller that also has access to that information does not recognize that and provides 
the Piloting Controller with that information. As a result, the Piloting Controller is still 
provided with that situational information even though the EMS Operations and ATC do 
not provide it 

 
 
The above results therefore show that even in this short example analysis, the addition of the 
control action to provide updates to the situational information from EMS Operations and ATC 
to the Piloting Controller introduces 7 new UCAs and, for just the first UCA, 5 new loss scenarios. 
If this analysis were completed, the actual number of new UCAs and scenarios introduced by the 
new control action would be even higher. This analysis along with the updates to the existing 
scenarios therefore shows that the sharing of the process model parts and the addition of the 
new control action offers the potential to reduce the workload of the Piloting Controller and 
improve the situational information available to it. However, those benefits come at the cost of 
additional ways that the system could behave in an unsafe way and more requirements that must 
be added to adequately constrain the system behavior to ensure safety. 
 
 

4.5.6 Comparison of Architecture Options 
 
The two architecture options can now be compared to assess the tradeoffs between architecture 
options that would inform a decision on which architecture to select for further system 
development. By comparing the assignments of the process model parts and the responsibilities, 
two tradeoffs can be observed. 
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Comparing Assignment of Process Model Parts 
 
The first tradeoff between the architecture options is that although the shared process model 
parts might provide the Piloting Controller with access to better process model information, that 
information may also serve as an additional source of conflict or wrong decision making that is 
avoided in option 1. As shown in Table 23, the main differences in the assignment of process 
model parts for the two architecture options are that the Current Airspace State and Anticipated 
Future Airspace State process model parts are only assigned to the Piloting Controller in option 
1 but are shared between the Piloting Controller and EMS Operations and ATC in option 2.  
 

Table 23: Comparison of Process Model Part Assignments for Part 1 Architectures 

Process Model 
Option 1 

Assigned to 
 Option 2 

Assigned to 

EMSATC MP PC AS  EMSATC MP PC AS 

Current Aircraft Mission Readiness  X X    X X  

Current Aircraft System State   X X    X X 

Current Aircraft Navigation State X  X   X  X  

Expected Safe Departure State X X X   X X X  

Current Weather Conditions   X     X  

Current Airspace State   X   X  X  

Anticipated Future Airspace State   X   X  X  

Model of System Behavior X  X X  X  X X 

EMSATC – EMS Operations and ATC  |  MP – Maintenance 
PC – Piloting Controller  |  AS – Aircraft Subsystems 

 
In option 1, since the Piloting Controller does not share the highlighted process model parts with 
other controllers, there are fewer opportunities for the information in the process model to lead 
to unsafe behavior compared to option 2. However, those process model parts only contain 
information that the Piloting Controller has direct access to during flight. By contrast, in option 
2, since EMS Operations and ATC shares the two process model parts, EMS Operations and ATC 
can update those process model parts with information that the Piloting Controller would 
otherwise not have access to. As a result of those process model parts being shared, the Piloting 
Controller could then gain access to that information. The Piloting Controller therefore has access 
to better information in option 2. However, the tradeoff is that the additional information can 
also become a source of conflict or unsafe decision making as described in the analysis of 
architecture option 2.  
 
 
Comparison of Responsibility Assignments 
 
The second tradeoff between the architecture options is that although option 2 has the potential 
to reduce the workload of the Piloting Controller, sharing responsibility assignments between the 
Piloting Controller and EMS Operations and ATC introduces the potential for unsafe behavior by 
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EMS Operations and ATC to cause the Piloting Controller itself to make unsafe decisions. This can 
be observed by comparing the assignment of SR-18 in the two architectures as shown in Table 
24 as well as by comparing the assignment of SR-1 and SR-9 for the current airspace state and 
anticipated future airspace state process model parts as shown in Table 25. 
 

Table 24: Comparison of SR-1 for Part 1 Architectures 

Resp 
ID 

Responsibility Option 1 
Assigned to 

 Option 2 
Assigned to 

EMSATC MP PC AS  EMSATC MP PC AS 

SR-18 Detect all objects and other 
aircraft in the environment under 
all DVE conditions at all times 
[SLR-20] 

  X   X  X  

 
 

Table 25: Comparison of SR-9 and SR-18 for Part 1 Architectures 

Resp 
ID 

Responsibility Option 1 
Process Model Parts 

 Option 2 
Process Model Parts 

Current 
Airspace 

State 

Anticipated 
Future 

Airspace State 

 Current 
Airspace 

State 

Anticipated 
Future 

Airspace State 

SR-1 Determine if feedback received 
about the aircraft’s mission 
readiness, state of the aircraft and 
the airspace is too old [SLR-1] 

PC PC  PC 
EMSATC 

PC 
EMSATC 

SR-9 Ensure that all data needed to 
determine the state of the 
aircraft, state of the airspace and 
the environmental conditions 
around the aircraft under all DVE 
conditions is available at all times 
[SLR-9, SLR-15] 

PC PC  PC 
EMSATC 

PC 
EMSATC 

 
As shown in Table 24 and Table 25, the differences between the responsibility assignments in 
options 1 and 2 are primarily that the responsibilities for detecting other aircraft and objects in 
the airspace and updating the process model of the current and future airspace state are shared 
with EMS Operations and ATC in option 2 whereas the Piloting Controller alone performs those 
responsibilities in option 1.  As discussed in the analysis of option 1, flying the aircraft in DVE 
imposes additional workload on the Piloting Controller because some aspects of maintaining safe 
and stable flight in DVE conditions are more difficult to carry out or new tasks must be performed. 
By contrast, in option 2, sharing these three responsibilities between EMS Operations and ATC 
and Piloting Controller. This has the potential to reduce the workload on the Piloting Controller 
because the Piloting Controller is no longer solely responsible for carrying out these 
responsibilities. In addition, sharing these responsibilities may also help to reduce the risk of 
stringent requirements because EMS Operations and ATC may be able to help to detect some 
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objects that the Piloting Controller and Aircraft Subsystems might not be able to. For example, 
EMS Operations and ATC may be able to determine the location of immobile objects such as 
power lines and cell towers more easily than the Piloting Controller and Aircraft Subsystems can 
using real-time sensing and detection algorithms 
 
However, this benefit comes at a cost. As discussed in the analysis of option 2, this sharing of 
responsibilities introduces an additional interaction between EMS Operations and ATC and the 
Piloting Controller that is not present in option 1. As a result of this additional interaction, unsafe 
behavior by EMS Operations and ATC can potentially influence the behavior of the Piloting 
Controller, leading the Piloting Controller to make unsafe decisions that it might not have made 
on its own. For this reason, new UCAs and scenarios are introduced in option 2 compared to 
option 1 that could be avoided if these responsibilities were not shared. This therefore shows 
that although sharing responsibilities has the potential to reduce the workload of the Piloting 
Controller, the cost of gaining this benefit is that more requirements will need to be added to 
enforce additional constraints to prevent unsafe system behavior.   
 
Considering these tradeoffs together, Table 26 summarizes the benefits and costs associated 
with each architecture option. 
 

Table 26: Summary of Benefits and Costs for Part 1 Architecture Options 

 Benefits Costs 

Option 1 Feedback is primarily integrated by the 
Piloting Controller, reducing the 
opportunities for conflicting process 
model information  
 
Simpler architecture with less sharing of 
process model parts and responsibilities 

High workload imposed on the 
Piloting Controller 
 
Stringent performance requirements 
imposed on Piloting Controller and 
feedback mechanisms 

Option 2 Better information about the current and 
anticipated future airspace state 
 
Potentially reduced workload for the 
Piloting Controller 
 
Reduced reliance on the Piloting Controller 
to perform all responsibilities necessary to 
ensure safe flight in DVE conditions 

Introduces additional sources of 
conflicting inputs that can lead to 
wrong or unsafe decisions 
 
Unsafe behavior of EMS Operations 
and ATC can lead to unsafe behavior 
by the Piloting Controller  
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Based on the tradeoffs discussed above and any other inputs that might be needed for decision 
making (e.g. cost of each architecture option, budget available, level of technical risk), a system 
designer can then make an informed architectural decision about which architecture option 
should be chosen. Eventually, a decision will need to be made to proceed with either option 1 or 
option 2 for further system development.  
 
For the purposes of this case study, it will be assumed that option 2 is chosen to proceed with 
Part 2 of the architecture creation process. Option 2 is chosen for the following reasons: 

• The workload and capability requirements imposed on the Piloting Controller is too great 
in option 1 

• The benefits of sharing some of the responsibilities and process model parts are worth 
the costs. This avoids being so heavily reliant on the Piloting Controller to ensure safe 
flight and provides the Piloting Controller with better information 

 

4.6 Step 4, Part 2: Creating and Assessing Architecture Options for the Piloting 
Controller 

 
With option 2 from Part 1 having been selected as the architecture for the FOS, in Part 2 of the 
architecture creation process, the responsibilities and process model parts that were assigned to 
the Piloting Controller must now be divided up between the Human Pilot and Automated 
Software-Enabled Controller (ASEC) that comprise the Piloting Controller. Except for SR-7, SR-10, 
SR-11 and SR-12, the remaining twenty responsibilities and all the process model parts that were 
identified as part of the system-level behavior are assigned to or shared with the Piloting 
Controller. Therefore, these twenty responsibilities will now be assigned to the human pilot or 
the ASEC to create three further architecture options. In this part of the architecture creation 
process, because the responsibilities and process model part are assigned to a human or 
automated controller, more detailed analyses of each architecture option can be conducted that 
more clearly incorporate considerations of human factors and other considerations into the 
analysis. 
 

4.6.1 Overview of Architecture Options 
The three architecture options for how the responsibilities and process model parts could be 
assigned are as follows: 

1. Option 1: Human-Piloted Aircraft with ASEC as a Decision Aid  
2. Option 2: ASEC Proposes Flight Trajectories for Human Pilot to Execute 
3. Option 3: Human Pilot Supervises Automated ASEC’s Control of Flight  

 
As implied by the names of the architecture options, they represent architecture options that use 
an increasing level of automation to assist the human pilot in safely flying the aircraft in DVE 
conditions to execute a mission. Option 1 is the architecture that relies the least on automation 
where the aircraft is still flown primarily by a human pilot and the ASEC serves as a decision aid 
to help the human pilot make decisions about flight path and trajectory by providing feedback 
such as detected objects and other aircraft in the airspace or prevailing weather conditions. 
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By contrast, option 3 is the architecture that relies the most on automation to assist the pilot in 
flying the aircraft. In this architecture option, the ASEC is assigned many of the core piloting 
responsibilities to relieve the pilot of the more mundane and routine aspects of flight. The human 
pilot therefore serves more of a supervisory role and can monitor the decisions made by the ASEC 
and assist the ASEC in more complex decision making and problem solving tasks.  
 
Option 2, then, is the architecture that uses a moderate level of automation to assist the pilot in 
flying the aircraft. Unlike option 1, the ASEC is more involved in selecting appropriate flight 
trajectories based on mission requirements, airspace hazards and prevailing weather conditions. 
However, unlike option 3, the human pilot is still an operator of the system because they are in 
direct control of the aircraft.  
 

4.6.2 Architecture Option 1: Human-Piloted Aircraft with ASEC as a Decision Aid 
 
As described in the overview, this architecture option relies the least on automation and the 
human pilot performs most of the tasks necessary to fly the aircraft safely while the ASEC serves 
as a decision aid to help them in selecting an appropriate trajectory and flight path. As a result, 
most of the process model parts and responsibilities are assigned to the human pilot with some 
responsibilities also shared with the ASEC.  
 
Assignment of Process Model Parts 
 
Since all eight process model parts identified in the system-level behavior information were 
assigned to the Piloting Controller in part 1 of the architecture creation process, all eight process 
model parts must now be assigned to the human pilot or ASEC. These assignments are shown in 
Table 27 along with the underlying rationale and assumptions for each assignment. 
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Table 27: Sample Assignments of Process Model Parts for Part 2 Architecture Option 1 

Process Model 
Assigned to 

Rationale/Assumptions 
Pilot ASEC 

Current Aircraft 
Mission Readiness 

X  
Much of this information is not provided in a way that is easily 
interpreted by automation. A human would be better positioned 
to interpret this data quickly 

Current Aircraft 
System State 

X X 
Much of this information is generated automatically and can be 
easily parsed by automation. However, the pilot is flying the 
aircraft and therefore must maintain this part as well. Current Aircraft 

Navigation State 
X X 

Expected Safe 
Departure State 

X  
Assumes that most of this information is more easily parsed by a 
human rather than translated for automation 

Current Weather 
Conditions 

X X 
Much of this information is generated from sensors and can be 
easily parsed by automation. However, the pilot is flying the 
aircraft and therefore must maintain this part as well. 

Current Airspace 
State 

X X 

Sensor data needed to determine this is more easily parsed by 
automation. However, because this data must be integrated with 
intent information and coordinated with other aircraft, the 
human pilot must maintain this model as well. In addition, the 
human pilot needs this information to fly the aircraft 

Anticipated 
Future Airspace 
State 

X  
The complexity of intent information requires a human to parse 
or converse with other controllers and would be difficult to 
automate 

Model of System 
Behavior 

X  

The parameters in this part of the process model mainly pertain 
to data interpretation that would be performed by the human 
pilot and therefore only the human pilot needs this process 
model part 

 
All the process model parts are assigned to the human pilot because they are flying the aircraft 
and will need to use all the process model parts. In addition, since the ASEC serves as a decision 
aid, it shares four of the process model parts: Current Aircraft System State, Current Aircraft 
Navigation State, Current Weather Conditions and Current Airspace State. These four process 
model parts are shared because the ASEC receives data from the aircraft subsystems on 
prevailing weather conditions, detections of other objects and aircraft in the airspace, the 
position of the aircraft and the state of the subsystems to display to the pilot. Thus, the ASEC also 
maintains a copy of these parts of the process model in addition to the human pilot. 
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Assignment of Non-Feedback-Validation Responsibilities 
 
In this architecture option, since the human pilot is primarily flying the aircraft with the ASEC 
serving only as a decision aid, most of the non-feedback-validation responsibilities are assigned 
to the pilot because they are responsibilities that are more easily performed by the human pilot 
than the ASEC that is only minimally involved in the task of flying the aircraft. Examples of the 
responsibilities that are assigned only to the pilot are shown in Table 28. 
 

Table 28: Non-Feedback-Validation Responsibilities Assigned to the Pilot for Part 2 Architecture Option 1 

Resp. 
ID 

Responsibility Assigned to Rationale/Assumptions 

Pilot ASEC 

SR-4 Confirm that all aspects of the 
aircraft state match the expected 
safe departure state before 
providing departing [SLR-4] 

X  Expected safe departure state is most 
easily obtained by human pilot instead 
of ASEC 

SR-16 Account for the current and future 
movements of other aircraft in the 
vicinity when selecting actuator 
movements [SLR-17] 

X  Coordinating with other aircraft and 
adapting to work with their 
movements is more easily done in 
real-time by a human than automation 

SR-17 Ensure that aircraft movements are 
selected such that sufficient reaction 
time is available if intent or 
movements of other aircraft are not 
what was expected, even if no 
violation of minimum separation is 
initially expected [SLR-18] 

X  Since this involves integrating intent 
information alongside current airspace 
state and aircraft state information to 
decide the best path to take and the 
best actuator movements to apply, 
this is best done by a human pilot  

SR-20 Select actuator movements that 
minimize the risk of violation of 
minimum separation when 
information about the state of the 
airspace is in a degraded condition 
(e.g. delayed) [SLR-21] 

X  Similar to SR-17, this decision making 
is complex enough and the definition 
of risk minimization is likely vague 
enough that it is better performed by 
a human pilot than by automation 

SR-23 Ensure that a viable flight path is 
always available to avoid any 
violations of minimum separation 
[SLR-24] 

X  Assumes that automation 
sophistication will not be sufficient to 
select flight paths under all conditions 
and therefore it makes more sense for 
a human pilot to retain this function  

SR-24 Select a viable flight path that avoids 
all possible violations of minimum 
separation [SLR-26] 

X  Assumes that automation 
sophistication will not be sufficient to 
select flight paths under all conditions 
and therefore it makes more sense for 
a human pilot to retain this function  
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As can be seen in the rationale provided in Table 28, these responsibilities are assigned only to 
the human pilot because they either involve complex or ambiguous decision making that is best 
performed by a human pilot or they involve the use of feedback or information that is more easily 
interpreted by a human pilot rather than the ASEC. For example, as described in the decision-
making strategy for SR-16, SR-17, SR-23 and SR-24, these responsibilities involve a complex and 
sometimes ambiguously defined decision based on consideration of multiple factors to select 
appropriate actuator movements that do not cause a violation of minimum separation. As such, 
the adaptive and flexible nature of human cognition may be more suited to making these 
decisions than the more rigid decision-making processes of the ASEC. Similarly, for SR-4 and SR-
17, these responsibilities require the use of process model parts and feedback that are more 
easily interpreted by a human pilot than by the ASEC. As such, it would be easier for a human 
pilot to make use of the feedback to carry out these responsibilities instead of the ASEC. 
 
By contrast, some responsibilities are either shared with the ASEC or only assigned to the ASEC 
and examples of these assignments are shown in Table 29. 
 

Table 29: Other Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 1 

Resp. 
ID 

Responsibility 
Assigned to 

Rationale/Assumptions 
Pilot ASEC 

SR-15 

Determine if the state of the 
airspace changes between the 
time that it was checked and 
the commencement of a 
maneuver [SLR-16] 

X X 

Since this is relatively simple checking of the 
maneuver path, the ASEC is able to warn the 
human pilot of potential collisions but the 
human pilot is expected to perform an 
independent verification as well 

SR-19 

Detect slow or subtle changes 
in the state of the aircraft 
under all DVE conditions at all 
times [SLR-20] 

 X 

Given the potential magnitude of these 
changes in the state of the aircraft, it may be 
difficult to design appropriate feedback 
mechanisms with sufficient saliency for a 
human pilot to notice those changes and 
they would be easier detected by 
automation 

SR-21 

Respond quickly and with 
appropriate magnitude to 
disturbances to prevent 
unintended movement of the 
aircraft [SLR-22] 

X X 

Assumes that the ASEC will not be able to 
stabilize the aircraft sufficiently under all 
DVE conditions and that a human pilot 
would be needed in some situations 
 
Also assumes that ASEC will be able to help 
stabilize the aircraft under limited DVE 
conditions and therefore the ASEC will 
sometimes be used 
 

SR-22 

Respond quickly enough and 
with appropriate magnitude 
to select and effect the 
desired flight path under the 
given environmental 
conditions [SLR-23, SLR-25] 

X X 
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As might be expected, since the ASEC is simply a decision aid for the human pilot, only a few of 
the non-feedback-validation responsibilities are assigned to it. In some cases, the responsibilities 
are shared so that the ASEC can assist the human pilot by helping to warn them (SR-15) or helping 
them to control the aircraft under easier situations (SR-21 and SR-22). In other cases such as SR-
19, the ASEC is better suited to monitor for conditions that would be difficult for a human to 
monitor such as slow or subtle changes in the state of the aircraft.  
 
Assignment of Feedback Validation Responsibilities  
Finally, the feedback validation responsibilities need to be assigned to the human pilot and the 
ASEC. Like Part 1, whenever a particular responsibility is not expected to be applicable for a 
particular process model part, “N/A” is used to indicate that no assignment is made.  
 
For this architecture option, because the ASEC serves as a decision aid for the human pilot, many 
of the responsibilities are shared between the ASEC and human pilot such that the ASEC and 
human pilot carry out a given responsibility for different process model parts. In this way, the 
ASEC serves as a decision aid because it carries out some of these responsibilities for some of 
these process model parts instead of requiring the human pilot to carry out all the responsibilities 
for every process model part.  Some examples of feedback validation responsibility assignments 
are shown in Table 30. 
 

Table 30: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1 

Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-3 Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

Pilot 

Current Airspace State Pilot 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

The variety of possible inputs 
made by other aircraft or 
controllers would be more 
easily handled by a human, 
except for the aircraft system 
state which would be more 
easily handled by automation 
since the system state is 
already generated and 
monitored by automation 
 
Expected safe departure state 
and model of system behavior 
are marked as N/A because 
they were not assigned to the 
Piloting Controller in part 1 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-9 Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

Monitoring the inputs for 
aircraft system state, 
navigation state and 
environmental conditions is a 
repetitive task best done by 
automation. 
 
For anticipated future airspace 
state and aircraft mission 
readiness, since that feedback 
may include verbal radio 
communication, the pilot 
shares the responsibility to 
ensure that needed 
information is available. 

SR-13 Distinguish useful 
feedback from 
noise in feedback 
data [SLR-13] 

Aircraft Mission Readiness N/A 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State Pilot 
ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

Especially when identifying 
weak signals, automation is 
better at the pattern 
recognition necessary to 
extract weak signals 
 
Assumes that the risk of false 
negative detections of weak 
signals is acceptably low 
 
Mission readiness, expected 
safe departure state and model 
of system behavior do not rely 
on real-time feedback and 
therefore are not affected by 
noise 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-14 Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 
ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

Pilot 
ASEC 

Current Airspace State Pilot 
ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

For everything but the aircraft 
system state, the pilot is 
primarily the one updating the 
process model parts and the 
ASEC only assists in the aircraft 
navigation state, weather 
conditions and airspace state. 
 
Expected safe departure state 
and model of system behavior 
are marked as N/A because 
they were not assigned to the 
Piloting Controller in part 1 
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Architecture Option 1 Control Structure 
The resulting control structure for this architecture option is shown in Figure 22. 
 

 
Figure 22: Part 2 Architecture Option 1 Control Structure 
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4.6.3 Architecture Analysis of Option 1 
 
Like option 1 in Part 1 of the architecture creation process, this option makes no changes to how 
human pilots and aircraft automation divide up the responsibilities needed to fly aircraft today. 
In essence, this architecture option represents the architecture where human pilots fly aircraft 
in DVE conditions in much the same way as they do today under non-DVE conditions. The only 
difference is that the human pilots have access to more data provided by sensor suites onboard 
the aircraft than is available in today to help detect objects and other aircraft in the airspace 
instead of being reliant only on direct visual feedback and transponder or radio-based 
communication. As a result, the STPA analysis of this architecture option will be similar to the 
analysis presented in Section 3, but with additions or updates to the loss scenarios based on 
additional human factors and other considerations that can be applied now that responsibilities 
are assigned to the human pilot or the ASEC. 
 
There are two challenging aspects of this architecture that can be observed. The first is that 
because many of the responsibilities are assigned to the human pilot, the feedback mechanisms 
that the human pilot uses to obtain information needed for decision making must be designed 
to avoid known decision-making biases that can affect the pilot’s ability to make correct decisions 
using that feedback. To help identify the decision making biases and heuristics that need to be 
avoided to prevent unsafe behavior, the loss scenarios in the STPA analysis should be updated to 
account for human factors reasons that a human pilot might issue unsafe control actions. Table 
31 shows two responsibilities that are assigned to the human pilot that describe constraints on 
the use of feedback as well as the associated loss scenarios.  
 

Table 31: Example Constraints and Scenarios Related to the Use of Feedback 

Resp. ID Responsibility Associated 
Scenario ID 

Associated Scenario 

SR-2 Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 
 

CS-1.1.1-1.1.2 The piloting controller believes it is receiving 
conflicting feedback because DVE conditions have 
degraded the accuracy of or obscured some (but 
not all) feedback sources. The piloting controller 
therefore chooses to ignore the feedback showing 
the presence of the other aircraft or object, 
believing that it is a false positive or erroneous. The 
piloting controller is especially susceptible to this if 
the majority of sources appear to agree that no 
aircraft is present and fewer sources appear to 
show otherwise. As a result, the piloting controller 
updates its process model based only on what it 
wrongly believes to be the correct feedback. [SLR-
2] 
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Resp. ID Responsibility Associated 
Scenario ID 

Associated Scenario 

SR-3 Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

CS-1.1.1-1.1.3 Alternatively, if the piloting controller receives 
communication from another controller (e.g. 
another aircraft, ground personnel, EMS 
Operations and ATC) indicating that the aircraft is in 
a safe departure state, the piloting controller may 
assume that the communication from the other 
controller must be accurate. This may even be used 
as proof that the feedback showing that the aircraft 
is not in a safe departure state should be ignored as 
out-of-date or incorrect. As a result, the piloting 
controller uses the communication from the other 
controller to update its process model and 
therefore wrongly believes that the aircraft is in a 
safe departure state. [SLR-3] 
 

 
Since SR-2 and SR-3 are assigned to the human pilot, their associated loss scenarios can be 
updated to include human factors considerations for how these loss scenarios could occur. For 
example, the human pilot might wrongly believe they are receiving conflicting feedback (scenario 
CS-1.1.1-1.1.2) if a pilot is initially presented with detection information from the ASEC showing 
that no aircraft is present in the nearby airspace because DVE conditions have obscured the 
ability to detect the other aircraft. As a result, a known human decision-making bias called cue 
primacy [30] can cause the pilot to be more inclined to continue to believe that no aircraft is 
present even if those same sensors detect a nearby aircraft several seconds later. In addition, 
another human decision-making bias known as inattention to later cues [30] can then cause the 
pilot to ignore subsequent feedback that does detect the nearby aircraft. Alternatively, if a pilot 
has experienced unreliable false positive detections from the sensors in the past, they may use 
that experience to rationalize ignoring feedback in a new situation, wrongly believing that they 
are experiencing a situation like the one they experienced in the past where detections turned 
out to be false positives. These updates to scenario CS-1.1.1-1.1.2 therefore show that if the 
performance of the sensor suite is inadequate, human decision-making biases may lead the 
human pilot to make decisions that can lead to unsafe control actions being provided. 
 
Similarly, scenario CS-1.1.1-1.1.3 can be updated to include the impact of the process model of 
the state of the airspace that is shared with EMS Operations and ATC. Since the shared process 
model can be used by the human pilot as another input available to them, confirmation bias can 
cause the pilot to accept the input from the shared process model if it is aligned with their initial 
belief that no aircraft or object was detected in the airspace. As a result, the pilot may ignore 
more direct, seemingly contradictory feedback from the aircraft sensors showing the presence 
of that aircraft or object. Alternatively, the pilot’s past experiences may also lead them to believe 
that the shared database is always more accurate and place an inappropriate level of trust in the 
shared database even when that database is wrong. In either case, the pilot therefore chooses 
to ignore correct feedback from the aircraft sensors even when that feedback reflects the correct 
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state of the airspace. These updates to CS-1.1.1-1.1.3 therefore show that the feedback 
mechanisms (both the sensor suite and the shared database) used by pilots must be designed to 
ensure that pilots place an appropriate level of trust in the feedback they receive and do not 
simply default to always trusting or being mistrustful of one feedback source over another.  
 
These updates to the two loss scenarios thus show that, by assigning responsibilities like SR-2 
and SR-3 to the human pilot, the performance (e.g. reliability, accuracy) of the sensor suite is 
extremely important because the performance of the sensor suite can impact the pilot’s ability 
to perceive the feedback they need, make correct decisions about when they are receiving 
conflicting feedback and decide how to use the feedback to update their mental model. If the 
pilot’s ability to correctly integrate relevant feedback to update their mental model is impaired 
by decision-making biases, misplaced levels of trust or high stress and workload situations, the 
human pilot may not be as effective in enforcing the necessary safety constraints to safely fly the 
aircraft in DVEs. These loss scenarios therefore serve as the rationale for identifying the necessary 
performance requirements for the sensor suite during detailed system design. 
 
The other challenging aspect of this architecture option is that this architecture option imposes 
high workloads on the human pilot to carry out all the responsibilities assigned to them and the 
STPA analysis and system-level behavior information highlight three aspects that contribute to 
the high workload. The first two aspects are illustrated in Table 32. 
 

Table 32: Responsibilities and scenarios associated with pilot's maintenance of their mental model of the airspace 

Resp. 
ID 

Responsibility Associated 
Scenario ID 

Associated Scenario 

SR-14 Process sensor data and 
use it to update its process 
model sufficiently quickly 
[SLR-14] 

CS-1.2.1-1.3 DVE causes delays in the piloting controller 
interpreting the sensor data and using the 
sensor data to update its process model. As a 
result, the piloting controller has the wrong 
process model of the airspace around the 
aircraft until it is able to update its process 
model. [SLR-14] 

SR-22 Respond quickly enough 
and with appropriate 
magnitude to select and 
effect the desired change 
in flight path under the 
given environmental 
conditions [SLR-23, SLR-25] 

CS-1.5.1-1.1 The piloting controller is unable to select new 
actuator movements quickly enough to avoid 
violation of minimum separation. This might 
occur if the piloting controller recognizes the 
imminent violation too late or takes too long 
to select new actuator movements [SLR-23] 

SR-24 Select a viable flight path 
that avoids all possible 
violations of minimum 
separation [SLR-26] 

CS-1.5.4-2 The piloting controller selects actuator 
movements that avoid one violation of 
minimum separation but causes another one 
[SLR-25, SLR-26] 
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The first aspect that increases the workload for the human pilot is the increased cognitive effort 
required by the human pilot to validate feedback and update their mental model. One example 
of such a requirement is SR-14 shown in the first row of Table 32. For the human pilot to carry 
out SR-14 and avoid being delayed in interpreting sensor data as described in CS-1.2.1-1.3, the 
human pilot will likely need to expend significant mental resources to process sensor data and 
use it to update its process model at a sufficiently fast rate as described in the system-level 
behavior. In addition, the cognitive effort may be even higher if the human pilot has difficulty 
making use of the sensor data. If, for example, the pilot must manually integrate detections from 
multiple sensor modalities to develop an overall understanding of what the sensors are detecting 
in the airspace, the human pilot will need to spend additional mental effort to perceive and 
deconflict the various pieces of feedback. This could delay their ability to update their mental 
model of the state of the airspace in a timely manner. As such, the cognitive effort needed to 
perform these types of responsibilities can result in a high workload imposed on the human pilot. 
 
The second aspect that increases the workload for the human pilot is the potentially difficult 
conditions under which the human pilot is expected to make decisions. One category of difficult 
decisions is those that must be made quickly and accurately with limited time to consider 
alternatives and SR-22 shown in the second row of Table 32 is one example of this type of 
responsibility. To carry out SR-22, the human pilot would need to be able to consider all of the 
various factors (e.g. weather conditions, location of objects and aircraft in the airspace) and 
select the correct magnitude and direction of actuator movements within a short period of time 
as described in the system-level behavior information. If the pilot has extensive flight experience 
in DVE conditions, they may be able to make use of skill- or rule-based decision-making [30] to 
select appropriate actuator movements quickly based on the feedback they are perceiving. 
However, if the pilot has little experience flying the aircraft in DVE or an experienced pilot 
performs a flight under novel or rarely experienced conditions, they may have to use knowledge-
based decision making [30] and make use of their knowledge and past experience along with 
techniques such as mental simulation to select appropriate actuator movements. Under these 
challenging decision-making conditions, if a pilot takes too long or selects the wrong magnitude 
of actuator movement (CS-1.5.1-1.1), an accident or loss could occur. As such, by assigning 
responsibilities like SR-22 to a human pilot, the conditions under which the human pilot must 
make decisions can require a high workload to carry out those responsibilities.  
 
Another category of difficult decisions are complex decisions that must be made under 
uncertainty or incomplete information and SR-24 shown in Table 32 is one example of this type 
of responsibility. To carry out SR-24 and avoid CS-1.5.4-2, the pilot must select actuator 
movements without certain knowledge of how the other aircraft will move while ensuring that 
all possible violations of minimum separation are avoided. In these scenarios, especially if DVE 
conditions prevent the pilot from directly observing other aircraft or objects in the airspace, 
selecting appropriate actuator movements can be especially challenging. Not only is the pilot 
reliant on feedback from sensors and other controllers to maintain enough situational awareness 
to make these decisions but they also must consider a variety of possible future states of the 
airspace to select one that they believe will avoid all possible violations of minimum separation. 
The pilot therefore must make the best use of the available information to select appropriate 
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actuator movements that will minimize the likelihood that they encounter another aircraft or 
object that was not expected or detected. As such, although humans are especially well-suited 
for making decisions under uncertainty using vaguely defined criteria, the limited time or 
information available can make these decisions cognitively challenging, increasing the workload 
imposed on the human pilot when they are assigned these responsibilities. 
 
Finally, the third aspect that increases the workload for the human pilot is the larger mental 
model that they must maintain to operate the aircraft safely. As described in Section 4.4.3 and 
shown in full in Table 50 of Appendix D, the full process model identified for this case study 
consists of eight main parts and numerous sub-parts, all of which must be maintained and 
updated continuously throughout the flight. Although some parts of this mental model exist 
regardless of the existence of DVE conditions, some parts of this mental model are added 
because of the additional responsibilities needed to fly aircraft in DVE. Table 33 shows some 
examples of such parts of the mental model and the reason they are included. 
 

Table 33: Examples of Mental Model Parts Included Due to the Presence of DVE Conditions 

Mental Model Part Rationale for Inclusion (From System-Level Behavior) 

Known effects of DVE on feedback 
sources 

This is needed by SR-2 to determine when feedback sources 
are no longer reliable because of DVE conditions. If DVE 
conditions were not present, this would not be needed 
because it would not be necessary for pilots to assess the 
effects of DVE on feedback sources in real time 

Typical noise expected for each data 
source under DVE conditions  

These are needed by SR-13 to help in distinguishing useful 
feedback from noise under DVE conditions that might increase 
the amount of noise. If DVE conditions were not present, this 
part of the mental model may not be needed. 

Expected signal strength for each 
data source under DVE conditions 

Actuator movements selection 
guidelines for handling the aircraft 
in DVE conditions 

This is needed by SR-21 and SR-22 to enable the selection of 
appropriate actuator movements under DVE conditions. If DVE 
conditions were not present, only normal aircraft handling 
procedures would be needed 

 
As a result of these additional parts of the process model that are added to enable flight in DVEs, 
the mental model that is maintained and updated by the human pilot is larger than the one they 
would have had to maintain and update if DVE conditions were not present, contributing to the 
increased workload imposed on the human pilot. 
 
In summary, the analysis of this architecture option highlights some of the challenges of 
implementing this architecture option. Not only must the sensor and feedback mechanisms be 
designed to avoid known biases in human decision-making but the system must also be designed 
to ensure that the increased workload imposed on the human pilot remains within what they can 
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accomplish. Especially because of the different ways in which this architecture option increases 
the workload required of the human pilot, any assumptions made about the level of workload 
imposed must be carefully verified to ensure that they accurately reflect what human pilots will 
actually experience in the real system.  
 
In contrast to this architecture, an alternative architecture option could be considered that 
lowers the workload of the human pilot by assigning more responsibilities to the ASEC. An 
example of such an architecture will be explored next in architecture option 2. 
 

4.6.4 Architecture Option 2: ASEC Proposes Flight Trajectories for Human Pilot to Execute 
 
As identified in the analysis of option 1, one major challenge is the high workload imposed on the 
human pilot by having most of the responsibilities for flight in DVEs assigned to them and the 
analysis identified three sources that of high workload: 

1. Increased cognitive effort required to validate feedback and update their mental model 
2. Difficult decisions that either need to be made quickly and accurately or that are made 

under uncertainty or incomplete information 
3. The increased size of the mental model that the human pilot must maintain and keep 

updated 
 
Therefore, one possible way to alleviate the high workload imposed on the human pilot could be 
to address the first two sources of that high workload. That is, to increase the ASEC’s involvement 
in some responsibilities to help the human pilot validate feedback and update their mental model 
as well as consider alternatives when making decisions under difficult conditions. For these 
reasons, this architecture option makes use of a moderate level of automation by increasing the 
ASEC’s involvement in the responsibilities necessary to safely fly the aircraft. As will be shown, 
although the workload imposed on the human pilot might be lower, there are tradeoffs 
associated with the use of more automation in the system.  
 
For compactness, only the process model parts and responsibilities that have different 
assignments than those shown in architecture option 1 will be shown. Any process model part or 
responsibility that has the same assignment in both architecture options is not repeated. 
 
 
Assignment of Process Model Parts 
 
In this architecture option, only two of the process model parts have different assignments 
compared to option 1. With the increased involvement of the ASEC, the ASEC must now maintain 
a copy of the anticipated future state of the airspace part of the process model, just like the 
human pilot would. Consequently, the ASEC must also maintain a copy of the model of system 
behavior as well since it needs that information to carry out some of the responsibilities that it 
now shares with the human pilot. As a result, the anticipated future state of the airspace along 
with the model of system behavior parts of the process model are now shared between the 
human pilot and ASEC as shown in Table 34 instead of just being assigned to the human pilot. 
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Table 34: Assignment of Process Model Parts for Part 2 Architecture Option 2 

Process Model Assigned to Rationale/Assumptions 

Pilot ASEC 

Anticipated Future 
Airspace State 

X X Most of this information is generated automatically and can 
be easily parsed by automation. However, the human pilot 
must share this process model part not only because they 
need it to fly the aircraft but also so that they can account 
for more complex feedback that they ASEC cannot account 
for. This assumes some basic kinematic models are available 
to project future airspace state but requires pilot assistance 
to account for more complex intent information. 

Model of System 
Behavior 

X X Since the ASEC is responsible for much of the detection 
responsibilities, the ASEC and pilot both need this part of the 
process model to interpret sensor and other data 
appropriately 

 
 
Assignment of Non-Feedback-Validation Responsibilities 
 
As described at the beginning of this architecture option, the workload imposed on the human 
pilot could be reduced by providing the human pilot with assistance for responsibilities that 
involve decision-making under difficult conditions. Based on the system-level behavior 
information, it can be observed that SR-16, SR-17, SR-20, SR-23 and SR-24 are responsibilities of 
this type and therefore sharing them between the human pilot and the ASEC instead of having 
the human pilot alone assigned to them might be able to help the human pilot overcome human 
cognitive limitations and consider a broader array of factors or alternatives before making. 
decision. These assignments are shown in Table 35 along with the underlying rationale and 
assumptions associated with each assignment. 
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Table 35: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 2 

Resp. 
ID 

Responsibility Assigned to Rationale/Assumptions 

Pilot ASEC 

SR-16 Account for the current 
and future movements 
of other aircraft in the 
vicinity when selecting 
actuator movements 
[SLR-17] 

X X In this example, the ASEC is designed to help the 
human pilot to find acceptable flight 
paths/trajectories and accounting for objects and 
other aircraft in the surrounding airspace. The 
human pilot shares this responsibility because 
the human pilot checks and may select an 
alternative path if they decide the ASEC-selected 
one is not appropriate. 

SR-17 Ensure that aircraft 
movements are selected 
such that sufficient 
reaction time is 
available if intent or 
movements of other 
aircraft are not what 
was expected, even if no 
violation of minimum 
separation is initially 
expected [SLR-18] 

X X Similar to SR-16, the ASEC is designed to help the 
human pilot to find acceptable flight 
paths/trajectories including ensuring that the 
trajectory it selects incorporates sufficient 
reaction time to change flight path if nearby 
aircraft move in unexpected ways. The human 
pilot shares this responsibility because the 
human pilot checks and may select an alternative 
path if they decide the ASEC-selected one is not 
appropriate. 

SR-20 Select actuator 
movements that 
minimize the risk of 
violation of minimum 
separation when 
information about the 
state of the airspace is in 
a degraded condition 
(e.g. delayed) [SLR-21] 

X X Similar to SR-16, the ASEC is designed to help the 
human pilot to find acceptable flight 
paths/trajectories including ensuring that the 
flight path it selects minimizes the risk of 
violation of minimum separation. The human 
pilot shares this responsibility because the 
human pilot checks and may select an alternative 
path if they decide the ASEC-selected one is not 
appropriate. 

SR-23 Ensure that a viable 
flight path is always 
available to avoid any 
violations of minimum 
separation [SLR-24] 

X X Similar to SR-16, the ASEC is designed to help the 
human pilot to find acceptable flight 
paths/trajectories including avoiding all possible 
violations of minimum separation. The human 
pilot shares this responsibility because the 
human pilot checks and may select an alternative 
path if they decide the ASEC-selected one is not 
appropriate. 

SR-24 Select a viable flight 
path that avoids all 
possible violations of 
minimum separation 
[SLR-26] 

X X 
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Assignment of Feedback Validation Responsibilities  
 
In addition to sharing some of the non-feedback-validation responsibilities between the human 
pilot and ASEC, the ASEC can also share more of the feedback validation responsibilities as well. 
This has the benefit of potentially reducing the cognitive effort needed to validate feedback and 
update mental models. For some responsibilities and process model parts, assignments are 
transferred from the human pilot to the ASEC while for others, they become shared with the 
ASEC. Some examples of these responsibility assignments are shown in Table 36. 
 

Table 36: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 2 

Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-2 Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 

 

Aircraft Mission Readiness N/A 

Current Aircraft System 
State 

N/A 

Current Aircraft 
Navigation State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 
ASEC 

Model of System Behavior N/A 
 

For the anticipated future airspace 
state, the human pilot shares this 
responsibility because both the 
ASEC and human pilot may receive 
feedback for this part of the 
process model and will have to 
account for the effects of DVE 
when they use that feedback they 
may receive  
 
Assumes that the determinations 
involved are easily made based on 
simple interpretations of the DVE 
conditions and that complex logic 
is not required 

SR-3 Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft 
Navigation State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 
ASEC 

Model of System Behavior N/A 
 

Except for mission readiness, 
expected safe departure state, 
anticipated future airspace state 
and model of system behavior, 
this option assumes that the ASEC 
can automatically validate inputs 
for the other process model parts.  
 
For the anticipated future airspace 
state, the human pilot shares this 
responsibility because they may 
receive information in a format 
that is not easily interpreted by 
automation (e.g. voice over radio) 
and will therefore also be involved 
in validating those inputs 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-8 Process all 
feedback to make 
a deliberate 
decision if it is to 
be 
ignored/dropped 
[SLR-8] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft 
Navigation State 

ASEC 

Expected Safe Departure 
State 

Pilot 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 
ASEC 

Model of System Behavior Pilot 
 

Except for mission readiness, 
expected safe departure state, 
anticipated future airspace state 
and model of system behavior, 
this option assumes that the ASEC 
can automatically validate inputs 
for the other process model parts.  
 
For the anticipated future airspace 
state, the human pilot shares this 
responsibility because they may 
receive information in a format 
that is not easily interpreted by 
automation (e.g. voice over radio) 
and will therefore also be involved 
in validating those inputs 

SR-14 Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft 
Navigation State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 
ASEC 

Model of System Behavior N/A 

 
 

For everything but the aircraft 
mission readiness, anticipated 
future airspace state and model of 
system behavior, the ASEC is 
primarily the one updating the 
process model parts.  
 
However, in the case of 
anticipated future airspace state, 
the human pilot shares the 
responsibility because some 
feedback is more easily 
interpreted by the human pilot 
rather than the ASEC.  
 
For aircraft mission readiness, the 
feedback for those process model 
parts are still most easily 
interpreted by a human than by 
automation.  
 
Expected safe departure state and 
model of system behavior are 
marked as N/A because they were 
not assigned to the Piloting 
Controller in part 1 
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Architecture Option 2 Control Structure 
The resulting control structure for this architecture option is shown in Figure 23. 
 

 
Figure 23: Part 2 Architecture Option 2 Control Structure 
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4.6.5 Architecture Analysis of Option 2 
 
One of the goals of this architecture was to alleviate the potentially high workload imposed on 
the human pilot if the human pilot is primarily responsible for controlling the aircraft and the 
ASEC simply serves as a decision aid. Although this goal appears to be achieved because the ASEC 
is assigned more responsibilities in this architecture option compared to option 1, this benefit 
has accompanying tradeoffs that must be analyzed to determine their impact on the architecture 
and how difficult it will be to implement this architecture during detailed system design. This 
analysis is important to ensure that the potential benefits can be compared to the costs incurred 
when deciding whether to select this architecture option to move forward with.  
 
The main benefit of this architecture option is that it reduces the workload imposed on the 
human pilot by assigning more responsibilities to the ASEC compared to option 1. For example, 
as shown in the previous section, many of the feedback validation responsibilities are assigned 
to the ASEC instead of the human pilot, potentially alleviating some of the high workload 
observed with option 1. Table 37 shows the feedback validation responsibility assignments from 
Table 36 but presents them in a slightly different format to illustrate the increased involvement 
of the ASEC compared to the human pilot in carrying out these responsibilities. 
 
Table 37 shows that for this architecture option, the ASEC is assigned in many more of the cells 
in the table as compared to option 1 where the human pilot was assigned in most of them. For 
example, all four of the feedback validation responsibilities are assigned to the ASEC to carry out 
for the current aircraft system state, current aircraft navigation state, current weather conditions 
and current airspace state. By comparison, the human pilot is only assigned feedback validation 
responsibilities for the aircraft mission readiness, expected safe departure state, anticipated 
future airspace state and model of system behavior parts of the process model. By sharing more 
of these responsibilities with the ASEC, the workload imposed on the human pilot has the 
potential to be reduced because the human pilot is assigned a smaller fraction of these 
responsibilities compared to option 1. In addition, for the responsibilities that the human pilot is 
assigned to, the rate at which those responsibilities need to be carried out are relatively low as 
defined in the timing requirements part of the system-level behavior. So, with fewer assigned 
responsibilities that only need to be carried out at relatively low rates, the workload on the 
human pilot should be reduced. 
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Table 37: Sample of Feedback Validation Responsibilities Showing Increased Involvement of ASEC 

  Responsibilities 

  SR-2  SR-3 SR-8 SR-14 

 Account for 
prevailing DVE 
conditions and their 
possible effect on 
feedback sources 
when making use of 
feedback 
information [SLR-2] 

Validate the 
inputs or 
feedback 
received from 
other controllers 
before using that 
input or 
feedback to 
update process 
models [SLR-3] 

Process all 
feedback to 
make a 
deliberate 
decision if it is to 
be 
ignored/dropped 
[SLR-8] 

Process 
sensor data 
and use it to 
update its 
process 
model 
sufficiently 
quickly [SLR-
14] 

P
ro

ce
ss

 M
o

d
e

l P
ar

ts
 

Aircraft Mission 
Readiness 

N/A Human Pilot Human Pilot Human Pilot 

Current Aircraft 
System State 

N/A ASEC ASEC ASEC 

Current Aircraft 
Navigation State 

ASEC ASEC ASEC ASEC 

Expected Safe 
Departure State 

N/A N/A Human Pilot N/A 

Current Weather 
Conditions 

ASEC ASEC ASEC ASEC 

Current Airspace 
State 

ASEC ASEC ASEC ASEC 

Anticipated Future 
Airspace State 

Shared between 
Human Pilot and 

ASEC 

Shared between 
Human Pilot and 

ASEC 

Shared between 
Human Pilot and 

ASEC 

Shared 
between 

Human Pilot 
and 

ASEC 

Model of System 
Behavior 

Human Pilot N/A Human Pilot N/A 

 
One challenge with assigning more responsibilities to the ASEC instead of the human pilot is that 
it is even more important that sufficient constraints are placed on the behavior of the system and 
the ASEC software to avoid unsafe behavior. This is because many of the challenges related to 
the design of the feedback mechanisms in option 1 are still applicable in this architecture option 
as poorly designed feedback mechanisms can still lead to unsafe behavior even if the ASEC 
software is receiving and interpreting that feedback instead of a human pilot. Furthermore, the 
ASEC software can behave in similar unsafe ways as a human pilot if human decision-making 
biases are encoded into the software. This can be illustrated using responsibility SR-2 and its 
associated causal scenario.  
 
 



 107 

Responsibility SR-2: Account for prevailing DVE conditions and their possible effect on feedback 
sources when making use of feedback information [SLR-2] 
 
Loss Scenario CS-1.1.1-1.1.2: The piloting controller believes it is receiving conflicting feedback 
because DVE conditions have degraded the accuracy of or obscured some (but not all) feedback 
sources. The piloting controller therefore chooses to ignore the conflicting feedback, believing 
that it is a false positive or erroneous. The piloting controller is especially susceptible to this if the 
majority of sources appear to agree that no aircraft is present and fewer sources appear to show 
otherwise. As a result, the piloting controller updates its process model based only on what it 
wrongly believes to be the correct feedback. [SLR-2] 
 
Even when SR-2 is assigned to the ASEC instead of to the human pilot, the ASEC can still wrongly 
believe it is receiving conflicting feedback for the same reasons that a human pilot might do so. 
For example, if the ASEC is initially presented with feedback that does not show an aircraft 
nearby, even if an aircraft is subsequently detected, it may be more inclined to ignore that 
detection if its algorithm relies on assumptions about when an aircraft should be detected. 
Alternatively, if the ASEC software uses a voting system to decide how to resolve conflicting 
feedback, such a voting system may wrongly decide that no aircraft or object exists nearby if 
most of the sensors do not detect the aircraft or object and only a few are able to correctly detect 
the nearby aircraft or object. These unsafe behaviors of the ASEC software can occur if the 
software engineers base their software design on the same decision-making biases that a human 
pilot might use. As a result, similar types of decision-making biases can lead to unsafe system 
behavior regardless of whether the human pilot or ASEC is assigned to carry out the 
responsibility. For these reasons, although assigning more of these data integrity responsibilities 
to the ASEC reduces the workload on the human pilot, it is even more important that sufficient 
constraints are placed on the behavior of the system and software which can lead to additional 
difficulties in designing and implementing the system.  
 
Another challenging aspect of this architecture option is that the sharing of responsibilities can 
increase the complexity of the system, making the system more difficult to design and implement 
successfully. This is because when responsibilities are shared between the human pilot and ASEC, 
adequate coordination is required to ensure that they carry out their shared responsibilities 
effectively. As a result, additional requirements or constraints must be imposed on system 
behavior to ensure that adequate coordination is achieved. To understand how the complexity 
of the system may increase due to the need for adequate coordination, the STPA extension for 
coordination developed by Kip Johnson [15] can be used to analyze this architecture option and 
there are two negative outcomes for this architecture that will need to be prevented. 
 
The first negative outcome if there is inadequate coordination between the human pilot and 
ASEC is that some of the associated loss scenarios become more difficult to mitigate or prevent. 
This is because inadequate coordination between the human pilot and ASEC can result in new 
ways that existing loss scenarios might occur. The loss scenarios associated with these 
responsibilities must therefore be updated to identify the additional ways that inadequate 
coordination between the ASEC and the human pilot can lead to unsafe behavior so that 
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additional constraints can be placed on the system’s behavior. This can be illustrated using SR-2 
that is shared between the human pilot and ASEC for maintaining the Anticipated Future State 
of the Airspace process model part as shown in Table 37.  
 
When SR-2 is shared between the pilot and ASEC, the human pilot and ASEC may disagree on 
how feedback should be used to update their shared process model of the future state of the 
airspace and there are several reasons this could occur. Some examples include: 

• The human pilot and ASEC interpret feedback differently or use it in different ways to 
update the process model of future airspace state. 

• The human pilot might have access to additional feedback (e.g. verbal radio-based 
communication) that the ASEC does not 

 
As a result of any of these reasons, the ASEC and human pilot now have different beliefs of what 
the anticipated future state of the airspace will be and they will need to coordinate to resolve 
their conflicting proposals. However, if the human pilot or ASEC have inadequate ways to 
communicate how they each used the available feedback to update their process model, then, 
as Johnson identified in [15], such a condition could lead to inadequate coordination. 
Alternatively, if the human pilot has no way to share additional feedback (e.g. verbal radio 
communications) that they received with the ASEC, then the human pilot and ASEC are not using 
the same set of feedback to update the process model of the future state of the airspace. As 
Johnson identified in [15], inadequate observation of common objects is another condition that 
could lead to inadequate coordination between the human pilot and ASEC. If there is inadequate 
coordination between the human pilot and the ASEC, the human pilot could independently 
choose to wrongly ignore the ASEC’s assessment of the future state of the airspace, even if the 
ASEC’s assessment matches the actual future state of the airspace and the human pilot’s 
assessment does not. This scenario is made even more likely if the human pilot has a low level of 
trust in the ASEC. This example thus illustrates how the need for adequate coordination can result 
in scenarios that are harder to mitigate because of possible coordination problems, thus requiring 
additional requirements to be added to prevent inadequate coordination from occurring.  
 
The second negative outcome if there is inadequate coordination between the human pilot and 
ASEC is that although the shared responsibilities should reduce the workload imposed on the 
human pilot, the anticipated workload savings may not be realized if the human pilot and ASEC 
are unable to coordinate effectively to carry out their shared responsibilities. This may happen 
because when responsibilities are shared, the human pilot and ASEC must work together for their 
shared responsibilities to be carried out effectively. However, if coordination between the human 
pilot and ASEC is missing or insufficient, the human pilot and ASEC will not be able to work 
together effectively. As a result, not only will the safety constraints not be adequately enforced 
but the need to coordinate with the ASEC may also impose significant amounts of additional 
workload on the human pilot. Consequently, the benefits of sharing responsibilities may be 
negated or the overall workload experienced by the human pilot may even increase. To illustrate 
how inadequate coordination may negate the benefits of shared responsibilities, SR-16 and its 
associated loss scenarios (Table 38) can be analyzed as an example. 
 



 109 

 
Table 38: SR-16 and its Associated Loss Scenarios 

Resp. 
ID 

Responsibility Scenario ID Scenario 

SR-16 

Account for the current 
and future movements 
of other aircraft in the 
vicinity when selecting 
actuator movements 
[SLR-17] 

CS-1.2.1-2 

The piloting controller provides actuator 
movements despite receiving feedback that there 
was another aircraft or object nearby because 
the piloting controller may have the wrong belief 
about the future behavior of the other aircraft or 
object and therefore believes that providing 
actuator movements will not pilot the aircraft 
toward the other aircraft or object [SLR-17, SLR-
18] 

CS-1.2.1-3 

The piloting controller provides actuator 
movements despite receiving feedback that there 
was another aircraft or object nearby because 
the piloting controller is forced to make a quick 
decision to avoid violating minimum separation 
that does not fully account for all objects and 
aircraft in the airspace. As a result, the piloting 
controller tries to avoid one object/aircraft and 
collides with another instead [SLR-17, SLR-18] 

 
The loss scenarios show that for SR-16 to be carried out effectively, the piloting controller as a 
whole must have an accurate understanding of the future behavior of other aircraft and objects 
and must be able to consider all possible violations of minimum separation when selecting 
actuator movements. Sharing SR-16 between the human pilot and ASEC may therefore be 
beneficial because the ASEC can assist the human pilot in determining the future behavior of 
other aircraft or objects or assist the human pilot in accounting for all possible violations of 
minimum separation when selecting actuator movements.  
 
However, by sharing this responsibility, these benefits can only be attained if the human pilot 
and ASEC can coordinate and work together well. If the human pilot does not coordinate at all 
with the ASEC when selecting actuator movements, then the human pilot becomes susceptible 
to the same loss scenarios involving high workload and human decision-making biases that were 
discussed in option 1. As described in [15], reasons that the human pilot may choose not to 
coordinate with the ASEC at all include a lack of trust in the ASEC or having insufficient time or 
resources available to perform adequate coordination. As a result of any of these reasons, the 
human pilot may choose to make an independent decision and ignore the ASEC.  
 
Unsafe behavior may also occur when coordination between the human pilot and ASEC is present 
but inadequate and multiple factors can contribute to inadequate coordination occurring. For 
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example, for SR-16, if the method by which future movements of other aircraft should be 
accounted for is ambiguous or the criteria for a trajectory to be deemed acceptable is not clearly 
defined, the human pilot and ASEC may employ different methods to account for the current and 
future movements of other aircraft and objects in the vicinity. They may also make use of 
different assumptions in their decision making or their use of feedback when selecting actuator 
movements. As a result, the human pilot and ASEC might propose different sets of actuator 
movements and the human pilot will have to resolve these differences before executing the 
chosen set of actuator movements. To do this, the human pilot will need to be able to both 
understand how the ASEC selected its proposed actuator movements and communicate to the 
ASEC how they selected their proposed actuator movements. As described in [15], if there is 
inadequate communication available, it may be difficult or impossible for the human pilot and 
ASEC to understand each other and reach a common consensus on what the actuator movements 
should be. Alternatively, if the framework for resolving the conflicting proposals is not clearly 
defined, the human pilot may have trouble deciding how to combine the two proposed sets of 
actuator movements. As a result of factors such as these, the human pilot may have difficulties 
coordinating with the ASEC. Not only does this result in a higher workload than anticipated but 
the human pilot may also be delayed in providing the necessary actuator movements while they 
try to coordinate with the ASEC. As such, this example illustrates how inadequate coordination 
can not only lead to a negation of the desired benefits but also lead to new causal scenarios that 
will need to be mitigated by introducing additional system requirements and constraints. 
 
In summary, this architecture option primarily aims to reduce the workload of the human pilot 
by transferring or sharing more responsibilities with the ASEC. However, this benefit comes with 
two costs. The first is that it is even more important to place sufficient constraints on the behavior 
of the system and software to avoid unsafe behavior and the second is that the complexity of the 
system may increase as additional requirements are added to ensure adequate coordination 
between the human pilot and ASEC and prevent scenarios involving inadequate coordination 
from occurring. It is therefore important to compare these costs to the benefits obtained to help 
determine if the benefits are worth the costs incurred if this architecture were selected. 
 

4.6.6 Architecture Option 3: Human Pilot Supervises Automated ASEC’s Control of Flight 
 
One final architecture option is an architecture where the ASEC is also given control of the low-
level flight controls and the human pilot begins to resemble more of a supervisor over the flight 
of the aircraft rather than being directly involved in the aircraft flight itself. One reason for doing 
this is that when humans are required to control a machine such as an aircraft, their ability to 
perform fast and accurate control is affected by a principle known as the speed-accuracy tradeoff 
[30]. This principle essentially states that there is a negative correlation between the speed and 
accuracy with which humans can control a system such that if a human operator must carry out 
a series of actions quickly, they are more likely to make errors. By this principle, if flight under 
DVE conditions requires the human pilot to make changes to their flight controls quickly to 
respond to changing DVE conditions, such a control task may be challenging for a human pilot to 
perform without making an error of judgement when selecting actuator movements. For this 
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reason, an architecture option where the ASEC is given control of the low-level flight controls 
instead of the human pilot could be worth evaluating.    
 
As before, only the differences in the process model part or responsibility assignments between 
architecture options 2 and 3 are shown and any that have the same assignments in options 2 
and 3 are not repeated. 
 
Assignment of Process Model Parts 
 
The first difference is in one of the assignments of process model parts. As shown in Table 39, in 
this architecture option, the current weather conditions process model part is only assigned to 
the ASEC unlike in option 2, where it is shared between the human pilot and ASEC. 
 

Table 39: Assignment of Process Model Parts for Part 2 Architecture Option 3 

Process Model 
Assigned to 

Rationale/Assumptions 
Pilot ASEC 

Current Weather 
Conditions 

 X 

Much of this information is generated automatically 
and can be easily parsed by automation. Since the ASEC 
is now handling low-level flight controls, this part of the 
process model no longer needs to be shared with the 
human pilot 

 
 
Assignment of Non-Feedback-Validation Responsibilities 
 
The other two changes are to the assignments of non-feedback-validation responsibilities. Unlike 
in option 2 where the human pilot directly controlled the aircraft, the human pilot is no longer in 
direct control of the aircraft in this architecture option and therefore SR-21 and SR-22 are now 
only assigned to the ASEC as shown in Table 40. 
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Table 40: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 3 

Resp. 
ID 

Responsibility Assigned to Rationale/Assumptions 

Pilot ASEC 

SR-21 Respond quickly and 
with appropriate 
magnitude to 
disturbances to 
prevent unintended 
movement of the 
aircraft [SLR-22] 

 

X 

Assumes that the automation is now capable 
of stabilizing the aircraft and maintaining its 
current speed, heading and position under all 
DVE conditions without intervention from the 
human pilot 

 

SR-22 Respond quickly 
enough and with 
appropriate 
magnitude to select 
and effect the 
desired change in 
flight path under the 
given environmental 
conditions [SLR-23, 
SLR-25] 

 

X 

Assumes that the automation is now capable 
of effecting trajectories under all DVE 
conditions without intervention from the 
human pilot 
 

 
 
Assignment of Feedback Validation Responsibilities  
 
This architecture option makes no changes to the assignments of feedback validation 
responsibilities compared to option 2. Therefore, no additional information will be shown here 
for these assignments. 
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Architecture Option 3 Control Structure 
The resulting control structure for this architecture option is shown in Figure 24. 
 

 

 
Figure 24: Part 2 Architecture Option 3 Control Structure 
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4.6.7 Architecture Analysis of Option 3 
 
As discussed in the introduction to this architecture option, the main goal of this architecture 
option was to further reduce the workload of the human pilot by alleviating them of the need to 
manipulate low-level flight controls. This would allow the human pilot to focus on higher-level, 
more complex and ambiguous decision making that humans are better at performing. As with 
architecture option 2, although this goal appears to be achieved since the human pilot no longer 
needs to maintain a mental model of the weather conditions and is no longer assigned to two 
responsibilities for flying the aircraft, these changes result in a significantly different relationship 
between the human pilot and ASEC. Therefore, the modified architecture should be fully 
analyzed to determine how the loss scenarios and the constraints necessary to prevent unsafe 
behavior change in this architecture.  
 
The main reason that this architecture option results in a significant change to the architecture 
of the Piloting Controller is because it represents a fundamentally different relationship between 
the human pilot and the ASEC. In architecture options 1 and 2, the human pilot always retained 
the responsibilities for flying the aircraft and the ASEC was being assigned more of the other 
responsibilities necessary for safe flight in DVEs. In essence, the role of the human pilot in the 
architecture remained that of a system operator in architecture options 1 and 2. However, in this 
architecture option, by assigning the responsibilities for flying the aircraft to the ASEC instead of 
the human pilot, the role of the human pilot now begins to resemble more of a supervisory role 
instead of a system operator. Consequently, by comparing Figure 23 and Figure 24, it can be 
observed that the control structure changes in two important ways. Firstly, the human pilot does 
not provide actuator movements to the aircraft subsystems anymore and no longer needs to 
engage an “Autopilot” function because the ASEC is now always flying the aircraft. However, 
since the human pilot and ASEC must still be able to work together and coordinate to carry out 
the other responsibilities that they share, the human pilot must be able to influence the ASEC’s 
choice of flight trajectory and actuator movements that it provides. As a result, the second 
change to the control structure is that, although the human pilot is no longer flying the aircraft 
directly, they can influence the ASEC’s behavior by confirming or modifying the ASEC’s proposed 
flight paths. This is illustrated in Figure 25 where the new control actions between the human 
pilot and ASEC are circled in red. 
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Figure 25: Option 3 control structure with new control actions from human pilot to ASEC circled in red 

 
As a result of these changes to the control structure, a revised STPA analysis of this system needs 
to be performed to identify the new loss scenarios that arise. Two aspects of this revised STPA 
analysis will be discussed in this architecture analysis. Firstly, new scenarios will need to be 
identified for the ASEC’s “Actuator Movements” control action because the decision by the ASEC 
to provide or not provide Actuator Movements to the aircraft subsystems can now also be 
influenced by inputs from the human pilot in addition to decision-making algorithms contained 
within the ASEC software. The second aspect that will be discussed are the new UCAs and 
scenarios for the new control actions from the human pilot to the ASEC that are highlighted in 
Figure 25. Since these control actions are new to the control structure, they must be analyzed 
using STPA to identify the UCAs and loss scenarios that will need to be mitigated so that additional 
safety constraints can be imposed on the system to prevent unsafe system behavior from 
occurring. These revisions to the STPA analysis for this system are important to perform because 
the analysis results and the additional system requirements that are identified can be used to 
inform whether the benefits of this architecture option are worth the tradeoffs in terms of the 
added complexity needed to prevent unsafe behavior in this system.  
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Revised STPA Analysis of ASEC Actuator Movements Control Action 
Beginning with the Actuator Movements control action between the ASEC and Aircraft 
Subsystems, the UCAs for this control action are essentially the same as those identified in the 
original STPA analysis for the Piloting Controller and therefore those UCAs do not change. 
However, additional loss scenarios in addition to those already identified should be generated 
that consider in more detail how the ASEC could issue unsafe control actions. Using UCA-1.2 
modified for the ASEC instead of the piloting controller, some example new scenarios that are 
identified for the first basic scenario type (unsafe controller behavior) are shown in Table 41 and 
more examples can be found in Appendix G. 
 
UCA-1.2: ASEC provides actuator movements that steers the aircraft toward another aircraft or 
object 
 

Table 41: Example Additional Loss Scenarios Resulting from Unsafe Controller Behavior for UCA-1.2 

Scenario ID Scenario 

CS-G-1.2.1-1.1 Despite receiving feedback that there was another aircraft or object nearby, the 
ASEC may have the wrong process model of the state of the environment, the 
aircraft or the airspace around the aircraft and therefore wrongly believes that the 
nearby airspace is clear to pilot toward. Although the ASEC coordinates with the 
human pilot to confirm the trajectory that it planned, the erroneous trajectory 
planned by the ASEC is confirmed without modification. The ASEC might receive 
confirmation of its erroneously planned trajectory because the human pilot and 
ASEC might have the same shared process model of the current state of the airspace. 
As a result, the human pilot also does not recognize that the planned trajectory is 
headed toward a nearby object or aircraft and therefore does not correct the 
trajectory. 

CS-G-1.2.1-2 Despite receiving feedback that there was another aircraft or object nearby, both the 
human and the ASEC have wrong process models of the state of the environment, 
the aircraft or the airspace around the aircraft. However, their process models are 
wrong in different ways. As a result, the human pilot might still correctly recognize 
the error in the ASEC’s planned trajectory. However, although the modifications that 
the human pilot makes addresses the error that the ASEC made, the human pilot’s 
modified trajectory now pilots the aircraft toward a different aircraft or object in the 
airspace instead. 

CS-G-1.2.1-3 Despite receiving feedback that there was another aircraft or object nearby, the ASEC 
has the wrong process model of the state of the environment, the aircraft or the 
airspace around the aircraft and therefore wrongly believes that the nearby airspace 
is clear to pilot toward. Although the human pilot does recognize the error in the 
ASEC’s planned trajectory, the human pilot may be delayed in providing a 
confirmation or a modification to the flight path to the ASEC. If the ASEC has a timeout 
programmed into it, it may wrongly decide that when the timeout has expired, it 
should simply execute its incorrect proposal without waiting for the human pilot.  
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STPA Analysis of Human Pilot Control Actions 
Similarly, the new control actions issued by the human pilot can be analyzed using STPA. As 
shown in Figure 25, the human pilot has two control actions that it can issue to the ASEC: Confirm 
Flight Path and Modify Flight Path. 
 
Each of these control actions should therefore be analyzed to determine how the human pilot 
might issue an unsafe control action that could lead to a hazard or a loss. Table 42 shows some 
example UCAs for the “Confirm Flight Path” and “Modify Flight Path” control actions and more 
examples can be found in Appendix G. 
 

Table 42: Example UCAs for Human Pilot New Control Actions 

Control Action Providing Not Providing Provide too early/too 
late 

Applied too 
long/Stopped 
too soon 

Confirm Flight 
Path 

UCA-3.1: Pilot 
confirms flight path 
when that flight path 
pilots the aircraft into 
another aircraft or 
object 
 
UCA-3.3: Pilot 
confirms flight path 
that exceeds the 
bounds of the mission 
parameters (e.g. 
exceeds max altitude 
or operational area) 

UCA-3.4: Pilot 
does not confirm 
flight path when a 
new flight path is 
needed to avoid 
piloting the 
aircraft into 
another aircraft or 
object 
 
 

UCA-3.6: Pilot 
confirms the flight 
path too late after 
the last opportunity 
to avoid violation of 
minimum separation 
has passed 
 
 

N/A 

Modify Flight 
Path 

UCA-3.8: Pilot 
provides modified 
flight path when the 
modified flight path 
will pilot the aircraft 
toward the other 
aircraft or object 
 
 

UCA-3.11: Pilot 
does not provide 
modified flight 
path when the 
path needs to be 
modified to 
prevent violation 
of minimum 
separation 

UCA-3.13: Pilot 
provides modified 
flight path too late 
after the aircraft 
begins to execute 
the unmodified new 
flight path that will 
result in a violation 
of minimum 
separation 
 

N/A 

 
Each of these UCAs can then be analyzed to identify the loss scenarios that could lead to these 
UCAs. Two examples are shown in Table 43 for UCA-3.1 and UCA-3.8 and more example scenarios 
can be found in Appendix G. 
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UCA-3.1: Pilot confirms flight path when that flight path pilots the aircraft into another aircraft 
or object 
 
UCA-3.8: Pilot provides modified flight path when the modified flight path will pilot the aircraft 
toward the other aircraft or object 
 

Table 43: Example Scenarios for UCA-1 and UCA-8 

UCA ID Scenario ID Scenario 

UCA-3.1 CS-G-3.1.1-1 Pilot confirms the flight path despite receiving feedback that the flight 
path pilots the aircraft into another aircraft or object because, under a 
period of high workload or stress, the human pilot does not update their 
mental model of the state of the airspace (e.g. due to limited attention 
resources or cognitive tunneling) and uses their inaccurate mental model 
to evaluate the flight path instead. As a result, the human pilot does not 
realize that the flight path proposed by the ASEC pilots the aircraft into 
another aircraft or object and confirms it, wrongly believing that the flight 
path does not pilot the aircraft toward another aircraft or object. 

UCA-3.8 CS-G-3.8.1-1 The human pilot provides a modified flight path despite receiving 
feedback that the modified flight path will pilot the aircraft toward 
another aircraft or object. This might occur if, under conditions of high 
workload or stress, the human pilot might only pay attention to a limited 
amount of feedback and therefore not notice the feedback indicating that 
the modified flight path that they are proposing will pilot the aircraft 
toward another aircraft or object. As a result, they wrongly believe they 
are providing a suitable modified flight path 

 
 
By studying the UCAs and scenarios generated by the updates to the STPA analysis described 
above, it can be observed that there are three categories of problems identified in the scenarios 
that cause the human pilot to issue unsafe control actions that influence the behavior of the ASEC 
and result in a hazard or loss. The first category is inadequate coordination between the human 
pilot and ASEC that can either delay the human pilot in providing the necessary confirmations or 
modifications to the flight path or prevent the full scope of the benefits of sharing responsibilities 
from being realized. As a result of inadequate coordination, the human pilot and ASEC are unable 
to either understand how they each generated their flight path proposals or indicate to each 
other what factors influenced their chosen flight path. The human pilot or ASEC therefore make 
independent or partially independent decisions about which flight path should be executed 
without fully considering all the factors identified by both of them. Two examples of these 
scenarios are shown in Table 44. 
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Table 44: Scenarios Showing Consequences of Inadequate Coordination for Part 2 Architecture Option 3 

Scenario ID Scenario 

CS-G-3.1.1-2 The human pilot confirms the flight path despite receiving feedback that the flight 
path pilots the aircraft into another aircraft or object because although the human 
pilot recognizes that the flight path pilots the aircraft into another aircraft or object, 
they wrongly believe the other aircraft or object either is not actually present (i.e. a 
false positive detection) or will not actually be a collision threat in the future. As a 
result, the human pilot chooses to ignore the feedback indicating that the flight path 
proposed by the ASEC will pilot the aircraft into another aircraft or object and 
confirms the flight path anyway. 

CS-G-1.2.1-4 The ASEC might have the correct process model of the state of the environment, the 
aircraft and the airspace around the aircraft and therefore plans a correct trajectory 
that does not pilot the aircraft toward another aircraft or object. However, when the 
ASEC coordinates with the human pilot, it receives an erroneous modification of the 
trajectory by the human pilot that does pilot the aircraft toward another aircraft or 
object. If the ASEC incorrectly assumes that the human-modified path is always 
correct, it does not validate or assess and executes it even though it flies toward 
another aircraft or object. 

 
Scenarios such as these therefore show how the interface between the human pilot and ASEC 
must be designed to enable effective coordination between the human pilot and ASEC. For this 
reason, this interface between the human pilot and ASEC must not only be designed for useability 
and ergonomics but must also account for what the human pilot and ASEC need to receive from 
each other to ensure that they can effectively coordinate and make collective decisions together. 
 
The second category is human factors issues that influence the way that the human pilot decides 
what inputs to provide to the ASEC. In some scenarios, human decision-making biases and 
heuristics might lead a human pilot to wrongly confirm or modify the ASEC’s proposed flight path 
while in others, high workload and limited time to perform effective coordination may lead a 
pilot to make rushed decisions without fully considering alternatives. Examples of such scenarios 
are shown in Table 45. 
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Table 45: Scenarios Showing Consequences of Human Factors Issues for Part 2 Architecture Option 3 

Scenario ID Scenario 

CS-G-3.1.1-3 Pilot confirms the flight path despite receiving feedback that the flight path pilots the 
aircraft into another aircraft or object. This might occur if, as a result of experience 
and operational adaptation, the human pilot might overly trust the ASEC to propose 
suitable flight paths and might become reliant on the ASEC. Such biases might 
therefore cause the human pilot to either assume that the ASEC is always right and 
confirm the flight path without checking it (i.e. essentially rubberstamping the ASEC’s 
proposals) or perform only minimal checks to save cognitive effort. As a result, the 
human pilot does not notice that the flight path pilots the aircraft into another object 
or aircraft and confirms the flight path 

CS-G-3.8.1-2 When perceiving the feedback, the human pilot may apply unsafe biases or heuristics 
in using that feedback to update their mental model of the state of the airspace. For 
example, the human pilot may only notice the most salient feedback and miss less 
salient feedback that would show the presence of another aircraft or object. 
Alternatively, feedback received by the human pilot earlier in time that does not 
show the presence of another aircraft or object may be weighted more heavily in 
their decision-making when they propose a modified flight path compared to 
feedback received later. As a result, they do not use the later feedback effectively to 
recognize that the modified flight path they are providing will pilot the aircraft toward 
another aircraft or object and provide a modified flight path that will pilot the aircraft 
toward another aircraft or object 

 
Scenarios such as these therefore illustrate how, even though the human pilot is not in direct 
control over the selection of actuator movements that are provided to the aircraft, their decision-
making biases and heuristics and their cognitive limitations can still lead to unsafe actuator 
movements being issued because this architecture option provides them with the ability to 
influence the ASEC’s behavior. For these reasons, the design of the interface between the human 
pilot and ASEC must also account for these human factors issues and prevent them from leading 
to unsafe system behavior.  
 
The last category is inadequate system design resulting from unsafe assumptions made by system 
designers. In this system, the ASEC’s behavior is governed by software written by software 
engineers and the human pilot is at least partially dependent on the availability of (or lack of) 
feedback provided to them from the system. The design of the system and the software running 
on the ASEC as well as the assumptions that the system and software engineers make when 
implementing those designs must avoid unsafe assumptions that can lead to unsafe system 
behavior. Two example scenarios that illustrate this are shown in Table 46.  
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Table 46: Scenarios Showing Consequences of Unsafe Assumptions in System Design for Part 2 Architecture Option 3 

Scenario ID Scenario 

CS-G-3.1.2-1 If the ASEC is unable to detect the other aircraft or object, the feedback received by 
the human pilot from the ASEC therefore does not show that the flight path pilots the 
aircraft into another aircraft or object. Furthermore, DVE conditions might prevent 
the human pilot from independently receiving any other feedback besides the 
detections made by the ASEC. As a result, the human pilot does not receive feedback 
that indicates that the flight path pilots the aircraft into another aircraft or object and 
is unable to recognize that the flight path is wrong because the human pilot can only 
observe what the ASEC can detect. This leads the human pilot to make the same 
incorrect decision that the ASEC makes, deciding that the flight path does not pilot 
the aircraft toward another aircraft or object.  

CS-G-3.1.3-1 Although the human pilot does not confirm the flight path, a confirmation is received 
by the ASEC because an approval for a previously proposed flight path might be 
delayed in arriving. If the ASEC does not have a way to match a received approval to 
the flight path that the human pilot was approving, it may assume that any received 
approval is for the most recently proposed flight path. This asynchronicity might 
therefore result in approvals arriving out of order compared to the order in which 
flight paths are proposed. As a result, the ASEC wrongly believes the human pilot had 
approved the most recently proposed flight path even though the human pilot has 
not actually approved it yet 

 
In some scenarios such as CS-G-3.1.2-1, if the human pilot and ASEC are only provided with the 
same set of feedback or if the human pilot only receives the ASEC’s interpretation of sensor 
feedback and not the sensor feedback itself, then the human pilot can only observe what the 
ASEC can observe. It would therefore be much more difficult for the human pilot to recognize 
mistakes or inappropriate flight path proposals from the ASEC and, as a result, the benefits of 
sharing responsibilities may be compromised. On the other hand, in scenarios such as CS-G-3.1.3-
1, assumptions encoded in the ASEC’s software can lead to unsafe behavior when those 
assumptions turn out to be incorrect under a given set of circumstances. These scenarios 
therefore illustrate how important the design of the system and the assumptions that are used 
in the design and implementation of the system are, especially for an architecture such this 
where there is a heavy reliance on software-based controllers to perform safety-critical functions 
and where the human pilot is increasingly dependent on feedback provided to them by software-
based controllers instead of having access to direct, independent feedback. 
 
In summary, this analysis has shown that although this architecture option has the potential to 
reduce the workload of the human pilot by relieving them of the need to always maintain control 
over the aircraft under all conditions, this benefit comes with significant tradeoffs that must be 
carefully considered. Most critically, the interactions between the human pilot and ASEC in this 
architecture option can lead to new loss scenarios. In some scenarios, decision-making biases 
and heuristics or assumptions used by the human pilot or programmed into the ASEC software 
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can lead to unsafe control actions. On the other hand, in other scenarios, inadequate 
coordination between the human pilot and ASEC could result in unsafe behavior that may negate 
the benefits of sharing responsibilities if such unsafe behavior is difficult or impossible to avoid. 
This analysis therefore shows that although it might be beneficial for the ASEC to take over the 
task of flying the aircraft in real time from the human pilot, the tradeoff is that the change in 
architecture in this option requires the introduction of additional requirements and constraints 
which can increase the complexity of the system design.  
 

4.6.8 Comparison of Architecture Options 
 
Having described and analyzed each of the three candidate architecture options for the Piloting 
Controller, these three architecture options can now be compared to identify the benefits and 
tradeoffs of one architecture option over another that will help to inform which architecture 
option should be selected for further system development. For each architecture option, the 
benefits of that architecture option over the other 2 will be discussed and then those benefits 
will be contrasted with the tradeoffs or challenges that will need to be addressed if that 
architecture is chosen. This information together with the other analysis results described in this 
research should eventually be used to inform a decision when selecting one architecture option 
for further system development.  
 
As described in the introduction to the architecture options, the system architecture in option 1 
relies the least on automation to assist in the tasks necessary for safe flight in DVE and therefore 
most of the responsibilities that are identified are assigned to the human pilot. The ASEC thus 
serves simply as a decision aid, assisting the human pilot by providing them with feedback from 
the aircraft sensors that the human pilot can use to make decisions when selecting actuator 
movements to fly the aircraft. For these reasons, compared to options 2 and 3, the benefits of 
architecture option 1 are that there are only a few responsibilities that are shared between the 
human pilot and ASEC and therefore less coordination is required between the human pilot and 
ASEC to avoid unsafe control actions. Consequently, there are few, if any, scenarios involving 
inadequate coordination between the human pilot and ASEC that need to be mitigated or 
prevented. Compared to architecture options 2 and 3, this reduces the number of constraints 
that are needed to avoid unsafe system behavior. Furthermore, because the ASEC is only 
assigned relatively simple responsibilities to carry out, there are also fewer challenges related to 
the design and implementation of the ASEC that need to be addressed to ensure that the ASEC’s 
software design does not contribute to unsafe system behavior. For these reasons, option 1 has 
the potential to be a simpler and less complex system design compared to options 2 and 3.  
 
However, because option 1 relies primarily on the human pilot to carry out many of the 
responsibilities, several human factors challenges will need to be addressed to ensure that the 
architecture supports the responsibilities assigned to the human pilot and does not instead make 
it harder for the human pilot to carry out their assigned responsibilities. As discussed in the 
architecture analysis for option 1 in Section 4.6.3, two main challenges for this architecture 
option were identified:  
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1. Feedback mechanisms must be designed to help the human pilot avoid relying on unsafe 
human decision-making biases and heuristics  

2. The human pilot will experience an increased workload when carrying out the 
responsibilities necessary to ensure safe flight in DVEs. This increased workload results 
from three main factors: 

a. Increased cognitive effort required to validate feedback and update their mental 
model 

b. Difficult conditions under which the human pilot is expected to make decisions. 
These conditions include the need to make decisions quickly and accurately as 
well as the need to make decisions under uncertainty or with incomplete 
information 

c. The larger mental model that the human pilot will need to maintain 
 
For these reasons, if architecture option 1 is selected, it will be important to account for human 
factors considerations when designing the feedback mechanisms as well as the displays and other 
pilot interfaces to ensure that the human pilot is able to effectively carry out the responsibilities 
assigned to them and avoid making the already high anticipated workload even higher.  
 
One way to alleviate the potentially high workload imposed on the human pilot by architecture 
option 1 could be to reduce the size of the mental model that the human pilot needs to maintain 
so that the human pilot has fewer process model parts to maintain in memory or keep updated. 
Unfortunately, the three architecture options show how difficult it is to reduce the size of the 
mental model that the human pilot must maintain. Although architecture option 2 assigns more 
responsibilities to the ASEC, the number of parts of the process model that are assigned to the 
human pilot does not change. It is only in architecture option 3 when the human pilot is no longer 
assigned responsibilities for directly controlling the aircraft and the ASEC is assigned control over 
the aircraft that the mental model of current weather conditions no longer needs to be assigned 
to the human pilot. This thus shows how difficult it is to reduce the size of the human pilot’s 
mental model because the ASEC had to advance from being a decision aid in option 1 to being in 
direct control over the aircraft to reduce the size of the human pilot’s mental model by 1 part. 
 
An alternative way to reduce the workload of the human pilot is to relieve the human pilot from 
carrying out some responsibilities or provide them with assistance in carrying out their assigned 
responsibilities. Architecture option 2 therefore does this by sharing some of the responsibilities 
with the ASEC so that the ASEC can assist by proposing flight paths or actuator movements for 
the human pilot’s consideration. In doing so, architecture option 2 offers several benefits. 
Compared to architecture option 1, option 2 not only offers the potential to reduce the workload 
of the human pilot but it also provides the human pilot with assistance in interpreting feedback 
or considering various alternatives to support the human pilot’s decision making, especially 
under cognitively challenging circumstances or when decisions need to be made under 
uncertainty or with incomplete information. In addition, compared to architecture option 3, 
option 2 keeps the human pilot involved in selecting actuator movements. As a result, it is easier 
for the human pilot to modify or override the ASEC’s proposed flight paths because the human 
pilot is primarily in control over the aircraft.  
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However, these benefits have associated tradeoffs. As discussed in the architecture analysis for 
option 2, the sharing of responsibilities result in two challenges. The first challenge is that not 
only do the feedback mechanisms still need to be designed to help the human pilot avoid relying 
on unsafe human decision-making biases and heuristics, the ASEC’s software must also avoid 
having human decision-making biases programmed into it to ensure that the benefits of sharing 
responsibilities between the human pilot and ASEC are achieved. If the ASEC’s software has 
similar (or worse) decision-making biases or heuristics programmed into it, then its behavior may 
resemble those of the human pilot, negating some of the benefits of shared responsibilities. The 
second challenge is that the sharing of responsibilities can increase the complexity of the system 
because additional requirements are needed to ensure adequate coordination is achieved 
between the human pilot and ASEC. If there is inadequate coordination, additional loss scenarios 
may occur that are more difficult to mitigate or prevent. In addition, the benefits of sharing 
responsibilities may be negated or the workload imposed on the human pilot may inadvertently 
be increased. As such, the benefits of this architecture option compared to the other two should 
be compared against these challenges. If this architecture option is chosen, not only do the 
human factors considerations and requirements on feedback design need to be accounted for, 
additional constraints and requirements will need to be imposed on the system to prevent unsafe 
system behavior caused by inadequate coordination between the human pilot and ASEC.  
 
While architecture option 2 provides the human pilot with assistance in carrying out 
responsibilities where increased cognitive effort is required or when complex decisions need to 
be made, that option does not assist the human pilot in carrying out responsibilities such as SR-
21 and SR-22 that require decisions to be made quickly and accurately. As such, architecture 
option 3 addresses this challenge by transferring those two responsibilities to the ASEC and 
applying the same assignments as architecture option 2 for the remaining responsibilities and 
the process model parts. As a result, compared to option 2, architecture option 3 attempts to 
address most of the challenges identified in the architecture analysis of option 1 by leveraging 
the most use of automation out of all three architecture options. This allows the ASEC to not only 
help the human pilot detect weather conditions and other aircraft and objects but to also control 
the aircraft. The system is therefore no longer dependent on the human pilot providing actuator 
movements to the aircraft subsystems quickly and accurately. 
 
However, as might be expected, this architecture option not only inherits all the tradeoffs 
identified for option 2 but also incurs some additional tradeoffs due to the change in the role of 
the human pilot from a system operator in architecture option 1 and 2 to a supervisor in 
architecture option 3. As discussed in the architecture analysis for option 3, these additional 
tradeoffs arise due to the additional opportunities for inadequate coordination between the 
human pilot and ASEC or inadequately defined system or software requirements that lead to 
unsafe system behavior. Because the ASEC is the most heavily involved in flying the aircraft in 
this option compared to options 1 and 2, it is even more important that the interfaces between 
the human pilot and the ASEC be designed to enable effective coordination between the human 
pilot and ASEC. This ensures that they can communicate with each other and perform effective 
group decision-making. In addition, although the human pilot is no longer directly involved in 
flying the aircraft in this architecture option, unsafe human decision making biases and heuristics 



 125 

can still lead to unsafe system behavior because the human pilot can influence the behavior of 
the ASEC. For these reasons, the additional requirements and constraints needed to avoid these 
causal factors from leading to a hazard or loss may make the system more challenging to design 
and may also increase the complexity of the system.  
 
In summary, comparing the three architecture options, the level of automation and the level of 
involvement of the ASEC in the task of flying the aircraft increases from option 1 to option 3 and 
this increase in the use of automation has the potential to reduce the workload of the human 
pilot and provide them with assistance in flying the aircraft safely in DVE. However, as the level 
of automation increases, so too does the system complexity and the challenges in being able to 
successfully design and implement such a system architecture. As the comparison of architecture 
options has shown, not only does the design of the feedback mechanisms and interactions 
between the human pilot and the system need to account for human factors considerations but 
there are also an increasing number of ways that inadequate coordination between the human 
pilot and ASEC or unsafe assumptions encoded into the system software can lead to unsafe 
system behavior as the level of automation increases. As such, the benefits of increasing the 
system’s reliance on automation must be balanced against the tradeoffs in this architecture 
analysis to determine if the benefits gained are worth the tradeoffs incurred. Eventually, the 
information discussed in this analysis should be used to inform a decision when selecting one of 
these architecture options to proceed with further system development. 
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Chapter 5 Conclusions 
 

5.1 Summary 
 
This thesis developed a new approach to architecture development that overcomes limitations 
of current methods, can be applied early in the design process and is appropriate for today’s 
increasingly complex systems. Using the new approach, a system can be analyzed in the earliest 
stages of system development to create system architectures in a top-down and safety-driven 
manner.   
 
Unlike current methods for architecture development that rely on decomposition to create 
system architectures, this new approach uses appropriate types of abstraction to guide the 
design process and organize the design information. It begins by analyzing the system in its 
environment using STPA to identify the system-level interactions that could lead to unsafe 
behaviors and then uses the analysis results to drive the identification of solution-neutral, 
system-level requirements. This ensures that safety or other emergent properties are designed 
into the system from the beginning. Once these system-level requirements have been identified, 
they can be used to generate the system-level behavior that describes how the system must 
behave to fulfill the system requirements. Finally, the system-level behavior information is used 
to inform the creation and assessment of architecture options for the overall system as well as 
each of the components. By applying this new approach iteratively, a conceptual architecture for 
a system can be created and refined until the detailed design for a system is complete.   
 
There are four key features that differentiate this new approach from current methods for 
architecture development: 

1. It applies a systems-theoretic approach by proceeding top-down and considering the 
system as a whole and the interactions between system components instead of 
analyzing the components individually 

2. It integrates STPA as the hazard analysis early in the design process. This ensures that 
emergent properties such as safety are designed into the system from the beginning 
and enables considerations from other disciplines such as human factors to be 
integrated into the analysis.  

3. It assists system designers in obtaining more information about what is needed to 
carry out the responsibilities effectively before architecture options are created. This 
enables architectures to be designed to ensure that the responsibilities can be carried 
out as effectively as possible.  

4. It uses means-ends abstraction to guide the design process instead of being reliant on 
functional or physical decomposition to create system architectures. This helps 
system designers and reviewers to manage system complexity and identify what the 
architecture must do and how it must behave before architectural decisions are made 

 
This thesis also demonstrated this new approach by applying it to create the architecture for a 
system involving a human pilot and automated aircraft controller flying aircraft in DVEs. Using 
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the new approach, the Flight Operations System needed to safely perform medevac flights in 
DVEs was analyzed using STPA to generate a set of system-level requirements. The system-level 
requirements were then used to generate the system-level behavior information that described 
the responsibilities necessary for safe flight as well as the process model parts, feedback sources 
and timing requirements that were necessary to enable safe flight. This system-level behavior 
information was then used to inform the creation of candidate architectures. First, two 
architecture options for the overall Flight Operations System were analyzed and the tradeoffs 
between the architecture options was compared to inform the selection of one option for further 
development. The chosen architecture was then used to develop and analyze architecture 
options for the human pilot and aircraft software controller. The creation and assessment of 
these architecture options thus demonstrated how the system design information generated 
using the method along with further STPA and other analyses can be used to identify the 
tradeoffs between architecture options to inform a decision about which architecture should be 
selected for further system development. 
 

5.2 Future Work 
 
Although this new approach to concept and architecture development addresses the three 
challenges for creating and assessing system architectures, there are several ways that this new 
approach could be further refined to provide additional assistance to system designers and 
reviewers in understanding the system to design or reviewing it.  
 
The first is that the decision-making strategy could be defined more formally to avoid ambiguity 
and make it easier to translate it into other forms more suitable for detailed system design and 
implementation. In this research, the decision-making strategy is defined in a relatively 
unstructured manner using natural language. As a result, there can be ambiguities in interpreting 
the decision-making strategy or using it create other design artifacts such as a black-box 
specification for software development. For these reasons, it may be beneficial to define the 
decision-making strategy more formally to reduce ambiguity. However, because the decision-
making strategy is a part of the system-level behavior information, it must still be presented in a 
readable format that is easy for anyone who might use the system the specification to 
understand. As such, further research is needed to determine if a specification language such as 
SpecTRM-RL [31] that is both formal and readable could be used instead of natural language for 
defining the decision-making strategy. 
 
The second is that the creation and assessment of architecture options requires additional 
structure and guidance to ensure a more systematic approach to creating and assessing these 
options. In this research, the architecture options were created and assessed by essentially 
applying known or familiar heuristics that are usually used when defining these types of 
architectures for aircraft. However, to create truly novel or new designs, the process of creating 
and assessing architectures must assist system designers in thinking beyond known or familiar 
heuristics or reference designs to help them identify new types of architectures based on the 
specific problem they are trying to solve. As such, further research is needed to determine how 
the architecture creation and assessment could be better structured to help system designers 
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consider other types of architectures instead of relying on familiar heuristics or reference 
designs.  
 
The third is that the creation and assessment of architecture options also needs to incorporate 
information from upstream influences in the system design process. In this research, architecture 
options were created and assessed based only on the requirements and system-level behavior 
information generated using this new approach along with human factors and other 
considerations. However, upstream influences such as stakeholder preferences and priorities 
should also influence the system design such that different stakeholder preferences and priorities 
result in different architectures even when the requirements and system-level behavior 
information remain constant. As such, further research is needed to determine how to 
incorporate information from upstream influences such as a stakeholder analysis when creating 
and assessing architecture options.  
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Appendix A UCAs Identified For STPA Analysis of FOS 
 
As part of this research, UCAs were identified for the Piloting Controller (Table 47) to 
demonstrate how the control structure shown in Figure 16 should be analyzed. Although UCAs 
for other controllers were not analyzed as part of this research project, a complete STPA analysis 
of the control structure should identify UCAs for all control actions in the control structure.   
 

Table 47: UCAs for the Piloting Controller 

Control 
Action 

Providing Not Providing  Too Early/Too Late Applied Too 
Long/Stopped 
Too Soon 

Actuator 
Movements 

UCA-1.1: 
Piloting 
Controller 
provides 
actuator 
movements 
during takeoff 
when the 
aircraft is not in 
a safe 
departure state 
[H-3, H-4, H-5]  
 
UCA-1.2: 
Piloting 
Controller 
provides 
actuator 
movements 
that steers the 
aircraft toward 
another aircraft 
or object [H-3] 
 
UCA-1.3: 
Piloting 
Controller 
provides 
actuator 
movements 
when the 
maneuver will 

UCA-1.5: Piloting 
Controller does 
not provide 
actuator 
movements when 
violation of 
minimum 
separation is 
imminent [H-3] 
 
UCA-1.6: Piloting 
Controller does 
not provide 
actuator 
movements during 
critical phases of 
flight [H-1, H-3] 

UCA-1.7: Piloting 
Controller 
provides actuator 
movements too 
late during takeoff 
after takeoff 
clearance is 
granted when 
another aircraft or 
obstacle has 
entered the 
airspace near the 
aircraft [H-3] 
 
 
UCA-1.8: Piloting 
Controller 
provides actuator 
movements too 
late when the 
aircraft is near 
another aircraft or 
obstacle [H-2, H-3] 
 
UCA-1.9: Piloting 
Controller 
provides actuator 
movements too 
early during 
landing before the 
aircraft has 
cleared all vertical 

UCA-1.10: 
Piloting 
Controller 
applies actuator 
movements for 
too long during 
takeoff after it 
has passed the 
desired altitude 
[H-1, H-3] 
 
UCA-1.11: 
Piloting 
Controller stops 
providing 
actuator 
movements too 
soon during 
takeoff before 
the desired 
altitude is 
reached [H-3] 
 
UCA-1.12: 
Piloting 
Controller stops 
applying 
actuator 
movements too 
soon before the 
aircraft has 
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place the 
airframe under 
extreme 
stresses [H-1, 
H-2] 
 
UCA-1.4: Pilot 
provides 
actuator 
movements 
when the 
aircraft has 
already landed 
[H-1, H-2, H-4] 
 

obstacles on the 
ground [H-3] 

landed [H-2, H-
4] 
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Appendix B Loss Scenarios Identified For STPA Analysis of FOS 
 
Scenarios for UCA-1.1 
UCA-1.1: Piloting Controller provides actuator movements during takeoff when the aircraft is 
not in a safe departure state [H-3, H-4, H-5] 
 
CS-1.1.1: The piloting controller provides actuator movements during takeoff despite receiving 
feedback that the aircraft is not in a safe departure state. This could occur because: 
1. The piloting controller has the wrong process model of the state of the aircraft and 

therefore believes that the aircraft is in a safe departure state. This could occur if: 
1.1. The piloting controller receives the feedback indicating that the aircraft is not in a safe 

departure state but does not incorporate that feedback into its process model of the 
state of the aircraft because: 

1.1.1. The piloting controller may wrongly believe that the data is too old/out-of-date. 
As a result, the piloting controller ignores that feedback, believing that it should 
make use of newer data to update its process model of the state of the aircraft. 
[SLR-1] 

1.1.2. The piloting controller believes it is receiving conflicting feedback because DVE 
conditions have degraded the accuracy of or obscured some (but not all) feedback 
sources. The piloting controller therefore chooses to ignore the feedback showing 
the presence of the other aircraft or object, believing that it is a false positive or 
erroneous. The piloting controller is especially susceptible to this if the majority of 
sources appear to agree that no aircraft is present and fewer sources appear to 
show otherwise. As a result, the piloting controller updates its process model 
based only on what it wrongly believes to be the correct feedback. [SLR-2]  

1.1.3. Alternatively, if the piloting controller receives communication from another 
controller (e.g. another aircraft, ground personnel, EMS Operations and ATC) 
indicating that the aircraft is in a safe departure state, the piloting controller may 
assume that the communication from the other controller must be accurate. This 
may even be used as proof that the feedback showing that the aircraft is not in a 
safe departure state should be ignored as out-of-date or incorrect. As a result, the 
piloting controller uses the communication from the other controller to update its 
process model and therefore wrongly believes that the aircraft is in a safe 
departure state. [SLR-3] 

1.2. Under the time constraints of needing to depart for a mission, the piloting controller 
either decides to or is told by another controller to expedite departure checks. This 
could be the result of unsafe operational adaptation to speed up the time required to 
prepare the aircraft for departure or the result of a capability to override or otherwise 
influence the checks. As a result, the piloting controller does not perform a complete 
update of its process model of the state of the aircraft and therefore might believe 
that, based on what it did check, the aircraft is in a safe departure state. [SLR-4] 

1.3. The piloting controller had the correct process model of the state of the aircraft and the 
expected safe departure state at the point that the aircraft was checked. However, 
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prior to departure, the state of the aircraft changes and the piloting controller does not 
update the process model, believing that there is no need to check the state of the 
aircraft again. As a result, they are unaware that the aircraft is no longer in a safe 
departure state [SLR-5] 

2. The piloting controller has a wrong/incomplete process model of the expected safe 
departure state of the aircraft and therefore decides based on this wrong/incomplete 
model that the current state of the aircraft matches the desired safe departure state. This 
could occur if: 
2.1. The data (e.g. aircraft manifest) provided to the piloting controller (e.g. from EMS 

Operations and ATC or ground personnel) indicating the expected safe departure state 
of the aircraft was incompletely specified but is assumed by the piloting controller to be 
complete. The piloting controller therefore updates its process model of the desired 
safe departure state of the aircraft based on this wrong or incomplete information. 
[SLR-6]  

2.2. A last-minute update is made to the expected safe departure state of the aircraft and 
the piloting controller does not receive the update. This could occur if: 

2.2.1. The update was not provided to the piloting controller due to poor 
communication [SLR-7] 

2.2.2. Any of the conditions in CS-1.1.1-1.1 above may occur, resulting in the piloting 
controller receiving the update but not incorporating it into its process model of 
the desired safe departure state. [SLR-1, SLR-2, SLR-3] 

 
 
CS-1.1.2: The pilot receives feedback that did not indicate that the aircraft was not in a safe 
departure state because: 
1. The feedback indicating that the aircraft was in an unsafe departure state was available 

from the feedback mechanisms/sensors (e.g. reporting systems, aircraft maintenance logs, 
warnings/alarms from the aircraft subsystems). However, that data is not received by the 
piloting controller. If the piloting controller assumes/is programmed to assume that not 
receiving such feedback indicates that there are no outstanding maintenance or 
configuration updates, then the piloting controller will make an incorrect update of its 
process model of the state of the aircraft and believe the aircraft is in a safe departure 
state. Data might be collected by the sensors/feedback mechanisms but not be received by 
the piloting controller because: 
1.1. The data is missed/dropped before it can be processed by the piloting controller. This 

could occur because the piloting controller was preoccupied and unable to process the 
incoming data or the piloting controller was unaware of the arrival of the data to be 
processed [SLR-8] 

1.2. The required data is not made available to the piloting controller even though it is 
collected. Examples of this include warnings from the aircraft subsystems that are 
buried deep in menus on the display interfaces (if the piloting controller is human), 
data not being distributed to the automation (if the piloting controller is automated) or 
the piloting controller not having access to manifests, maintenance logs or the status of 
preflight activities such as configuration updates. [SLR-9] 
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1.3. Alternatively, the data is made available but the piloting controller does not check 
those data collection mechanisms (e.g. maintenance reports, warning messages) prior 
to departure [SLR-9] 

1.4. For maintenance or configuration tasks, an update could have been made (or there was 
a delay in updating records) showing an outstanding task or issue after the piloting 
controller has checked the data collection mechanisms. If the piloting controller is not 
notified of this update, then the piloting controller does not have another opportunity 
to update their process model of the state of the aircraft [SLR-10] 

2. The sensor data required to indicate that the aircraft was in an unsafe departure state is not 
available. As a result, no data is collected regarding those aspects of a safe departure state 
and the piloting controller is unaware that those aspects are in an unsafe state. The sensor 
data might not be available because: 
2.1. Maintenance or preflight records for the aircraft are not updated to show the 

incomplete or outstanding maintenance task(s) or the state of each task. This could 
occur due to delays in updating those records after an issue is discovered or a technical 
issue preventing the update of those records [SLR-10] 

2.2. Sensors used to detect the unsafe departure state of the aircraft have failed and their 
failure does not trigger a warning of the failure from the aircraft subsystems [SLR-9] 

2.3. DVE conditions obscure the area around the aircraft and prevents the piloting 
controller from seeing if any maintenance or preflight activities are still being 
performed on the aircraft (either visually or via other sensor modalities). [SLR-3, SLR-9] 

 
CS-1.1.3: The piloting controller does not provide actuator movements during takeoff but 
actuator movements are received by the aircraft because: 
1. An adversary spoofs the actuator movements sent from the piloting controller and causes 

the aircraft to believe the piloting controller has sent actuator movements [SLR-11] 
 
CS-1.1.4: Actuator movements are not received by the aircraft but the aircraft behaves as 
though actuator movements have been received and violates minimum separation or is harmful 
to human health because: 

1. A subsystem controller fails, sending actuator movements when none were commanded 
by the piloting controller [SLR-12] 

 
 
Scenarios for UCA-1.2 
UCA-1.2: Piloting controller provides actuator movements that pilots the aircraft toward 
another aircraft or object [H-3] 
 
CS-1.2.1: The piloting controller provides actuator movements despite receiving feedback that 
there was another aircraft or object nearby. This could occur because: 
1. The piloting controller may have the wrong process model of the state of the environment, 

the aircraft or the airspace around the aircraft. As a result, the piloting controller might 
wrongly believe that the airspace nearby the aircraft is clear to pilot toward or select 
actuator movements that, because of the wrong process model of the state of the aircraft 
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or environmental conditions, cause the aircraft to move toward instead of away from the 
aircraft or object. This may occur because: 
1.1. DVE conditions cause more noise in sensor data than is normally present, making the 

useful feedback more difficult for the piloting controller to distinguish from the noise or 
increasing the likelihood that the piloting controller wrongly decides that the sensor 
data shows no useful feedback/detections. [SLR-13, SLR-19] 

1.2. Any of the conditions in CS-1.1.1-1.1 could occur in this case as well [SLR-1, SLR-2, SLR-
3] 

1.3. DVE causes delays in the piloting controller interpreting the sensor data and using the 
sensor data to update its process model. As a result, the piloting controller has the 
wrong process model of the airspace around the aircraft until it is able to update its 
process model. [SLR-14] 

1.4. If another aircraft or controller external to the aircraft providing airspace guidance is in 
contact with the aircraft and wrongly believes that the airspace nearby the aircraft is 
clear (for any of the same reasons above) or if a-priori data indicates that no ground 
obstacles are present, the piloting controller may assume that the external 
controller/a-priori data is providing accurate information and disregard the onboard 
sensors in favor of the guidance provided by the external controller. If the piloting 
controller is human, this may also contribute to confirmation bias, causing the piloting 
controller not to look for any other evidence that another aircraft or object is nearby. 
As a result, the piloting controller wrongly updates its process model of the airspace 
nearby the aircraft [SLR-3, SLR-15] 

1.5. The piloting controller had the correct process model of the airspace at the point that it 
checked. However, between the time that the piloting controller checked the state of 
the airspace and the time that it begins its maneuver, an object or other aircraft enters 
the nearby airspace.  However, the piloting controller, believing that the airspace is 
clear, does not check that airspace again and therefore now has the wrong process 
model of the nearby airspace when it actually begins its maneuver. [SLR-16] 

2. The piloting controller may have the wrong belief about the future behavior of the other 
aircraft or object and therefore believes that providing actuator movements will not pilot 
the aircraft toward the other aircraft or object. This might occur because: 
2.1.  The other aircraft does not coordinate its movements sufficiently with this aircraft and 

therefore the piloting controller is forced to make assumptions based on the 
movement patterns it has observed and predict the other aircraft’s intent [SLR-17, SLR-
18] 

2.2. The other aircraft does coordinate its movements with this aircraft but, at the last 
minute or for some other reason, is forced to change its intended movements but does 
not communicate this new intent to the piloting controller [SLR-17, SLR-18] 

3. The piloting controller is forced to make a quick decision to avoid violating minimum 
separation that does not fully account for all objects and aircraft in the airspace. As a result, 
the piloting controller tries to avoid one object/aircraft and collides with another 
aircraft/object instead. [SLR-17, SLR-18] 
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CS-1.2.2: The piloting controller receives feedback that did not indicate that another aircraft or 
object was nearby because: 

1. DVE degrades or obscures sensors, leading to wrong, incomplete or missing feedback 
about the environment, DVE conditions or the state of the aircraft. This could also be 
caused by a sensor suite that was not designed to operate in a particular set of DVE 
conditions [SLR-2, SLR-15, SLR-19] 

2. Changes in aircraft position are so slow/subtle that, especially under some DVE 
conditions, the piloting controller is unable to distinguish the feedback showing the 
aircraft shifting or drifting in position. As a result, the pilot’s mental model of the state 
or position of the aircraft does not match the aircraft’s actual state or position [SLR-20] 

3. The feedback indicating the presence of another aircraft or object nearby was delayed 
in arriving. This might occur because DVE conditions increase the processing time 
needed before the piloting controller receives the feedback. As a result, the piloting 
controller selects actuator movements based on its current process model of the 
airspace which does not reflect the presence of another aircraft or object. [SLR-14, SLR-
21] 

4. Feedback not showing the presence of another aircraft or object nearby was delayed in 
arriving. As a result, if the piloting controller is not aware of the delay, it might wrongly 
choose to incorporate that feedback even though it is already out-of-date. [SLR-1] 

 
CS-1.2.3: The piloting controller does not provide actuator movements that pilots the aircraft 
toward another aircraft or object but actuator movements to do so are received by the aircraft 
because: 
1. A similar cybersecurity reason as CS-1.1.3-1 would apply here as well [SLR-11] 
 
CS-1.2.4: Actuator movements are not received by the aircraft but the aircraft still violates 
minimum separation with the nearby aircraft or object because: 

1. DVE conditions (e.g. wind gusts) move the aircraft toward the other aircraft or object 
with enough force or at a high enough rate that the piloting controller is unable to react 
quickly enough or with appropriate amplitude to correct the disturbance [SLR-22] 

 
Scenarios for UCA-1.5 
UCA-1.5: Piloting Controller does not provide actuator movements when violation of minimum 
separation is imminent [H-3] 
 
CS-1.5.1: The piloting controller does not provide actuator movements despite receiving 
feedback that violation of minimum separation is imminent. This could occur because: 
1. The piloting controller may be unable to select new actuator movements before the 

violation of minimum separation occurs. This could occur if: 
1.1. The piloting controller is unable to select new actuator movements quickly enough to 

avoid violation of minimum separation. This might occur if the piloting controller 
recognizes the imminent violation too late or takes too long to select new actuator 
movements [SLR-23] 
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1.2. There is no viable path that would allow the piloting controller to avoid the current 
violation of minimum separation without causing another one (i.e. no viable escape 
path) [SLR-24] 

2. The piloting controller has the wrong belief about the future movement of the other aircraft 
or object and believes that the other aircraft or object will no longer pose a threat. [SLR-18] 

 
CS-1.5.2: The piloting controller receives feedback that did not indicate that violation of 
minimum separation is imminent. These scenarios are the same as CS-1.2.2. 
 
 
CS-1.5.3: The piloting controller does provide actuator movements but actuator movements 
are not received by the aircraft because: 
1. A similar cybersecurity reason as CS-1.1.3-1 would apply here as well [SLR-11] 
 
CS-1.5.4: Actuator movements are received by the aircraft but the aircraft still violates 
minimum separation because: 
1. The piloting controller may have the wrong process model of the environment conditions 

and selects actuator movements that are insufficient to effect the desired change in flight 
path [SLR-25] 

2. The piloting controller selects actuator movements that avoid one violation of minimum 
separation but causes another one [SLR-25, SLR-26] 
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Appendix C System-Level Requirements 
 
Table 48 shows how system-level requirements should be recorded along with traceability links 
to the scenarios they are meant to mitigate or prevent as well as the underlying rationale and 
assumptions.  
 

Table 48: System-Level Requirements 

Req ID System-Level Requirement Scenario Links Rationale/Assumptions 

SLR-1 The FOS must be able to determine if 
any feedback it is receiving about the 
aircraft’s mission readiness, state of 
the aircraft and the airspace around it 
is too old 

CS-1.1.1-1.1.1, 
CS-1.2.1-1.2, CS-
1.2.2-4 

Assumes that it is 
possible to determine 
the validity/expiry 
period for all feedback 
information 

SLR-2 The FOS must account for prevailing 
DVE conditions and their possible 
effect on feedback sources when 
making use of feedback information 

CS-1.1.1-1.1.2, 
CS-1.2.1-1.2, CS-
1.2.2-1 

Assumes that there is 
minimal ambiguity in 
deconflicting feedback 
that appears to be in 
conflict once a 
framework/guidance is 
established for 
determining how 
feedback sources 
might be affected by 
DVEs 

SLR-3 The FOS must verify the accuracy of 

any inputs from another 

aircraft/controller before updating 

process models based on that input 

CS-1.1.1-1.1.3, 
CC-1.1.2-2.2.2, 
CS-1.2.1-1.2, CS-
1.2.1-1.4 

Assumes that all 
possible inputs from 
external sources can be 
verified in some 
manner using other 
available data 

SLR-4 The FOS must confirm that all aspects 
of the aircraft state match the safe 
departure state prior to departure 

CS-1.1.1-1.2  

SLR-5 The FOS must always be able to 
determine if the state of the aircraft 
changes between the time that it was 
checked and departure 

CS-1.1.1-1.3  
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Req ID System-Level Requirement Scenario Links Rationale/Assumptions 

SLR-6 The FOS must confirm that data 
provided to it about the expected 
safe departure state of the aircraft 
has been fully specified 

CS-1.1.1-2.1 Assumes that it is 
possible to 
unambiguously define 
when the safe 
departure state is “fully 
specified” and evaluate 
whether that has been 
achieved 

SLR-7 The FOS must ensure that all relevant 
personnel are aware of any changes 
to the expected safe departure state 
of the aircraft  

CS-1.1.1-2.2.1  

SLR-8 The FOS must process all feedback to 
make a deliberate decision if it is to 
be ignored/dropped  

CS-1.1.2-1.1  

SLR-9 The FOS must ensure that it is 
receiving all data required to 
determine the expected safe 
departure state and determine the 
current state of the aircraft under all 
DVE conditions at all times 

CS-1.1.2-1.2, CS-
1.1.2-1.3, CS-
1.1.2-2.3 

 

SLR-10 The FOS must ensure that flight crews 
are aware of the most updated state 
of any maintenance tasks on the 
aircraft 

CS-1.1.2-1.4  

SLR-11 The FOS must ensure that only 
authorized actuator movements are 
executed 

CS-1.1.3-1, CS-
1.5.3-1 

 

SLR-12 All FOS equipment and systems must 
be able to operate in the expected 
DVE conditions 

CS-1.1.4-1 Assumes that 
component failure can 
be avoided if 
components are 
designed to operate in 
expected DVE 
conditions 

SLR-13 The FOS must be able to distinguish 
useful detections/feedback from the 
noise that might be present in 
feedback data under all DVE 
conditions at all times 

CS-1.2.1-1.1  
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Req ID System-Level Requirement Scenario Links Rationale/Assumptions 

SLR-14 The FOS must be able to process 
sensor data and use it to update its 
process model sufficiently quickly 
(within TBD seconds) 

CS-1.2.1-1.3, CS-
1.2.2-3 

<Rationale for the 
threshold time in 
which sensor data 
must be processed> 

SLR-15 The FOS must receive all data 
required to determine the state of the 
environment and conditions around 
the aircraft under all DVE conditions 
at all times 

CS-1.2.1-1.4, CS-
1.2.2-1 

 

SLR-16 The FOS must always be able to 
determine if the state of the airspace 
changes between the time that it was 
checked and the commencement of a 
maneuver 

CS-1.2.1-1.5  

SLR-17 The FOS must take into account the 
current and future movements of 
other aircraft in the vicinity when 
selecting actuator movements 

CS-1.2.1-2.1, CS-
1.2.1-2.2, CS-
1.2.1-3 

Assumes that even 
without the other 
aircraft coordinating 
sufficiently, there is 
still enough 
information available 
to select actuator 
movements that avoid 
violation of minimum 
separation   

SLR-18 The FOS must ensure that aircraft 
movements are selected such that 
sufficient reaction time is available to 
react and prevent violation of 
minimum separation if intent or 
movements of the other aircraft are 
different than expected 

CS-1.2.1-2.1, CS-
1.2.1-2.1, CS-
1.2.1-3, CS-1.5.1-
2 

Assumes that there is 
enough clear airspace 
nearby to leave enough 
space between aircraft 
such that enough 
reaction time is 
available if an aircraft 
moves in an 
unexpected way  

SLR-19 The FOS must be able to detect all 
objects and other aircraft in the 
environment under all DVE conditions 
at all times 

CS-1.2.1-1.1, CS-
1.2.2-1 

 

SLR-20 The FOS must be able to detect slow 
or subtle changes in the state of the 
aircraft under all DVE conditions at all 
times 

CS-1.2.2-2  
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Req ID System-Level Requirement Scenario Links Rationale/Assumptions 

SLR-21 The FOS must select actuator 
movements that minimize the risk of 
violation of minimum separation 
when information about the state of 
the airspace is in a degraded 
condition (e.g. delayed) 

CS-1.2.2-3 Assumes that it is 
possible to find a set of 
actuator movements 
that presents the 
lowest risk of violating 
minimum separation. 
This requires both a 
framework for making 
that evaluation and 
enough space between 
aircraft that a relatively 
low-risk solution can 
be found 

SLR-22 The FOS must be able to respond 
quickly enough and with an 
appropriate magnitude to 
disturbances to prevent unintended 
movements of the aircraft 

CS-1.2.4-1 Assumes that there are 
no conditions under 
which unintended 
movements of the 
aircraft is unavoidable.  
 
Also assumes that it is 
desirable to always 
avoid undesirable 
movement of the 
aircraft 

SLR-23 The FOS must be able to respond 
quickly enough to avoid violations of 
minimum separation 

CS-1.5.1-1.1  

SLR-24 The FOS must ensure that a viable 
path is always available to avoid a 
violation of minimum separation 

CS-1.5.1-1.2 Assumes that there is 
enough space between 
aircraft to be able to 
find a viable path to 
avoid violating 
minimum separation 

SLR-25 The FOS must select actuator 
movements that are sufficient and 
appropriate to effect the desired 
change in flight path under the given 
environmental conditions 

CS-1.5.4-1, CS-
1.5.4-2 
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Req ID System-Level Requirement Scenario Links Rationale/Assumptions 

SLR-26 The FOS must ensure that actuator 
movements avoid all possible 
violations of minimum separation 

CS-1.5.4-2 Assumes that it is 
possible to avoid all 
violations of minimum 
separation. This 
includes not only 
enough space between 
aircraft but also that a 
framework exists for 
how to avoid multiple 
possible violations at 
once   

 
 



 

Appendix D FOS System-Level Behavior Information 
 

Decision-Making Strategy, Refined Control Actions and Required Process Model Parts 
 

Table 49: Full Details for Decision-Making Strategy, Refined Control Actions and Required Process Model Parts 

Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-1.  Determine if 
feedback received 
about the 
aircraft’s mission 
readiness, state of 
the aircraft and 
the airspace is too 
old [SLR-1] 

FOS will compare the 
timestamp of the 
feedback with 
timestamp for the 
current time and 
calculate the 
difference. If the 
difference exceeds 
<TBD threshold>, the 
feedback is 
considered too old 
 
 

Model of System Behavior 

• Threshold for out-of-date data 
 
Aircraft Mission Readiness, State of the 
aircraft, Current state of the airspace 

• Time of feedback measurement 

<Rationale for how that 
threshold is determined> 
 
<Assumptions with respect to 
always having that timestamp 
available> 
 
Assumes that the threshold is 
constant in all DVE and 
operational conditions (e.g. will 
not change based on speed of 
flight) 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-2.  Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 

FOS will compare 
current weather 
conditions to its 
understanding of 
which data sources 
are affected by which 
DVE conditions to 
determine which 
feedback sources to 
trust 
 

Model of system behavior 

• Known effects of DVE on 
feedback sources 

 
Model of Current Weather Conditions 

• Ambient air temperature 

• Wind speed  

• Visibility 

• <Other conditions as needed> 
 

Assumes that there is no real-
time way to determine if an 
instrument is compromised by 
DVE conditions and therefore a 
priori knowledge is required 
 
<Rationale for why each 
environmental condition is 
included and what instrument is 
anticipated to be affected by that 
condition> 
 

SR-3.  Validate the inputs 
or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 
 

FOS will cross-check 
the feedback received 
from other controllers 
with another data 
source to confirm that 
the feedback from the 
other controller and 
the other data source 
agree before using the 
feedback 

Model of System Behavior 

• Data sources used to maintain 
each parameter in the process 
model 

Assumes that it is possible to 
cross-check all feedback within 
the time limits available and with 
the data available 
 
<Any assumptions related to the 
risk of confusion when multiple 
data sources are available or the 
risks associated with ignoring the 
input if it cannot be successfully 
cross-checked> 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-4.  Confirm that all 
aspects of the 
aircraft state 
match the 
expected safe 
departure state 
before providing 
actuator 
movements to 
depart [SLR-4] 

FOS compares current 
aircraft state to 
expected safe 
departure state 
 

 Current Aircraft Mission Readiness 

• State of cargo load 

• State of personnel load 
 
Current Aircraft System State 

• State of all aircraft subsystems 
 
Expected safe departure state 

• Cargo required 

• Personnel required 

• Expected state of aircraft 
subsystems 

 

<Rationale for why the piloting 
controller comparing current and 
expected safe departure state is 
chosen instead of alternative 
options (e.g. preflight personnel 
doing all the checks and then just 
informing the pilot)>   
 
<Rationale for why each 
feedback item needs to be 
checked> 

SR-5.  Determine if the 
state of the 
aircraft changes 
between the time 
that it was 
checked and 
departure [SLR-5] 

Based on the last time 
the aircraft state was 
compared to the 
expected safe 
departure state, if the 
aircraft system state is 
updated after that 
time, perform the 
comparison again  

Expected Safe Departure State: 

• Last time state was compared to 
current aircraft state 

 
Current Aircraft System State: 

• Time of last update 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-6.  Confirm that data 
about the 
expected safe 
departure state of 
the aircraft has 
been fully 
specified and 
received [SLR-6, 
SLR-9] 

The FOS uses a 
standardized template 
of information that 
defines the expected 
safe departure state 
for a specific mission. 
The FOS should check 
that everything in the 
template is specified 
for the mission. The 
FOS should also check 
that all controllers 
who need to receive 
the information have 
successfully received 
it 

Expected safe departure state 

• Template of information that 
should be specified for a mission 

• Controllers that need to 
know/modify this information 

• Confirmation of receipt by 
controllers 

This assumes that the 
information needed to 
completely specify a mission can 
be written in terms of a 
template. If the definition of 
“completely specified” depends 
on the mission, then a more 
flexible method of defining the 
criteria for evaluating if a mission 
has been “completely specified” 
will need to be defined    

SR-7.  Ensure that all 
relevant personnel 
are aware of any 
changes to the 
expected safe 
departure state of 
the aircraft [SLR-7] 

When anything in the 
expected safe 
departure state 
changes after the time 
of last update, the 
FOS should ensure 
that it receives 
confirmation of 
receipt for the update 
from every controller 

Expected safe departure state 

• Time of last update  

• Controllers that need to 
know/modify this information 

• Confirmation of receipt by 
controllers 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-8.  Process all 
feedback to make 
a deliberate 
decision if it is to 
be 
ignored/dropped 
[SLR-8] 

Perform the decision 
making strategies in 
SR-1, SR-2 and SR-3 to 
determine if any of 
those considerations 
result in a decision to 
ignore the data 

All process model parts as listed in SR-1, 
SR-2 and SR-3 

Assumes that data might only be 
ignored/dropped if it is: 

1. Out of date 
2. In conflict with other data 

sources 
3. Considered untrustworthy 

under current DVE 
conditions 

SR-9.  Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

For each piece of 
feedback information 
required to maintain 
the process models, 
ensure that updated 
data is being received 
at the expected 
update frequency   

Model of System Behavior 

• Expected update frequency for 
each input 

• Time since last update for each 
input 

• State of all data sources 
 
 

<Rationale for the update 
frequency expected> 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-10.  Ensure that flight 
crews are aware 
of the most 
updated state of 
any maintenance 
tasks on the 
aircraft [SLR-10] 

Confirmation of 
receipt should be 
received for any 
changes to 
maintenance tasks on 
the aircraft occurring 
after the time that a 
mission has been 
briefed to flight crews 

Aircraft Mission Readiness 

• Time of mission briefing 
 
Current Aircraft State 

• Maintenance tasks on aircraft 

• Time of update to maintenance 
tasks 

• Confirmation of receipt of update 

 

SR-11.  Ensure that only 
authorized 
actuator 
movements are 
executed [SLR-11] 

The authenticity and 
integrity of the 
actuator movements 
should be verified 
before they are 
executed using <TBD> 
cryptographic 
methods  

Model of System Behavior 

• Keys associated with controllers 
on the aircraft 

Assumes that risks of 
unauthorized actuator 
movements only occur after the 
control column sensors (e.g. 
unauthorized physical access to 
the control column is not 
considered) 
 
Key-based authentication 
methods are well-established 
methods of authenticating 
messages 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-12.  Be able to operate 
in the expected 
DVE conditions 
[SLR-12] 

Compare <TBD 
metrics> based on 
expected worst-case 
DVE conditions and 
the conditions that 
the equipment is 
designed to operate in 
to ensure that the 
systems being used 
have been designed to 
operate in those 
conditions 

Model of System Behavior 

• Worst case conditions that the 
equipment is designed to be used 
in 

• Metrics to determine suitability 
of equipment 

<Rationale for the metrics 
chosen> 

SR-13.  Distinguish useful 
feedback from 
noise in feedback 
data [SLR-13] 

Use typical noise and 
expected signal 
strength under all DVE 
conditions to help 
isolate signal from 
noise and cross check 
with other data 
sources to confirm 

Model of System Behavior 

• Typical noise expected for each 
data source under DVE condition 

• Expected signal strength for each 
data source under DVE condition 

• Data sources used to maintain 
each part of the process model 

 

<Assumptions about minimum 
signal strengths> 
 
<Assumptions about the 
conditions under which a weak 
signal might be received> 
 
<Assumptions/rationale about 
typical noise based on noise 
assessments> 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-14.  Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

Use data from 
<selected sensor 
types> selected for 
SR-18, detect the 
environmental 
conditions or objects 
and other aircraft in 
the environment 
within <TBD> seconds  

All process model contents in Current 
Weather Conditions and Current 
Airspace State 

<Rationale for the time available 
to perform the detections based 
on sensors selected in SR-18, 
reliability of detection, difficulty 
in making required detections 
and the time needed to make 
those detections> 

SR-15.  Determine if the 
state of the 
airspace changes 
between the time 
that it was 
checked and the 
commencement of 
a maneuver [SLR-
16] 

If the process model 
was last updated 
more than TBD 
seconds prior to 
commencing actuator 
movements, the 
process model should 
be updated again  

Current Airspace State: 

• Time of last feedback 
measurement 

• Threshold at which airspace state 
process model is out of date 

<Rationale for how that 
threshold is chosen> 



 152 

Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-16.  Account for the 
current and future 
movements of 
other aircraft in 
the vicinity when 
selecting actuator 
movements [SLR-
17] 

Anticipate current and 
future position of 
other aircraft and 
avoid own aircraft 
being in the same 
location 

Model of Current Airspace State 

• IDs, Positions and Speeds of 
other aircraft and objects 

 
Anticipated Future Airspace State 

• Intent (expected future 
movement) of other aircraft and 
objects 

• Own Aircraft Intent 
 
Model of Current Aircraft Navigation 
State 

• Current air speed 

• Current altitude 

• Current position 

<Rationale for why this method 
of accounting for future 
movements of aircraft> 
 
Assumes intent can always be 
communicated before actuator 
movements need to be provided 
either by own aircraft or the 
other aircraft  
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-17.  Ensure that 
aircraft 
movements are 
selected such that 
sufficient reaction 
time is available if 
intent or 
movements of 
other aircraft are 
not what was 
expected, even if 
no violation of 
minimum 
separation is 
initially expected 
[SLR-18] 

The decision-making 
strategy for SR-16 
should be carried out 
such that the closest 
point of approach is 
no less than the 
closest point of 
approach distance to 
ensure that there is 
sufficient time to 
change course if the 
other aircraft behaves 
in unanticipated ways 

All process model parts in SR-16 and the 
following: 
 
Model of System Behavior 

• Closest point of approach 
distance 

<Rationale for closest point of 
approach distance based on 
anticipated speeds, reaction 
times etc.> 

SR-18.  Detect all objects 
and other aircraft 
in the 
environment 
under all DVE 
conditions at all 
times [SLR-19] 

Use data from <sensor 
choices> to measure 
the position and 
speed of objects and 
aircraft in the airspace 

All process model contents in 
Current Weather Conditions and 
Current Airspace State 

<Rationale for sensor choices 
based on anticipated objects and 
DVE conditions that might be 
encountered, reliability of 
detection, difficulty in making 
required detections, time needed 
to make those detections and 
noise assumptions made in SR-
13> 
 
<Assumptions about minimum 
object size and DVE conditions> 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-19.  Detect slow or 

subtle changes in 

the state of the 

aircraft under all 

DVE conditions at 

all times [SLR-20] 

Based on the 
navigation tolerance 
requirements used to 
select landing zones 
and flight paths, the 
FOS must be able to 
navigate within those 
tolerances and detect 
changes in position, 
altitude and airspeed 
that exceed those 
tolerances so that 
they can be 
counteracted 

Current Aircraft Navigation State 

• Current position 

• Current altitude 

• Current airspeed 
 
Model of System Behavior: 

• Navigation tolerances to be 
maintained during flight 

<Assumptions/rationale for 
where the navigation accuracy 
assumptions come from> 
 
<Rationale for the accuracy 
thresholds>  



 155 

Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-20.  Select actuator 
movements that 
minimize the risk 
of violation of 
minimum 
separation when 
information about 
the state of the 
airspace is in a 
degraded 
condition (e.g. 
delayed) [SLR-21] 

Based on the FOS’ 
own aircraft intent, if 
it is possible to wait to 
receive the delayed 
feedback, the FOS 
should do so 
 
If not, based on the 
last determinations of 
the current airspace 
state and anticipated 
future airspace state, 
the FOS should select 
actuator movements 
using established 
guidelines for how to 
minimize the 
likelihood of violating 
minimum separation  
 

Anticipated Future Airspace State: 

• Own aircraft intent 

• Intent of other aircraft and 
objects 

 
Current Airspace State: 

• IDs, Positions and speeds of 
other aircraft and objects  

 
Model of System Behavior 

• Established guidelines for 
minimizing risk of violating 
minimum separation  

 
 
 

<Rationale for why reliance on 
established guidelines is 
necessary> 
 
Assumes that there will always 
be an apparent movement 
available that will minimize the 
likelihood of violating minimum 
separation 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-21.    Respond quickly 
and with 
appropriate 
magnitude to 
disturbances to 
prevent 
unintended 
movement of the 
aircraft [SLR-22] 

Based on <anticipated 
worst case DVE 
conditions such as 
wind gusts or 
turbulence effects>, 
unintended 
movement must be 
detected within 
<some time or 
distance threshold> 
and an appropriate 
actuator movement 
selected based on 
<required responses 
to maintain stable 
flight>  

Model of Current Weather Conditions 

• Outside air temperature 

• Wind speed  

• Visibility 

• <Other conditions as needed> 
 
Model of Current Aircraft Navigation 
State 

• Current air speed 

• Current altitude 

• Current position 
 
Model of System Behavior 

• Actuator movements selection 
guidelines for handling the 
aircraft in DVE conditions 

 

Assumes that the goal of 
preventing unintended 
movement is always appropriate 
(as opposed to accommodating 
some unintended movement to 
reduce airframe stress)  
 
<Rationale for worst case DVE 
conditions and response 
thresholds> 
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Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-22.  Respond quickly 
enough and with 
appropriate 
magnitude to 
select and effect 
the desired 
change in flight 
path under the 
given 
environmental 
conditions [SLR-
23, SLR-25] 

Normal decision 
making process 
needed to select 
actuator movements, 
however decision 
making must happen 
more quickly 

Model of Current Weather Conditions 

• Outside air temperature 

• Wind speed  

• Visibility 

• <Other conditions as needed> 
 
Model of Current Aircraft Navigation 
State 

• Current air speed 

• Current altitude 

• Current position 
 
Model of System Behavior 

• Actuator movements selection 
guidelines for handling the 
aircraft in DVE conditions 

 

Assumes the “rules” for selecting 
actuator movements will be the 
same whether in DVE conditions 
or not but those decisions will 
need to be more responsive to 
disturbances caused by some 
DVE conditions than normal 

SR-23.  Ensure that a 
viable flight path is 
always available to 
avoid any 
violations of 
minimum 
separation [SLR-
24] 

Based on current and 
anticipated airspace 
state, select a flight 
path that offers the 
most options for 
deviation/change if 
other violations of 
minimum separation 
occur 

Model of Current Airspace State 

• IDs, Positions and speeds of 
other aircraft and objects 

 
Anticipated Future Airspace State 

• Intent (expected future 
movement) of other aircraft and 
objects 

 

 



 158 

Resp. 
ID 

Responsibility Decision-Making 
Strategy 

Required Process Model Contents Rationale and Assumptions 

SR-24.  Select a viable 
flight path that 
avoids all possible 
violations of 
minimum 
separation [SLR-
26] 

Based on current and 
anticipated airspace 
state, select a flight 
path that accounts for 
all currently known 
possible violations of 
minimum separation 

Model of Current Airspace State 

• IDs, Positions and Speeds of 
other aircraft and objects 

 
Anticipated Future Airspace State 

• Intent (expected future 
movement) of other aircraft and 
objects 

 

 

 

Sources of Feedback 
 

Table 50: Full Details for Feedback Sources 

Process Model 
Sub-Part 

Required Information Source of Information Rationale/assumptions for source of information 

Current Aircraft 
Mission Readiness 

State of cargo load 
Piloting Controller or 
preflight personnel 

Some cargo might be loaded by maintenance or 
preflight personnel but others might be loaded by crew. 
Therefore, it is simplest for pilot to ensure that 
everything is on board regardless of who loaded it 
 

State of Personnel load Piloting Controller 

To determine the presence of personnel on board, it is 
easiest for the piloting controller to determine that on 
its own 
 

Time of mission briefing 
EMS Operations and 
ATC 

EMS Operations and ATC are the ones who are plan and 
brief the mission so they would know the time that the 
briefing was given 
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Process Model 
Sub-Part 

Required Information Source of Information Rationale/assumptions for source of information 

Time of last feedback 
measurement 

Piloting Controller  
Since either the Piloting Controller checks the state of 
the aircraft, they know what time they checked it  

Current Aircraft 
System State 

State of all aircraft 
subsystems 

Aircraft Subsystems 
These values are measured by sensors on the aircraft 

Time of last feedback 
measurement  

Aircraft Subsystems 

Maintenance Tasks on 
the Aircraft Maintenance 

Personnel 

Since maintenance personnel are in charge of 
maintenance tasks, they know best the maintenance 
state of each aircraft and when they last updated 
maintenance tasks 

Time of update to 
maintenance tasks 

Confirmation of receipt 
of update 

Piloting Controller 
Since the Piloting Controller received the update, they 
know what time they received it 

Current Aircraft 
Navigation State 

Current Air Speed 

Aircraft subsystems These values are measured by sensors on the aircraft Current Altitude 

Current Position 

Expected Safe 
Departure State 

Expected state of aircraft 
subsystems 

Maintenance 
Personnel 

Since maintenance personnel are in charge of 
maintenance tasks, they know best the maintenance 
state of the aircraft 

Time of Last Comparison 
to Current Aircraft State 

Piloting Controller 
Since either the Piloting Controller checks the state of 
the aircraft, they know what time they checked it  

Time of last update 

EMS Operations and 
ATC 
 
Maintenance 
Personnel 

Since EMS Operations and ATC plans the mission, they 
know what is required for the mission 

Cargo required 

EMS Operations and 
ATC 

Personnel required 

Template of mission 
information 
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Process Model 
Sub-Part 

Required Information Source of Information Rationale/assumptions for source of information 

Controllers that need to 
know/modify safe 
departure state 
information 

Since EMS Operations and ATC plans the mission, they 
know what is required for the mission 

Confirmation of receipt 
of departure state 
information 

Current Weather 
Conditions 

Ambient Air 
Temperature 

Aircraft Subsystems These values are measured by sensors on the aircraft 
Wind Speed 

Visibility 

Current Airspace 
State 

IDs, Positions and Speeds 
of other aircraft and 
objects 

Aircraft Subsystems 
 
Reports from other 
controllers 
 
EMS Operations and 
ATC 
 

These values are expected to be determined using on-
board sensor data but may also be determined by 
feedback from other controllers such as EMS Operations 
and ATC or other aircraft 

Time of last feedback 
measurement  

Aircraft Subsystems 

Threshold at which 
airspace state process 
model is out-of-date 

EMS Operations and 
ATC 

Since EMS Operations and ATC plan missions and define 
best practices, they know when airspace state 
information should be considered out of date 

Anticipated Future 
Airspace State 

Intent of other aircraft  Other aircraft  

Own aircraft intent Piloting Controller  

Model of System 
Behavior 

Expected update 
frequency for each input 

Since EMS Operations and ATC knows aircraft 
capabilities, they can provide this feedback 
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Process Model 
Sub-Part 

Required Information Source of Information Rationale/assumptions for source of information 

Time since last update 
for each input 

EMS Operations and 
ATC/Maintenance 
Personnel 

Since all of this information is related to the mission 
being planned and the equipment needed, the feedback 
comes from EMS Operations and ATC  

Threshold for out-of-date 
data 

EMS Operations and 
ATC 

Known effects of DVE on 
feedback sources 

Data sources used to 
maintain each part of the 
process model 

Keys associated with 
controllers on the aircraft 

Worst case conditions 
that the equipment is 
designed to be used in 

Metrics to determine 
suitability of equipment  

Typical noise expected 
for each data source 
under DVE conditions  

Expected signal strength 
for each data source 
under DVE conditions 

Navigation tolerances to 
be maintained during 
flight 

Closest point of approach 
distance 



 162 

Process Model 
Sub-Part 

Required Information Source of Information Rationale/assumptions for source of information 

Established guidelines for 
minimizing risk of 
violating minimum 
separation 

<Rationale for the guidelines> 

Actuator movements 
selection guidelines for 
handling the aircraft in 
DVE conditions 

Since all of this information is related to the mission 
being planned and the equipment needed, the feedback 
comes from EMS Operations and ATC 

State of all data sources 

 
 

Timing Requirements 
 
To show how timing requirements should be defined and documented, Table 51 shows the timing requirements for the non-
feedback validation responsibilities. Although not shown, timing requirements should also be defined for the feedback validation 
responsibilities as well. 
 
Non-Feedback-Validation Responsibilities 
 

Table 51: Full Details for Timing Requirements for Non-Feedback-Validation Responsibilities 

Resp. ID Responsibility Timing Requirements Rationale/Assumptions 

SR-4 

Confirm that all aspects of the aircraft 
state match the expected safe departure 
state before providing actuator 
movements to depart [SLR-4] 

Occurs once per mission 
 
<The shortest amount of time that 
would be available to perform this 
responsibility in an emergency 
deployment> 
 

<Rationale or assumptions 
about how the emergency 
deployment scenario was 
defined that led to the timing 
requirements> 

SR-5 Determine if the state of the aircraft 
changes between the time that it was 
checked and departure [SLR-5] 
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Resp. ID Responsibility Timing Requirements Rationale/Assumptions 

SR-6 Confirm that data about the expected 
safe departure state of the aircraft has 
been fully specified and received [SLR-6, 
SLR-9] 

 
 

SR-7 Ensure that all relevant personnel are 
aware of any changes to the expected 
safe departure state of the aircraft [SLR-
7] 

Occurs <TBD> per deployment based on 
historical mission data 
 
<Based on shortest time available in an 
emergency deployment, determine 
how quickly such changes need to be 
disseminated 

<Rationale for how historical 
mission data was used to 
determine frequency of 
occurrence> 
 
<Rationale for how the speed 
of dissemination of information 
must occur> 

SR-10 Ensure that flight crews are aware of the 
most updated state of any maintenance 
tasks on the aircraft [SLR-10] 

SR-11 Ensure that only authorized actuator 
movements are executed [SLR-11] 

Many times per mission 
 
<Determine limitation based on latency 
requirements of aircraft control 
system> 

<Rationale for or link to latency 
requirements of aircraft control 
system> 

SR-12 Be able to operate in the expected DVE 
conditions [SLR-12] 

Occurs once per mission 
 
<The shortest amount of time that 
would be available to perform this 
responsibility in an emergency 
deployment> 
 
 
 

<Rationale or assumptions 
about how the emergency 
deployment scenario was 
defined that led to the timing 
requirements> 
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Resp. ID Responsibility Timing Requirements Rationale/Assumptions 

SR-15 Determine if the state of the airspace 
changes between the time that it was 
checked and the commencement of a 
maneuver [SLR-16] 
 

Many times per mission 
 
<Determine limitation based on latency 
requirements of aircraft control 
system> 

<Rationale for or link to latency 
requirements of aircraft control 
system> 

SR-16 Account for the current and future 
movements of other aircraft in the 
vicinity when selecting actuator 
movements 

<Timing requirements here would be 
defined based on the most urgent 
scenario expected to be encountered 
and how quickly the piloting controller 
would need to select actuator 
movements in that scenario> 
  

<Rationale about the scenario 
used to define this timing 
constraint> 

SR-17 Ensure that aircraft movements are 
selected such that sufficient reaction 
time is available if intent or movements 
of other aircraft are not what was 
expected, even if no violation of 
minimum separation is initially expected 
[SLR-18] 

SR-18 Detect all objects and other aircraft in 
the environment under all DVE 
conditions at all times [SLR-19] 
 

SLR-19 Detect slow or subtle changes in the 
state of the aircraft under all DVE 
conditions at all times [SLR-21] 

SR-20 Select actuator movements that 
minimize the risk of violation of 
minimum separation when information 
about the state of the airspace is in a 
degraded condition (e.g. delayed) [SLR-
21] 
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Resp. ID Responsibility Timing Requirements Rationale/Assumptions 

SR-21 Respond quickly and with appropriate 
magnitude to disturbances to prevent 
unintended movement of the aircraft 

<Timing requirements here would be 
defined by aircraft dynamics and effects 
of DVE conditions> 

<Rationale about aircraft 
dynamics and DVE conditions 
being considered> 

SR-22 Respond quickly enough and with 
appropriate magnitude to select and 
effect the desired change in flight path 
under the given environmental 
conditions 

<Similar to R-3.1.3, aircraft dynamics 
and DVE conditions would define timing 
requirements> 

<Rationale about aircraft 
dynamics and DVE conditions 
being considered> 

SR-23 Ensure that a viable flight path is always 
available to avoid any violations of 
minimum separation 

<Timing constraint that defines how 
often the piloting controller should re-
evaluate whether they have a viable 
flight path options should they need to 
avoid a collision> 
 
<The shortest amount of time that 
would be available to perform this flight 
path evaluation> 
 

<Rationale/assumptions that 
led to defining how often the 
piloting controller should re-
evaluate whether they have 
viable flight path options> 

SR-24 Select a viable flight path that avoids all 
possible violations of minimum 
separation 

<Timing constraint that defines how 
often the piloting controller should re-
evaluate that their flight path is still 
valid> 
 
<The shortest amount of time that 
would be available to perform this flight 
path evaluation> 
 
 

<Rationale/assumptions that 
led to defining how often the 
piloting controller should re-
evaluate their flight path> 

 
 



 

Appendix E Responsibility Assignments for Part 1 Architecture 
Option 1 

 
This appendix shows the full set of responsibility assignments for part 1 architecture option 1 for 
both feedback validation responsibilities and non-feedback-validation responsibilities. 
 
Non-Feedback-Validation Responsibilities 
 

Table 52: Non-Feedback-Validation Responsibility Assignments for Part 1 Architecture Option 1 

Resp. 
ID 

Responsibility 

Assigned to 

Rationale/Assumptions 
EMSA

TC 
MP PC AS 

SR-4 Confirm that all aspects 
of the aircraft state 
match the expected safe 
departure state before 
providing actuator 
movements to depart 
[SLR-4] 

  X  

Since the piloting controller is primarily 
responsible for controlling the aircraft 
and executing the mission, this related 
responsibility for making final 
confirmation that the aircraft is in a 
safe departure state before departing 
should also be assigned to the piloting 
controller 

SR-5 Determine if the state of 
the aircraft changes 
between the time that it 
was checked and 
departure [SLR-5] 

  X  

Since this is related to SR-4, for the 
same reasons that SR-4 is assigned to 
the piloting controller, so should this 
one 

SR-6 Confirm that data 
about the expected 
safe departure state of 
the aircraft has been 
fully specified and 
received [SLR-6, SLR-9] 

X  X  

Since the expected safe departure 
state is dependent on the needs of 
a specific mission, EMS Operations 
and ATC has to be assigned 
responsibility for planning the 
mission. However, the piloting 
controller could also confirm that 
the information it receives is 
complete  
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Resp. 
ID 

Responsibility 

Assigned to 

Rationale/Assumptions 
EMSA

TC 
MP PC AS 

SR-7 Ensure that all relevant 
personnel are aware of 
any changes to the 
expected safe 
departure state of the 
aircraft [SLR-7] 

X    

Assuming that changes are likely to 
either come from EMS Operations 
and ATC or need to be approved by 
EMS Operations and ATC, then EMS 
Operations and ATC will be 
informed of any changes that are 
needed and therefore is in the best 
position to disseminate any changes  
 

SR-10 Ensure that flight 
crews are aware of the 
most updated state of 
any maintenance tasks 
on the aircraft [SLR-10] 

 X   

Similar to SR-7, assuming that 
changes to the state of 
maintenance tasks either come 
from the maintenance personnel or 
must be raised with the 
maintenance personnel, the 
maintenance personnel are 
therefore in the best position to 
disseminate any changes to 
maintenance tasks to flight crews 
 

SR-11 Ensure that only 
authorized actuator 
movements are 
executed [SLR-11] 

   X 

Since the execution of actuator 
movements to move actuators is 
performed by the aircraft 
subsystems, the responsibility for 
only executing authorized actuator 
movements is assigned to the 
aircraft subsystems 
 

SR-12 Be able to operate in 
the expected DVE 
conditions [SLR-12] 

X    

Since EMS Operations and ATC is 
responsible for planning a mission, 
that planning should include 
selection of appropriate equipment, 
thus this responsibility is assigned to 
EMS Operations and ATC 
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Resp. 
ID 

Responsibility 

Assigned to 

Rationale/Assumptions 
EMSA

TC 
MP PC AS 

SR-15 Determine if the state of 
the airspace changes 
between the time that it 
was checked and the 
commencement of a 
maneuver [SLR-16] 

  X  

Since the piloting controller is 
responsible for controlling the aircraft 
and this responsibility relates to how to 
maintain safe control of the aircraft, it 
is assigned to the piloting controller 

SR-16 Account for the current 
and future movements 
of other aircraft in the 
vicinity when selecting 
actuator movements 
[SLR-17] 

  X  

All of these responsibilities relate to 
selecting appropriate flight paths and 
actuator movements, all of which are 
within the scope of the piloting 
controller’s responsibility for 
maintaining safe control over the 
aircraft. As such, these responsibilities 
are all assigned to the piloting 
controller 

SR-17 Ensure that aircraft 
movements are selected 
such that sufficient 
reaction time is available 
if intent or movements 
of other aircraft are not 
what was expected, even 
if no violation of 
minimum separation is 
initially expected [SLR-
18] 

  X  

SR-18 Detect all objects and 
other aircraft in the 
environment under all 
DVE conditions at all 
times [SLR-19] 

  X X 

Under DVE conditions, the piloting 
controller’s direct observations will 
need to be augmented by a sensor 
suite that is part of the aircraft 
subsystems  

SR-19 Detect slow or subtle 
changes in the state of 
the aircraft under all DVE 
conditions at all times 
[SLR-20] 

  X  

All of these responsibilities relate to 
selecting appropriate flight paths and 
actuator movements, all of which are 
within the scope of the piloting 
controller’s responsibility for 
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Resp. 
ID 

Responsibility 

Assigned to 

Rationale/Assumptions 
EMSA

TC 
MP PC AS 

SR-20 Select actuator 
movements that 
minimize the risk of 
violation of minimum 
separation when 
information about the 
state of the airspace is in 
a degraded condition 
(e.g. delayed) [SLR-21] 

  X  

maintaining safe control over the 
aircraft. As such, these responsibilities 
are all assigned to the piloting 
controller 

SR-21 Respond quickly and 
with appropriate 
magnitude to 
disturbances to prevent 
unintended movement 
of the aircraft [SLR-22] 

  X  

SR-22 Respond quickly enough 
and with appropriate 
magnitude to select and 
effect the desired change 
in flight path under the 
given environmental 
conditions [SLR-23, SLR-
25] 

  X  

SR-23 Ensure that a viable flight 
path is always available 
to avoid any violations of 
minimum separation 
[SLR-24] 

  X  

SR-24 Select a viable flight path 
that avoids all possible 
violations of minimum 
separation [SLR-26] 

  X  
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Feedback Validation Responsibilities 
 

Table 53: Feedback Validation Responsibilities for Part 1 Architecture Option 1 

Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-1 

Determine if 
feedback received 
about the 
aircraft’s mission 
readiness, state of 
the aircraft and 
the airspace is too 
old [SLR-1] 

 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

PC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Since most of these process 
models are used to fly the 
aircraft or select a flight 
path, the piloting controller 
is in the best position to 
decide when feedback is too 
old.  
 
For the model of system 
behavior, EMSATC is 
assigned because it is that 
they will evaluate feedback 
they might receive to 
determine when those 
models may need to be 
updated 

SR-2 

Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 

 

Aircraft Mission Readiness N/A 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 

 
 

Since this responsibility is 
dependent on prevailing 
weather conditions during 
the flight, this responsibility 
must be carried repeatedly 
and in real-time as discussed 
in the timing requirements 
section. As such, the piloting 
controller is the only 
controller equipped to do 
this.  
 
This assumes that feedback 
for aircraft mission 
readiness, expected safe 
departure state and model 
of system behavior will not 
be affected by DVE and 
hence this responsibility 
does not apply for those 
process model parts.  
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Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-3 

Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

EMSATC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Similar to SR-1, the piloting 
controller is in the best 
position to decide when 
feedback is too old since 
these process model parts 
are used to fly the aircraft or 
select a flight path.  
 
This includes the model of 
system behavior which 
could have its parameters 
updated based on input that 
needs to be validated 
  

SR-8 

Process all 
feedback to make 
a deliberate 
decision if it is to 
be 
ignored/dropped 
[SLR-8] 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

EMSATC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Similar to SR-1, the piloting 
controller is in the best 
position to decide when 
feedback is too old since 
these process model parts 
are used to fly the aircraft or 
select a flight path.  
 
This is marked as N/A for 
the model of system 
behavior because it is 
assumed that the piloting 
controller will not get real-
time feedback about the 
model of system behavior 
that will need to be 
validated 
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Resp 
ID 

Responsibility Assignments for Each Process Model Part Rationale/Assumptions 

SR-9 

Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

Aircraft Mission Readiness PC 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure State N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 
 

Similar to SR-2, these 
responsibilities have to be 
performed repeatedly 
during flight as described in 
the timing requirements 
section. As such, the piloting 
controller is the only 
controller in the system that 
is equipped to do this.  
 
These assignments assume 
that continuous feedback is 
not expected for the 
expected safe departure 
state and model of system 
and hence this responsibility 
does not apply for those 
process model parts. 
 

SR-13 

Distinguish useful 
feedback from 
noise in feedback 
data [SLR-13] 

Aircraft Mission Readiness PC 

Current Aircraft System State PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure State N/A 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior N/A 
 

SR-14 

Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

Aircraft Mission Readiness PC 

Current Aircraft System 
State 

PC 

Current Aircraft Navigation 
State 

PC 

Expected Safe Departure 
State 

EMSATC 

Current Weather Conditions PC 

Current Airspace State PC 

Anticipated Future Airspace 
State 

PC 

Model of System Behavior EMSATC 
 

Similar to SR-2, these 
responsibilities have to be 
performed repeatedly 
during flight as described in 
the timing requirements 
section. As such, the piloting 
controller is the only 
controller in the system that 
is equipped to do this.  
 
These assignments assume 
that continuous feedback is 
not expected for the 
expected safe departure 
state and model of system 
and hence this responsibility 
does not apply for those 
process model parts. 
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Appendix F Responsibility Assignments for Part 2 Architecture 
Option 1 

 
Assignment of Non-Feedback-Validation Responsibilities 
 

Table 54: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 1 

Resp. 
ID 

Responsibility Assigned to Rationale/Assumptions 

Pilot ASEC 

SR-4 Confirm that all aspects of the 
aircraft state match the 
expected safe departure state 
before providing actuator 
movements to depart [SLR-4] 

X  

Expected safe departure state is most 
easily obtained by human pilot instead of 
ASEC 
 

SR-5 Determine if the state of the 
aircraft changes between the 
time that it was checked and 
departure [SLR-5] 

X  

Since the state of the aircraft requires 
consideration of more than just sensor 
inputs, the human pilot is better 
positioned to interpret these other inputs 
than automation 

SR-6 Confirm that data about the 
expected safe departure state 
of the aircraft has been fully 
specified and received [SLR-6, 
SLR-9] 

X  

Since the human pilot will be checking the 
aircraft against the safe departure state, it 
is convenient for them to also check that 
the safe departure state is fully specified 
so that they can clarify any uncertainties if 
necessary 

SR-15 Determine if the state of the 
airspace changes between the 
time that it was checked and 
the commencement of a 
maneuver [SLR-16] 

X X 

Since this is relatively simple checking of 
the maneuver path, the ASEC is able to 
warn the human pilot of potential 
collisions but the human pilot is expected 
to perform an independent verification as 
well 

SR-16 Account for the current and 
future movements of other 
aircraft in the vicinity when 
selecting actuator movements 
[SLR-17] 

X  

Coordinating with other aircraft and 
adapting to work with their movements is 
more easily done in real-time by a human 
than automation 
 

SR-17 Ensure that aircraft movements 
are selected such that sufficient 
reaction time is available if 
intent or movements of other 
aircraft are not what was 
expected, even if no violation 
of minimum separation is 
initially expected [SLR-18] 

X  

Since this involves integrating intent 
information alongside current airspace 
state and aircraft state information to 
decide the best path to take and the best 
actuator movements to apply, this is best 
done by a human pilot  
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Resp. 
ID 

Responsibility Assigned to Rationale/Assumptions 

Pilot ASEC 

SR-18 Detect all objects and other 
aircraft in the environment 
under all DVE conditions at all 
times [SLR-19] 

X X 

This is shared because the ASEC can 
provide the human pilot with detection 
information but the human pilot can also 
perform independent visual identification 
(when conditions allow) or integrate other 
types of data sources to verify a detection. 
Hence, this responsibility is shared 
between the human pilot and ASEC 

SR-19 Detect slow or subtle changes 
in the state of the aircraft 
under all DVE conditions at all 
times [SLR-20]  X 

Given the potential magnitude of these 
changes in the state of the aircraft, it may 
be difficult to design appropriate feedback 
mechanisms with sufficient saliency for a 
human pilot to notice those changes and 
they would be easier detected by 
automation 

SR-20 Select actuator movements 
that minimize the risk of 
violation of minimum 
separation when information 
about the state of the airspace 
is in a degraded condition (e.g. 
delayed) [SLR-21] 

X  

Similar to SR-17, this decision making is 
complex enough and the definition of risk 
minimization is likely vague enough that it 
is better performed by a human pilot than 
by automation 

SR-21 Respond quickly and with 
appropriate magnitude to 
disturbances to prevent 
unintended movement of the 
aircraft [SLR-22] 

X X 

Assumes that the ASEC will not be able to 
stabilize the aircraft sufficiently under all 
DVE conditions and that a human pilot 
would respond more appropriately in 
some situations 
 
Also assumes that ASEC will be able to 
help stabilize the aircraft under limited 
DVE conditions and therefore the ASEC 
will sometimes be used 
 

SR-22 Respond quickly enough and 
with appropriate magnitude to 
select and effect the desired 
change in flight path under the 
given environmental conditions 
[SLR-23, SLR-25] 

X X 

SR-23 Ensure that a viable flight path 
is always available to avoid any 
violations of minimum 
separation [SLR-24] 

X  

Assumes that automation sophistication 
will not be sufficient to select flight paths 
under all conditions and therefore it 
makes more sense for a human pilot to 
retain this function  
 

SR-24 Select a viable flight path that 
avoids all possible violations of 
minimum separation [SLR-26] 

X  

Assumes that automation sophistication 
will not be sufficient to select flight paths 
under all conditions and therefore it 
makes more sense for a human pilot to 
retain this function  
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Assignment of Feedback Validation Responsibilities  
 

Table 55: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1 

Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-1 Determine if 
feedback received 
about the 
aircraft’s mission 
readiness, state of 
the aircraft and 
the airspace is too 
old [SLR-1] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft 
Navigation State 

ASEC 

Expected Safe Departure 
State 

Pilot 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

Assuming the threshold is fixed 
or is easily determined based 
on simple interpretations of 
environmental factors or state 
of aircraft, this responsibility is 
repetitive and would be easily 
accomplished by automation 
 
Mission readiness, safe 
departure states and 
anticipated future airspace 
state are more easily received 
by the pilot, hence the pilot 
should check these rather than 
the aircraft 
 

SR-2 Account for 
prevailing DVE 
conditions and 
their possible 
effect on feedback 
sources when 
making use of 
feedback 
information [SLR-
2] 

 

Aircraft Mission Readiness N/A 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

Pilot 

Current Airspace State Pilot 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 

 
 

Mission readiness and 
expected safe departure state 
is communicated verbally to 
the pilot and therefore is 
unaffected by DVE. Similarly, 
current aircraft system state is 
not affected by DVE since it is a 
detection of internal aircraft 
system states. 
 
Assumes that the 
determinations involved are 
more quickly made by a human 
than for those rules to be 
implemented in automation 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-3 Validate the 
inputs or feedback 
received from 
other controllers 
before using that 
input or feedback 
to update process 
models [SLR-3] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

Pilot 

Current Airspace State Pilot 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 
 

The variety of possible inputs 
made by other aircraft or 
controllers would be more 
easily handled by a human, 
except for the aircraft system 
state which would be more 
easily handled by automation 
since the system state is 
already generated and 
monitored by automation 
 
Expected safe departure state 
and model of system behavior 
are marked as N/A because 
they were not assigned to the 
Piloting Controller in part 1 

SR-8 Process all 
feedback to make 
a deliberate 
decision if it is to 
be 
ignored/dropped 
[SLR-8] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 

Expected Safe Departure 
State 

Pilot 

Current Weather 
Conditions 

Pilot 

Current Airspace State Pilot 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior Pilot 

 
 

As stated in the system-level 
behavior, this responsibility 
involves carrying out the 
decision making strategies of 
SR-1, SR-2 and SR-3. Since most 
of these are carried out by the 
Pilot, the pilot has 
responsibility for deciding to 
keep or drop a piece of 
feedback. The only exception is 
the aircraft system state where 
the ASEC is assigned this 
responsibility for that process 
model 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-9 Ensure that all 
data needed to 
determine the 
state of the 
aircraft, state of 
the airspace and 
the environmental 
conditions around 
the aircraft under 
all DVE conditions 
is available at all 
times [SLR-9, SLR-
15] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 

 
 

Monitoring the inputs for 
aircraft system state, 
navigation state and 
environmental conditions is a 
repetitive task best done by 
automation. 
 
For anticipated future airspace 
state and aircraft mission 
readiness, since that feedback 
may include verbal radio 
communication, the pilot 
shares the responsibility to 
ensure that needed 
information is available. 
 
Expected safe departure state 
and model of system behavior 
are not updated based on real-
time data and are therefore 
N/A 
 

SR-13 Distinguish useful 
feedback from 
noise in feedback 
data [SLR-13] 

 

Aircraft Mission Readiness N/A 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

ASEC 

Current Airspace State Pilot 
ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 

 
 

Especially when identifying 
weak signals, automation is 
better at the pattern 
recognition necessary to 
extract weak signals 
 
Assumes that the risk of false 
negative detections of weak 
signals is acceptably low 
 
Mission readiness, expected 
safe departure state and model 
of system behavior do not rely 
on real-time feedback and 
therefore are not affected by 
noise 
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Resp 
ID 

Responsibility Assignments for Each Process Model 
Part 

Rationale/Assumptions 

SR-14 Process sensor 
data and use it to 
update its process 
model sufficiently 
quickly [SLR-14] 

 

Aircraft Mission Readiness Pilot 

Current Aircraft System 
State 

ASEC 

Current Aircraft Navigation 
State 

Pilot 
ASEC 

Expected Safe Departure 
State 

N/A 

Current Weather 
Conditions 

Pilot 
ASEC 

Current Airspace State Pilot 
ASEC 

Anticipated Future 
Airspace State 

Pilot 

Model of System Behavior N/A 

 
 

For everything but the aircraft 
system state, the pilot is 
primarily the one updating the 
process model parts and the 
ASEC only assists in the aircraft 
navigation state, weather 
conditions and airspace state.  
 
Expected safe departure state 
is not updated using sensors 
and therefore is N/A 
 
Expected safe departure state 
and model of system behavior 
are marked as N/A because 
they were not assigned to the 
Piloting Controller in part 1 
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Appendix G Additional STPA Analysis for Architecture Option 3 
 
In this appendix, additional examples of UCAs and scenarios from the STPA analysis conducted 
for the new control actions introduced as part of Architecture Option 3 in Part 2 of the 
architecture creation process are presented.  
 
Revised STPA Analysis of ASEC Actuator Movements Control Action 
 
UCA-1.2: ASEC provides actuator movements that steers the aircraft toward another aircraft or 
object 
 
CS-G-1.2.1: The ASEC provides actuator movements that steers the aircraft toward another 
aircraft or object despite receiving feedback that there was another aircraft or object nearby. 
This could occur because: 
1. The ASEC may have the wrong process model of the state of the environment, the aircraft or 

the airspace around the aircraft and therefore wrongly believes that the nearby airspace is 
clear to pilot toward and plans a trajectory or path toward the other object or aircraft. 
Although the ASEC coordinates with the human pilot to confirm the trajectory that it planned, 
the trajectory planned by the ASEC is confirmed without modification. As a result, the 
erroneous trajectory planned by the ASEC is not corrected and the ASEC proceeds to execute 
the planned trajectory, believing the human pilot agreed with its plan. The ASEC might receive 
confirmation of its erroneously planned trajectory because: 
1.1.  The human pilot and ASEC might have the same shared process model of the current 

state of the airspace. As a result, like the ASEC, the human pilot also does not recognize 
that the planned trajectory is headed toward a nearby object or aircraft and therefore 
does not correct the trajectory and agrees with the ASEC. The reasons that this might 
occur are described in scenarios CS-1.1.2-1 and CS-1.1.2-2 that were generated for UCAs 
issued by the human pilot. 

1.2. Alternatively, the human pilot and ASEC might not have the same shared process model 
of the current state of the airspace. If the human pilot has a different and correct process 
model of the state of the airspace, the human pilot might recognize the error in the 
planned trajectory and correctly modify it but the correctly modified trajectory is not 
received by the ASEC and instead the ASEC is told the human pilot agreed with its 
erroneous trajectory. The reasons that this might occur are described in scenarios CS-
1.1.3-1 and CS-1.1.3-2 that were generated for UCAs issued by the human pilot. 

2. The human pilot might also have a different but also erroneous or incomplete process model 
of the state of the airspace. Under these conditions, the human pilot might still correctly 
recognize the error in the ASEC’s planned trajectory. However, although the modifications 
that the human pilot makes addresses the error that the ASEC made, the human pilot’s 
modified trajectory now pilots the aircraft toward a different aircraft or object in the airspace 
instead. The reasons that this might occur are described in scenarios CS-1.8.1-1, CS-1.8.1-2 
and CS-1.8.1-3 that were generated for UCAs issued by the human pilot. 
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3. Even if the ASEC does not receive a confirmation from the human pilot, the human pilot may 
be delayed in providing a confirmation or a modification to the flight path to the ASEC (e.g. 
due to the need for coordination, it takes the human pilot some time to understand the 
ASEC’s proposed flight path). If the ASEC has a timeout programmed into it, it may wrongly 
decide that when the timeout has expired, it should simply execute its incorrect proposal 
without waiting for the human pilot.  

4. The ASEC might have the correct process model of the state of the environment, the aircraft 
and the airspace around the aircraft and therefore plans a correct trajectory that does not 
pilot the aircraft toward another aircraft or object. However, when the ASEC coordinates with 
the human pilot, it receives an erroneous modification of the trajectory by the human pilot 
that does pilot the aircraft toward another aircraft or object. However, the ASEC incorrectly 
assumes that the human-modified path is correct so does not question it and executes it even 
though it flies toward another aircraft or object. 

5. The ASEC might currently be on a trajectory that would pilot it toward another aircraft or 
object. The ASEC recognizes that its current trajectory must be modified, correctly computes 
a modified trajectory that avoids the other aircraft or object and then coordinates with the 
human pilot to confirm its new plan. However, the ASEC is programmed to continue its 
current flight path until the human pilot responds to its proposed new trajectory. If the 
human pilot is delayed in responding, the ASEC therefore continues to fly its existing 
trajectory toward the other aircraft or object.  

 
For the other three basic scenario types (unsafe feedback path, unsafe control path and unsafe 
controlled process behavior), these scenarios are the same as those generated in the original 
STPA analysis in Section 3.4 because the ASEC is positioned at the same location in the control 
structure as the Piloting Controller was. So, those loss scenarios will not be replicated here.  
 
 
STPA Analysis of Human Pilot Control Actions 
 

Table 56: Example UCAs for Human Pilot Control Actions 

Control Action Providing Not Providing Provide too 
early/too late 

Applied too 
long/Stopped too 
soon 

Confirm Flight 
Path 

UCA-3.1: Pilot 
confirms flight 
path when that 
flight path pilots 
the aircraft into 
another aircraft 
or object 
 
UCA-3.2: Pilot 
confirms flight 

UCA-3.4: Pilot 
does not confirm 
flight path when 
a new flight path 
is needed to 
avoid piloting 
the aircraft into 
another aircraft 
or object 
 

UCA-3.6: Pilot 
confirms the 
flight path too 
late after the last 
opportunity to 
avoid violation 
of minimum 
separation has 
passed 
 

N/A 
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path when that 
flight path is 
infeasible or 
outside the 
capabilities of 
the airframe 
 
UCA-3.3: Pilot 
confirms flight 
path that 
exceeds the 
bounds of the 
mission 
parameters (e.g. 
exceeds max 
altitude or 
operational 
area) 
 

UCA-3.5: Pilot 
does not confirm 
the flight path 
when a new 
flight path is 
needed because 
the existing 
flight path no 
longer meets the 
needs of the 
mission (e.g. 
mission 
parameters 
change) 
 

UCA-3.7: Pilot 
confirms the 
flight path too 
early before 
other personnel 
or cargo on 
board the 
aircraft are 
prepared for the 
change in flight 
path 

Modify Flight 
Path 

UCA-3.8: Pilot 
provides 
modified flight 
path when the 
modified flight 
path will pilot 
the aircraft 
toward the 
other aircraft or 
object 
 
UCA-3.9: Pilot 
provides 
modified flight 
path that is 
infeasible or 
exceeds the 
capabilities of 
the airframe 
 
UCA-3.10: Pilot 
provides 
modified flight 
path that 
exceeds the 

UCA-3.11: Pilot 
does not provide 
modified flight 
path when the 
path needs to be 
modified to 
prevent violation 
of minimum 
separation 
 
UCA-3.12: Pilot 
does not provide 
modified flight 
path when the 
path needs to be 
modified due to 
a change in the 
mission 
parameters  

UCA-3.13: Pilot 
provides 
modified flight 
path too late 
after the aircraft 
begins to 
execute the 
unmodified new 
flight path that 
will result in a 
violation of 
minimum 
separation 
 
UCA-3.14: Pilot 
provides 
modified flight 
path too late to 
avoid the 
imminent 
violation of 
minimum 
separation 
caused by the 

N/A 
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bounds of the 
mission 
parameters (e.g. 
exceeds max 
altitude or 
operational 
area) 

unmodified flight 
path 

 
 
Each of these UCAs can then be analyzed to identify the loss scenarios that could lead to these 
UCAs. Some examples are shown below for UCA-1 and UCA-8. 
 
UCA-3.1: Pilot confirms flight path when that flight path pilots the aircraft into another aircraft 
or object 
 
CS-G-3.1.1: Pilot confirms the flight path despite receiving feedback that the flight path pilots 
the aircraft into another aircraft or object. This might occur if: 
1. Under a period of high workload or stress, the human pilot does not update their mental 

model of the state of the airspace (e.g. due to limited attention resources or cognitive 
tunneling) and uses their inaccurate mental model to evaluate the flight path instead. As a 
result, the human pilot does not realize that the flight path proposed by the ASEC pilots the 
aircraft into another aircraft or object and confirms it, wrongly believing that the flight path 
does not pilot the aircraft toward another aircraft or object. 

2. Even though the human pilot recognizes that the flight path pilots the aircraft into another 
aircraft or object, they wrongly believe the other aircraft or object either is not actually 
present (i.e. a false positive detection) or will not actually be a collision threat in the future.  
As a result, the human pilot chooses to ignore the feedback indicating that the flight path 
proposed by the ASEC will pilot the aircraft into another aircraft or object and confirms the 
flight path anyway. 

3. As a result of experience and operational adaptation, the human pilot might overly trust the 
ASEC to propose suitable flight paths and might become reliant on the ASEC. Such biases 
might therefore cause the human pilot to either assume that the ASEC is always right and 
confirm the flight path without checking it (i.e. essentially rubberstamping the ASEC’s 
proposals) or perform only minimal checks to save cognitive effort. As a result, the human 
pilot does not notice that the flight path pilots the aircraft into another object or aircraft 
and confirms the flight path 

 
CS-G-3.1.2: The human pilot receives feedback that does not indicate that the flight path pilots 
the aircraft into another aircraft or object. This might occur if: 
1. The ASEC might not be able to detect the other aircraft or object for reasons discussed in 

CS-1.2.2. The feedback received by the human pilot from the ASEC therefore does not show 
that the flight path pilots the aircraft into another aircraft or object. Furthermore, DVE 
conditions might prevent the human pilot from independently receiving any other feedback 
besides the detections made by the ASEC. As a result, the human pilot is unable to 
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recognize that it is wrong because the human pilot can only observe what the ASEC can 
detect. This leads the human pilot to make the same incorrect decision that the ASEC 
makes, deciding that the flight path does not pilot the aircraft toward another aircraft or 
object. The human pilot therefore confirms that flight path. 

2. Even if the ASEC might have detected the other aircraft or object in some but not all of its 
sensors, the human pilot might not be presented with sufficient feedback about the 
detections from individual sensors because the system may only show the pilot the post-
processed integrated view of that data instead. As a result, they will be unable to notice 
that some sensors do detect an aircraft or object in the path proposed by the ASEC. 

 
CS-G-3.1.3: The human pilot does not confirm the flight path but a confirmation is received by 
the ASEC. This might occur if: 
1. An approval for a previously proposed flight path might be delayed in arriving. If the ASEC 

does not have a way to match a received approval to the flight path that the human pilot 
was approving, it may assume that any received approval is for the most recently proposed 
flight path. This asynchronicity might therefore result in approvals arriving out of order 
compared to the order in which flight paths are proposed. As a result, the ASEC wrongly 
believes the human pilot had approved the most recently proposed flight path even though 
the human pilot has not actually approved it yet. 

2. If a controller in the system is compromised/hacked, an approval from the human pilot may 
be maliciously spoofed as originating from the human pilot even though they have not yet 
actually provided any confirmation. 

 
CS-G-3.1.4: The human pilot does not confirm the flight path and no confirmation is received by 
the ASEC but the ASEC still proceeds to execute the new flight path and violates minimum 
separation. This might occur if: 
1. A timeout might be programmed into the ASEC such that if a confirmation is not received 

from the human pilot within a threshold amount of time, the ASEC assumes its proposal is 
acceptable and begins executing it. As a result, if the human pilot is delayed because they 
need to coordinate with the ASEC or are unaware of the timeout time, they may take longer 
than the ASEC expects to make a decision and the ASEC may begin executing the flight path 
anyway. This is similar to CS-1.2.1-3. 

 
 
UCA-3.8: Pilot provides modified flight path when the modified flight path will pilot the aircraft 
toward another aircraft or object 
 
CS-G-3.8.1: The human pilot provides a modified flight path despite receiving feedback that the 
modified flight path will pilot the aircraft toward another aircraft or object. This might occur if: 
1. Under conditions of high workload or stress, the human pilot might only pay attention to a 

limited amount of feedback and therefore not notice the feedback indicating that the 
modified flight path that they are proposing will pilot the aircraft toward another aircraft or 
object. As a result, they wrongly believe they are providing a suitable modified flight path.  
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2. When perceiving the feedback, the human pilot may apply unsafe biases or heuristics in 
using that feedback to update their mental model of the state of the airspace. For example, 
the human pilot may only notice the most salient feedback and miss less salient feedback 
that would show the presence of another aircraft or object. Alternatively, feedback received 
by the human pilot earlier in time that does not show the presence of another aircraft or 
object may be weighted more heavily in their decision-making when they propose a 
modified flight path compared to feedback received later. As a result, they do not use the 
later feedback effectively to recognize that the modified flight path they are providing will 
pilot the aircraft toward another aircraft or object. 

3. Even if the human pilot correctly perceives the feedback, under conditions of high workload 
or stress or when they need to make a correction quickly, they might only consider a limited 
number of alternative flight paths or only consider the most available flight path options 
based on past experience. Alternatively, due to cognitive tunneling, the human pilot might 
become so focused on the immediate several seconds of the flight path such that they do 
not fully evaluate the rest of the flight path that they are proposing. As a result of any of 
these decision making heuristics and biases, they make a rushed decision when providing a 
modified flight path without fully considering whether that flight path avoids all other 
aircraft and objects. They therefore do not notice that they missed a location where there is 
another aircraft or object in the flight path they have chosen. As a result, they provide this 
modified flight path, wrongly believing that it does not pilot the aircraft toward another 
aircraft or object.  

 
CS-G-3.8.2: The human pilot does not receive feedback that the modified flight path will pilot 
the aircraft toward another aircraft or object. These scenarios are the same as CS-1.1.2 above.  
 
CS-G-3.8.3: The human pilot does not provide a modified flight path that pilots the aircraft 
toward another aircraft or object but the ASEC receives a modified flight path that does pilot 
the aircraft toward another aircraft or object. This might occur because: 
1. A modified flight path might be delayed in arriving. If the ASEC does not have a way to 

match a received flight path to the flight path that the human pilot was reviewing, it may 
assume that any received flight path modification is for the most recently proposed flight 
path. This asynchronicity might therefore result in modified flight paths arriving out of order 
compared to the order in which flight paths are proposed. As a result, the ASEC wrongly 
believes the human pilot has provided a modified flight path that it should execute. If the 
state of the airspace has changed such that this previously provided flight path now 
intersects the location of another aircraft or object (even if it did not when it was originally 
provided), the ASEC will therefore have received a flight path modification that pilots the 
aircraft toward another aircraft or object even though the human pilot did not intentionally 
provide it. 

2. If a controller in the system is compromised/hacked, a modified flight path that pilots the 
aircraft toward another aircraft or object is maliciously spoofed such that it appears to be 
sent by the human pilot even though the human pilot did not actually provide it. 
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CS-G-3.8.4: The human pilot does not provide a modified flight path that pilots the aircraft 
toward another aircraft or object and the ASEC does not receive one. However, the ASEC 
executes a modified flight path that does pilot the aircraft toward another aircraft or object. 
These scenarios are the same as CS-1.1.4 above.  
 


