

A Top-Down, Safety-Driven Approach to Architecture
Development for Complex Systems

by

Justin Wei Siang Poh

B.S., Olin College of Engineering (2016)

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 2022

© 2022 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: ___
Department of Aeronautics and Astronautics

January 21, 2022

Certified by: ___
Nancy G. Leveson, Ph.D.

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: ___

Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

 2

 3

A Top-Down, Safety-Driven Approach to Architecture Development
for Complex Systems

by

Justin Wei Siang Poh

Submitted to the Department of Aeronautics and Astronautics

on January 21, 2022 in partial fulfillment of the
requirements for the degree of

Master of Science in Aeronautics and Astronautics

Abstract

Architecture development is an important part of the systems engineering process because the
system architecture forms the foundation on which the rest of the system design is based. In
addition, the system architecture plays a key role in determining the behavior of the system and
represents a set of design decisions made to solve a design problem. Because modern systems
are increasingly complex and software-intensive, they require architectures that fully consider
system-level interactions and unsafe behaviors and ensures that the responsibilities necessary to
ensure safety are carried out effectively. Furthermore, the architecture development process
should organize design information in a way that assists system designers and reviewers with
managing system complexity and developing an understanding of the system design and its
underlying rationale.

This thesis proposes a new top-down, safety-driven approach to architecture development that
is based on systems theory and incorporates a hazard analysis at the beginning of the design
process to drive the identification of system-level requirements. This approach ensures that the
system and its environment are analyzed as a whole and emergent properties such as safety are
considered as early as possible. Using a structured process and appropriate types of abstraction,
this new approach to architecture development facilitates obtaining more information about
how the system needs to behave before creating a series of candidate architecture options and
assessing the tradeoffs between them.

The proposed approach is applied to create a conceptual architecture for a human pilot and
automated flight controller performing medevac flights in Degraded Visual Environments (DVEs).
This example illustrates how the new approach can be used to develop architectures in a top-
down, safety-driven manner and shows how the design information obtained using this new
approach can be used to make more informed architectural decisions.

Thesis Supervisor: Nancy G. Leveson, Ph.D.
Title: Professor of Aeronautics and Astronautics

 4

 5

Acknowledgements

This thesis represents a milestone in a professional journey for me that started when I began my
first job after graduating from Olin College of Engineering. While I do not know where this journey
will take me next, I wanted to use this opportunity to acknowledge the contributions of those
who have taught me so much and express my heartfelt thanks for everything they have done for
me.

I want to start by thanking Motional, where I began my first job out of college. Over the four
years I worked for Motional, the company gave me many invaluable opportunities to experience
the difficulties and challenges of creating system architectures for automated vehicles. I was also
fortunate to be able to work with many extremely talented colleagues and managers from whom
I learned a great deal about all the various aspects that an architecture must account for. It is
because of these engineering experiences I had at Motional that I discovered my interest in
systems engineering practice and acquired a passion to do my best to improve it. I am extremely
grateful that I had the opportunity to work for Motional and I owe a debt of gratitude to all my
former colleagues and managers.

I would also like to thank my thesis supervisor, Professor Nancy Leveson, for teaching me so much
over the last 18 months. Not only did she show me new ways to think about system safety, system
engineering and system specifications but she also taught me so much about how to
communicate those ideas effectively in a variety of different settings. I have never had an advisor
or professor who has given me such detailed feedback on my writing and presentations as she
has. I am very grateful to have met Nancy and had the opportunity to learn from her.

Next, I want to thank my research group for not only their friendship but also the help they have
given me during my time at MIT thus far. To Sam Yoo, Dro Gregorian and Andrew Kopeikin, thank
you for teaching me so much about how fixed wing and rotary wing aircraft are flown. Given my
lack of experience with aviation in general and my lack of experience as a pilot, I could not have
done this research without your help. To Lawrence Wong, Adam Munekata and Alex Hillman,
thank you for all the feedback you’ve given me in my numerous presentations of my research to
our group. I also must thank Dr John Thomas who has offered extremely valuable advice and
feedback throughout my time at MIT not only with regards to my thesis but also with regards to
STPA in general. In fact, it was because of a presentation John gave at Motional several years ago
that I became interested in STPA and system safety. So, thank you for all your help and your
enthusiastic teaching style.

Finally, to my wife Sophia, words cannot express the gratitude I feel for the love and support you
have given me and our family (of 2 dogs) throughout this journey both before and during my time
at MIT. This journey would not have been possible without you and I will be forever thankful for
you.

 6

 7

Table of Contents

Abstract .. 3

Acknowledgements ... 5

Table of Figures ... 9

Table of Tables .. 10

Chapter 1 Introduction .. 12

1.1 The Role of System Architecture in Systems Engineering ... 12

1.2 Limitations of Current Methods for Developing System Architectures 13

1.3 Research Objectives and Approach ... 15

Chapter 2 Background ... 16

2.1 Current Methods for Developing System Architectures ... 16
2.1.1 Overview of Current Methods for Developing System Architectures ... 16
2.1.2 Shortcomings of Current Methods .. 18

2.2 Systems Theory and Emergent Properties ... 20

2.3 Management of Complexity and Hierarchical Abstraction ... 21

2.4 STAMP and STPA ... 22

2.5 Using STPA to Generate a Conceptual Architecture ... 28

2.6 Intent Specifications .. 28

Chapter 3 A New Method for Top-Down, Safety-Driven Architecture Development 31

3.1 Overview of the Method .. 31

3.2 Step 1: Analyze the System and Its Environment ... 31

3.3 Step 2: Define Solution-Neutral System Requirements .. 32

3.4 Step 3: Define System-Level Behavior ... 32

3.5 Step 4: Create and Assess Architecture Options .. 34

Chapter 4 Case Study: Creating a Conceptual Architecture for Performing Medevac Flights
in Degraded Visual Environments (DVEs) ... 38

4.1 Case Study Overview .. 38

4.2 Step 1: Analyzing the System and Its Environment .. 39
4.2.1 Defining Purpose of the Analysis, System Boundary and System Goal ... 39
4.2.2 Initial Assumptions and Constraints .. 40
4.2.3 STPA Step 1: Losses, System-Level Hazards & System Constraints ... 41
4.2.4 STPA Step 2: Safety Control Structure ... 41
4.2.5 STPA Step 3: Unsafe Control Actions (UCAs) ... 44
4.2.6 STPA Step 4: Identify Loss Scenarios .. 45

4.3 Step 2: Defining Solution-Neutral, System-Level Requirements ... 48

 8

4.4 Step 3: Defining System-Level Behavior .. 51
4.4.1 Defining Responsibilities .. 52
4.4.2 Defining Decision-Making Strategies, Refined Control Actions and Required Process Model Parts ... 54
4.4.3 Defining Sources of Feedback .. 55
4.4.4 Defining Timing Requirements .. 57

4.5 Step 4, Part 1: Creating and Assessing Architecture Options for the Overall System 60
4.5.1 Overview of Architecture Options ... 60
4.5.2 Architecture Option 1: The Conventional Flight Operations System ... 61
4.5.3 Architecture Analysis of Option 1 .. 69
4.5.4 Architecture Option 2: The Enhanced Flight Operations System .. 73
4.5.5 Architecture Analysis of Option 2 .. 78
4.5.6 Comparison of Architecture Options ... 81

4.6 Step 4, Part 2: Creating and Assessing Architecture Options for the Piloting Controller 85
4.6.1 Overview of Architecture Options ... 85
4.6.2 Architecture Option 1: Human-Piloted Aircraft with ASEC as a Decision Aid 86
4.6.3 Architecture Analysis of Option 1 .. 94
4.6.4 Architecture Option 2: ASEC Proposes Flight Trajectories for Human Pilot to Execute 99
4.6.5 Architecture Analysis of Option 2 .. 105
4.6.6 Architecture Option 3: Human Pilot Supervises Automated ASEC’s Control of Flight....................... 110
4.6.7 Architecture Analysis of Option 3 .. 114
4.6.8 Comparison of Architecture Options ... 122

Chapter 5 Conclusions ... 126

5.1 Summary ... 126

5.2 Future Work .. 127

Chapter 6 References .. 129

Appendix A UCAs Identified For STPA Analysis of FOS .. 131

Appendix B Loss Scenarios Identified For STPA Analysis of FOS 133

Appendix C System-Level Requirements .. 139

Appendix D FOS System-Level Behavior Information .. 144

Appendix E Responsibility Assignments for Part 1 Architecture Option 1 166

Appendix F Responsibility Assignments for Part 2 Architecture Option 1 173

Appendix G Additional STPA Analysis for Architecture Option 3 179

 9

Table of Figures
Figure 1: The Systems Engineering Vee model (adapted from [1] - [3]) 12
Figure 2: The three types of systems defined by degree of randomness and complexity (from
[8]) ... 20
Figure 3: Illustration of means-ends abstraction with examples (adapted from [11]) 22
Figure 4: A controller enforcing controls on a system's behavior and the interactions between
its components (from [14]) ... 24
Figure 5: The control structures for a system during system development (left side) and once
the system is operational (right side) (from [14]) .. 25
Figure 6: Illustration of a simple control loop involving a controller with a control algorithm and
a process model (from [14]) ... 26
Figure 7: The STPA Process (from [14]) .. 27
Figure 8: Illustration of how STPA identifies UCAs and the loss scenarios based on flaws in the
four main parts of a control loop (from [14]) ... 27
Figure 9: An Illustration of the form of an Intent Specification (from [19]) 29
Figure 10: Overview of the new safety-driven approach to concept and architecture
development ... 31
Figure 11: Illustration of the five parts of system-level behavior in blue 33
Figure 12: The order in which system-level behavior information should be defined 34
Figure 13: The 2-part architecture creation process and its inputs and outputs 34
Figure 14: Generic illustration of Part 1 of the Architecture Creation Process 36
Figure 15: Generic illustration of Part 2 of the Architecture Creation Process 37
Figure 16: Control Structure with Abstracted Piloting Controller Highlighted 42
Figure 17: Example 1 of how solution-neutral, system-level requirements are generated 48
Figure 18: Example 2 of how solution-neutral, system-level requirements are generated 49
Figure 19: Part 1 Architecture Option 1 Control Structure .. 68
Figure 20: Performance Requirements for Each Part of the System .. 72
Figure 21: Part 1 Architecture Option 2 Control Structure .. 77
Figure 22: Part 2 Architecture Option 1 Control Structure .. 93
Figure 23: Part 2 Architecture Option 2 Control Structure .. 104
Figure 24: Part 2 Architecture Option 3 Control Structure .. 113
Figure 25: Option 3 control structure with new control actions from human pilot to ASEC circled
in red ... 115

 10

Table of Tables
Table 1: Description of Components in the FOS ... 39
Table 2: Example UCAs for Actuator Movements Control Action .. 44
Table 3: Example Loss Scenarios for UCA-1.2 ... 45
Table 4: Example Loss Scenarios for UCA-1.5 ... 47
Table 5: System-Level Requirements List ... 50
Table 6: Descriptions of the Five Aspects of System-Level Behavior Information 51
Table 7: Translating system-level requirements into responsibilities .. 52
Table 8: Decision-Making Strategy, Refined Control Actions and Process Model Parts for SR-18
and SR-22 .. 54
Table 9: Feedback Information for Current Navigation State and Current Airspace State 56
Table 10: Example Timing Requirements for Non-Feedback-Validation Responsibilities 58
Table 11: Example Timing Requirements for Feedback Validation Responsibilities 59
Table 12: Assignments of Process Model Parts for Part 1 Architecture Option 1 61
Table 13: Flight-Related Non-Feedback-Validation Responsibilities Assigned Only to the PC in
Part 1 Architecture Option 1 ... 63
Table 14: Part 1 Architecture Option 1 Assignment of Other Non-Feedback-Validation
Responsibilities ... 64
Table 15: Assignment of Feedback Validation Responsibilities for Part 1 Architecture Option 1 66
Table 16: Scenarios and Responsibilities Showing Increased Workload or Capability
Requirements .. 69
Table 17: Scenarios Suggesting Stringent Performance and Quality Requirements 71
Table 18: Modified Assignments of Process Model Parts in Part 1 Architecture Option 2 74
Table 19: Modified Assignments of Non-Feedback-Validation Responsibilities for Part 1
Architecture Option 2 ... 75
Table 20: Modified Assignments of Feedback Validation Responsibilities for Part 1 Architecture
Option 2 .. 76
Table 21: Examples of Scenarios to be Updated for Architecture Option 2 78
Table 22: UCAs for Updated Situational Information Control Action .. 79
Table 23: Comparison of Process Model Part Assignments for Part 1 Architectures 82
Table 24: Comparison of SR-1 for Part 1 Architectures .. 83
Table 25: Comparison of SR-9 and SR-18 for Part 1 Architectures ... 83
Table 26: Summary of Benefits and Costs for Part 1 Architecture Options 84
Table 27: Sample Assignments of Process Model Parts for Part 2 Architecture Option 1 87
Table 28: Non-Feedback-Validation Responsibilities Assigned to the Pilot for Part 2 Architecture
Option 1 .. 88
Table 29: Other Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 1 89
Table 30: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1 90
Table 31: Example Constraints and Scenarios Related to the Use of Feedback 94
Table 32: Responsibilities and scenarios associated with pilot's maintenance of their mental
model of the airspace ... 96
Table 33: Examples of Mental Model Parts Included Due to the Presence of DVE Conditions ... 98
Table 34: Assignment of Process Model Parts for Part 2 Architecture Option 2 100

 11

Table 35: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture
Option 2 .. 101
Table 36: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 2
... 102
Table 37: Sample of Feedback Validation Responsibilities Showing Increased Involvement of
ASEC .. 106
Table 38: SR-16 and its Associated Loss Scenarios ... 109
Table 39: Assignment of Process Model Parts for Part 2 Architecture Option 3 111
Table 40: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture
Option 3 .. 112
Table 41: Example Additional Loss Scenarios Resulting from Unsafe Controller Behavior for UCA-
1.2 ... 116
Table 42: Example UCAs for Human Pilot New Control Actions ... 117
Table 43: Example Scenarios for UCA-1 and UCA-8 ... 118
Table 44: Scenarios Showing Consequences of Inadequate Coordination for Part 2 Architecture
Option 3 .. 119
Table 45: Scenarios Showing Consequences of Human Factors Issues for Part 2 Architecture
Option 3 .. 120
Table 46: Scenarios Showing Consequences of Unsafe Assumptions in System Design for Part 2
Architecture Option 3 ... 121
Table 47: UCAs for the Piloting Controller .. 131
Table 48: System-Level Requirements .. 139
Table 49: Full Details for Decision-Making Strategy, Refined Control Actions and Required
Process Model Parts.. 144
Table 50: Full Details for Feedback Sources ... 158
Table 51: Full Details for Timing Requirements for Non-Feedback-Validation Responsibilities 162
Table 52: Non-Feedback-Validation Responsibility Assignments for Part 1 Architecture Option 1
... 166
Table 53: Feedback Validation Responsibilities for Part 1 Architecture Option 1 170
Table 54: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture
Option 1 .. 173
Table 55: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1
... 175
Table 56: Example UCAs for Human Pilot Control Actions ... 180

 12

Chapter 1 Introduction
1.1 The Role of System Architecture in Systems Engineering

Architecture development is an important step in the system engineering process because the
system architecture forms the foundation on which the rest of the system design is based. Figure
1 shows a simplified version of the Systems Engineering Vee Model that illustrates when
architecture development is done in the overall system life cycle.

Figure 1: The Systems Engineering Vee model (adapted from [1] - [3])

As shown in Figure 1, after the system requirements are defined, the system architecture is
developed before creating the detailed design and developing the software and hardware for the
system. The system architecture thus represents the beginning of what will eventually be the
complete design for a system and can significantly influence downstream system design activities
[4]. Although good system architecture does not guarantee the success of a system, a poor or
inadequate system architecture will almost certainly compromise a system’s ability to meet its
requirements and operate successfully [5].

The system architecture also plays a central role in determining the behavior of a system [4]. Not
only does the system architecture define the structure and relationships between the system
elements ([2], [4], [6], [7]) but it also defines the fundamental concepts or properties of a system
in its environment [6]. As such, architectural decisions can have a lasting impact on properties of
the system such as safety. Once the basic architectural decisions have been made, they may be
difficult or impossible to change [8]. It is therefore important that the system architecture is
created carefully to ensure that the completed system design exhibits all the desired properties
and behaviors while minimizing the possibility of undesirable system behavior occurring.

 13

Especially for human-engineered systems, the system architecture also represents a set of design
decisions [5] made to solve a design problem and achieve the goals of the system. The
architecture development process should therefore support informed decision making by
assisting system designers in incrementally obtaining and aggregating information about the
system and the behavior and properties it must exhibit [2]. A system designer can then use that
information to better understand how the system needs to be designed ([2], [4]), systematically
create alternative architectures and evaluate the benefits and tradeoffs between them. This
enables more informed decisions to be made when selecting the best architecture for further
system development ([2], [9]).

1.2 Limitations of Current Methods for Developing System Architectures

Current methods for architecture development are not adequate for today’s increasingly
complex sociotechnical systems because they rely on decomposition to create system
architectures and manage complexity. This results in three limitations that make developing a
good system architecture challenging when they are used to design modern complex systems.

Limited Early Consideration of System Interactions and Emergent Properties

The first limitation is that current methods for developing system architectures incorporate
limited consideration of the interactions between system components, especially during the
early stages of system design. This is because current methods begin creating system
architectures by decomposing systems into their constituent functions and parts before system-
level interactions are fully analyzed. As a result, the desirable system interactions that should be
achieved or the undesirable system interactions that should be avoided are only analyzed later
in the design process. For these same reasons, the properties that emerge from the interactions
between system components, which are known as emergent properties, are also not fully
analyzed until after an initial architecture has been created. When architectures are created in
this way, there may be inadequacies or flaws in the identified system requirements and the
system architecture does not exhibit the desired emergent properties such as safety.

Instead of starting with a decomposition of the system into its parts, the architecture
development process should begin with an analysis of system interactions and emergent
properties as early as possible so that the results can be used to drive architecture development.
This ensures that emergent properties such as safety are designed into the system from the
beginning and that adequate system requirements are identified to prevent undesirable system
behavior from occurring.

Does Not Always Ensure that the Identified Responsibilities Can Be Carried Out Effectively

The second limitation is that current methods for architecture development do not always ensure
that the identified responsibilities can be carried out effectively. Current methods for

 14

architecture development create system architectures by decomposing the system requirements
into functions or responsibilities and assigning them to the components of the system. The
architecture development process therefore begins to focus on the design of individual
components before determining how the rest of the system needs to be designed to ensure that
the identified responsibilities can be carried out effectively. As a result, supporting requirements
may be overlooked and the assigned responsibilities can become more difficult than intended or
even impossible to carry out. Consequently, constraints may not be adequately enforced or
functions may not be adequately performed and losses may occur.

Instead, the architecture development process should facilitate obtaining more information
about what is needed to carry out the identified responsibilities before beginning to create
system architectures. This ensures that the architecture development process is informed by not
only the responsibilities that the system must perform but also how the system needs to be
designed to ensure that the responsibilities can be carried out.

Does not Assist with Managing Complexity and Understanding the System Design

The third limitation of current methods for concept and architecture development is that they
do not adequately assist with managing complexity and understanding the system design and its
underlying rationale. Today’s sociotechnical systems are increasing in complexity as more
functionality and performance is demanded of them [5] and they are becoming increasingly
interconnected and software-intensive. However, as complexity increases, system designers and
reviewers may face difficulty managing that complexity when designing or reviewing a system
([3], [5]). For example, system designers may not be able to consider the entire system or identify
all the possible interactions between parts of the system if the number of elements and
interactions exceeds their cognitive capabilities. Similarly, those reviewing or assessing the
system may not be able to fully understand all the functions of the system or assess whether
unsafe interactions have been fully considered if the system complexity is too great.

Current methods for architecture development manage complexity using decomposition of the
system and its requirements into hierarchies of parts or functions. As a result, design information
is organized in a way that focuses on the breakdown of a system into its constituent elements
and contains insufficient information about why that breakdown or system design was chosen.
When architectures are created in this way, it becomes more difficult for system designers to
understand complex system designs and the underlying rationale or intent information as they
develop and refine the system architecture. Similarly, it becomes more difficult for reviewers and
assessors to identify flaws or inconsistencies in the system design.

Instead of using decomposition to manage complexity, the architecture development process
should use appropriate types of abstraction to guide the design process and help system
designers and reviewers to reason about the system design and make informed design decisions.
In addition, the design information should be organized in an easily accessible way and include
assumptions and design rationale alongside the design information. This ensures that it is as easy

 15

as possible for system designers and reviewers to identify and locate the information they need
to understand how the system was designed and why.

1.3 Research Objectives and Approach

This research aims to create a new approach to developing system architectures that addresses
the limitations of current methods, can be applied as early as possible and is appropriate for
today’s increasingly complex systems. This thesis proposes a structured method for creating and
assessing architecture options that applies a systems-theoretic approach and appropriate types
of abstraction to guide the design process and organize the design information. The proposed
method also integrates a hazard analysis method called Systems Theoretic Process Analysis
(STPA) into the architecture development process and uses the results to drive the identification
of system requirements and inform the creation of a conceptual architecture for a system.

Chapter 2 begins with a summary of current methods for creating system architectures and the
reasons that they are no longer adequate for today’s complex systems. This is followed by a
discussion of the need to instead take a systems-theoretic approach and manage complexity
during system design and assessment. Then, a systems-theoretic approach to modeling accident
causality called Systems Theoretic Accident Model and Processes (STAMP) and the hazard
analysis method called Systems Theoretic Process Analysis (STPA) are described. The application
of STPA to creating conceptual architectures is also reviewed. Finally, a human-centered
approach to creating system specifications and organizing design information called Intent
Specifications is described.

In Chapter 3, the new approach to architecture development is presented. First, an overview of
the method is provided and then each step of the method is described along with information
about how each step should be carried out.

Finally, in Chapter 4, the new approach is demonstrated using a case study that develops a
conceptual architecture for a pilot and automated flight controller performing medevac flights in
degraded visual environments (DVEs). Although this research demonstrates this new method for
architecture development using an example of medevac flights in DVE, this approach to concept
and architecture development can also be applied to other types of complex sociotechnical
systems as well.

 16

Chapter 2 Background

2.1 Current Methods for Developing System Architectures

Given the importance of developing a good system architecture, several major organizations that
are engaged in systems engineering practice have published guidance documents and standards
describing how system architectures should be developed. However, as was outlined in Chapter
1, these methods for developing system architectures are no longer appropriate for today’s
increasingly complex systems.

This section summarizes the guidance published by the National Aeronautics and Space
Administration (NASA), the International Council on Systems Engineering (INCOSE) and the
International Standards Organization (ISO) to show how system architectures are expected to be
developed today. The shortcomings of these methods will then be discussed to illustrate the need
for a new approach to improve our ability to engineer complex systems in the future.

2.1.1 Overview of Current Methods for Developing System Architectures

NASA Systems Engineering Handbook

The NASA Systems Engineering Handbook is intended to provide general systems engineering
guidance for anyone working at NASA and describes best practices that should be incorporated
into programs and projects of all sizes at NASA [7]. In the handbook, NASA describes the technical
processes that are necessary to develop and realize the system using what it calls the Systems
Engineering Engine. This Systems Engineering Engine contains three sets of processes: System
Design Processes, Technical Management Processes and Product Realization Processes. It is the
System Design Processes that are used to create the system design [7].

The System Design Processes begin by defining and baselining a set of stakeholder expectations,
the Concept of Operations and the criteria that define how the success of the system will be
evaluated. Once the stakeholder expectations have been established, they are decomposed to
obtain a set of technical requirements for the project that define all aspects of the system
including functional, performance and interface requirements. Once these requirements have
been validated, the functions necessary to meet each requirement are identified and then
decomposed and allocated to system elements to create a conceptual architecture for the
system. It is also at this stage that the functional and subsystem interfaces are defined. The
conceptual architecture and technical requirements are then used to perform downstream
design activities where the solution is defined and the subsystem specifications are created.

 17

ISO 15288: Systems and Software Engineering – System Life Cycle Processes & INCOSE Systems
Engineering Handbook

ISO 15288 is an international standard that establishes a framework for describing the processes
that should be carried out in the life cycle of manmade systems. The framework provides generic
descriptions of the processes and requirements and is intended to be used by organizations to
construct their own life cycle models for their specific product or application [9]. Based on ISO
15288, INCOSE published the INCOSE Systems Engineering Handbook to summarize the process
descriptions and requirements contained in ISO 15288 and elaborate on the practices and
activities necessary for each process [2]. One part of the system lifecycle processes called the
Technical Processes are used to define the system requirements and design the system as well
as operate, sustain and eventually dispose of the system. The technical processes begin with the
identification of business and stakeholder requirements. These requirements are then
transformed into system requirements which are then used to define alternative architecture
options. One architecture is then selected to proceed with detailed design and implementation
followed by integration, verification and validation before the system is put into operation. After
the system is placed into operation, maintenance processes are implemented to sustain the
system during operations and disposal processes are carried out when the system is removed
from operation at the end of its life ([2], [9]).

The technical processes are used to create the system architecture by starting with identifying
the business and stakeholder requirements for a project. Once the business and stakeholder
requirements are established, they are used to define system requirements ([2], [9]). This
involves starting with the top-level system requirements and decomposing them into lower-level
requirements as well as identifying what are called nonfunctional requirements, which are
requirements associated with system characteristics such as safety and security [2]. Once the
system requirements have been established, they are then used to create alternative
architecture options. This is done by first defining the system boundary and the interfaces with
external entities before decomposing the system into architectural entities such as functions,
system elements or nodes. Concepts, properties or behaviors that are significant for making
architectural decisions are also decomposed and allocated to these architectural entities. The
architecture is then mapped to the system design by identifying the system elements that
correspond to the architectural entities, defining the interfaces and interactions between the
system elements and then allocating the requirements to the system elements ([2], [9]). In
addition, as part of defining the system architecture, emergent properties should be considered
by analyzing the interactions between system elements to identify undesirable interactions that
should be avoided and desirable ones that should be reinforced [2].

 18

2.1.2 Shortcomings of Current Methods

The guidance provided in these methods for developing system architectures have several
shortcomings that make these methods inadequate for designing increasingly complex, software-
intensive systems.

Firstly, system requirements are developed with limited consideration of system interactions and
undesirable system behavior. In the methods described in all three documents, the system
requirements are developed based on the stakeholder needs and business requirements with
minimal guidance on how to ensure that desirable system behavior and properties are achieved
and undesirable ones are avoided. It is only after an initial decomposition of the system is
performed that these methods begin to fully consider system interactions and undesirable
system behavior. Emergent properties are thus also not considered or analyzed until later in the
design process. As a result, when these methods begin to fully analyze system interactions or
emergent properties, they are either checking for the existence of unintended system
interactions or checking if the desired system interactions and emergent properties have been
achieved instead of designing them into the system from the beginning.

 Modern systems are increasing in both complexity and the number of interactions between
components and it is becoming more difficult to use these current methods to identify a
complete set of system requirements and avoid undesirable system behavior. This is because
modern systems have too many components and interactions to consider if system interactions
and undesirable system behavior are analyzed only after an initial decomposition is performed.
Furthermore, modern systems are increasingly reliant on interactions between components to
achieve the desired system properties. As a result, it is no longer possible to decompose a system
into components that are assumed to behave independently and then analyze and design the
interactions later. Instead, system interactions and undesirable system behavior should be
analyzed as early as possible so that adequate system requirements can be identified at the
beginning of the design process. This ensures that desirable system behaviors and emergent
properties are designed into the system and undesirable system behaviors are avoided.

Secondly, architectures are created with limited consideration for how to ensure that the
necessary responsibilities can be carried out as effectively as possible. In the methods described
by all three documents, architectures are created by decomposing the system requirements into
sub-requirements. Then, the system is decomposed into its constituent elements and the
requirements are allocated to the system elements to create an architecture. By relying on
decomposition to create architectures, the architecture development effort becomes focused on
designing each component to achieve its assigned responsibilities before more information is
obtained about how the system needs to be designed to enable those assigned responsibilities
to be carried out as effectively as possible. As a result, supporting requirements that are
necessary to carry out a responsibility effectively may be either overlooked or only identified
later in the design process. Examples of these include missing feedback or inadequate
performance requirements imposed on sensors that the system relies on for feedback data.

 19

Today’s systems, however, are expected to exhibit increasingly complex behaviors that require
an increasing number of supporting requirements to be satisfied to ensure that those behaviors
are achieved. If these supporting requirements are only considered after the system is
decomposed, they can quickly exceed the cognitive capabilities of system designers to
comprehend and analyze completely. Instead of starting with a decomposition of the system, the
architecture should start with an analysis of how the system needs to be designed to achieve the
system requirements. That information can then be used to inform architecture development to
ensure that the system architecture enables the identified responsibilities to be carried out as
effectively as possible.

Finally, these methods for developing system architectures offer minimal guidance on how to
manage system complexity and organize design information in a way that assists system
designers and reviewers with understanding the system design and the underlying rationale. In
all three documents, the methods for architecture development focus primarily on decomposing
a system into its parts and functions. Furthermore, while all three documents recognize the
importance of documenting assumptions and design rationale, they only offer vague guidance as
to how the assumptions and design rationale should be documented. As a result, system
architectures are created and documented primarily in terms of their parts and functions with a
focus on what the system contains. Information about why the design was chosen is therefore
either difficult to find or missing. Consequently, it can be challenging for system designers to
locate the design information they need to guide their design decisions or for reviewers to
understand the design and its underlying rationale.

When designing highly complex systems, however, the large amount of design information
associated with the system makes it even harder to manage complexity and use the design
information to understand the system and make informed design decisions. As a result, it
becomes even more challenging for system designers to reason about their design when creating
and assessing architecture options for a system. Similarly, it also becomes even more challenging
for system reviewers or assessors to develop an understanding of the system design and identify
any flaws or inconsistencies in it. For these reasons, the architecture development process should
instead structure the design process and organize design information using appropriate types of
abstraction that facilitate reasoning about the system design. In addition, rationale and
assumptions should be documented alongside design decisions. Together, these would assist
system designers and reviewers with managing system complexity and make it as easy as possible
for them to identify and locate the information they need to understand how the system was
designed and why.

 20

2.2 Systems Theory and Emergent Properties

To understand and analyze a system, the approach underlying that analysis must be appropriate
for the type of system being analyzed. In his book An Introduction to General Systems Thinking,
Gerald Weinberg states that there are three types of systems [10] as shown in Figure 2:

1. Those that exhibit organized simplicity
2. Those that exhibit unorganized complexity
3. Those that exhibit organized complexity

Figure 2: The three types of systems defined by degree of randomness and complexity (from [8])

Some systems involve low complexity and highly structured interactions between the
components. These systems are said to exhibit organized simplicity and we have traditionally
used decomposition to design and analyze these systems. This approach assumes that each
component operates independently and that the behavior of components is the same when
examined individually as when they operate as part of an integrated system [8]. However,
engineered systems today are too complex for this type of approach to be successful.

Other systems involve high complexity but are uniform and random enough in their behavior that
they can be analyzed using statistical or probabilistic approaches. These systems are said to
exhibit unorganized complexity. Unfortunately, the new types of complex systems we are
building today involve interactions between the components that are not random or uniform and
thus statistical or probabilistic approaches are also not appropriate for these systems ([8], [10]).

 21

Instead, modern engineered systems fall into the third category of systems: systems that exhibit
organized complexity. Systems that exhibit organized complexity are defined as having both high
complexity as well as highly structured interactions between the components. As a result, they
are too complex to be analyzed using decomposition and too structured to be analyzed using
statistical approaches ([8], [10]).

Systems theory was created to cope with systems that exhibit organized complexity [8]. Instead
of analyzing a system statistically or decomposing a system and analyzing the parts separately, a
systems-theoretic approach requires consideration of the whole system, including the social and
technical aspects. In addition, systems theory states that some properties of a system arise from
the structural relationships between the parts of the system as well as the interactions between
those parts [8]. Such properties are known as emergent properties and can only be analyzed by
considering the entire system and not by only looking at the components. Safety and many other
important system qualities in today’s systems are emergent. For these reasons, it is necessary to
take a systems-theoretic approach and consider the whole system when analyzing modern
complex systems to ensure that emergent properties are designed into a system.

2.3 Management of Complexity and Hierarchical Abstraction

As the complexity of modern systems increases, it is becoming more important than ever to
manage complexity during both the design process as well when the system is being reviewed.
Complexity is not an objective feature of a system and can be managed by viewing the system
from a level of abstraction with less resolution [11]. This can be done using the concept of
stratified hierarchies to model complex systems in terms of a hierarchy of levels where each level
is more complex than the one below. Using this type of model, emergent properties are only
characteristic of a particular level and are not reducible to lower levels [12].

There are two main types of hierarchical abstraction: part-whole and means-ends abstraction
([11], [12]). Part-whole abstraction involves breaking the system down into its constituent
components or more detailed functions. In part-whole abstractions, the information contained
at each level of the hierarchy is refined by information at a lower level. Conversely, information
at a lower level is abstracted or aggregated at a higher level. In essence, each level describes
what the system must do and the lower level describes how the system does what it is supposed
to do [12]. Functional decomposition or the physical decomposition of a system into its
components are commonly used examples of part-whole abstraction.

By contrast, in means-ends abstraction, information contained at each level of the hierarchy
describes the goals that the next lower level of the hierarchy must achieve (Figure 3). In other
words, the ends described by each level of the hierarchy are achieved using the means described
at the next lower level. In this way, each level describes what a system must do, the level above
describes why they must be done and the level below describes how they will be done.

 22

Figure 3: Illustration of means-ends abstraction with examples (adapted from [11])

Instead of representing a system in terms of its parts, means-ends abstraction represents a
system in terms of the goals that must be achieved and captures information about intent or
design rationale. This intent information is important because it is difficult if not impossible to
infer later if this intent information is not identified and recorded during architecture
development [12]. Furthermore, the intent information can be used by system designers to guide
their lower-level design decisions ([5], [12]) as well as by reviewers to understand and assess the
system. Means-ends abstraction can therefore be an especially useful type of abstraction for
guiding the design process because it captures intent information and facilitates goal-oriented
reasoning about a system [12]. In addition, it can help system designers and reviewers reason
about the system and understand the underlying intent as the system is being designed or
assessed.

2.4 STAMP and STPA

A system can be analyzed for emergent properties such as safety using a hazard analysis to
identify hazards and unsafe behaviors. However, traditional hazard analysis methods and
approaches to safety are inadequate for today’s complex systems because they were developed
60-75 years ago when systems were simpler than they are today and exhibited at least some of
the following characteristics [8]:

• Relatively little use of software

• A relatively traditional relationship between an automated system and the human
operators who interact with it

• Accidents largely resulted from component failures

Functional Purpose
System objectives and goals, stakeholder needs

Abstract Function
High-level functional descriptions and concepts

Generalized Functions
Blackbox descriptions of functions, more detailed
functional descriptions

Physical Functions
Electrical/mechanical/software processes and
components

Physical Form
Physical appearance, materials, structural connections

O
b

je
ct

iv
es

/M
ea

n
s

Im
p

le
m

en
ta

ti
o

n
/E

n
d

s

 23

Based on these characteristics, traditional hazard analysis methods (e.g. Fault Trees, Failure
Modes and Effects Analysis) use linear chains of events as the underlying accident causality model
and focus on the identification and prevention of component failures to ensure the safety of a
system. As a result, traditional approaches to safe system designs typically call for the use of
redundancy and backup systems to mitigate the effects of component failures [8].

By contrast, current and future systems are increasing in complexity and do not exhibit the same
characteristics as older, simpler systems. Modern systems not only increasingly rely on the use
of software to carry out their functions but may also have non-traditional relationships between
the automated system and the humans who may be interacting with it. For example, the FAA’s
Urban Air Mobility (UAM) program describes the use of human-automation teaming where
human operators must work together in tandem with automation [13] instead of the human
operator simply supervising or commanding the automated system. For these reasons, accidents
involving these systems have more complex causation than a simple linear chain ([8], [14]).
Instead of simply resulting from component failures, accidents may occur due to design flaws,
requirements flaws and even organizational factors despite every component performing as
intended [14]. For these reasons, traditional safety engineering approaches and hazard analysis
methods are no longer sufficient to ensure safety in current and future complex sociotechnical
systems [8].

To address these shortcomings and account for these new types of causes of accidents, a
relatively new accident causality model called Systems-Theoretic Accident Model and Processes
(STAMP) was created. It is based on systems theory and models systems as a whole, including
not just the technical aspects such as hardware and software but also humans and other social
and organization aspects as well. This holistic view of a system and the interactions between its
components enables STAMP to consider other types of accidents and causes that traditional
techniques do not consider including non-linear or indirect causes, new kinds of human error,
design and requirement flaws and dysfunctional interactions between components in addition
to component failures [14]. STAMP also takes a more generalized view of accidents and losses.
Although a loss may involve human death or injury, it may also involve other types of losses such
as equipment, mission, financial or information losses [8]. As a result of this broad view of losses,
STAMP-based methods can be used to analyze not only safety and security but also other
emergent properties as well [8].

Recognizing that emergent properties such as safety arise from the interactions between the
system components, STAMP treats safety as a control problem instead of a component reliability
problem [8]. Instead of focusing on maximizing component reliability and availability, accidents
or unacceptable losses can be prevented by identifying and enforcing sufficient constraints on a
system’s behavior and the interactions between the system components as shown in Figure 4.

 24

Figure 4: A controller enforcing controls on a system's behavior and the interactions between its components (from [14])

Under this paradigm, a controller enforces these system constraints by applying appropriate
control actions to control a system’s behavior or the interactions between its components. In
turn, the controller receives feedback about the effect of those controls on the system to
complete the control loop between the controller and the controlled process. This concept of
control is interpreted broadly. Although the controls could be technical or physical controls, they
may also be social or organizational controls [14]. The system design must then ensure that these
controls and control actions are adequately implemented to enforce the safety constraints for
the overall system.

Based on this concept of safety as a control problem, STAMP models the controls in a system
using a hierarchical safety control structure that contains a controlled process and the various
controllers that can influence or control the system’s behavior. Figure 5 shows a generic control
structure that includes the control structure during system development (left side) and once the
system is operational (right side).

 25

Figure 5: The control structures for a system during system development (left side) and once the system is operational (right

side) (from [14])

As shown in Figure 5, the control structure includes not only the human controllers and the
system being controlled but also several layers of controllers above them such as project
management personnel, government regulatory agencies and personnel involved in operations
management and maintenance. This holistic view of the system ensures that the system and the
environment in which it is designed, operated and maintained is included in the analysis.

Another important aspect of STAMP is its recognition of the importance of process models and
the need for appropriate types of feedback to maintain and update these process models. Every
controller needs to have a model of the controlled process that it can use to determine what
control actions are necessary to keep the system operating as intended [8] (Figure 6).

 26

Figure 6: Illustration of a simple control loop involving a controller with a control algorithm and a process model (from [14])

If the controller is automated, this process model may be part of the software running on that
controller. For example, the autopilot on a commercial aircraft must have a process model for
the current state of the aircraft to decide what flight control inputs to apply to achieve a desired
heading and speed. If the controller is human, these process models are usually referred to as
mental models that exist in the mind of the human controller. For example, a pilot flying an
aircraft requires a mental model of the aircraft and how it works to help them determine what
control inputs to provide to the aircraft to achieve the desired flight path [8].

Process models are important for the safe operation of a system because they are used by
controllers to make decisions and select appropriate control actions [8]. Controllers must receive
adequate types of feedback to keep them updated over time [8]. When there are inconsistencies
in the process models, accidents can occur. For example, if a controller’s process model of the
controlled process is inconsistent with the actual controlled process, the controller may issue a
control action that is unsafe in the context of the actual state of the controlled process.
Alternatively, if the process models shared between multiple controllers are inconsistent with
each other, controllers may issue conflicting control actions or control actions that do not
adequately enforce the safety constraints [15]. It is therefore important when designing the
system that consideration be given to the process models and the types of feedback that are
needed by each controller to maintain an accurate process model of the controlled process and
keep it updated. For these reasons, STAMP recognizes that process models are an important part
of implementing effective controls to ensure safety.

Based on this theoretical foundation, a new hazard analysis technique called Systems-Theoretic
Process Analysis (STPA) was created and Figure 7 shows the basic steps in STPA.

 27

Figure 7: The STPA Process (from [14])

STPA analyzes the control loops in a safety control structure to proactively identify potential flaws
and causes of accidents during development before an actual accident occurs. As shown in Figure
8, STPA is used to identify Unsafe Control Actions (UCAs) and how they can be caused by flaws in
the four main parts of a control loop [14]:

1. Unsafe controller behavior
2. Inadequate feedback or information received by the controller
3. Flaws in the control path
4. Other factors related to the behavior of the controlled process

Figure 8: Illustration of how STPA identifies UCAs and the loss scenarios based on flaws in the four main parts of a control loop

(from [14])

Since the STAMP model considers new causes of accidents such as requirement errors in addition
to component failures, STPA is therefore able to identify many types of hazardous scenarios that
are not included or poorly handled by traditional hazard analysis techniques and the analysis
results can be used to drive the identification of system requirements that are necessary to
prevent the identified scenarios from occurring [8]. In addition to being used to perform analyses

 28

for safety and security, STPA has also been applied to analyze other emergent properties
including scalability [16] and maintainability [17].

In addition, because STPA analyzes the system as a whole, including both the technical as well as
the human and organizational aspects, STPA is flexible enough to incorporate domain-specific
knowledge or knowledge from other engineering disciplines into the analysis of the system. As a
result, extensions of STPA have been developed for human controllers supervising automated
systems [18] as well as for the analysis of teams of human or automated controllers that must
act in a coordinated manner to ensure safe shared control over a system [15]. The extension for
human controllers incorporates human factors considerations to refine the model of the human
controller in the control structure and it also provides additional guidance during UCA and
scenario generation. These can therefore help an analyst to consider possible flaws and errors
that might occur when the human operator updates their mental models, in the mental models
themselves or during control action selection [18].

2.5 Using STPA to Generate a Conceptual Architecture

In addition to being flexible enough to incorporate knowledge from other engineering disciplines
into the analysis, the flexibility of STPA also enables it to analyze systems even during the earliest
stages of the design process when little information about the system design is available. When
an STPA analysis is incorporated into the design process as early as possible, safety relevant
information can be used to drive the design process, allowing safety to be designed into the
system from the beginning. This approach was demonstrated by Leveson [3], who showed how
STPA can be used to analyze an initial high-level control structure model of the system called a
Conceptual Architecture. The STPA analysis results can then be used to inform and guide the
refinement of that Conceptual Architecture [3]. Instead of treating STPA as an analysis activity
that is separate from the architecture development effort, this method integrates STPA into the
architecture development process. The unsafe control actions and loss scenarios identified by
STPA can then be used to drive the identification of system requirements and the design of the
system. Eventually, the refined conceptual architecture can then be used to create the physical
architecture. This method therefore has the potential to minimize the need to change design
decisions later by identifying safety-relevant information up-front before making architectural or
design decisions.

2.6 Intent Specifications

So far, this chapter has described how systems theory and appropriate types of abstraction as
well as STAMP and STPA can be applied to perform top-down, safety-driven architecture
development in a way that facilitates informed decision making by system designers and
reviewers. However, just developing the concept and architecture using these approaches is not
enough and the architecture development process must also be supported by the use of a

 29

specification approach that similarly facilitates gaining an understanding of the system and
incorporates intent information and design rationale [3]. To do this, the same concepts of
systems theory and hierarchical abstraction can also be applied to the creation of system
specifications to ensure that the system can be easily understood and evaluated during both
safety assurance and certification activities as well as when maintaining and evolving the system
after it is placed into operation

Based on these ideas, Leveson created the concept of an Intent Specification [12]. Intent
Specifications are a theoretical approach to system specifications and the information that
should be included in them that aims to be human-centered and enhance human understanding
and problem-solving. These goals are achieved by organizing information using three types of
abstraction: Part-Whole, Refinement and Intent (Figure 9). These types of abstraction are used
because they correspond to the different ways in which a user of the specification may want to
use the specification to reason about the system and navigate a problem space.

Figure 9: An Illustration of the form of an Intent Specification (from [19])

As shown in Figure 9, the horizontal dimensions represent part-whole abstraction and refinement
that allows users to view the system at different levels of detail. The vertical dimension then
represents the different levels of intent at which the system can be viewed. The highest levels
assist stakeholders and system engineers in reasoning about system goals, requirements and
constraints and the lowest levels assist component implementers and system operators in
reasoning about how the system works [12]. By organizing information using these three types
of abstraction, Intent Specifications can support both top-down and bottom-up approaches to
troubleshooting or reasoning about the system, allowing users to easily find the information they

 30

need when they need it to solve a problem, perform system maintenance or change and evolve
the system [12].

The vertical dimension of an Intent Specification contains seven levels of intent starting at the
Program Management level and ending at the Operations level [12]. At each level, information
relevant for that particular perspective of the system is captured and serves as the intent or goals
to be achieved by the system at the next lower level. So, for example, information relevant for
customers of the system serve as the goals for the system as viewed by the system engineers.
This in turn serves as the goals for the system as viewed from the perspective of its architecture
and later from the view of the component engineers. In addition, Intent Specifications also
emphasize the inclusion of design rationale and assumptions underlying design decisions
alongside the design information to assist with understanding why a design decision was made
[12]. As a result, Intent Specifications facilitate goal-oriented problem solving by enhancing the
user’s ability to understand and reason about the system and how it was designed.

Another way in which Intent Specifications enhance human understanding and problem solving
is that they combine different types of information relevant to the design of a system into an
integrated specification. In addition to the system requirements, safety and other design-related
information can all be included in an Intent Specification, allowing it to serve as a central location
to store and retrieve all design-related information. This makes design information easier to
access when needed instead of distributing that information across multiple documents and
repositories [12]. In addition, Intent Specifications contain links between related information
contained in other parts of the specification to ensure that related information can be easily
located and maintained by the user of the specification when needed [12]. As a result of these
features, an Intent Specification enhances human understanding and problem solving because it
can serve as the central location to store and retrieve all design-related information and provides
traceability to help a user of the specification locate relevant information when needed.

 31

Chapter 3 A New Method for Top-Down, Safety-Driven Architecture
Development

3.1 Overview of the Method
The new top-down, safety-driven approach to concept and architecture development being
proposed has four steps as shown in Figure 10 that are designed to incrementally guide a system
designer in thinking about the system in increasing levels of detail before eventually creating
architecture options and assessing tradeoffs.

Figure 10: Overview of the new safety-driven approach to concept and architecture development

Although Figure 10 shows the four steps as a linear sequence, this method should not be assumed
to proceed in a linear fashion with no allowance for iteration. It is likely that a project
implementing this approach will need to iterate on the information generated in each step and
revisit earlier steps to make changes as the design process proceeds.

3.2 Step 1: Analyze the System and Its Environment

As shown in Figure 10, the method begins with an analysis of the system and its environment
using STPA. It is important that the design process begins with an analysis of the system and its
environment before the system itself is designed so that those interactions can be accounted for
in the system design. For example, before the architecture of an aircraft is developed, it is
important to understand how that aircraft will interact with other aircraft in the airspace as well

 32

as with other controllers such as dispatchers or mission planners. This provides an opportunity
to identify any requirements or constraints imposed by the environment on the system or any
requirements or constraints that the system might impose on its environment.

3.3 Step 2: Define Solution-Neutral System Requirements

Once the STPA analysis has been performed, the analysis results (i.e. the UCAs and loss scenarios)
can be used to define solution-neutral, system-level requirements that will mitigate or eliminate
the UCAs and loss scenarios. It is extremely important that these requirements are both solution-
neutral and stated at the system level to ensure that the requirements do not make assumptions
about the solution or implementation of the constraints at this stage in the architecture
development process that later need to be changed. This also avoids unnecessarily constraining
the possible solutions or implementations that will fulfill the requirements and successfully
enforce the constraints. The requirements should therefore only describe what constraints must
be enforced to mitigate or prevent the loss scenarios from occurring and should not describe
how the constraints should be implemented or who (i.e. which component in the system) should
be enforcing those constraints. As a result, a more systematic and informed decision can be made
about which component in the system should fulfill each requirement later in the architecture
development process when more information is available.

3.4 Step 3: Define System-Level Behavior

Once the system-level requirements are defined, they become the basis for defining system-level
behavior. In this new approach to architecture development, system-level behavior is the
behavior of the system that is required to carry out the responsibilities and enable the system to
fulfill the system-level requirements that were identified. It is important to note that the system-
level behavior is defined without considering the system components that will implement that
behavior. This is done to assist system designers with first gaining insight into how the overall
system needs to behave before creating and assessing architecture options that will implement
that desired system behavior.

The information contained in the system-level behavior describes how a control loop should be
designed to ensure that a responsibility can be carried out as effectively as possible to adequately
enforce the necessary constraints on the system’s behavior. The system-level behavior
information therefore consists of five parts that describe the various aspects of how a basic
control loop needs to operate. The five parts of system-level behavior are shown in blue in Figure
11 overlayed on top of a basic control loop containing a controller and a controlled process.

 33

Figure 11: Illustration of the five parts of system-level behavior in blue

Starting at the controller in Figure 11, system-level behavior definition begins by translating the
system-level requirements into the responsibilities that the system must carry out. For each
responsibility, the decision-making strategy and the process model contents can be defined. The
decision-making strategy describes at an abstract level how the system is expected to make the
decision(s) necessary to carry out the responsibility. Based on the decision-making strategy, the
information that the system needs in its process model to carry out the associated responsibility
can be identified. These first two parts of the system-level behavior thus defines how the
controller needs to behave to fulfill the system requirements.

The next two parts of the system-level behavior define the control actions and feedback that the
controller needs to effectively control the controlled process. Using the decision-making strategy,
the control actions can be refined into more specific or detailed ones. The parts of the process
model can also be used to identify the feedback necessary to maintain and update the process
model parts and the sources of that feedback.

At this point, however, the information identified thus far only offers a static view of this control
loop. To include the dynamic and temporal aspects of operating this control loop, the last part of
system-level behavior is to identify timing requirements that describe the speed and frequency
that each responsibility will need to be carried out by the system.

By defining the aspects of the system-level behavior in this way, each aspect of designing an
effective control loop is considered in turn to ensure that the system design implements
adequate control over the system’s behavior. In addition, because the system-level behavior is
driven by the system-level requirements which are in turn derived from the hazard analysis
results, this approach to architecture development supports goal-oriented problem solving and
ensures that the architecture meets the system-level requirements and implements the
necessary constraints to ensure that safety or other emergent properties are achieved. Although
defining the system-level behavior information in this order (illustrated in Figure 12) is not strictly
necessary, this order can serve as a systematic way to consider each aspect of a control loop and

 34

how it should be designed to enable the responsibilities to be carried out effectively. As before,
although Figure 12 is drawn as a linear sequence, iterative refinement of the system-level
behavior information is expected.

Figure 12: The order in which system-level behavior information should be defined

3.5 Step 4: Create and Assess Architecture Options

Once the system-level behavior information has been generated, it can be used to inform the
creation and assessment of architecture options using a 2-part architecture creation process as
illustrated in Figure 13.

Figure 13: The 2-part architecture creation process and its inputs and outputs

 35

As shown in Figure 13, the system-level behavior information is an input to the architecture
creation process. It consists of the set of responsibilities that the system must carry out, the
necessary parts of the process model and supporting information about how the system needs
to be designed to ensure that the responsibilities are carried out as effectively as possible. This
information can now be used in conjunction with human factors and other considerations to
inform the creation and assessment of a series of candidate architecture options.

The architecture creation process itself has 2 parts. For each part, a series of candidate
architecture options are created by using human factors and other considerations in addition to
the system-level behavior information to decide how the process model parts and responsibilities
should be assigned to controllers in the architecture. The rationale and assumptions are also
recorded alongside each assignment. These architecture options can then be analyzed and the
tradeoffs between them assessed to ultimately select one option to carry forward for further
system development. This method of creating architecture options ensures that relevant
perspectives from other engineering disciplines are incorporated when creating the architecture
options and assigning the responsibilities and process model parts.

The 2 parts of the architecture creation process are:

1. Part 1: Create and assess architecture options for the overall system
2. Part 2: Using the selected architecture for the overall system (from part 1), create and

assess architecture options for each controller in the overall system

Since the system-level behavior information is defined for the overall system and not for any
individual component in that system, the first step in the architecture creation process is to
evaluate how those responsibilities and process model parts could be assigned to components in
the overall system before proceeding to create architectures for each of the components. To
illustrate this, Figure 14 shows a generic example of a system containing three controllers and a
controlled process as well as five responsibilities that have been defined for this system.

 36

Figure 14: Generic illustration of Part 1 of the Architecture Creation Process

To create an architecture option, the five responsibilities defined for this system must be
allocated to the system components. So, as illustrated in Figure 14, one example of an
architecture option might be one where:

• Responsibility 1 is assigned to controller 1

• Responsibility 2 is shared between controllers 1 and 3

• Responsibilities 3 and 4 are assigned to controller 3

• Responsibility 5 is assigned to the controlled process

The result of this part of the architecture creation process is the creation of a series of
architecture options for the overall system that can then be analyzed individually using further
STPA or other analyses to determine the benefits and costs of each option. Based on the tradeoffs
that are identified, one of the candidate architecture options will be selected for further system
development in the next part of the architecture creation process.

Once the architecture for the overall system has been selected in Part 1, Part 2 creates the
architecture options for each component by starting with the process model parts and
responsibilities assigned to that system component in the selected architecture from Part 1.
Similar to Part 1, these process model parts and responsibilities are then assigned to sub-
components within the component that is being designed. Continuing the example from Part 1
that was illustrated in Figure 14, the architecture of controller 3 can be created as illustrated in
Figure 15.

 37

Figure 15: Generic illustration of Part 2 of the Architecture Creation Process

As shown in Figure 15, the architecture for controller 3 starts with responsibilities 2, 3 and 4 that
were assigned to it in Part 1 (Figure 14). Architecture options are now created by assigning those
responsibilities to sub-controllers 3.1 and 3.2 which are subcomponents of controller 3. One
example of a candidate architecture for controller 3 might be:

• Responsibility 2 is assigned to sub-controller 3.1

• Responsibility 3 is shared between sub-controller 3.1 and 3.2

• Responsibility 4 is assigned to sub-controller 3.2

As with Part 1, the result of this part of the architecture creation process is a series of architecture
options for the component being designed and these architecture options and the tradeoffs
between them can be analyzed using further STPA or other analyses. Based on these analyses,
one candidate architecture option will be selected for further development, completing one
iteration of refinement of the system architecture.

Since systems can be composed of subsystems that are themselves systems containing further
subsystems within them, the definition of a system is recursive [20]. For this reason, this new
approach to architecture development can be applied recursively to incrementally refine the
system and each subsystem and component contained within it until the detailed system design
is complete.

To summarize, this chapter describes a new approach to architecture development and how the
concepts and methods reviewed in Chapter 2 were applied. In the next chapter, this new
approach to architecture development will be demonstrated for a system that enables medevac
flights in poor visibility conditions to be conducted.

 38

Chapter 4 Case Study: Creating a Conceptual Architecture for
Performing Medevac Flights in Degraded Visual
Environments (DVEs)

4.1 Case Study Overview

In this case study, a conceptual architecture for the human pilot and automated software-
enabled controller (ASEC) will be developed for an Emergency Medical Services (EMS) Air
Ambulance performing medevac flights in Degraded Visual Environments (DVEs) using the new
approach described in Chapter 3.

Although flights under maximum visibility conditions are always preferable, there are emergency
situations in which an Air Ambulance service may need to perform a flight to evacuate a patient
under reduced or degraded visibility conditions such as rain, fog or snow. Such conditions are
known as DVEs [21] and flights under DVE conditions are widely recognized as risky operations
for pilots [22] due to the spatial disorientation they can cause [21]. There is therefore a need to
find ways to reduce the risks and increase safety for pilots operating medevac flights in DVEs to
enable these flights to be carried out as safely as possible.

In response to this need, numerous solutions have been proposed. For example, many aircraft
manufacturers are considering the inclusion of heads-up displays and pilot cueing systems [23]
as well as synthetic vision systems that integrate the data from aircraft sensors to help pilots re-
acquire information they would have otherwise obtained visually and avoid disorientation [24].
Although these solutions are necessary to address specific challenges that pilots face when
operating aircraft in DVEs, it is also important to clearly identify the overall system-level
requirements that must be satisfied and the responsibilities that the human pilots and the
automated systems must perform to ensure safe flight in DVEs.

This case study thus aims to develop a conceptual architecture for this system in a top-down,
safety driven manner using this new approach to architecture development, starting with the
overall system that is necessary to plan and execute medevac flights safely. This overall system
will be called the Flight Operations System (FOS) and is modeled after the procedures and
guidelines for air ambulance operations that are published by several public health departments
and emergency medical services councils in California ([25], [26]) and New York [27]. Information
published by the FAA in its advisory circular regarding air ambulance operations [28] and in title
14 of the Code of Federal Regulations (14 CFR) Part 135 that governs air ambulance operations
is also incorporated into this example as needed.

By applying each of the four steps in the new approach, this case study will show how the FOS
can be systematically analyzed to identify the system requirements and necessary system-level
behavior so that the information obtained can be used to create and assess architecture options
for the FOS first and then for the human pilot and ASEC. The case study will then present the

 39

tradeoffs between architecture options that should be considered when selecting a conceptual
architecture for the pilot and ASEC to carry forward for further system development.

This case study also organizes the design information that is generated using an Intent
Specification. Since this case study represents architecture development occurring during the
early stages of system development, the Intent Specification that is created will include
information that is primarily contained in levels 1 and 2 of an Intent Specification (i.e. the
Customer View and System Engineering View) and will show how information might be
structured within each level.

Intent Specification Level 1: Customer View

4.2 Step 1: Analyzing the System and Its Environment

4.2.1 Defining Purpose of the Analysis, System Boundary and System Goal

The purpose of this analysis is to determine how responsibilities can be divided up between the
human pilot and Automated Software-Enabled Controller (ASEC) on board an air ambulance to
ensure the safe execution of medevac flights in DVEs. The system boundary for this analysis will
therefore be called the Flight Operations System (FOS).

The FOS contains the following components:

Table 1: Description of Components in the FOS

Component Description

1 Aircraft Subsystems This includes all the hardware and components that constitute
the physical aircraft that will be flown

2 Piloting Controller This is an abstracted controller that encompasses both the
Human Pilot and ASEC that together must maintain safe and
stable flight. Although a conceptual architecture will eventually
be created for the human pilot and ASEC as distinct elements
of the system, this case study begins by combining them into
an abstracted controller so that their architecture can be
systematically generated

3 Maintenance Personnel The personnel that carry out maintenance of the aircraft

4 EMS Operations & Air
Traffic Control (ATC)

This group includes local or county EMS dispatch/operations
centers, operations centers run by air ambulance service
providers as well as standard ATC that controls access to the
airspace and manages aircraft throughout their flight

 40

This system has just 1 goal:

G-1: To enable aircraft to be safely flown through an airspace where collision hazards may not be
directly visible or visual surveys cannot be conducted due to the presence of man-made or
natural obscurants

4.2.2 Initial Assumptions and Constraints

The following is a small set of initial assumptions and constraints that are used in this case study
to describe the capabilities that air ambulances are assumed to have and the conditions under
which medevac flights might occur.

Data Access Assumptions
These data access assumptions are based on operational procedures described in [28] - [30]:

AA-1. Aircraft may have access to common databases of obstacles, terrain and air traffic in the

vicinity of the planned route of flight

AA-2. Aircraft may be able to make and receive updates of obstacle and terrain data in flight

AA-3. Aircraft must have and maintain radio and data communications with local or county

EMS operations centers, air ambulance service provider operations centers as well as

with ATC

Environmental Assumptions
The following assumptions are made about the environment in which this system will operate
as described briefly in [22] and [28]:

EA-1. The system will operate in urban and suburban locations

EA-2. Weather conditions include any of the conditions defined as part of standard

Instrument Meteorological Conditions (IMC) that are described in 14 CFR §135

EA-3. The system may operate in both daytime and nighttime conditions

 41

4.2.3 STPA Step 1: Losses, System-Level Hazards & System Constraints
The first step in performing an STPA analysis is to list the losses, system-level hazards and system
constraints for the FOS.

Losses
The losses that are relevant for the FOS are:

L-1: Loss of life or injury
L-2: Loss or damage to aircraft or equipment
L-3: Nonachievement of mission

Hazards
From these losses, the following hazards are derived:

H-1: Aircraft is uncontrollable [L-1, L-2, L-3]
H-2: Structural integrity of the aircraft is violated [L-1, L-2, L-3]
H-3: Violation of minimum aircraft separation standards [L-1, L-2, L-3]
H-4: Operating the aircraft is harmful to human health [L-1]
H-5: Aircraft is unable to conduct mission tasks [L-3]

System Constraints
The following are the system constraints that are derived from the system-level hazards:

SC-1. The aircraft must remain controllable by the piloting controller at all times [H-1]

SC-2. Aircraft airframe integrity must be maintained at all times [H-2]

SC-3. Aircraft must satisfy minimum separation requirements from other aircraft and objects

[H-3]

SC-4. If the aircraft violates minimum separation requirements, the violation must be

detected and measures taken to prevent collision [H-3]

SC-5. Aircraft environment must remain safe for human occupants of the aircraft at all times

[H-4]

SC-6. Aircraft must be able to conduct mission tasks [H-5]

4.2.4 STPA Step 2: Safety Control Structure
Once the losses, system-level hazards and system-level constraints have been identified, the next
step is to model the system using a safety control structure. Figure 16 shows the control structure
for the FOS where each of the four components within the system boundary as listed in Section
4.2.1 are shown as controllers in the control structure along with the control actions and
feedback that are passed between them. In addition, since a key aspect of operating aircraft in
DVEs is the ability to quantify weather conditions and detect other objects and aircraft in the
airspace, the operational environment is included in this control structure and provides direct
feedback to both the pilot who makes direct visual observations and to the aircraft subsystems
where sensors are used to sense the environment.

 42

Figure 16: Control Structure with Abstracted Piloting Controller Highlighted

Since this STPA analysis will be used to generate system-level requirements for the FOS and
create a conceptual architecture for the FOS and Piloting Controller, this control structure starts
at a high level of abstraction so that the system and its environment can be first considered as a
whole. For these same reasons, the human pilot and automated controllers on-board the aircraft
are combined into an abstracted controller called the Piloting Controller. By doing this, the initial
STPA analysis can be used to identify all the responsibilities and control actions needed for this
abstract controller before dividing the responsibilities up between a human and automated
controller. The benefits and tradeoffs of the different ways to divide up these responsibilities can
then be analyzed later when more information is available.

 43

Initial Safety Responsibilities
Even during the early stages of system development, it is possible to define an initial set of
responsibilities, albeit at a high level of abstraction, that must be enforced by the components in
the control structure to ensure safety. As the STPA analysis proceeds, these responsibilities will
be gradually refined. The initial list of high-level responsibilities for each component of the FOS
includes the following:

R-1. Aircraft Subsystems

R-1.1. Execute actuator movements commanded by the Piloting Controller to control the

aircraft [SC-1]

R-1.2. Provide information regarding the telemetry of the aircraft (e.g. airspeeds, physical

position) to the Piloting Controller [SC-1]

R-1.3. Provide information regarding the position and speed (when relevant) of other aircraft

and objects in the vicinity of the aircraft to the Piloting Controller [SC-3, SC-4, SC-6]

R-2. Maintenance Personnel

R-2.1. Ensure that the aircraft receives required preventative maintenance [SC-1]

R-2.2. Ensure that all maintenance is completed and personnel clear of the aircraft when the

aircraft is ready to depart [SC-3, SC-5, SC-6]

R-2.3. Ensure that the aircraft is configured appropriately [SC-1, SC-6]

R-3. Piloting Controller

R-3.1. Control the aircraft to satisfy minimum separation requirements from other aircraft

and objects at all times [SC-3]

R-3.2. Maintain an updated model of the environment, state of the aircraft and the state of

the airspace around the aircraft throughout all phases of flight [SC-1, SC-3]

R-3.3. Ensure that actuator commands sent to the aircraft subsystems does not exceed the

capabilities of the airframe [SC-2]

R-3.4. Manage and control the aircraft to carry out the mission [SC-6]

R-4. EMS Operations and ATC

R-4.1. Provide the Piloting Controller with all available information needed to safely control

the aircraft [SC-1, SC-2, SC-3, SC-6]

R-4.2. Coordinate air traffic in controlled airspaces and maintain a coherent operating picture

of controlled airspaces [SC-1, SC-3, SC-4, SC-5, SC-6]

R-4.3. Provide the Piloting Controller with all mission information and constraints to

successfully execute the mission [SC-6]

 44

4.2.5 STPA Step 3: Unsafe Control Actions (UCAs)
The third step in STPA is to analyze the control actions in the control structure to identify unsafe
control actions (UCAs) and the associated controller constraints necessary to prevent the UCAs
from occurring. Table 2 shows some examples of UCAs that were identified for the Actuator
Movements control action provided from the Piloting Controller to the Aircraft Subsystems.
Additional UCAs for the Actuator Movements control action can be found in Appendix A.

Table 2: Example UCAs for Actuator Movements Control Action

Control
Action

Providing Not Providing Too Early/Too Late Applied Too
Long/Stopped
Too Soon

Actuator
Movements

UCA-1.1:
Piloting
Controller
provides
actuator
movements
during takeoff
when the
aircraft is not in
a safe
departure state
[H-3, H-4, H-5]

UCA-1.2:
Piloting
Controller
provides
actuator
movements
that steers the
aircraft toward
another aircraft
or object [H-3]

UCA-1.5: Piloting
Controller does
not provide
actuator
movements when
violation of
minimum
separation is
imminent [H-3]

UCA-1.6: Piloting
Controller does
not provide
actuator
movements during
critical phases of
flight [H-1, H-3]

UCA-1.7: Piloting
Controller
provides actuator
movements too
late during takeoff
after takeoff
clearance is
granted when
another aircraft or
obstacle has
entered the
airspace near the
aircraft [H-3]

UCA-1.8: Piloting
Controller
provides actuator
movements too
late when the
aircraft is near
another aircraft or
obstacle [H-2, H-3]

UCA-1.10:
Piloting
Controller
applies actuator
movements for
too long during
takeoff after it
has passed the
desired altitude
[H-1, H-3]

UCA-1.11:
Piloting
Controller stops
providing
actuator
movements too
soon during
takeoff before
the desired
altitude is
reached [H-3]

 45

4.2.6 STPA Step 4: Identify Loss Scenarios
The next step in STPA is to identify the loss scenarios based on these UCAs. To do this, a new
approach to scenario generation described by Cabosky [29] was used to help manage the
potentially large number of scenarios that would be generated and reduce repetition. In addition,
this new approach to scenario generation should help to ensure that as many causal factors as
possible are considered in the loss scenarios. This is important because the system-level
requirements will be generated in later steps based on these loss scenarios and therefore good
coverage of the causal factors by the loss scenarios should ensure that the set of system-level
requirements obtained will be as complete as possible. This new approach to scenario generation
uses guide words based on four basic scenario types to assist with identifying loss scenarios [29]:

1. Unsafe Controller Behavior
2. Unsafe Feedback Path
3. Unsafe Control Path
4. Unsafe Controlled Process Behavior

Using this new approach to scenario generation, a wide variety of different scenarios were
identified and some examples of loss scenarios are identified for UCA-1.2 (Table 3) and UCA-1.5
(Table 4). More examples of loss scenarios are shown in Appendix B.

UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward
another aircraft or object [H-3]

Table 3: Example Loss Scenarios for UCA-1.2

Scenario
Type

Scenario ID Scenario

Unsafe
Controller
Behavior

CS-1.2.1-1.1 Despite receiving feedback that there was another aircraft or
object nearby, DVE conditions cause more noise in sensor data
than is normally present, making the useful feedback more
difficult for the piloting controller to distinguish from the noise or
increasing the likelihood that the piloting controller wrongly
decides that the sensor data shows no useful
feedback/detections. As a result, the piloting controller has the
wrong process model of the state of the environment, the aircraft
or the airspace around the aircraft and wrongly believe that the
airspace nearby the aircraft is clear to pilot toward. The piloting
controller therefore selects actuator movements that pilot the
vehicle toward the other aircraft or object [SLR-13, SLR-19]

 46

Scenario
Type

Scenario ID Scenario

Unsafe
Controller
Behavior
(Cont’d)

CS-1.2.1-1.4 Despite receiving feedback that there was another aircraft or
object nearby, the piloting controller receives an input from
another aircraft or external controller that indicates that the
airspace nearby the aircraft is clear. If the pilot assumes that the
external controller/input is providing accurate information, they
may disregard the seemingly conflicting feedback that does
indicate that another aircraft or object is nearby. As a result, the
piloting controller wrongly updates its process model of the
airspace nearby the aircraft and selects actuator movements that
pilot the vehicle toward the other aircraft or object [SLR-3, SLR-15]

CS-1.2.1-3 Despite receiving feedback that there was another aircraft or
object nearby, the piloting controller is forced to make a quick
decision to avoid violating minimum separation. In making this
quick decision, the piloting controller does not fully account for all
objects and aircraft in the airspace. As a result, the piloting
controller tries to avoid one object/aircraft and collides with
another aircraft/object instead. [SLR-17, SLR-18]

Unsafe
Feedback
Path

CS-1.2.2-1 The piloting controller receives feedback that did not indicate that
another aircraft or object was nearby because DVEs degrade or
obscure sensors or the sensor suite was not designed to operate
in the current DVEs. As a result, the piloting controller receives
wrong, incomplete or missing feedback about the environment,
DVE conditions or the state of the aircraft which the piloting
controller uses to update its process model, leading to wrong
process models [SLR-2, SLR-15, SLR-19]

Unsafe
Control
Path

CS-1.2.3-1 The piloting controller does not provide actuator movements that
pilots the aircraft toward another aircraft or object but actuator
movements to do so are received by the aircraft because an
adversary spoofs the actuator movements sent from the piloting
controller and causes the aircraft to believe the piloting controller
has sent actuator movements [SLR-11]

Unsafe
Controlled
Process
Behavior

CS-1.2.4-1 Actuator movements are not received by the aircraft but the
aircraft still violates minimum separation because DVE conditions
(e.g. wind gusts) move the aircraft toward the other aircraft or
object with enough force or at a high enough rate that the piloting
controller is unable to react quickly enough or with appropriate
amplitude to correct the disturbance [SLR-22]

 47

UCA-1.5: Piloting Controller does not provide actuator movements when violation of minimum
separation is imminent [H-3]

Table 4: Example Loss Scenarios for UCA-1.5

Scenario
Type

Scenario ID Scenario

Unsafe
Controller
Behavior

CS-1.5.1-1.1 Despite receiving feedback that violation of minimum separation
is imminent, the piloting controller is unable to select new
actuator movements quickly enough to avoid violation of
minimum separation. This might occur if the piloting controller
recognizes the imminent violation too late or takes too long to
select new actuator movements. As a result, the piloting
controller is unable to select new actuator movements before
the violation of minimum separation occurs [SLR-23]

Unsafe
Feedback
Path

CS-1.5.4-1 Actuator movements are received by the aircraft but the aircraft
still violates minimum separation because the piloting controller
may have the wrong process model of the environment
conditions and selects actuator movements that are insufficient
to effect the desired change in flight path [SLR-25]

The example scenarios shown in Table 3 and Table 4 thus illustrates the broad range of causal
factors that are considered in the loss scenarios. Not only do the loss scenarios consider how
unsafe behavior at different points in the control structure can lead to a hazard or loss but they
also consider how the environment the system operates in (e.g. DVE conditions, external inputs)
could contribute to the occurrence of a hazard or loss. For example, CS-1.2.1-1.1 and CS-1.2.2-1
describe how the effects of DVEs on feedback could lead to inadequate or conflicting feedback.
CS-1.2.1-3 and CS-1.5.1-1.1, on the other hand, describe how unsafe decision-making could lead
to an unsafe control action being issued. Even cybersecurity considerations can be included in
scenarios such as CS-1.2.3-1. In addition, multiple causal factors can contribute to the occurrence
of a loss or hazard. For example, in CS-1.2.4-1 and CS-1.5.4-1, DVE effects combined with
inadequate decision-making can collectively lead to an unsafe control action. These loss scenarios
therefore demonstrate the wide variety of causal factors that can and should be considered prior
to identifying the necessary system-level requirements.

Once the loss scenarios have been generated for all UCAs, the first step in this new approach to
architecture development is complete. In the subsequent steps, these STPA results will be used
to define requirements and system-level behavior information that will inform the creation and
assessment of architecture options.

 48

4.3 Step 2: Defining Solution-Neutral, System-Level Requirements

The next step in this new approach to concept and architecture development is to identify the
solution-neutral, system-level requirements that are necessary to ensure safety and prevent the
UCAs and loss scenarios identified in the STPA analysis conducted in Step 1 from occurring. As
discussed in Chapter 3, it is important that these requirements are both solution-neutral and
stated at the system level to ensure that these requirements describe what constraint must be
enforced instead of how that constraint should be implemented or who should be enforcing that
constraint.

The solution-neutral, system-level requirements are generated by identifying one or more
suitable constraints that, when enforced by some means, would mitigate or prevent the
scenarios from occurring. The identified constraints are then written in standard requirements
language (e.g. “shall” statements). Figure 17 and Figure 18 demonstrate how these solution-
neutral, system-level requirements are generated using two examples of a UCA and loss scenario
and their associated requirement.

UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward
another aircraft or object [H-3]

CS-1.2.2-1: The piloting controller receives feedback that did not indicate that another
aircraft or object was nearby because DVEs degrade or obscure sensors or the sensor suite
was not designed to operate in the current DVEs. As a result, the piloting controller receives
wrong, incomplete or missing feedback about the environment, DVE conditions or the state
of the aircraft which the piloting controller uses to update its process model, leading to
wrong process models [SLR-2, SLR-15, SLR-19]

Requirement: The FOS must receive all data required to determine the state of the
environment and conditions around the aircraft under all DVE conditions at all times

Rationale/Assumptions: This requirement ensures that the piloting controller has the
information it needs to make decisions and is never making decisions by using guesses
or assumptions that might turn out to be incorrect. This requirement assumes that it is
possible to make this guarantee without exception using a combination of engineering
design techniques when creating the detailed system design. If this assumption is
invalidated, the associated causal scenario may not be fully prevented and further
requirements may be necessary to avoid unsafe system behavior.

Figure 17: Example 1 of how solution-neutral, system-level requirements are generated

 49

UCA-1.2: Piloting Controller provides actuator movements that steers the aircraft toward
another aircraft or object [H-3]

CS-1.2.4-1: Actuator movements are not received by the aircraft but the aircraft still violates
minimum separation with the nearby aircraft or object because DVE conditions (e.g. wind
gusts) move the aircraft toward the other aircraft or object with enough force or at a high
enough rate that the piloting controller is unable to react quickly enough or with appropriate
amplitude to correct the disturbance [SLR-22]

Requirement: The FOS must be able to respond quickly enough and with an appropriate
magnitude to disturbances to prevent unintended movement of the aircraft.

Rationale/Assumptions: This requirement ensures that clear expectations are
established as to how quickly the FOS must be able to respond to disturbances and
how much disturbance the FOS must be able to reject to maintain safe flight. This
requirement assumes that it is possible to define a uniformly-applicable set of worst-
case conditions under which the FOS must be able to maintain safe and stable flight. If
this is not possible, this requirement may have to be modified to account for multiple
types of worst-case DVE conditions.

Figure 18: Example 2 of how solution-neutral, system-level requirements are generated

As shown in Figure 17 and Figure 18, the two identified requirements are stated at the system
level because they simply state what the FOS as a whole must do instead of identifying a
particular component of the FOS. The two identified requirements are also solution-neutral
because they simply state what constraint is necessary to mitigate or prevent the loss scenario
and do not state how the constraint will be implemented or achieved.

It is also worth noting that, since the definition of these requirements represents one type of
design decision that is being made, it is important to record the rationale and assumptions so
that anyone reviewing or modifying the system in the future can understand why the
requirement was generated and evaluate the validity of the underlying assumptions.

By applying this method for each causal scenario in the STPA analysis results, a full set of system-
level requirements can be generated. Table 5 shows the set of requirements generated for this
case study as a simple list for compactness and the full details for these requirements including
the underlying rationale and assumptions can be found in Appendix C.

 50

Table 5: System-Level Requirements List

Req ID System-Level Requirement

SLR-1 The FOS must be able to determine if any feedback it is receiving about the aircraft’s
mission readiness, state of the aircraft and the airspace around it is too old

SLR-2 The FOS must account for prevailing DVE conditions and their possible effect on
feedback sources when making use of feedback information

SLR-3 The FOS must verify the accuracy of any inputs from another aircraft/controller

before updating process models based on that input

SLR-4 The FOS must confirm that all aspects of the aircraft state match the safe departure
state prior to departure

SLR-5 The FOS must always be able to determine if the state of the aircraft changes
between the time that it was checked and departure

SLR-6 The FOS must confirm that data provided to it about the expected safe departure
state of the aircraft has been fully specified

SLR-7 The FOS must ensure that all relevant personnel are aware of any changes to the
expected safe departure state of the aircraft

SLR-8 The FOS must process all feedback to make a deliberate decision if it is to be
ignored/dropped

SLR-9 The FOS must ensure that it is receiving all data required to determine the expected
safe departure state and determine the current state of the aircraft under all DVE
conditions at all times

SLR-10 The FOS must ensure that flight crews are aware of the most updated state of any
maintenance tasks on the aircraft

SLR-11 The FOS must ensure that only authorized actuator movements are executed

SLR-12 All FOS equipment and systems must be able to operate in the expected DVE
conditions

SLR-13 The FOS must be able to distinguish useful detections/feedback from the noise that
might be present in feedback data under all DVE conditions at all times

SLR-14 The FOS must be able to process sensor data and use it to update its process model
sufficiently quickly (within TBD seconds)

SLR-15 The FOS must receive all data required to determine the state of the environment
and conditions around the aircraft under all DVE conditions at all times

SLR-16 The FOS must always be able to determine if the state of the airspace changes
between the time that it was checked and the commencement of a maneuver

SLR-17 The FOS must take into account the current and future movements of other aircraft
in the vicinity when selecting actuator movements

SLR-18 The FOS must ensure that aircraft movements are selected such that sufficient
reaction time is available to react and prevent violation of minimum separation if
intent or movements of the other aircraft are different than expected

SLR-19 The FOS must be able to detect all objects and other aircraft in the environment
under all DVE conditions at all times

 51

Req ID System-Level Requirement

SLR-20 The FOS must be able to detect slow or subtle changes in the state of the aircraft
under all DVE conditions at all times

SLR-21 The FOS must select actuator movements that minimize the risk of violation of
minimum separation when information about the state of the airspace is in a
degraded condition (e.g. delayed)

SLR-22 The FOS must be able to respond quickly enough and with an appropriate
magnitude to disturbances to prevent unintended movements of the aircraft

SLR-23 The FOS must be able to respond quickly enough to avoid violations of minimum
separation

SLR-24 The FOS must ensure that a viable path is always available to avoid a violation of
minimum separation

SLR-25 The FOS must select actuator movements that are sufficient and appropriate to
effect the desired change in flight path under the given environmental conditions

SLR-26 The FOS must ensure that actuator movements avoid all possible violations of
minimum separation

4.4 Step 3: Defining System-Level Behavior

The next step in this new approach to concept and architecture development is to use the
system-level requirements to define the system-level behavior information that describes what
is necessary from a control loop perspective (Figure 11) to ensure that the constraints described
by the requirements are adequately enforced by the system. Table 6 summarizes how each
aspect of the system-level behavior information should be defined.

Table 6: Descriptions of the Five Aspects of System-Level Behavior Information

System-Level Behavior Aspect Description

Define Controller
Responsibilities

Translate the system-level requirements into responsibilities

Define decision-making
strategy

Describe at a high level of abstraction how a controller
makes a decision

Refine Control Actions Refine abstracted control actions into more specific ones

Determine process model
parts and required feedback

Identify the process model parts needed to support decision-
making and the sources of feedback needed to support
process model updates

Define timing requirements Determine how often and how quickly a function must be
carried out

 52

For each system-level requirement, these five aspects must be defined to obtain the system-level
behavior for the system being designed. The following sub-sections will show how to generate
the system-level behavior information using requirements SLR-19 and SLR-23 as examples. Full
details for the system-level behavior generated for this case study can be found in Appendix D.

4.4.1 Defining Responsibilities

The first step in defining system-level behavior information is to translate each requirement into
a responsibility that the system must carry out. Like the system-level requirements, the
responsibilities should be solution-neutral and stated at the system level to avoid making
incorrect assumptions about how the responsibilities will be implemented until later in the
architecture development process. To do this, most requirements can be translated into
statements of responsibilities by removing the first few words of the requirement and retaining
just the part of the requirement that states the constraint as illustrated in Table 7.

Table 7: Translating system-level requirements into responsibilities

Req ID System-Level Requirement Resp. ID Responsibility

SLR-19 The FOS must be able to detect
all objects and other aircraft in
the environment under all DVE
conditions at all times [SR-18]

SR-18 Detect all objects and other aircraft in

the environment under all DVE

conditions at all times [SLR-19]

SLR-23 The FOS must be able to
respond quickly enough to avoid
violations of minimum
separation [SR-22]

SR-22 Respond quickly enough and with

appropriate magnitude to select and

effect the desired change in flight

path under the given environmental

conditions [SLR-23, SLR-25]

Responsibilities also do not necessarily have to be related one-to-one to the system-level
requirements. In some cases such as SR-22, a responsibility can be associated with multiple
system-level requirements and vice versa. It is also important that traceability is included (shown
in the square brackets in Table 7) along with each requirement and responsibility to ensure that
anyone reviewing this information in the future can determine which requirements each
responsibility is derived from and vice versa.

The 24 responsibilities generated for this case study are as follows:

SR-1. Determine if feedback received about the aircraft’s mission readiness, state of the aircraft

and the airspace is too old [SLR-1]

SR-2. Account for prevailing DVE conditions and their possible effect on feedback sources when

making use of feedback information [SLR-2]

 53

SR-3. Validate the inputs or feedback received from other controllers before using that input or

feedback to update process models [SLR-3]

SR-4. Confirm that all aspects of the aircraft state match the expected safe departure state

before providing actuator movements to depart [SLR-4]

SR-5. Determine if the state of the aircraft changes between the time that it was checked and

departure [SLR-5]

SR-6. Confirm that data about the expected safe departure state of the aircraft has been fully

specified and received [SLR-6, SLR-9]

SR-7. Ensure that all relevant personnel are aware of any changes to the expected safe

departure state of the aircraft [SLR-7]

SR-8. Process all feedback to make a deliberate decision if it is to be ignored/dropped [SLR-8]

SR-9. Ensure that all data needed to determine the state of the aircraft, state of the airspace

and the environmental conditions around the aircraft under all DVE conditions is available

at all times [SLR-9, SLR-15]

SR-10. Ensure that flight crews are aware of the most updated state of any maintenance tasks

on the aircraft [SLR-10]

SR-11. Ensure that only authorized actuator movements are executed [SLR-11]

SR-12. Be able to operate in the expected DVE conditions [SLR-12]

SR-13. Distinguish useful feedback from noise in feedback data [SLR-13]

SR-14. Process sensor data and use it to update its process model sufficiently quickly [SLR-14]

SR-15. Determine if the state of the airspace changes between the time that it was checked and

the commencement of a maneuver [SLR-16]

SR-16. Account for the current and future movements of other aircraft in the vicinity when

selecting actuator movements [SLR-17]

SR-17. Ensure that aircraft movements are selected such that sufficient reaction time is available

if intent or movements of other aircraft are not what was expected, even if no violation of

minimum separation is initially expected [SLR-18]

SR-18. Detect all objects and other aircraft in the environment under all DVE conditions at all

times [SLR-19]

SR-19. Detect slow or subtle changes in the state of the aircraft under all DVE conditions at all

times [SLR-20]

SR-20. Select actuator movements that minimize the risk of violation of minimum separation

when information about the state of the airspace is in a degraded condition (e.g. delayed)

[SLR-21]

SR-21. Respond quickly and with appropriate magnitude to disturbances to prevent unintended

movement of the aircraft [SLR-22]

SR-22. Respond quickly enough and with appropriate magnitude to select and effect the desired

change in flight path under the given environmental conditions [SLR-23, SLR-25]

SR-23. Ensure that a viable flight path is always available to avoid any violations of minimum

separation [SLR-24]

SR-24. Select a viable flight path that avoids all violations of minimum separation [SLR-26]

 54

4.4.2 Defining Decision-Making Strategies, Refined Control Actions and Required Process
Model Parts

Once the responsibilities are defined, the next step is to define the decision-making strategy,
refined control actions and process model parts. It is important that the decision-making strategy
is defined first before the refined control actions and required process model parts are defined
because the decision-making strategy serves as the basis for refining a control action or
identifying required process model parts. Table 8 shows how the decision-making strategy,
refined control actions and process model parts should be recorded for SR-18 (associated with
SLR-19) and SR-22 (associated with SLR-23).

Table 8: Decision-Making Strategy, Refined Control Actions and Process Model Parts for SR-18 and SR-22

Resp.
ID

Responsibility Decision-
Making
Strategy

Refined
Control
Action(s)

Required Process Model
Contents

Rationale and
Assumptions

SR-18 Detect all
objects and
other aircraft
in the
environment
under all DVE
conditions at
all times [SLR-
19]

Use data
from
<sensor
choices> to
measure
the position
and speed
of objects
and aircraft
in the
airspace

N/A All process model
contents in Current
Weather Conditions and
Current Airspace State

<Rationale for sensor
choices based on
anticipated objects
and DVE conditions
and other
performance
parameters>

<Assumptions about
minimum object size
and DVE conditions>

SR-22 Respond
quickly
enough and
with
appropriate
magnitude to
select and
effect the
desired
change in
flight path
under the
given
environmental
conditions
[SLR-23, SLR-
25]

Normal
decision
making
process
needed to
select
actuator
movements,
however
decision
making
must
happen
more
quickly

Roll
Pitch
Yaw

Model of Current
Weather Conditions

• Outside air
temperature

• Wind speed

• Visibility

Model of Current
Aircraft Navigation State

• Air speed

• Altitude

• Position

Model of System
Behavior

• Guidelines for
aircraft handling
in DVEs

Assumes the “rules”
for selecting actuator
movements will be
the same whether in
DVE conditions or not
but those decisions
will need to be more
responsive to
disturbances caused
by some DVE
conditions than
normal

 55

To define the decision-making strategy, the responsibility should be used to decide what
decision(s) are required to carry out the responsibility and how the system as a whole should
make those decision(s). For example, SR-18 describes the responsibility for detecting all other
aircraft and other objects in the airspace under all DVE conditions. The decision-making strategy
might therefore be to use a sensor suite to measure the position and speed of objects and aircraft
in the airspace. Although this decision-making strategy is currently too abstract to perform a
detailed system design with, this level of abstraction is useful at this stage in architecture
development because it provides just enough detail to consider refinements to the control
actions and determine the process model parts and feedback that are necessary. At later stages
in the architecture development process, this decision-making strategy can then be further
refined to include a sufficient level of detail to implement it. Examples of decision-making
strategies can be found in the third column of Table 8.

Once the decision-making strategy is defined, refined control actions and the process model parts
required to support decision-making can be defined. The decision-making strategy can be used
to determine what process model parts might be needed to enable effective decision-making.
So, for example, in SR-22, the Piloting Controller will need to know the current weather
conditions (e.g. wind speed, ambient temperature), the current navigation state of the aircraft
(e.g. current airspeed, current altitude, current position) and the model of system behavior (e.g.
how much roll, pitch and yaw is required to achieve a desired flight path). The refined control
actions can also be defined in a similar manner by considering what the output of the decision-
making strategy might be. For example, in SR-22, since the responsibility is to respond quickly
enough and with appropriate magnitude to effect a change in flight path, the output of that
decision is likely going to be roll, pitch and yaw inputs. Therefore, the original “Actuator
Movements” control action defined at the start of the STPA analysis in Section 4.2 can be refined
to be “Roll, Pitch and Yaw”. Examples of refined control actions and required process model parts
can be found in the fourth and fifth columns of Table 8 respectively.

Since the decision-making strategy, refined control actions and process model parts all represent
design decisions being made, it is also important that this information be recorded along with
the underlying rationale and assumptions to ensure that it these decisions can be more easily
understood and reviewed by a reviewer, assessor or system maintainer. Examples of the
rationale and assumptions can be found in the last column of Table 8.

4.4.3 Defining Sources of Feedback

After defining the decision-making strategy, refined control actions and required process model
parts for each responsibility, it is now possible to collate all the process model parts together so
that the size of the whole process model and all its parts can be visualized together. This
visualization can then be used to identify the source of the feedback that is necessary to update
and maintain each part of the process model. So, for example, for the model of current weather
conditions, since weather conditions should be measured using temperature or wind speed
sensors that are included as part of the aircraft subsystems, the temperature and wind speed
parts of the process model would be updated using feedback of the same name originating from

 56

the aircraft subsystems. As with the other parts of the system-level behavior information,
because this represents a design decision being made about the system, this information should
be recorded along with the underlying rationale and assumptions. Table 9 shows how feedback
information should be recorded, using the Current Navigation State and Current Airspace State
parts of the process model as examples.

Table 9: Feedback Information for Current Navigation State and Current Airspace State

Process Model
Part

Required
Information

Source of
Information

Rationale/Assumptions

Current Aircraft
Navigation State

Current Air Speed

Aircraft subsystems

As with today’s aircraft,
these parameters will
continue to be measured
using sensors on the
airframe

Current Altitude

Current Position

Current Airspace
State

IDs, Positions and
Speeds of other
aircraft and
objects

Aircraft Subsystems

Reports from other
controllers

EMS Operations and
ATC

As with today’s aircraft,
these parameters will either
be measured using current
methods (e.g. radar
contact) or may be
reported via other
communications channels
(e.g. verbal radio
communication) from other
parts of the system

Time of last
feedback
measurement

Aircraft Subsystems
This assumes that
timestamps associated with
sensor data are used

In total, eight process model parts were identified for this case study:

1. Current Aircraft Mission Readiness
2. Current Aircraft System State
3. Current Aircraft Navigation State
4. Expected Safe Departure State
5. Current Weather Conditions
6. Current Airspace State
7. Anticipated Future Airspace State
8. Model of System Behavior

 57

4.4.4 Defining Timing Requirements

Finally, as discussed in Section 3.4, up to this point, the system-level behavior only contains static
information about what is required to carry out the identified responsibilities and the temporal
aspects of carrying out the responsibilities have not been made explicit. Therefore, the last part
of the system-level behavior information is to specify these temporal aspects.

In this case study, before identifying the timing requirements, the identified responsibilities were
divided into two types: Feedback Validation Responsibilities and Non-Feedback-Validation
Responsibilities. Feedback Validation Responsibilities are responsibilities that involve the
validation of feedback prior to using them to update the process model and examples include
validating any inputs from other controllers before using them or accounting for the negative
effects of DVE conditions on feedback sources (e.g. sensors) prior to using that feedback to
update the process model. On the other hand, Non-Feedback-Validation Responsibilities are all
other responsibilities that do not involve the validation of feedback and examples include
accounting for the intent of other aircraft when selecting actuator movements and selecting
actuator movements quickly and with appropriate magnitude to execute the desired flight path.
The reason for dividing the responsibilities into these two groups is that the timing requirements
for feedback validation responsibilities might be different depending on the type of feedback
whereas non-feedback-validation responsibilities do not have this dependency. As such, for
Feedback Validation Responsibilities, timing requirements are defined for each pair of
responsibilities and process model parts whereas Non-Feedback-Validation Responsibilities are
simply defined for each responsibility.

To define timing requirements, the frequency and speed with which the responsibility must be
carried out should be considered by answering two key questions:

1. How often does this constraint need to be enforced? (Frequency)
2. How quickly does a decision about this responsibility need to be made? (Speed)

Similar to the other parts of the system-level behavior information, since these timing
requirements represent design decisions being made, they should also be recorded along with
the underlying assumptions and rationale.

Table 10 shows how timing requirements are defined for Non-Feedback-Validation
Responsibilities by answering the 2 questions above using SR-18 (associated with SLR-19) and SR-
22 (associated with SLR-23) as examples.

 58

Table 10: Example Timing Requirements for Non-Feedback-Validation Responsibilities

Resp. ID Responsibility Timing Requirements Rationale/Assumptions

SR-18 Detect all objects and
other aircraft in the
environment under all
DVE conditions at all
times [SLR-19]

Based on sensor performance
characteristics and time needed
after detections are made to plan
and execute a flight trajectory, it
is necessary to update the
process model of the current
state of the airspace at a rate of
<TBD> Hz. This defines how often
this responsibility has to be
carried out.

Based on this update rate, sensor
data and any other inputs must
be integrated into a coherent
picture of the current state of the
airspace within <TBD> seconds.
This defines how quickly a
decision has to be made for this
responsibility

This assumes that <TBD>
seconds are required after
detections are made to plan
and execute a trajectory
based on those detections.

SR-22 Respond quickly
enough and with
appropriate
magnitude to select
and effect the desired
change in flight path
under the given
environmental
conditions

Based on worst case detection
ranges and the dynamics and
handling characteristics of the
aircraft, a change in flight path
must be decided and executed
within <TBD> seconds

This assumes aircraft
dynamics and handling
characteristics are <TBD>
and the worst case
detection ranges are <TBD>
as defined in <TBD>
document

By contrast, Feedback Validation Responsibilities are defined in a matrix consisting of the process
model parts written in the rows and the responsibilities written in the columns. Each cell in this
matrix therefore defines the timing requirements for a given responsibility for a particular
process model part.

Table 11 shows how timing requirements are defined for two Feedback Validation
Responsibilities (SR-2 and SR-3) for two process model parts (Current Aircraft Navigation State
and Current Weather Conditions).

 59

SR-2: Account for prevailing DVE conditions and their possible effect on feedback sources when
making use of feedback information [SLR-2]

SR-3: Validate the inputs or feedback received from other controllers before using that input or
feedback to update process models [SLR-3]

Table 11: Example Timing Requirements for Feedback Validation Responsibilities

Process Model
Part

Feedback Responsibilities Rationale/Assumptions

SR-2 SR-3

Current Aircraft
Navigation State

Since navigation state
must be updated every
<TBD> seconds, then all
navigation-related
feedback must be
evaluated every <TBD>
seconds as well.

In addition, the decision
as to whether prevailing
DVE conditions might
have negative impact
must be made within
<TBD> seconds

When an external input
regarding the aircraft’s
navigation state is
received, it must be
validated within <TBD>
seconds to ensure that
navigation state update
rate of <TBD> seconds is
maintained.

External inputs regarding
the aircraft’s navigation
state are expected to be
received at a very
infrequent rate.

The required navigation
state update rate was
determined based on
<TBD>.

The expectation that the
rate of receipt of external
input for the aircraft
navigation state is
infrequent assumes that
the only external input
the Piloting Controller
might receive is verbal
input from another
aircraft or a controller
performing a function
similar to that of Air
Traffic Control

Current Weather
Conditions

Since weather conditions
must be updated every
<TBD> seconds, then all
weather-related
feedback must be
evaluated every <TBD>
seconds as well.

External weather inputs
are expected to be
received every <TBD> sec
and must be processed at
the same <TBD> rate to
keep weather conditions
updated every <TBD>
seconds

This assumes external
weather inputs
generated by <TBD>
weather reporting
systems are received at
the aircraft every <TBD>
seconds

It is worth noting that because these timing requirements require decisions in other parts of the
system-level behavior information to have been made (e.g. choice of sensors), some information
described in the timing requirements in Table 10, Table 11 and Appendix D are written with
“<TBD>” used as a placeholder. Eventually, the “<TBD>” placeholders should be replaced with
the required information or numerical values once the necessary decisions have been made.

Once these timing requirements have been defined, this concludes the definition of system-level
behavior.

 60

Intent Specification Level 2: System Engineering View
4.5 Step 4, Part 1: Creating and Assessing Architecture Options for the Overall

System

As described in Section 3.5, the first part of the 2-part architecture creation process involves
creating and assessing architecture options for the overall system (i.e. the FOS). First, an overview
of the architecture options is provided in Section 4.5.1. Then, the assignments for each
architecture option are shown and each architecture is analyzed individually in Sections 4.5.2 to
4.5.5. Finally, in Section 4.5.6, the two architecture options are compared and the benefits and
tradeoffs between them are discussed to conclude part 1 of the architecture creation process.

4.5.1 Overview of Architecture Options
In this section, two architecture options will be presented for the FOS:

• Option 1: The Existing Flight Operations System (FOS)

• Option 2: The Enhanced FOS

Option 1 represents the simplest system for executing a mission where Maintenance personnel
maintain the aircraft, EMS Operations and ATC assist with planning the mission and ensuring the
aircraft has access to the airspace and the piloting controller is primarily responsible for all
aspects of executing the mission and safely flying the aircraft. A key aspect of this architecture
option is that the piloting controller detects and updates the current and future state of the
airspace using only a-priori information from maps and other databases available to emergency
services personnel and assumes limited ATC support (e.g. in uncontrolled airspace).

By contrast, architecture option 2 is a modified version of option 1 where EMS Operations and
ATC can assist with maintaining and updating the current and future state of the airspace in which
the mission is being executed. For example, EMS Operations and ATC could take advantage of
data or verbal reports from other flight crews or other emergency responders who might also be
responding to the scene of an emergency to assist the Piloting Controller in maintaining and
updating a shared understanding of the locations of hazards such as cell towers, terrain features
and other objects and hazards. As such, the Piloting Controller’s ability to maintain an updated
model of the current and future state of the airspace is enhanced because EMS Operations and
ATC can assist the Piloting Controller in maintaining an updated model of the current and future
state of the airspace by incorporating additional information that the Piloting Controller would
not otherwise have access to.

For all the responsibility and process model assignments, the names of the controllers they are
assigned to will be abbreviated as follows:

• EMSATC: EMS Operations and ATC

• MP: Maintenance Personnel

• PC: Piloting Controller

• AS: Aircraft Subsystems

 61

4.5.2 Architecture Option 1: The Conventional Flight Operations System

As described in the overview, this architecture option represents an architecture for the FOS
where the Piloting Controller is primarily responsible for flying the aircraft and executing the
mission. As a result, most of the process model parts and responsibilities are assigned to the
Piloting Controller and only a few are shared with other controllers in the system. The assignment
of process model parts will be shown first followed by the assignment of non-feedback-validation
responsibilities and finally the assignment of feedback validation responsibilities. While only
examples of the responsibility assignments are shown in this section, full details for this
architecture option can be found in Appendix E.

Assignment of Process Model Parts
The assignments for each of the eight process model parts identified in the system-level behavior
information are shown in Table 12 along with the underlying rationale and assumptions for each
assignment.

Table 12: Assignments of Process Model Parts for Part 1 Architecture Option 1

Process Model
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

Current Aircraft
Mission
Readiness

 X X

Since maintenance personnel will prepare and
maintain the aircraft on behalf of the piloting
controller, this process model is shared between
them

Current Aircraft
System State

 X X

Since the aircraft subsystems assist the piloting
controller in monitoring the state of the aircraft
subsystems (e.g. engine status, hydraulic system
status), the aircraft system state is shared between
the piloting controller and aircraft subsystems

Current Aircraft
Navigation State X X

Since EMS Operations and ATC is likely monitoring the
progress of the mission, the aircraft navigation state
will be shared with it and the Piloting Controller.

Expected Safe
Departure State

X X X

For any mission, EMS Operations and ATC establishes
the mission plan and the maintenance personnel will
determine the maintenance state of the aircraft when
it will be needed for the mission. All of this
information will also be needed by the piloting
controller to perform pre-flight and departure checks.
As a result, this information is shared by all three
controllers

 62

Process Model
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

Current
Weather
Conditions

 X
Since these process model parts are used and
updated constantly in real-time during a flight, the
piloting controller must be assigned all of them. In
addition, it is assumed in this architecture option that
no other controller is equipped to assist the piloting
controller in maintaining these process model parts

Current Airspace
State

 X

Anticipated
Future Airspace
State

 X

Model of
System Behavior

X X X

Not only does EMS Operations and ATC set some of
the parameters based on aircraft acquired and other
factors, EMS Operations and ATC must also use some
of the parts of this process model part to plan the
mission. The aircraft subsystems and piloting
controller must also know about some of these parts
of the process model to control the aircraft and
execute a mission

For this architecture option, all the process model parts are assigned to the Piloting Controller
because they are primarily responsible for flying the aircraft and will therefore need all of the
process model parts at some point during the flight to carry out all the necessary responsibilities.
In addition, while most of the process model parts are only assigned to the Piloting Controller
because they need to be carried out continuously during flight, some process model parts are
shared with other controllers in the FOS. For example, the Current Aircraft Mission Readiness
process model part is shared with the maintenance personnel because the maintenance
personnel need to know the state of the aircraft to ensure it is ready for a mission but the Piloting
Controller also needs to have this process model part so that it knows when the aircraft is ready
to depart on the mission. Similarly, the expected safe departure state of the aircraft is shared
with EMS Operations and ATC who plan the mission and manage the airspace, the Maintenance
personnel who need to know how the aircraft should be configured for the mission and the
Piloting Controller who needs to know what state their aircraft should be in before departing.

Assignment of Non-Feedback-Validation Responsibilities

As described in Section 4.4.4, the non-feedback-validation responsibilities are a subset of the
responsibilities identified for the FOS that do not describe constraints on how feedback should
be validated before it is used to update the process model parts. As might be expected, since the
Piloting Controller is primarily responsible for flying the aircraft in this architecture option, most
of the responsibilities related to safe flight are assigned only to the Piloting Controller and some

 63

examples are shown in Table 13. This is because only the Piloting Controller has direct access to
the required feedback (e.g. sensor and detection data) defined in the system-level behavior to
be able to carry out these responsibilities at the required speed and frequency defined in the
timing requirements of the system-level behavior.

Table 13: Flight-Related Non-Feedback-Validation Responsibilities Assigned Only to the PC in Part 1 Architecture Option 1

Resp.
ID

Responsibility
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

SR-4 Confirm that all aspects
of the aircraft state
match the expected safe
departure state before
providing actuator
movements to depart
[SLR-4]

 X

Since the piloting controller is
primarily responsible for controlling
the aircraft and executing the
mission, this related responsibility
for making final confirmation that
the aircraft is in a safe departure
state before departing should also
be assigned to the piloting controller

SR-15 Determine if the state of
the airspace changes
between the time that it
was checked and the
commencement of a
maneuver [SLR-16]

 X

Since the piloting controller is
primarily responsible for controlling
the aircraft and this responsibility
relates to how to maintain safe
control of the aircraft, it is assigned
to the piloting controller

SR-16 Account for the current
and future movements of
other aircraft in the
vicinity when selecting
actuator movements
[SLR-17]

 X

All of these responsibilities relate to
selecting appropriate flight paths
and actuator movements, all of
which are within the scope of the
piloting controller’s responsibility
for maintaining safe control over the
aircraft. As such, these
responsibilities are all assigned to
the piloting controller

SR-22 Respond quickly enough
and with appropriate
magnitude to select and
effect the desired change
in flight path under the
given environmental
conditions [SLR-23, SLR-
25]

 X

SR-24 Select a viable flight path
that avoids all possible
violations of minimum
separation [SLR-26]

 X

 64

By contrast, some responsibilities are either shared between the Piloting Controller and other
controllers in the FOS or not assigned to the piloting controller at all. Examples of these
assignments for this architecture option are shown in Table 14.

Table 14: Part 1 Architecture Option 1 Assignment of Other Non-Feedback-Validation Responsibilities

Resp.
ID

Responsibility
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

SR-6

Confirm that data
about the expected
safe departure state of
the aircraft has been
fully specified and
received [SLR-6, SLR-9]

X X

Since the expected safe departure state
is dependent on the needs of a specific
mission, EMS Operations and ATC must
be assigned responsibility for planning
the mission. However, the piloting
controller could also confirm that the
information it receives is complete

SR-7

Ensure that all relevant
personnel are aware of
any changes to the
expected safe
departure state of the
aircraft [SLR-7]

X

Assuming that changes are likely to
either come from EMS Operations and
ATC or need to be approved by EMS
Operations and ATC, then EMS
Operations and ATC will be informed of
any changes that are needed and
therefore is in the best position to
disseminate any changes should
assigned to EMS Operations and ATC

SR-11

Ensure that only
authorized actuator
movements are
executed [SLR-11]

 X

Since the execution of actuator
movements to move actuators is
performed by the aircraft subsystems,
the responsibility for only executing
authorized actuator movements is
assigned to the aircraft subsystems

SR-18

Detect all objects and
other aircraft in the
environment under all
DVE conditions at all
times [SLR-19]

 X X

Under DVE conditions, the piloting
controller’s direct observations will
need to be augmented by a sensor
suite that is part of the aircraft
subsystems

Some responsibilities such as SR-7 and SR-11 are not assigned to the Piloting Controller at all
because they describe constraints that are more easily enforced by another controller in the FOS

 65

instead of the Piloting Controller. For example, SR-11 is only assigned to the aircraft subsystems
because the aircraft subsystems interact directly with the physical actuators and hardware on
the aircraft and the piloting controller does not. On the other hand, some responsibilities such as
SR-6 and SR-18 are shared because both the Piloting Controller as well as the other controller can
play a role in carrying out that responsibility For example, SR-18 is assigned to both the piloting
controller and aircraft subsystems in this architecture option because the aircraft subsystems
contain the sensors which perform the data collection and some basic interpretation of that
sensor data to produce detections and the piloting controller integrates all the individual
detections and resolves any conflicting feedback to produce a single coherent set of detections.

Assignment of Feedback Validation Responsibilities

Finally, the feedback validation responsibilities also need to be assigned to the controllers in the
FOS. As described in Section 4.4.4, the feedback validation responsibilities are the subset of the
responsibilities identified for the FOS that describe constraints on how feedback should be
validated before it is used to update the process model parts. As such, for these responsibilities,
an assignment is made for each pair of process model part and responsibility. So, for example, a
separate assignment is defined for SR-1 for each of the eight process model parts.

Similar to the non-feedback-validation responsibilities, since the piloting controller is primarily
responsible for integrating the various sources of feedback to fly the aircraft safely, all of the
feedback responsibilities for almost every process model part is assigned to the piloting controller
in this architecture option. In some cases, however, no assignment is made because the
responsibility is not expected to be applicable for that process model part. For example, although
it is necessary to account for the effects of DVE when making use of feedback about the current
state of the airspace, it is not necessary to do so when making use of feedback about the expected
safe departure state because the type of feedback that will be received is not expected to be
affected by DVE. In instances like these, “N/A” is used to indicate that no assignment is made and
the rationale for why the responsibility is not applicable for that process model part is described
in the rationale/assumptions column. Some examples of feedback validation responsibility
assignments for this architecture option are shown in Table 15.

 66

Table 15: Assignment of Feedback Validation Responsibilities for Part 1 Architecture Option 1

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-2

Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

Aircraft Mission Readiness N/A

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

Since this responsibility
depends on prevailing
weather conditions during
the flight, this responsibility
must be carried repeatedly
and in real-time. As such,
the piloting controller is the
only controller equipped to
do this.

This assumes that feedback
for aircraft mission
readiness, expected safe
departure state and model
of system behavior will not
be affected by DVE and
hence no assignment is
made for these parts

SR-3

Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

EMSATC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Similar to SR-1, the piloting
controller is in the best
position to decide when
feedback is too old since
these process model parts
are used to fly the aircraft or
select a flight path.

This includes the model of
system behavior which
could have its parameters
updated based on input that
needs to be validated

 67

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-9

Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

Aircraft Mission Readiness PC

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure State N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

Similar to SR-2, these
responsibilities have to be
performed repeatedly
during flight as described in
the timing requirements
section. As such, the piloting
controller is the only
controller in the system that
is equipped to do this.

These assignments assume
that continuous feedback is
not expected for the
expected safe departure
state and model of system
and hence this responsibility
does not apply for those
process model parts.

SR-13

Distinguish useful
feedback from
noise in feedback
data [SLR-13]

Aircraft Mission Readiness PC

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure State N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

SR-14

Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

EMSATC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Similar to SR-2, these
responsibilities have to be
performed repeatedly
during flight as described in
the timing requirements
section. As such, the piloting
controller is the only
controller in the system that
is equipped to do this.

These assignments assume
that continuous feedback is
not expected for the
expected safe departure
state and model of system
and hence this responsibility
does not apply for those
process model parts.

 68

Architecture Option 1 Control Structure
The resulting control structure for this architecture option is shown in Figure 19.

Figure 19: Part 1 Architecture Option 1 Control Structure

 69

4.5.3 Architecture Analysis of Option 1

There are two key observations that can be made about this architecture option that could
inform architectural decision making. The first is that this architecture option imposes high
workload and capability requirements on the Piloting Controller. Since the Piloting Controller
carries out most of the responsibilities related to safe flight in this architecture option, most of
the additional DVE-related requirements are assigned to it. As a result, the workload and
capability requirements imposed on the Piloting Controller are significantly increased compared
to flying in non-DVE conditions because it must now meet these new requirements. Examples of
loss scenarios and the associated responsibilities that are assigned to the Piloting Controller that
illustrate the increased workload or capability requirements are shown in Table 16.

Table 16: Scenarios and Responsibilities Showing Increased Workload or Capability Requirements

Scenario
ID

Scenario Resp.
ID

Responsibility

CS-1.1.1-
1.1.2

The piloting controller believes it is receiving
conflicting feedback because DVE conditions have
degraded the accuracy of or obscured some (but
not all) feedback sources. The piloting controller
therefore chooses to ignore the conflicting
feedback, believing that it is a false positive or
erroneous. The piloting controller is especially
susceptible to this if the majority of sources appear
to agree that no aircraft is present and fewer
sources appear to show otherwise. As a result, the
piloting controller updates its process model based
only on what it wrongly believes to be the correct
feedback. [SLR-2]

SR-2 Account for prevailing
DVE conditions and their
possible effect on
feedback sources when
making use of feedback
information [SLR-2]

CS-1.2.1-
1.1

DVE conditions cause more noise in sensor data
than is normally present, making the useful
feedback more difficult for the piloting controller
to distinguish from the noise or increasing the
likelihood that the piloting controller wrongly
decides that the sensor data shows no useful
feedback/detections. [SLR-13, SLR-19]

SR-13 Distinguish useful
detections/feedback
from the noise that might
be present in feedback
data under all DVE
conditions at all times
[SLR-13]

CS-1.5.4-1 The piloting controller may have the wrong process
model of the environment conditions and selects
actuator movements that are insufficient to effect
the desired change in flight path [SLR-25]

SR-22 Respond quickly enough
and with appropriate
magnitude to select and
effect the desired change
in flight path under the
given environmental
conditions [SLR-23, SLR-
25]

 70

SR-2 is an example of an additional responsibility that is imposed on the Piloting Controller
because it is flying the aircraft under DVE conditions. If DVE conditions were not present, the
Piloting Controller would not need to account for DVE conditions when making use of feedback.
By contrast, SR-13 and SR-22 are examples of existing responsibilities that are made more difficult
to carry out due to the presence of DVE conditions. Even in the absence of DVE conditions, the
Piloting Controller would still be required to distinguish useful feedback from noise and select
actuator movements that are sufficient and appropriate to effect the desired change in the flight
path. However, due to the presence of DVE conditions, these requirements are harder to satisfy
because DVE conditions might decrease the signal to noise ratio for some sensors and require
the Piloting Controller to consider a larger number of factors in a shorter amount of time when
selecting actuator movements. As such, these responsibilities illustrate how the presence of DVE
conditions increases the workload and capability requirements of the Piloting Controller by either
making existing requirements harder to satisfy or imposing new additional requirements that the
Piloting Controller must satisfy.

The second key observation is that this architecture option imposes stringent performance and
feedback requirements that may be difficult or impossible to meet. As a result, there is an
increased risk that architectural decisions may need to be changed if it is later found during
detailed system design that the system requirements cannot be met. Since most of the feedback
validation responsibilities are assigned to the Piloting Controller and the Piloting Controller is
reliant on sensor data to detect objects and other aircraft in the airspace, the performance of the
Aircraft Subsystems and the ability of the Piloting Controller to use that feedback to maintain an
updated process model of the state of the airspace is extremely critical to ensuring the safe
operation of the FOS. If the Piloting Controller or the feedback that it relies on from the Aircraft
Subsystems is unable to meet the stringent requirements, the Piloting Controller will be
vulnerable to unsafe behavior during flight in DVE conditions. Consequently, if the stringent
performance and feedback requirements are difficult or impossible to meet, not only could the
safety of this architecture be compromised but there is also an increased risk that architectural
decisions may need to be changed to make them achievable. Table 17 contains three scenarios
along with the associated responsibilities that are assigned to the Piloting Controller that
illustrate examples of the performance and quality requirements that must be met.

 71

Table 17: Scenarios Suggesting Stringent Performance and Quality Requirements

Scenario ID Scenario Resp.
ID

Responsibility

CS-1.2.1-1.1 DVE conditions cause more noise in
sensor data than is normally present,
making the useful feedback more
difficult for the piloting controller to
distinguish from the noise or
increasing the likelihood that the
piloting controller wrongly decides
that the sensor data shows no useful
feedback/detections. [SLR-13, SLR-
19]

SR-13 Distinguish useful feedback from
noise in feedback data [SLR-13]

CS-1.2.1-1.3 DVE causes delays in the piloting
controller interpreting the sensor
data and using the sensor data to
update its process model. As a result,
the piloting controller has the wrong
process model of the airspace
around the aircraft until it is able to
update its process model. [SLR-14]

SR-14 Process sensor data and use it to
update its process model sufficiently
quickly [SLR-14]

CS-1.2.2-1 DVE degrades or obscures sensors,
leading to wrong, incomplete or
missing feedback about the
environment, DVE conditions or the
state of the aircraft. This could also
be caused by a sensor suite that was
not designed to operate in a
particular set of DVE conditions [SLR-
2, SLR-15, SLR-19]

SR-2 Account for prevailing DVE conditions
and their possible effect on feedback
sources when making use of
feedback information [SLR-2]

SR-9 Ensure that all data needed to
determine the state of the aircraft,
state of the airspace and the
environmental conditions around the
aircraft under all DVE conditions is
available at all times [SLR-9, SLR-15]

SR-18 Detect all objects and other
aircraft in the environment under
all DVE conditions at all times
[SLR-19]

By combining the responsibilities listed in Table 17 with the system-level behavior defined for
each responsibility, the requirements imposed on each component of the system to enable the
Piloting Controller to carry out these responsibilities are illustrated in Figure 20.

 72

Figure 20: Performance Requirements for Each Part of the System

As shown in the “Piloting Controller” box in Figure 20, the Piloting Controller is responsible for
carrying out responsibilities SR-2, SR-9, SR-13, SR-14 and SR-18 as assigned in this architecture
option. Using the system-level behavior information defined for these responsibilities, three key
aspects must be implemented in the system design. Firstly, to carry out these responsibilities
effectively, the Piloting Controller must receive feedback about the current weather conditions
and the positions, IDs and speeds of other aircraft and objects in the airspace so that it can keep
its process model parts updated. Secondly, the Piloting Controller should receive all that feedback
from the Aircraft Subsystems. Finally, that feedback needs to meet the expected performance
and quality requirements defined in the system-level behavior in order for the Piloting Controller
to receive adequate feedback to carry out its assigned responsibilities effectively. As listed in the
“Aircraft Subsystems” box in Figure 20, examples of the performance and quality requirements
that the Aircraft Subsystems must meet to provide adequate feedback to the Piloting Controller
include:

• Detecting all the weather conditions defined in SR-2

• Providing updated sensor data at the required update frequency as defined in SR-9 and
with latencies/delays no greater than the thresholds defined in SR-14

• Achieve the minimum signal strength and signal to noise ratios defined in SR-13

• Achieve the sensor performance (e.g. resolution, range) as defined in SR-18

 73

This therefore shows that, for the four scenarios shown in Table 17 to be adequately mitigated
or prevented, the Piloting Controller and Aircraft Subsystems need to meet all the performance
and feedback requirements shown in the above diagram.

In this architecture option, however, it may be difficult for the Piloting Controller and Aircraft
Subsystems to fully meet these requirements under all conditions since the Piloting Controller is
solely responsible for carrying out the five system-level requirements described above using only
the sensors on the aircraft as its primary feedback source. For example, if not carefully designed,
the Aircraft Subsystems might not be able to sense power lines reliably in DVE conditions because
they may be too small to be detected by candidate sensors under DVE conditions. In addition, it
may be very expensive or difficult to integrate sensors that could perform all the required
detections. As such, by relying solely on the Aircraft Subsystems and Piloting Controller to detect
and maintain an updated state of the airspace, this architecture places stringent requirements
that must be met by the Aircraft Subsystems and Piloting Controller. If it is discovered during
detailed system design that the stringent requirements cannot be met, however, architectural
decisions may need to be changed.

4.5.4 Architecture Option 2: The Enhanced Flight Operations System

An alternative architecture to that shown in option 1 is an architecture that provides the Piloting
Controller with access to additional information from other sources that it can use to maintain
its process model of the current and future state of the airspace. This would allow the Piloting
Controller to avoid being entirely dependent on real-time sensing of the environment. One
possible way to do this is to create a common situational database that can be updated based on
reports from other first responders or other air crews responding to the emergency scene. This
type of architecture will therefore be analyzed in this architecture option.

For compactness, only the process model parts and responsibilities that have different
assignments than in architecture option 1 will be shown. Any process model part or responsibility
that has the same assignment in both architecture options will not be shown again. For all the
responsibility and process model assignments, the names of the controllers they are assigned to
will be abbreviated as follows:

• EMSATC: EMS Operations and ATC

• MP: Maintenance Personnel

• PC: Piloting Controller

• AS: Aircraft Subsystems

 74

Assignment of Process Model Parts

In this architecture option, only two of the process model parts have different assignments
compared to option 1. For the Current Airspace State and Anticipated Future Airspace State,
instead of only being assigned to the Piloting Controller, these two process model parts are now
shared with EMS Operations and ATC as shown in Table 18. These process model parts are shared
because EMS Operations and ATC assist the Piloting Controller in maintaining and updating these
parts of the process model in this architecture option and thus need these process model parts
assigned to them.

Table 18: Modified Assignments of Process Model Parts in Part 1 Architecture Option 2

Process Model
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

Current Airspace
State

X X In this option, EMS operations and ATC are equipped
to assist the piloting controller in maintaining the
current and future state of the airspace in which the
mission will be taking place. As a result, they share
these process model parts.

Anticipated
Future Airspace
State

X X

Assignment of Non-Feedback-Validation Responsibilities
For the assignment of non-feedback-validation responsibilities, two responsibilities have
different assignments in this architecture option compared to architecture option 1 and they are
shown in Table 19.

For SR-4, the Maintenance personnel are now assigned to help the Piloting Controller to confirm
that the aircraft state matches the expected safe departure state instead of requiring the Piloting
Controller to perform this responsibility on their own.

For SR-18, EMS Operations and ATC now share this responsibility and can assist the Piloting
Controller in identifying other aircraft or objects in the airspace and anticipating what the future
state of the airspace might be. For example, EMS Operations and ATC might have access to radar
data of the airspace near the emergency scene or video footage of the emergency scene that the
Piloting Controller would not have access to. As a result, EMS Operations and ATC can provide
updates to the shared process model of the current or anticipated future airspace state for the
Piloting Controller.

 75

Table 19: Modified Assignments of Non-Feedback-Validation Responsibilities for Part 1 Architecture Option 2

Resp.
ID

Responsibility
Assigned to

Rationale/Assumptions
EMSATC MP PC AS

SR-4

Confirm that all aspects
of the aircraft state
match the expected
safe departure state
before providing
actuator movements to
depart [SLR-4]

 X X

Instead of the Piloting Controller
being the only controller assigned
this responsibility, the maintenance
personnel can assist the piloting
controller in confirming that the
aircraft is configured and that the
necessary maintenance is performed

SR-18

Detect all objects and
other aircraft in the
environment under all
DVE conditions at all
times [SLR-19]

X X

Since the EMSATC personnel are
assisting in providing the Piloting
Controller with information about
the current and anticipated future
state of the airspace, then the
EMSATC personnel share this
responsibility with the PC

Assignment of Feedback Validation Responsibilities

Similarly, for the assignment of feedback validation responsibilities, only two responsibilities
have different assignments in this architecture option compared to architecture option 1 and
they are shown in Table 20.

For SR-1, when determining if some feedback is too old, EMS Operations and ATC shares that
responsibility because they are better positioned to assess and validate some types of feedback.
For example, when deciding whether feedback about hazards in the vicinity of the emergency
scene should be used to update the process model of the state of the airspace, EMS Operations
and ATC may be better able to decide when that feedback should be considered out of date. For
SR-9, EMS Operations and ATC may be better equipped than the Piloting Controller to detect
some objects and aircraft in the airspace and can relay that information to the Piloting Controller.
For these reasons, EMS Operations and ATC can share these responsibilities and assist the
Piloting Controller in updating their process model of the current and anticipated future airspace
state by using and validating additional sources of feedback.

 76

Table 20: Modified Assignments of Feedback Validation Responsibilities for Part 1 Architecture Option 2

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-1 Determine if
feedback received
about the
aircraft’s mission
readiness, state of
the aircraft and
the airspace is too
old [SLR-1]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

PC

Current Weather Conditions PC

Current Airspace State PC
EMSATC

Anticipated Future Airspace
State

PC
EMSATC

Model of System Behavior EMSATC

For all parts except current
and anticipated future
airspace state, the
rationale is the same as in
option 1.

For current airspace state
and anticipated future
airspace state, EMS
Operations and ATC is
equipped to assist the
Piloting Controller in
determining if feedback
about the current and
future airspace state is too
old. This is needed because
EMS Operations and ATC
has access to other data
sources that the piloting
controller does not have
that can help when direct
observation is hindered by
DVE conditions

SR-9 Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

N/A

Current Weather Conditions PC

Current Airspace State EMSATC
PC

Anticipated Future Airspace
State

EMSATC
PC

Model of System Behavior N/A

Similar to SR-1, EMS
Operations and ATC can
also help the Piloting
Controller to ensure that
some of the data sources
necessary to maintain the
models of the current and
future airspace state are
always available.

 77

Architecture Option 2 Control Structure
The resulting control structure for this architecture option is shown in Figure 21.

Figure 21: Part 1 Architecture Option 2 Control Structure

 78

4.5.5 Architecture Analysis of Option 2
For this architecture option, several of the scenarios identified in the STPA analysis conducted in
Section 3 need to be updated to reflect the responsibilities and process model parts that are now
shared in this architecture option. Table 21 shows two example loss scenarios that need to be
updated.

Table 21: Examples of Scenarios to be Updated for Architecture Option 2

Scenario ID Scenario

CS-1.2.1-1.2.2 The piloting controller believes it is receiving conflicting feedback because DVE
conditions have degraded the accuracy of or obscured some (but not all)
feedback sources. The piloting controller therefore chooses to ignore the
conflicting feedback, believing it is a false positive or erroneous

CS-1.2.1-1.4 If another aircraft or controller external to the aircraft providing airspace
guidance is in contact with the aircraft and wrongly believes that the airspace
nearby the aircraft is clear (for any of the same reasons above) or if a-priori
data indicates that no ground obstacles are present, the piloting controller
may assume that the external controller/a-priori data is providing accurate
information and disregard the onboard sensors in favor of the guidance
provided by the external controller. If the piloting controller is human, this
may also contribute to confirmation bias, causing the piloting controller not
to look for any other evidence that another aircraft or object is nearby. As a
result, the piloting controller wrongly updates its process model of the
airspace nearby the aircraft [SLR-3, SLR-15]

For CS-1.2.1-1.2.2, now that the process model of the current airspace state is shared between
EMS Operations and ATC and the Piloting Controller, there are more ways that this scenario could
occur because the shared process model itself can be an additional source of potential conflicts.
Not only could the Piloting Controller receive conflicting feedback due to DVE conditions
degrading the feedback sources but the shared process model itself could now also conflict with
the feedback. This scenario therefore needs to be updated to include the shared process model
between EMS Operations and ATC and the Piloting Controller as a potential source of conflicting
feedback that the Piloting Controller will need to resolve.

Similarly, for CS-1.2.1-1.4, the shared process model of the current airspace state is now an
additional contributing factor that could lead a pilot to disregard the onboard sensors. In addition
to another controller (e.g. pilot in another aircraft) providing input, the shared process model
essentially serves as another input. Based on either of those inputs, the Piloting Controller could
decide to disregard the onboard sensors because they assumed that those inputs are more
accurate than the sensor data being received. This scenario therefore needs to be updated
because the shared process model between EMS Operations and ATC and the Piloting Controller
could lead the Piloting Controller to wrongly ignore real-time sensor feedback.

 79

These updates to the loss scenarios therefore demonstrate how sharing the process model of the
current airspace state between EMS Operations and ATC and the Piloting Controller makes these
scenarios more difficult to prevent because sharing the current airspace state process model
introduces additional ways in which the Piloting Controller could receive conflicting feedback or
be led to wrongly ignore feedback. As a result, it will be even more important to ensure that
sufficient constraints are placed on the Piloting Controller’s behavior to prevent these updated
loss scenarios from occurring.

In addition to updating existing scenarios to account for additional causal factors introduced by
this architecture option, a control action was also added from EMS Operations and ATC to the
Piloting Controller as shown in the control structure (Figure 21). This control action was added
because EMS Operations and ATC is sharing situational information with the Piloting Controller
to help it keep its process model of the current and future airspace state updated. It is therefore
necessary to also perform an STPA analysis on this new control action to determine how the
addition of this control action could result in unsafe system behavior. Although a full analysis will
not be performed in this case study, some example UCAs and scenarios are shown below to
illustrate how the STPA analysis might be done.

Table 22 shows some example UCAs that are associated with the “Updated Situational
Information” control action.

Table 22: UCAs for Updated Situational Information Control Action

Control
Action

Providing Not Providing Provide too
early/too late

Applied too
long/Stopped
too soon

Updated
Situational
Information

UCA-2-1: EMS
Operations and ATC
provides updated
situational information
when the situational
information does not
accurately represent
the state of the
airspace [H-1, H-3, H-5]

UCA-2-2: EMS
Operations and ATC
provides updated
situational information
that is difficult to
read/interpret [H-1, H-
3, H-5]

UCA-2-5: EMS
Operations and
ATC does not
provide
updated
situational
information
when such
information is
not available to
the PC from an
alternative
source

UCA-2-6: EMS
Operations and
ATC provides
updated
situational
information too
early before an
impending
change is
made/occurs

UCA-2-7: EMS
Operations and
ATC provides
updated
situational
information too
late after an

N/A

 80

UCA-2-3: EMS
Operations and ATC
provides updated
situational information
that is either not self-
consistent or conflicts
with other data
sources

UCA-2-4: EMS
Operations and ATC
provides updated
situational information
for the wrong part of
the airspace

actuator
movement has
been selected
based on
incorrect
situational
information

Loss scenarios can then be generated for each of the UCAs identified. Some example loss
scenarios are as follows:

UCA-2-1: EMS Operations and ATC provide updated situational information when the situational
information does not accurately represent the state of the airspace

CS-2-1-1: EMS Operations and ATC provide updated situational information despite receiving
feedback that indicates that the situational information does not accurately represent the state
of the airspace. This might occur if:

• Although feedback was received that indicates that the situational information is
inaccurate, the inaccurate version is provided before the process model can be updated
with the new information

• Although EMS Operations and ATC recognized that the situational information does not
accurately represent the state of the airspace, EMS Operations and ATC decide that either
it is accurate enough to use or that the inaccurate information is better than no
information and provides that situational information as an update anyway.

• When EMS Operations and ATC receive situational information updates (e.g. from
previous missions, from reconnaissance aircraft), if it has no way to evaluate the accuracy
of that information, the EMS Operations and ATC might assume that the information is
accurate and not recognize that the situational information it is receiving contains
inaccuracies even though the inaccuracies are detectable in the data

 81

CS-2-1-2: EMS Operations and ATC receive feedback that does not indicate that the updated
situational information does not accurately represent the state of the airspace. This might occur
if:

• When inaccuracies are observed by users of the data, those inaccuracies are not reported
back to the EMS Operations and ATC (e.g. due to time constraints if they are observed
during a flight)

• The EMS Operations and ATC might not have the resources/capability to perform an
independent assessment of the situational information it receives and is therefore either
unable to evaluate the accuracy or is forced to assume a level of accuracy

CS-2-1-3: EMS Operations and ATC do not provide updated situational information but updated
situational information is received by the Piloting Controller. This might occur if:

• Although the EMS Operations and ATC correctly recognize that the updated situational
information does not accurately represent the state of the airspace, another aircraft or
controller that also has access to that information does not recognize that and provides
the Piloting Controller with that information. As a result, the Piloting Controller is still
provided with that situational information even though the EMS Operations and ATC do
not provide it

The above results therefore show that even in this short example analysis, the addition of the
control action to provide updates to the situational information from EMS Operations and ATC
to the Piloting Controller introduces 7 new UCAs and, for just the first UCA, 5 new loss scenarios.
If this analysis were completed, the actual number of new UCAs and scenarios introduced by the
new control action would be even higher. This analysis along with the updates to the existing
scenarios therefore shows that the sharing of the process model parts and the addition of the
new control action offers the potential to reduce the workload of the Piloting Controller and
improve the situational information available to it. However, those benefits come at the cost of
additional ways that the system could behave in an unsafe way and more requirements that must
be added to adequately constrain the system behavior to ensure safety.

4.5.6 Comparison of Architecture Options

The two architecture options can now be compared to assess the tradeoffs between architecture
options that would inform a decision on which architecture to select for further system
development. By comparing the assignments of the process model parts and the responsibilities,
two tradeoffs can be observed.

 82

Comparing Assignment of Process Model Parts

The first tradeoff between the architecture options is that although the shared process model
parts might provide the Piloting Controller with access to better process model information, that
information may also serve as an additional source of conflict or wrong decision making that is
avoided in option 1. As shown in Table 23, the main differences in the assignment of process
model parts for the two architecture options are that the Current Airspace State and Anticipated
Future Airspace State process model parts are only assigned to the Piloting Controller in option
1 but are shared between the Piloting Controller and EMS Operations and ATC in option 2.

Table 23: Comparison of Process Model Part Assignments for Part 1 Architectures

Process Model
Option 1

Assigned to
 Option 2

Assigned to

EMSATC MP PC AS EMSATC MP PC AS

Current Aircraft Mission Readiness X X X X

Current Aircraft System State X X X X

Current Aircraft Navigation State X X X X

Expected Safe Departure State X X X X X X

Current Weather Conditions X X

Current Airspace State X X X

Anticipated Future Airspace State X X X

Model of System Behavior X X X X X X

EMSATC – EMS Operations and ATC | MP – Maintenance
PC – Piloting Controller | AS – Aircraft Subsystems

In option 1, since the Piloting Controller does not share the highlighted process model parts with
other controllers, there are fewer opportunities for the information in the process model to lead
to unsafe behavior compared to option 2. However, those process model parts only contain
information that the Piloting Controller has direct access to during flight. By contrast, in option
2, since EMS Operations and ATC shares the two process model parts, EMS Operations and ATC
can update those process model parts with information that the Piloting Controller would
otherwise not have access to. As a result of those process model parts being shared, the Piloting
Controller could then gain access to that information. The Piloting Controller therefore has access
to better information in option 2. However, the tradeoff is that the additional information can
also become a source of conflict or unsafe decision making as described in the analysis of
architecture option 2.

Comparison of Responsibility Assignments

The second tradeoff between the architecture options is that although option 2 has the potential
to reduce the workload of the Piloting Controller, sharing responsibility assignments between the
Piloting Controller and EMS Operations and ATC introduces the potential for unsafe behavior by

 83

EMS Operations and ATC to cause the Piloting Controller itself to make unsafe decisions. This can
be observed by comparing the assignment of SR-18 in the two architectures as shown in Table
24 as well as by comparing the assignment of SR-1 and SR-9 for the current airspace state and
anticipated future airspace state process model parts as shown in Table 25.

Table 24: Comparison of SR-1 for Part 1 Architectures

Resp
ID

Responsibility Option 1
Assigned to

 Option 2
Assigned to

EMSATC MP PC AS EMSATC MP PC AS

SR-18 Detect all objects and other
aircraft in the environment under
all DVE conditions at all times
[SLR-20]

 X X X

Table 25: Comparison of SR-9 and SR-18 for Part 1 Architectures

Resp
ID

Responsibility Option 1
Process Model Parts

 Option 2
Process Model Parts

Current
Airspace

State

Anticipated
Future

Airspace State

 Current
Airspace

State

Anticipated
Future

Airspace State

SR-1 Determine if feedback received
about the aircraft’s mission
readiness, state of the aircraft and
the airspace is too old [SLR-1]

PC PC PC
EMSATC

PC
EMSATC

SR-9 Ensure that all data needed to
determine the state of the
aircraft, state of the airspace and
the environmental conditions
around the aircraft under all DVE
conditions is available at all times
[SLR-9, SLR-15]

PC PC PC
EMSATC

PC
EMSATC

As shown in Table 24 and Table 25, the differences between the responsibility assignments in
options 1 and 2 are primarily that the responsibilities for detecting other aircraft and objects in
the airspace and updating the process model of the current and future airspace state are shared
with EMS Operations and ATC in option 2 whereas the Piloting Controller alone performs those
responsibilities in option 1. As discussed in the analysis of option 1, flying the aircraft in DVE
imposes additional workload on the Piloting Controller because some aspects of maintaining safe
and stable flight in DVE conditions are more difficult to carry out or new tasks must be performed.
By contrast, in option 2, sharing these three responsibilities between EMS Operations and ATC
and Piloting Controller. This has the potential to reduce the workload on the Piloting Controller
because the Piloting Controller is no longer solely responsible for carrying out these
responsibilities. In addition, sharing these responsibilities may also help to reduce the risk of
stringent requirements because EMS Operations and ATC may be able to help to detect some

 84

objects that the Piloting Controller and Aircraft Subsystems might not be able to. For example,
EMS Operations and ATC may be able to determine the location of immobile objects such as
power lines and cell towers more easily than the Piloting Controller and Aircraft Subsystems can
using real-time sensing and detection algorithms

However, this benefit comes at a cost. As discussed in the analysis of option 2, this sharing of
responsibilities introduces an additional interaction between EMS Operations and ATC and the
Piloting Controller that is not present in option 1. As a result of this additional interaction, unsafe
behavior by EMS Operations and ATC can potentially influence the behavior of the Piloting
Controller, leading the Piloting Controller to make unsafe decisions that it might not have made
on its own. For this reason, new UCAs and scenarios are introduced in option 2 compared to
option 1 that could be avoided if these responsibilities were not shared. This therefore shows
that although sharing responsibilities has the potential to reduce the workload of the Piloting
Controller, the cost of gaining this benefit is that more requirements will need to be added to
enforce additional constraints to prevent unsafe system behavior.

Considering these tradeoffs together, Table 26 summarizes the benefits and costs associated
with each architecture option.

Table 26: Summary of Benefits and Costs for Part 1 Architecture Options

 Benefits Costs

Option 1 Feedback is primarily integrated by the
Piloting Controller, reducing the
opportunities for conflicting process
model information

Simpler architecture with less sharing of
process model parts and responsibilities

High workload imposed on the
Piloting Controller

Stringent performance requirements
imposed on Piloting Controller and
feedback mechanisms

Option 2 Better information about the current and
anticipated future airspace state

Potentially reduced workload for the
Piloting Controller

Reduced reliance on the Piloting Controller
to perform all responsibilities necessary to
ensure safe flight in DVE conditions

Introduces additional sources of
conflicting inputs that can lead to
wrong or unsafe decisions

Unsafe behavior of EMS Operations
and ATC can lead to unsafe behavior
by the Piloting Controller

 85

Based on the tradeoffs discussed above and any other inputs that might be needed for decision
making (e.g. cost of each architecture option, budget available, level of technical risk), a system
designer can then make an informed architectural decision about which architecture option
should be chosen. Eventually, a decision will need to be made to proceed with either option 1 or
option 2 for further system development.

For the purposes of this case study, it will be assumed that option 2 is chosen to proceed with
Part 2 of the architecture creation process. Option 2 is chosen for the following reasons:

• The workload and capability requirements imposed on the Piloting Controller is too great
in option 1

• The benefits of sharing some of the responsibilities and process model parts are worth
the costs. This avoids being so heavily reliant on the Piloting Controller to ensure safe
flight and provides the Piloting Controller with better information

4.6 Step 4, Part 2: Creating and Assessing Architecture Options for the Piloting
Controller

With option 2 from Part 1 having been selected as the architecture for the FOS, in Part 2 of the
architecture creation process, the responsibilities and process model parts that were assigned to
the Piloting Controller must now be divided up between the Human Pilot and Automated
Software-Enabled Controller (ASEC) that comprise the Piloting Controller. Except for SR-7, SR-10,
SR-11 and SR-12, the remaining twenty responsibilities and all the process model parts that were
identified as part of the system-level behavior are assigned to or shared with the Piloting
Controller. Therefore, these twenty responsibilities will now be assigned to the human pilot or
the ASEC to create three further architecture options. In this part of the architecture creation
process, because the responsibilities and process model part are assigned to a human or
automated controller, more detailed analyses of each architecture option can be conducted that
more clearly incorporate considerations of human factors and other considerations into the
analysis.

4.6.1 Overview of Architecture Options
The three architecture options for how the responsibilities and process model parts could be
assigned are as follows:

1. Option 1: Human-Piloted Aircraft with ASEC as a Decision Aid
2. Option 2: ASEC Proposes Flight Trajectories for Human Pilot to Execute
3. Option 3: Human Pilot Supervises Automated ASEC’s Control of Flight

As implied by the names of the architecture options, they represent architecture options that use
an increasing level of automation to assist the human pilot in safely flying the aircraft in DVE
conditions to execute a mission. Option 1 is the architecture that relies the least on automation
where the aircraft is still flown primarily by a human pilot and the ASEC serves as a decision aid
to help the human pilot make decisions about flight path and trajectory by providing feedback
such as detected objects and other aircraft in the airspace or prevailing weather conditions.

 86

By contrast, option 3 is the architecture that relies the most on automation to assist the pilot in
flying the aircraft. In this architecture option, the ASEC is assigned many of the core piloting
responsibilities to relieve the pilot of the more mundane and routine aspects of flight. The human
pilot therefore serves more of a supervisory role and can monitor the decisions made by the ASEC
and assist the ASEC in more complex decision making and problem solving tasks.

Option 2, then, is the architecture that uses a moderate level of automation to assist the pilot in
flying the aircraft. Unlike option 1, the ASEC is more involved in selecting appropriate flight
trajectories based on mission requirements, airspace hazards and prevailing weather conditions.
However, unlike option 3, the human pilot is still an operator of the system because they are in
direct control of the aircraft.

4.6.2 Architecture Option 1: Human-Piloted Aircraft with ASEC as a Decision Aid

As described in the overview, this architecture option relies the least on automation and the
human pilot performs most of the tasks necessary to fly the aircraft safely while the ASEC serves
as a decision aid to help them in selecting an appropriate trajectory and flight path. As a result,
most of the process model parts and responsibilities are assigned to the human pilot with some
responsibilities also shared with the ASEC.

Assignment of Process Model Parts

Since all eight process model parts identified in the system-level behavior information were
assigned to the Piloting Controller in part 1 of the architecture creation process, all eight process
model parts must now be assigned to the human pilot or ASEC. These assignments are shown in
Table 27 along with the underlying rationale and assumptions for each assignment.

 87

Table 27: Sample Assignments of Process Model Parts for Part 2 Architecture Option 1

Process Model
Assigned to

Rationale/Assumptions
Pilot ASEC

Current Aircraft
Mission Readiness

X
Much of this information is not provided in a way that is easily
interpreted by automation. A human would be better positioned
to interpret this data quickly

Current Aircraft
System State

X X
Much of this information is generated automatically and can be
easily parsed by automation. However, the pilot is flying the
aircraft and therefore must maintain this part as well. Current Aircraft

Navigation State
X X

Expected Safe
Departure State

X
Assumes that most of this information is more easily parsed by a
human rather than translated for automation

Current Weather
Conditions

X X
Much of this information is generated from sensors and can be
easily parsed by automation. However, the pilot is flying the
aircraft and therefore must maintain this part as well.

Current Airspace
State

X X

Sensor data needed to determine this is more easily parsed by
automation. However, because this data must be integrated with
intent information and coordinated with other aircraft, the
human pilot must maintain this model as well. In addition, the
human pilot needs this information to fly the aircraft

Anticipated
Future Airspace
State

X
The complexity of intent information requires a human to parse
or converse with other controllers and would be difficult to
automate

Model of System
Behavior

X

The parameters in this part of the process model mainly pertain
to data interpretation that would be performed by the human
pilot and therefore only the human pilot needs this process
model part

All the process model parts are assigned to the human pilot because they are flying the aircraft
and will need to use all the process model parts. In addition, since the ASEC serves as a decision
aid, it shares four of the process model parts: Current Aircraft System State, Current Aircraft
Navigation State, Current Weather Conditions and Current Airspace State. These four process
model parts are shared because the ASEC receives data from the aircraft subsystems on
prevailing weather conditions, detections of other objects and aircraft in the airspace, the
position of the aircraft and the state of the subsystems to display to the pilot. Thus, the ASEC also
maintains a copy of these parts of the process model in addition to the human pilot.

 88

Assignment of Non-Feedback-Validation Responsibilities

In this architecture option, since the human pilot is primarily flying the aircraft with the ASEC
serving only as a decision aid, most of the non-feedback-validation responsibilities are assigned
to the pilot because they are responsibilities that are more easily performed by the human pilot
than the ASEC that is only minimally involved in the task of flying the aircraft. Examples of the
responsibilities that are assigned only to the pilot are shown in Table 28.

Table 28: Non-Feedback-Validation Responsibilities Assigned to the Pilot for Part 2 Architecture Option 1

Resp.
ID

Responsibility Assigned to Rationale/Assumptions

Pilot ASEC

SR-4 Confirm that all aspects of the
aircraft state match the expected
safe departure state before
providing departing [SLR-4]

X Expected safe departure state is most
easily obtained by human pilot instead
of ASEC

SR-16 Account for the current and future
movements of other aircraft in the
vicinity when selecting actuator
movements [SLR-17]

X Coordinating with other aircraft and
adapting to work with their
movements is more easily done in
real-time by a human than automation

SR-17 Ensure that aircraft movements are
selected such that sufficient reaction
time is available if intent or
movements of other aircraft are not
what was expected, even if no
violation of minimum separation is
initially expected [SLR-18]

X Since this involves integrating intent
information alongside current airspace
state and aircraft state information to
decide the best path to take and the
best actuator movements to apply,
this is best done by a human pilot

SR-20 Select actuator movements that
minimize the risk of violation of
minimum separation when
information about the state of the
airspace is in a degraded condition
(e.g. delayed) [SLR-21]

X Similar to SR-17, this decision making
is complex enough and the definition
of risk minimization is likely vague
enough that it is better performed by
a human pilot than by automation

SR-23 Ensure that a viable flight path is
always available to avoid any
violations of minimum separation
[SLR-24]

X Assumes that automation
sophistication will not be sufficient to
select flight paths under all conditions
and therefore it makes more sense for
a human pilot to retain this function

SR-24 Select a viable flight path that avoids
all possible violations of minimum
separation [SLR-26]

X Assumes that automation
sophistication will not be sufficient to
select flight paths under all conditions
and therefore it makes more sense for
a human pilot to retain this function

 89

As can be seen in the rationale provided in Table 28, these responsibilities are assigned only to
the human pilot because they either involve complex or ambiguous decision making that is best
performed by a human pilot or they involve the use of feedback or information that is more easily
interpreted by a human pilot rather than the ASEC. For example, as described in the decision-
making strategy for SR-16, SR-17, SR-23 and SR-24, these responsibilities involve a complex and
sometimes ambiguously defined decision based on consideration of multiple factors to select
appropriate actuator movements that do not cause a violation of minimum separation. As such,
the adaptive and flexible nature of human cognition may be more suited to making these
decisions than the more rigid decision-making processes of the ASEC. Similarly, for SR-4 and SR-
17, these responsibilities require the use of process model parts and feedback that are more
easily interpreted by a human pilot than by the ASEC. As such, it would be easier for a human
pilot to make use of the feedback to carry out these responsibilities instead of the ASEC.

By contrast, some responsibilities are either shared with the ASEC or only assigned to the ASEC
and examples of these assignments are shown in Table 29.

Table 29: Other Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 1

Resp.
ID

Responsibility
Assigned to

Rationale/Assumptions
Pilot ASEC

SR-15

Determine if the state of the
airspace changes between the
time that it was checked and
the commencement of a
maneuver [SLR-16]

X X

Since this is relatively simple checking of the
maneuver path, the ASEC is able to warn the
human pilot of potential collisions but the
human pilot is expected to perform an
independent verification as well

SR-19

Detect slow or subtle changes
in the state of the aircraft
under all DVE conditions at all
times [SLR-20]

 X

Given the potential magnitude of these
changes in the state of the aircraft, it may be
difficult to design appropriate feedback
mechanisms with sufficient saliency for a
human pilot to notice those changes and
they would be easier detected by
automation

SR-21

Respond quickly and with
appropriate magnitude to
disturbances to prevent
unintended movement of the
aircraft [SLR-22]

X X

Assumes that the ASEC will not be able to
stabilize the aircraft sufficiently under all
DVE conditions and that a human pilot
would be needed in some situations

Also assumes that ASEC will be able to help
stabilize the aircraft under limited DVE
conditions and therefore the ASEC will
sometimes be used

SR-22

Respond quickly enough and
with appropriate magnitude
to select and effect the
desired flight path under the
given environmental
conditions [SLR-23, SLR-25]

X X

 90

As might be expected, since the ASEC is simply a decision aid for the human pilot, only a few of
the non-feedback-validation responsibilities are assigned to it. In some cases, the responsibilities
are shared so that the ASEC can assist the human pilot by helping to warn them (SR-15) or helping
them to control the aircraft under easier situations (SR-21 and SR-22). In other cases such as SR-
19, the ASEC is better suited to monitor for conditions that would be difficult for a human to
monitor such as slow or subtle changes in the state of the aircraft.

Assignment of Feedback Validation Responsibilities
Finally, the feedback validation responsibilities need to be assigned to the human pilot and the
ASEC. Like Part 1, whenever a particular responsibility is not expected to be applicable for a
particular process model part, “N/A” is used to indicate that no assignment is made.

For this architecture option, because the ASEC serves as a decision aid for the human pilot, many
of the responsibilities are shared between the ASEC and human pilot such that the ASEC and
human pilot carry out a given responsibility for different process model parts. In this way, the
ASEC serves as a decision aid because it carries out some of these responsibilities for some of
these process model parts instead of requiring the human pilot to carry out all the responsibilities
for every process model part. Some examples of feedback validation responsibility assignments
are shown in Table 30.

Table 30: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-3 Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot

Expected Safe Departure
State

N/A

Current Weather
Conditions

Pilot

Current Airspace State Pilot

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

The variety of possible inputs
made by other aircraft or
controllers would be more
easily handled by a human,
except for the aircraft system
state which would be more
easily handled by automation
since the system state is
already generated and
monitored by automation

Expected safe departure state
and model of system behavior
are marked as N/A because
they were not assigned to the
Piloting Controller in part 1

 91

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-9 Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Monitoring the inputs for
aircraft system state,
navigation state and
environmental conditions is a
repetitive task best done by
automation.

For anticipated future airspace
state and aircraft mission
readiness, since that feedback
may include verbal radio
communication, the pilot
shares the responsibility to
ensure that needed
information is available.

SR-13 Distinguish useful
feedback from
noise in feedback
data [SLR-13]

Aircraft Mission Readiness N/A

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State Pilot
ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Especially when identifying
weak signals, automation is
better at the pattern
recognition necessary to
extract weak signals

Assumes that the risk of false
negative detections of weak
signals is acceptably low

Mission readiness, expected
safe departure state and model
of system behavior do not rely
on real-time feedback and
therefore are not affected by
noise

 92

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-14 Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot
ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

Pilot
ASEC

Current Airspace State Pilot
ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

For everything but the aircraft
system state, the pilot is
primarily the one updating the
process model parts and the
ASEC only assists in the aircraft
navigation state, weather
conditions and airspace state.

Expected safe departure state
and model of system behavior
are marked as N/A because
they were not assigned to the
Piloting Controller in part 1

 93

Architecture Option 1 Control Structure
The resulting control structure for this architecture option is shown in Figure 22.

Figure 22: Part 2 Architecture Option 1 Control Structure

 94

4.6.3 Architecture Analysis of Option 1

Like option 1 in Part 1 of the architecture creation process, this option makes no changes to how
human pilots and aircraft automation divide up the responsibilities needed to fly aircraft today.
In essence, this architecture option represents the architecture where human pilots fly aircraft
in DVE conditions in much the same way as they do today under non-DVE conditions. The only
difference is that the human pilots have access to more data provided by sensor suites onboard
the aircraft than is available in today to help detect objects and other aircraft in the airspace
instead of being reliant only on direct visual feedback and transponder or radio-based
communication. As a result, the STPA analysis of this architecture option will be similar to the
analysis presented in Section 3, but with additions or updates to the loss scenarios based on
additional human factors and other considerations that can be applied now that responsibilities
are assigned to the human pilot or the ASEC.

There are two challenging aspects of this architecture that can be observed. The first is that
because many of the responsibilities are assigned to the human pilot, the feedback mechanisms
that the human pilot uses to obtain information needed for decision making must be designed
to avoid known decision-making biases that can affect the pilot’s ability to make correct decisions
using that feedback. To help identify the decision making biases and heuristics that need to be
avoided to prevent unsafe behavior, the loss scenarios in the STPA analysis should be updated to
account for human factors reasons that a human pilot might issue unsafe control actions. Table
31 shows two responsibilities that are assigned to the human pilot that describe constraints on
the use of feedback as well as the associated loss scenarios.

Table 31: Example Constraints and Scenarios Related to the Use of Feedback

Resp. ID Responsibility Associated
Scenario ID

Associated Scenario

SR-2 Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

CS-1.1.1-1.1.2 The piloting controller believes it is receiving
conflicting feedback because DVE conditions have
degraded the accuracy of or obscured some (but
not all) feedback sources. The piloting controller
therefore chooses to ignore the feedback showing
the presence of the other aircraft or object,
believing that it is a false positive or erroneous. The
piloting controller is especially susceptible to this if
the majority of sources appear to agree that no
aircraft is present and fewer sources appear to
show otherwise. As a result, the piloting controller
updates its process model based only on what it
wrongly believes to be the correct feedback. [SLR-
2]

 95

Resp. ID Responsibility Associated
Scenario ID

Associated Scenario

SR-3 Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

CS-1.1.1-1.1.3 Alternatively, if the piloting controller receives
communication from another controller (e.g.
another aircraft, ground personnel, EMS
Operations and ATC) indicating that the aircraft is in
a safe departure state, the piloting controller may
assume that the communication from the other
controller must be accurate. This may even be used
as proof that the feedback showing that the aircraft
is not in a safe departure state should be ignored as
out-of-date or incorrect. As a result, the piloting
controller uses the communication from the other
controller to update its process model and
therefore wrongly believes that the aircraft is in a
safe departure state. [SLR-3]

Since SR-2 and SR-3 are assigned to the human pilot, their associated loss scenarios can be
updated to include human factors considerations for how these loss scenarios could occur. For
example, the human pilot might wrongly believe they are receiving conflicting feedback (scenario
CS-1.1.1-1.1.2) if a pilot is initially presented with detection information from the ASEC showing
that no aircraft is present in the nearby airspace because DVE conditions have obscured the
ability to detect the other aircraft. As a result, a known human decision-making bias called cue
primacy [30] can cause the pilot to be more inclined to continue to believe that no aircraft is
present even if those same sensors detect a nearby aircraft several seconds later. In addition,
another human decision-making bias known as inattention to later cues [30] can then cause the
pilot to ignore subsequent feedback that does detect the nearby aircraft. Alternatively, if a pilot
has experienced unreliable false positive detections from the sensors in the past, they may use
that experience to rationalize ignoring feedback in a new situation, wrongly believing that they
are experiencing a situation like the one they experienced in the past where detections turned
out to be false positives. These updates to scenario CS-1.1.1-1.1.2 therefore show that if the
performance of the sensor suite is inadequate, human decision-making biases may lead the
human pilot to make decisions that can lead to unsafe control actions being provided.

Similarly, scenario CS-1.1.1-1.1.3 can be updated to include the impact of the process model of
the state of the airspace that is shared with EMS Operations and ATC. Since the shared process
model can be used by the human pilot as another input available to them, confirmation bias can
cause the pilot to accept the input from the shared process model if it is aligned with their initial
belief that no aircraft or object was detected in the airspace. As a result, the pilot may ignore
more direct, seemingly contradictory feedback from the aircraft sensors showing the presence
of that aircraft or object. Alternatively, the pilot’s past experiences may also lead them to believe
that the shared database is always more accurate and place an inappropriate level of trust in the
shared database even when that database is wrong. In either case, the pilot therefore chooses
to ignore correct feedback from the aircraft sensors even when that feedback reflects the correct

 96

state of the airspace. These updates to CS-1.1.1-1.1.3 therefore show that the feedback
mechanisms (both the sensor suite and the shared database) used by pilots must be designed to
ensure that pilots place an appropriate level of trust in the feedback they receive and do not
simply default to always trusting or being mistrustful of one feedback source over another.

These updates to the two loss scenarios thus show that, by assigning responsibilities like SR-2
and SR-3 to the human pilot, the performance (e.g. reliability, accuracy) of the sensor suite is
extremely important because the performance of the sensor suite can impact the pilot’s ability
to perceive the feedback they need, make correct decisions about when they are receiving
conflicting feedback and decide how to use the feedback to update their mental model. If the
pilot’s ability to correctly integrate relevant feedback to update their mental model is impaired
by decision-making biases, misplaced levels of trust or high stress and workload situations, the
human pilot may not be as effective in enforcing the necessary safety constraints to safely fly the
aircraft in DVEs. These loss scenarios therefore serve as the rationale for identifying the necessary
performance requirements for the sensor suite during detailed system design.

The other challenging aspect of this architecture option is that this architecture option imposes
high workloads on the human pilot to carry out all the responsibilities assigned to them and the
STPA analysis and system-level behavior information highlight three aspects that contribute to
the high workload. The first two aspects are illustrated in Table 32.

Table 32: Responsibilities and scenarios associated with pilot's maintenance of their mental model of the airspace

Resp.
ID

Responsibility Associated
Scenario ID

Associated Scenario

SR-14 Process sensor data and
use it to update its process
model sufficiently quickly
[SLR-14]

CS-1.2.1-1.3 DVE causes delays in the piloting controller
interpreting the sensor data and using the
sensor data to update its process model. As a
result, the piloting controller has the wrong
process model of the airspace around the
aircraft until it is able to update its process
model. [SLR-14]

SR-22 Respond quickly enough
and with appropriate
magnitude to select and
effect the desired change
in flight path under the
given environmental
conditions [SLR-23, SLR-25]

CS-1.5.1-1.1 The piloting controller is unable to select new
actuator movements quickly enough to avoid
violation of minimum separation. This might
occur if the piloting controller recognizes the
imminent violation too late or takes too long
to select new actuator movements [SLR-23]

SR-24 Select a viable flight path
that avoids all possible
violations of minimum
separation [SLR-26]

CS-1.5.4-2 The piloting controller selects actuator
movements that avoid one violation of
minimum separation but causes another one
[SLR-25, SLR-26]

 97

The first aspect that increases the workload for the human pilot is the increased cognitive effort
required by the human pilot to validate feedback and update their mental model. One example
of such a requirement is SR-14 shown in the first row of Table 32. For the human pilot to carry
out SR-14 and avoid being delayed in interpreting sensor data as described in CS-1.2.1-1.3, the
human pilot will likely need to expend significant mental resources to process sensor data and
use it to update its process model at a sufficiently fast rate as described in the system-level
behavior. In addition, the cognitive effort may be even higher if the human pilot has difficulty
making use of the sensor data. If, for example, the pilot must manually integrate detections from
multiple sensor modalities to develop an overall understanding of what the sensors are detecting
in the airspace, the human pilot will need to spend additional mental effort to perceive and
deconflict the various pieces of feedback. This could delay their ability to update their mental
model of the state of the airspace in a timely manner. As such, the cognitive effort needed to
perform these types of responsibilities can result in a high workload imposed on the human pilot.

The second aspect that increases the workload for the human pilot is the potentially difficult
conditions under which the human pilot is expected to make decisions. One category of difficult
decisions is those that must be made quickly and accurately with limited time to consider
alternatives and SR-22 shown in the second row of Table 32 is one example of this type of
responsibility. To carry out SR-22, the human pilot would need to be able to consider all of the
various factors (e.g. weather conditions, location of objects and aircraft in the airspace) and
select the correct magnitude and direction of actuator movements within a short period of time
as described in the system-level behavior information. If the pilot has extensive flight experience
in DVE conditions, they may be able to make use of skill- or rule-based decision-making [30] to
select appropriate actuator movements quickly based on the feedback they are perceiving.
However, if the pilot has little experience flying the aircraft in DVE or an experienced pilot
performs a flight under novel or rarely experienced conditions, they may have to use knowledge-
based decision making [30] and make use of their knowledge and past experience along with
techniques such as mental simulation to select appropriate actuator movements. Under these
challenging decision-making conditions, if a pilot takes too long or selects the wrong magnitude
of actuator movement (CS-1.5.1-1.1), an accident or loss could occur. As such, by assigning
responsibilities like SR-22 to a human pilot, the conditions under which the human pilot must
make decisions can require a high workload to carry out those responsibilities.

Another category of difficult decisions are complex decisions that must be made under
uncertainty or incomplete information and SR-24 shown in Table 32 is one example of this type
of responsibility. To carry out SR-24 and avoid CS-1.5.4-2, the pilot must select actuator
movements without certain knowledge of how the other aircraft will move while ensuring that
all possible violations of minimum separation are avoided. In these scenarios, especially if DVE
conditions prevent the pilot from directly observing other aircraft or objects in the airspace,
selecting appropriate actuator movements can be especially challenging. Not only is the pilot
reliant on feedback from sensors and other controllers to maintain enough situational awareness
to make these decisions but they also must consider a variety of possible future states of the
airspace to select one that they believe will avoid all possible violations of minimum separation.
The pilot therefore must make the best use of the available information to select appropriate

 98

actuator movements that will minimize the likelihood that they encounter another aircraft or
object that was not expected or detected. As such, although humans are especially well-suited
for making decisions under uncertainty using vaguely defined criteria, the limited time or
information available can make these decisions cognitively challenging, increasing the workload
imposed on the human pilot when they are assigned these responsibilities.

Finally, the third aspect that increases the workload for the human pilot is the larger mental
model that they must maintain to operate the aircraft safely. As described in Section 4.4.3 and
shown in full in Table 50 of Appendix D, the full process model identified for this case study
consists of eight main parts and numerous sub-parts, all of which must be maintained and
updated continuously throughout the flight. Although some parts of this mental model exist
regardless of the existence of DVE conditions, some parts of this mental model are added
because of the additional responsibilities needed to fly aircraft in DVE. Table 33 shows some
examples of such parts of the mental model and the reason they are included.

Table 33: Examples of Mental Model Parts Included Due to the Presence of DVE Conditions

Mental Model Part Rationale for Inclusion (From System-Level Behavior)

Known effects of DVE on feedback
sources

This is needed by SR-2 to determine when feedback sources
are no longer reliable because of DVE conditions. If DVE
conditions were not present, this would not be needed
because it would not be necessary for pilots to assess the
effects of DVE on feedback sources in real time

Typical noise expected for each data
source under DVE conditions

These are needed by SR-13 to help in distinguishing useful
feedback from noise under DVE conditions that might increase
the amount of noise. If DVE conditions were not present, this
part of the mental model may not be needed.

Expected signal strength for each
data source under DVE conditions

Actuator movements selection
guidelines for handling the aircraft
in DVE conditions

This is needed by SR-21 and SR-22 to enable the selection of
appropriate actuator movements under DVE conditions. If DVE
conditions were not present, only normal aircraft handling
procedures would be needed

As a result of these additional parts of the process model that are added to enable flight in DVEs,
the mental model that is maintained and updated by the human pilot is larger than the one they
would have had to maintain and update if DVE conditions were not present, contributing to the
increased workload imposed on the human pilot.

In summary, the analysis of this architecture option highlights some of the challenges of
implementing this architecture option. Not only must the sensor and feedback mechanisms be
designed to avoid known biases in human decision-making but the system must also be designed
to ensure that the increased workload imposed on the human pilot remains within what they can

 99

accomplish. Especially because of the different ways in which this architecture option increases
the workload required of the human pilot, any assumptions made about the level of workload
imposed must be carefully verified to ensure that they accurately reflect what human pilots will
actually experience in the real system.

In contrast to this architecture, an alternative architecture option could be considered that
lowers the workload of the human pilot by assigning more responsibilities to the ASEC. An
example of such an architecture will be explored next in architecture option 2.

4.6.4 Architecture Option 2: ASEC Proposes Flight Trajectories for Human Pilot to Execute

As identified in the analysis of option 1, one major challenge is the high workload imposed on the
human pilot by having most of the responsibilities for flight in DVEs assigned to them and the
analysis identified three sources that of high workload:

1. Increased cognitive effort required to validate feedback and update their mental model
2. Difficult decisions that either need to be made quickly and accurately or that are made

under uncertainty or incomplete information
3. The increased size of the mental model that the human pilot must maintain and keep

updated

Therefore, one possible way to alleviate the high workload imposed on the human pilot could be
to address the first two sources of that high workload. That is, to increase the ASEC’s involvement
in some responsibilities to help the human pilot validate feedback and update their mental model
as well as consider alternatives when making decisions under difficult conditions. For these
reasons, this architecture option makes use of a moderate level of automation by increasing the
ASEC’s involvement in the responsibilities necessary to safely fly the aircraft. As will be shown,
although the workload imposed on the human pilot might be lower, there are tradeoffs
associated with the use of more automation in the system.

For compactness, only the process model parts and responsibilities that have different
assignments than those shown in architecture option 1 will be shown. Any process model part or
responsibility that has the same assignment in both architecture options is not repeated.

Assignment of Process Model Parts

In this architecture option, only two of the process model parts have different assignments
compared to option 1. With the increased involvement of the ASEC, the ASEC must now maintain
a copy of the anticipated future state of the airspace part of the process model, just like the
human pilot would. Consequently, the ASEC must also maintain a copy of the model of system
behavior as well since it needs that information to carry out some of the responsibilities that it
now shares with the human pilot. As a result, the anticipated future state of the airspace along
with the model of system behavior parts of the process model are now shared between the
human pilot and ASEC as shown in Table 34 instead of just being assigned to the human pilot.

 100

Table 34: Assignment of Process Model Parts for Part 2 Architecture Option 2

Process Model Assigned to Rationale/Assumptions

Pilot ASEC

Anticipated Future
Airspace State

X X Most of this information is generated automatically and can
be easily parsed by automation. However, the human pilot
must share this process model part not only because they
need it to fly the aircraft but also so that they can account
for more complex feedback that they ASEC cannot account
for. This assumes some basic kinematic models are available
to project future airspace state but requires pilot assistance
to account for more complex intent information.

Model of System
Behavior

X X Since the ASEC is responsible for much of the detection
responsibilities, the ASEC and pilot both need this part of the
process model to interpret sensor and other data
appropriately

Assignment of Non-Feedback-Validation Responsibilities

As described at the beginning of this architecture option, the workload imposed on the human
pilot could be reduced by providing the human pilot with assistance for responsibilities that
involve decision-making under difficult conditions. Based on the system-level behavior
information, it can be observed that SR-16, SR-17, SR-20, SR-23 and SR-24 are responsibilities of
this type and therefore sharing them between the human pilot and the ASEC instead of having
the human pilot alone assigned to them might be able to help the human pilot overcome human
cognitive limitations and consider a broader array of factors or alternatives before making.
decision. These assignments are shown in Table 35 along with the underlying rationale and
assumptions associated with each assignment.

 101

Table 35: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 2

Resp.
ID

Responsibility Assigned to Rationale/Assumptions

Pilot ASEC

SR-16 Account for the current
and future movements
of other aircraft in the
vicinity when selecting
actuator movements
[SLR-17]

X X In this example, the ASEC is designed to help the
human pilot to find acceptable flight
paths/trajectories and accounting for objects and
other aircraft in the surrounding airspace. The
human pilot shares this responsibility because
the human pilot checks and may select an
alternative path if they decide the ASEC-selected
one is not appropriate.

SR-17 Ensure that aircraft
movements are selected
such that sufficient
reaction time is
available if intent or
movements of other
aircraft are not what
was expected, even if no
violation of minimum
separation is initially
expected [SLR-18]

X X Similar to SR-16, the ASEC is designed to help the
human pilot to find acceptable flight
paths/trajectories including ensuring that the
trajectory it selects incorporates sufficient
reaction time to change flight path if nearby
aircraft move in unexpected ways. The human
pilot shares this responsibility because the
human pilot checks and may select an alternative
path if they decide the ASEC-selected one is not
appropriate.

SR-20 Select actuator
movements that
minimize the risk of
violation of minimum
separation when
information about the
state of the airspace is in
a degraded condition
(e.g. delayed) [SLR-21]

X X Similar to SR-16, the ASEC is designed to help the
human pilot to find acceptable flight
paths/trajectories including ensuring that the
flight path it selects minimizes the risk of
violation of minimum separation. The human
pilot shares this responsibility because the
human pilot checks and may select an alternative
path if they decide the ASEC-selected one is not
appropriate.

SR-23 Ensure that a viable
flight path is always
available to avoid any
violations of minimum
separation [SLR-24]

X X Similar to SR-16, the ASEC is designed to help the
human pilot to find acceptable flight
paths/trajectories including avoiding all possible
violations of minimum separation. The human
pilot shares this responsibility because the
human pilot checks and may select an alternative
path if they decide the ASEC-selected one is not
appropriate.

SR-24 Select a viable flight
path that avoids all
possible violations of
minimum separation
[SLR-26]

X X

 102

Assignment of Feedback Validation Responsibilities

In addition to sharing some of the non-feedback-validation responsibilities between the human
pilot and ASEC, the ASEC can also share more of the feedback validation responsibilities as well.
This has the benefit of potentially reducing the cognitive effort needed to validate feedback and
update mental models. For some responsibilities and process model parts, assignments are
transferred from the human pilot to the ASEC while for others, they become shared with the
ASEC. Some examples of these responsibility assignments are shown in Table 36.

Table 36: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 2

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-2 Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

Aircraft Mission Readiness N/A

Current Aircraft System
State

N/A

Current Aircraft
Navigation State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot
ASEC

Model of System Behavior N/A

For the anticipated future airspace
state, the human pilot shares this
responsibility because both the
ASEC and human pilot may receive
feedback for this part of the
process model and will have to
account for the effects of DVE
when they use that feedback they
may receive

Assumes that the determinations
involved are easily made based on
simple interpretations of the DVE
conditions and that complex logic
is not required

SR-3 Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft
Navigation State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot
ASEC

Model of System Behavior N/A

Except for mission readiness,
expected safe departure state,
anticipated future airspace state
and model of system behavior,
this option assumes that the ASEC
can automatically validate inputs
for the other process model parts.

For the anticipated future airspace
state, the human pilot shares this
responsibility because they may
receive information in a format
that is not easily interpreted by
automation (e.g. voice over radio)
and will therefore also be involved
in validating those inputs

 103

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-8 Process all
feedback to make
a deliberate
decision if it is to
be
ignored/dropped
[SLR-8]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft
Navigation State

ASEC

Expected Safe Departure
State

Pilot

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot
ASEC

Model of System Behavior Pilot

Except for mission readiness,
expected safe departure state,
anticipated future airspace state
and model of system behavior,
this option assumes that the ASEC
can automatically validate inputs
for the other process model parts.

For the anticipated future airspace
state, the human pilot shares this
responsibility because they may
receive information in a format
that is not easily interpreted by
automation (e.g. voice over radio)
and will therefore also be involved
in validating those inputs

SR-14 Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft
Navigation State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot
ASEC

Model of System Behavior N/A

For everything but the aircraft
mission readiness, anticipated
future airspace state and model of
system behavior, the ASEC is
primarily the one updating the
process model parts.

However, in the case of
anticipated future airspace state,
the human pilot shares the
responsibility because some
feedback is more easily
interpreted by the human pilot
rather than the ASEC.

For aircraft mission readiness, the
feedback for those process model
parts are still most easily
interpreted by a human than by
automation.

Expected safe departure state and
model of system behavior are
marked as N/A because they were
not assigned to the Piloting
Controller in part 1

 104

Architecture Option 2 Control Structure
The resulting control structure for this architecture option is shown in Figure 23.

Figure 23: Part 2 Architecture Option 2 Control Structure

 105

4.6.5 Architecture Analysis of Option 2

One of the goals of this architecture was to alleviate the potentially high workload imposed on
the human pilot if the human pilot is primarily responsible for controlling the aircraft and the
ASEC simply serves as a decision aid. Although this goal appears to be achieved because the ASEC
is assigned more responsibilities in this architecture option compared to option 1, this benefit
has accompanying tradeoffs that must be analyzed to determine their impact on the architecture
and how difficult it will be to implement this architecture during detailed system design. This
analysis is important to ensure that the potential benefits can be compared to the costs incurred
when deciding whether to select this architecture option to move forward with.

The main benefit of this architecture option is that it reduces the workload imposed on the
human pilot by assigning more responsibilities to the ASEC compared to option 1. For example,
as shown in the previous section, many of the feedback validation responsibilities are assigned
to the ASEC instead of the human pilot, potentially alleviating some of the high workload
observed with option 1. Table 37 shows the feedback validation responsibility assignments from
Table 36 but presents them in a slightly different format to illustrate the increased involvement
of the ASEC compared to the human pilot in carrying out these responsibilities.

Table 37 shows that for this architecture option, the ASEC is assigned in many more of the cells
in the table as compared to option 1 where the human pilot was assigned in most of them. For
example, all four of the feedback validation responsibilities are assigned to the ASEC to carry out
for the current aircraft system state, current aircraft navigation state, current weather conditions
and current airspace state. By comparison, the human pilot is only assigned feedback validation
responsibilities for the aircraft mission readiness, expected safe departure state, anticipated
future airspace state and model of system behavior parts of the process model. By sharing more
of these responsibilities with the ASEC, the workload imposed on the human pilot has the
potential to be reduced because the human pilot is assigned a smaller fraction of these
responsibilities compared to option 1. In addition, for the responsibilities that the human pilot is
assigned to, the rate at which those responsibilities need to be carried out are relatively low as
defined in the timing requirements part of the system-level behavior. So, with fewer assigned
responsibilities that only need to be carried out at relatively low rates, the workload on the
human pilot should be reduced.

 106

Table 37: Sample of Feedback Validation Responsibilities Showing Increased Involvement of ASEC

 Responsibilities

 SR-2 SR-3 SR-8 SR-14

 Account for
prevailing DVE
conditions and their
possible effect on
feedback sources
when making use of
feedback
information [SLR-2]

Validate the
inputs or
feedback
received from
other controllers
before using that
input or
feedback to
update process
models [SLR-3]

Process all
feedback to
make a
deliberate
decision if it is to
be
ignored/dropped
[SLR-8]

Process
sensor data
and use it to
update its
process
model
sufficiently
quickly [SLR-
14]

P
ro

ce
ss

 M
o

d
e

l P
ar

ts

Aircraft Mission
Readiness

N/A Human Pilot Human Pilot Human Pilot

Current Aircraft
System State

N/A ASEC ASEC ASEC

Current Aircraft
Navigation State

ASEC ASEC ASEC ASEC

Expected Safe
Departure State

N/A N/A Human Pilot N/A

Current Weather
Conditions

ASEC ASEC ASEC ASEC

Current Airspace
State

ASEC ASEC ASEC ASEC

Anticipated Future
Airspace State

Shared between
Human Pilot and

ASEC

Shared between
Human Pilot and

ASEC

Shared between
Human Pilot and

ASEC

Shared
between

Human Pilot
and

ASEC

Model of System
Behavior

Human Pilot N/A Human Pilot N/A

One challenge with assigning more responsibilities to the ASEC instead of the human pilot is that
it is even more important that sufficient constraints are placed on the behavior of the system and
the ASEC software to avoid unsafe behavior. This is because many of the challenges related to
the design of the feedback mechanisms in option 1 are still applicable in this architecture option
as poorly designed feedback mechanisms can still lead to unsafe behavior even if the ASEC
software is receiving and interpreting that feedback instead of a human pilot. Furthermore, the
ASEC software can behave in similar unsafe ways as a human pilot if human decision-making
biases are encoded into the software. This can be illustrated using responsibility SR-2 and its
associated causal scenario.

 107

Responsibility SR-2: Account for prevailing DVE conditions and their possible effect on feedback
sources when making use of feedback information [SLR-2]

Loss Scenario CS-1.1.1-1.1.2: The piloting controller believes it is receiving conflicting feedback
because DVE conditions have degraded the accuracy of or obscured some (but not all) feedback
sources. The piloting controller therefore chooses to ignore the conflicting feedback, believing
that it is a false positive or erroneous. The piloting controller is especially susceptible to this if the
majority of sources appear to agree that no aircraft is present and fewer sources appear to show
otherwise. As a result, the piloting controller updates its process model based only on what it
wrongly believes to be the correct feedback. [SLR-2]

Even when SR-2 is assigned to the ASEC instead of to the human pilot, the ASEC can still wrongly
believe it is receiving conflicting feedback for the same reasons that a human pilot might do so.
For example, if the ASEC is initially presented with feedback that does not show an aircraft
nearby, even if an aircraft is subsequently detected, it may be more inclined to ignore that
detection if its algorithm relies on assumptions about when an aircraft should be detected.
Alternatively, if the ASEC software uses a voting system to decide how to resolve conflicting
feedback, such a voting system may wrongly decide that no aircraft or object exists nearby if
most of the sensors do not detect the aircraft or object and only a few are able to correctly detect
the nearby aircraft or object. These unsafe behaviors of the ASEC software can occur if the
software engineers base their software design on the same decision-making biases that a human
pilot might use. As a result, similar types of decision-making biases can lead to unsafe system
behavior regardless of whether the human pilot or ASEC is assigned to carry out the
responsibility. For these reasons, although assigning more of these data integrity responsibilities
to the ASEC reduces the workload on the human pilot, it is even more important that sufficient
constraints are placed on the behavior of the system and software which can lead to additional
difficulties in designing and implementing the system.

Another challenging aspect of this architecture option is that the sharing of responsibilities can
increase the complexity of the system, making the system more difficult to design and implement
successfully. This is because when responsibilities are shared between the human pilot and ASEC,
adequate coordination is required to ensure that they carry out their shared responsibilities
effectively. As a result, additional requirements or constraints must be imposed on system
behavior to ensure that adequate coordination is achieved. To understand how the complexity
of the system may increase due to the need for adequate coordination, the STPA extension for
coordination developed by Kip Johnson [15] can be used to analyze this architecture option and
there are two negative outcomes for this architecture that will need to be prevented.

The first negative outcome if there is inadequate coordination between the human pilot and
ASEC is that some of the associated loss scenarios become more difficult to mitigate or prevent.
This is because inadequate coordination between the human pilot and ASEC can result in new
ways that existing loss scenarios might occur. The loss scenarios associated with these
responsibilities must therefore be updated to identify the additional ways that inadequate
coordination between the ASEC and the human pilot can lead to unsafe behavior so that

 108

additional constraints can be placed on the system’s behavior. This can be illustrated using SR-2
that is shared between the human pilot and ASEC for maintaining the Anticipated Future State
of the Airspace process model part as shown in Table 37.

When SR-2 is shared between the pilot and ASEC, the human pilot and ASEC may disagree on
how feedback should be used to update their shared process model of the future state of the
airspace and there are several reasons this could occur. Some examples include:

• The human pilot and ASEC interpret feedback differently or use it in different ways to
update the process model of future airspace state.

• The human pilot might have access to additional feedback (e.g. verbal radio-based
communication) that the ASEC does not

As a result of any of these reasons, the ASEC and human pilot now have different beliefs of what
the anticipated future state of the airspace will be and they will need to coordinate to resolve
their conflicting proposals. However, if the human pilot or ASEC have inadequate ways to
communicate how they each used the available feedback to update their process model, then,
as Johnson identified in [15], such a condition could lead to inadequate coordination.
Alternatively, if the human pilot has no way to share additional feedback (e.g. verbal radio
communications) that they received with the ASEC, then the human pilot and ASEC are not using
the same set of feedback to update the process model of the future state of the airspace. As
Johnson identified in [15], inadequate observation of common objects is another condition that
could lead to inadequate coordination between the human pilot and ASEC. If there is inadequate
coordination between the human pilot and the ASEC, the human pilot could independently
choose to wrongly ignore the ASEC’s assessment of the future state of the airspace, even if the
ASEC’s assessment matches the actual future state of the airspace and the human pilot’s
assessment does not. This scenario is made even more likely if the human pilot has a low level of
trust in the ASEC. This example thus illustrates how the need for adequate coordination can result
in scenarios that are harder to mitigate because of possible coordination problems, thus requiring
additional requirements to be added to prevent inadequate coordination from occurring.

The second negative outcome if there is inadequate coordination between the human pilot and
ASEC is that although the shared responsibilities should reduce the workload imposed on the
human pilot, the anticipated workload savings may not be realized if the human pilot and ASEC
are unable to coordinate effectively to carry out their shared responsibilities. This may happen
because when responsibilities are shared, the human pilot and ASEC must work together for their
shared responsibilities to be carried out effectively. However, if coordination between the human
pilot and ASEC is missing or insufficient, the human pilot and ASEC will not be able to work
together effectively. As a result, not only will the safety constraints not be adequately enforced
but the need to coordinate with the ASEC may also impose significant amounts of additional
workload on the human pilot. Consequently, the benefits of sharing responsibilities may be
negated or the overall workload experienced by the human pilot may even increase. To illustrate
how inadequate coordination may negate the benefits of shared responsibilities, SR-16 and its
associated loss scenarios (Table 38) can be analyzed as an example.

 109

Table 38: SR-16 and its Associated Loss Scenarios

Resp.
ID

Responsibility Scenario ID Scenario

SR-16

Account for the current
and future movements
of other aircraft in the
vicinity when selecting
actuator movements
[SLR-17]

CS-1.2.1-2

The piloting controller provides actuator
movements despite receiving feedback that there
was another aircraft or object nearby because
the piloting controller may have the wrong belief
about the future behavior of the other aircraft or
object and therefore believes that providing
actuator movements will not pilot the aircraft
toward the other aircraft or object [SLR-17, SLR-
18]

CS-1.2.1-3

The piloting controller provides actuator
movements despite receiving feedback that there
was another aircraft or object nearby because
the piloting controller is forced to make a quick
decision to avoid violating minimum separation
that does not fully account for all objects and
aircraft in the airspace. As a result, the piloting
controller tries to avoid one object/aircraft and
collides with another instead [SLR-17, SLR-18]

The loss scenarios show that for SR-16 to be carried out effectively, the piloting controller as a
whole must have an accurate understanding of the future behavior of other aircraft and objects
and must be able to consider all possible violations of minimum separation when selecting
actuator movements. Sharing SR-16 between the human pilot and ASEC may therefore be
beneficial because the ASEC can assist the human pilot in determining the future behavior of
other aircraft or objects or assist the human pilot in accounting for all possible violations of
minimum separation when selecting actuator movements.

However, by sharing this responsibility, these benefits can only be attained if the human pilot
and ASEC can coordinate and work together well. If the human pilot does not coordinate at all
with the ASEC when selecting actuator movements, then the human pilot becomes susceptible
to the same loss scenarios involving high workload and human decision-making biases that were
discussed in option 1. As described in [15], reasons that the human pilot may choose not to
coordinate with the ASEC at all include a lack of trust in the ASEC or having insufficient time or
resources available to perform adequate coordination. As a result of any of these reasons, the
human pilot may choose to make an independent decision and ignore the ASEC.

Unsafe behavior may also occur when coordination between the human pilot and ASEC is present
but inadequate and multiple factors can contribute to inadequate coordination occurring. For

 110

example, for SR-16, if the method by which future movements of other aircraft should be
accounted for is ambiguous or the criteria for a trajectory to be deemed acceptable is not clearly
defined, the human pilot and ASEC may employ different methods to account for the current and
future movements of other aircraft and objects in the vicinity. They may also make use of
different assumptions in their decision making or their use of feedback when selecting actuator
movements. As a result, the human pilot and ASEC might propose different sets of actuator
movements and the human pilot will have to resolve these differences before executing the
chosen set of actuator movements. To do this, the human pilot will need to be able to both
understand how the ASEC selected its proposed actuator movements and communicate to the
ASEC how they selected their proposed actuator movements. As described in [15], if there is
inadequate communication available, it may be difficult or impossible for the human pilot and
ASEC to understand each other and reach a common consensus on what the actuator movements
should be. Alternatively, if the framework for resolving the conflicting proposals is not clearly
defined, the human pilot may have trouble deciding how to combine the two proposed sets of
actuator movements. As a result of factors such as these, the human pilot may have difficulties
coordinating with the ASEC. Not only does this result in a higher workload than anticipated but
the human pilot may also be delayed in providing the necessary actuator movements while they
try to coordinate with the ASEC. As such, this example illustrates how inadequate coordination
can not only lead to a negation of the desired benefits but also lead to new causal scenarios that
will need to be mitigated by introducing additional system requirements and constraints.

In summary, this architecture option primarily aims to reduce the workload of the human pilot
by transferring or sharing more responsibilities with the ASEC. However, this benefit comes with
two costs. The first is that it is even more important to place sufficient constraints on the behavior
of the system and software to avoid unsafe behavior and the second is that the complexity of the
system may increase as additional requirements are added to ensure adequate coordination
between the human pilot and ASEC and prevent scenarios involving inadequate coordination
from occurring. It is therefore important to compare these costs to the benefits obtained to help
determine if the benefits are worth the costs incurred if this architecture were selected.

4.6.6 Architecture Option 3: Human Pilot Supervises Automated ASEC’s Control of Flight

One final architecture option is an architecture where the ASEC is also given control of the low-
level flight controls and the human pilot begins to resemble more of a supervisor over the flight
of the aircraft rather than being directly involved in the aircraft flight itself. One reason for doing
this is that when humans are required to control a machine such as an aircraft, their ability to
perform fast and accurate control is affected by a principle known as the speed-accuracy tradeoff
[30]. This principle essentially states that there is a negative correlation between the speed and
accuracy with which humans can control a system such that if a human operator must carry out
a series of actions quickly, they are more likely to make errors. By this principle, if flight under
DVE conditions requires the human pilot to make changes to their flight controls quickly to
respond to changing DVE conditions, such a control task may be challenging for a human pilot to
perform without making an error of judgement when selecting actuator movements. For this

 111

reason, an architecture option where the ASEC is given control of the low-level flight controls
instead of the human pilot could be worth evaluating.

As before, only the differences in the process model part or responsibility assignments between
architecture options 2 and 3 are shown and any that have the same assignments in options 2
and 3 are not repeated.

Assignment of Process Model Parts

The first difference is in one of the assignments of process model parts. As shown in Table 39, in
this architecture option, the current weather conditions process model part is only assigned to
the ASEC unlike in option 2, where it is shared between the human pilot and ASEC.

Table 39: Assignment of Process Model Parts for Part 2 Architecture Option 3

Process Model
Assigned to

Rationale/Assumptions
Pilot ASEC

Current Weather
Conditions

 X

Much of this information is generated automatically
and can be easily parsed by automation. Since the ASEC
is now handling low-level flight controls, this part of the
process model no longer needs to be shared with the
human pilot

Assignment of Non-Feedback-Validation Responsibilities

The other two changes are to the assignments of non-feedback-validation responsibilities. Unlike
in option 2 where the human pilot directly controlled the aircraft, the human pilot is no longer in
direct control of the aircraft in this architecture option and therefore SR-21 and SR-22 are now
only assigned to the ASEC as shown in Table 40.

 112

Table 40: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 3

Resp.
ID

Responsibility Assigned to Rationale/Assumptions

Pilot ASEC

SR-21 Respond quickly and
with appropriate
magnitude to
disturbances to
prevent unintended
movement of the
aircraft [SLR-22]

X

Assumes that the automation is now capable
of stabilizing the aircraft and maintaining its
current speed, heading and position under all
DVE conditions without intervention from the
human pilot

SR-22 Respond quickly
enough and with
appropriate
magnitude to select
and effect the
desired change in
flight path under the
given environmental
conditions [SLR-23,
SLR-25]

X

Assumes that the automation is now capable
of effecting trajectories under all DVE
conditions without intervention from the
human pilot

Assignment of Feedback Validation Responsibilities

This architecture option makes no changes to the assignments of feedback validation
responsibilities compared to option 2. Therefore, no additional information will be shown here
for these assignments.

 113

Architecture Option 3 Control Structure
The resulting control structure for this architecture option is shown in Figure 24.

Figure 24: Part 2 Architecture Option 3 Control Structure

 114

4.6.7 Architecture Analysis of Option 3

As discussed in the introduction to this architecture option, the main goal of this architecture
option was to further reduce the workload of the human pilot by alleviating them of the need to
manipulate low-level flight controls. This would allow the human pilot to focus on higher-level,
more complex and ambiguous decision making that humans are better at performing. As with
architecture option 2, although this goal appears to be achieved since the human pilot no longer
needs to maintain a mental model of the weather conditions and is no longer assigned to two
responsibilities for flying the aircraft, these changes result in a significantly different relationship
between the human pilot and ASEC. Therefore, the modified architecture should be fully
analyzed to determine how the loss scenarios and the constraints necessary to prevent unsafe
behavior change in this architecture.

The main reason that this architecture option results in a significant change to the architecture
of the Piloting Controller is because it represents a fundamentally different relationship between
the human pilot and the ASEC. In architecture options 1 and 2, the human pilot always retained
the responsibilities for flying the aircraft and the ASEC was being assigned more of the other
responsibilities necessary for safe flight in DVEs. In essence, the role of the human pilot in the
architecture remained that of a system operator in architecture options 1 and 2. However, in this
architecture option, by assigning the responsibilities for flying the aircraft to the ASEC instead of
the human pilot, the role of the human pilot now begins to resemble more of a supervisory role
instead of a system operator. Consequently, by comparing Figure 23 and Figure 24, it can be
observed that the control structure changes in two important ways. Firstly, the human pilot does
not provide actuator movements to the aircraft subsystems anymore and no longer needs to
engage an “Autopilot” function because the ASEC is now always flying the aircraft. However,
since the human pilot and ASEC must still be able to work together and coordinate to carry out
the other responsibilities that they share, the human pilot must be able to influence the ASEC’s
choice of flight trajectory and actuator movements that it provides. As a result, the second
change to the control structure is that, although the human pilot is no longer flying the aircraft
directly, they can influence the ASEC’s behavior by confirming or modifying the ASEC’s proposed
flight paths. This is illustrated in Figure 25 where the new control actions between the human
pilot and ASEC are circled in red.

 115

Figure 25: Option 3 control structure with new control actions from human pilot to ASEC circled in red

As a result of these changes to the control structure, a revised STPA analysis of this system needs
to be performed to identify the new loss scenarios that arise. Two aspects of this revised STPA
analysis will be discussed in this architecture analysis. Firstly, new scenarios will need to be
identified for the ASEC’s “Actuator Movements” control action because the decision by the ASEC
to provide or not provide Actuator Movements to the aircraft subsystems can now also be
influenced by inputs from the human pilot in addition to decision-making algorithms contained
within the ASEC software. The second aspect that will be discussed are the new UCAs and
scenarios for the new control actions from the human pilot to the ASEC that are highlighted in
Figure 25. Since these control actions are new to the control structure, they must be analyzed
using STPA to identify the UCAs and loss scenarios that will need to be mitigated so that additional
safety constraints can be imposed on the system to prevent unsafe system behavior from
occurring. These revisions to the STPA analysis for this system are important to perform because
the analysis results and the additional system requirements that are identified can be used to
inform whether the benefits of this architecture option are worth the tradeoffs in terms of the
added complexity needed to prevent unsafe behavior in this system.

 116

Revised STPA Analysis of ASEC Actuator Movements Control Action
Beginning with the Actuator Movements control action between the ASEC and Aircraft
Subsystems, the UCAs for this control action are essentially the same as those identified in the
original STPA analysis for the Piloting Controller and therefore those UCAs do not change.
However, additional loss scenarios in addition to those already identified should be generated
that consider in more detail how the ASEC could issue unsafe control actions. Using UCA-1.2
modified for the ASEC instead of the piloting controller, some example new scenarios that are
identified for the first basic scenario type (unsafe controller behavior) are shown in Table 41 and
more examples can be found in Appendix G.

UCA-1.2: ASEC provides actuator movements that steers the aircraft toward another aircraft or
object

Table 41: Example Additional Loss Scenarios Resulting from Unsafe Controller Behavior for UCA-1.2

Scenario ID Scenario

CS-G-1.2.1-1.1 Despite receiving feedback that there was another aircraft or object nearby, the
ASEC may have the wrong process model of the state of the environment, the
aircraft or the airspace around the aircraft and therefore wrongly believes that the
nearby airspace is clear to pilot toward. Although the ASEC coordinates with the
human pilot to confirm the trajectory that it planned, the erroneous trajectory
planned by the ASEC is confirmed without modification. The ASEC might receive
confirmation of its erroneously planned trajectory because the human pilot and
ASEC might have the same shared process model of the current state of the airspace.
As a result, the human pilot also does not recognize that the planned trajectory is
headed toward a nearby object or aircraft and therefore does not correct the
trajectory.

CS-G-1.2.1-2 Despite receiving feedback that there was another aircraft or object nearby, both the
human and the ASEC have wrong process models of the state of the environment,
the aircraft or the airspace around the aircraft. However, their process models are
wrong in different ways. As a result, the human pilot might still correctly recognize
the error in the ASEC’s planned trajectory. However, although the modifications that
the human pilot makes addresses the error that the ASEC made, the human pilot’s
modified trajectory now pilots the aircraft toward a different aircraft or object in the
airspace instead.

CS-G-1.2.1-3 Despite receiving feedback that there was another aircraft or object nearby, the ASEC
has the wrong process model of the state of the environment, the aircraft or the
airspace around the aircraft and therefore wrongly believes that the nearby airspace
is clear to pilot toward. Although the human pilot does recognize the error in the
ASEC’s planned trajectory, the human pilot may be delayed in providing a
confirmation or a modification to the flight path to the ASEC. If the ASEC has a timeout
programmed into it, it may wrongly decide that when the timeout has expired, it
should simply execute its incorrect proposal without waiting for the human pilot.

 117

STPA Analysis of Human Pilot Control Actions
Similarly, the new control actions issued by the human pilot can be analyzed using STPA. As
shown in Figure 25, the human pilot has two control actions that it can issue to the ASEC: Confirm
Flight Path and Modify Flight Path.

Each of these control actions should therefore be analyzed to determine how the human pilot
might issue an unsafe control action that could lead to a hazard or a loss. Table 42 shows some
example UCAs for the “Confirm Flight Path” and “Modify Flight Path” control actions and more
examples can be found in Appendix G.

Table 42: Example UCAs for Human Pilot New Control Actions

Control Action Providing Not Providing Provide too early/too
late

Applied too
long/Stopped
too soon

Confirm Flight
Path

UCA-3.1: Pilot
confirms flight path
when that flight path
pilots the aircraft into
another aircraft or
object

UCA-3.3: Pilot
confirms flight path
that exceeds the
bounds of the mission
parameters (e.g.
exceeds max altitude
or operational area)

UCA-3.4: Pilot
does not confirm
flight path when a
new flight path is
needed to avoid
piloting the
aircraft into
another aircraft or
object

UCA-3.6: Pilot
confirms the flight
path too late after
the last opportunity
to avoid violation of
minimum separation
has passed

N/A

Modify Flight
Path

UCA-3.8: Pilot
provides modified
flight path when the
modified flight path
will pilot the aircraft
toward the other
aircraft or object

UCA-3.11: Pilot
does not provide
modified flight
path when the
path needs to be
modified to
prevent violation
of minimum
separation

UCA-3.13: Pilot
provides modified
flight path too late
after the aircraft
begins to execute
the unmodified new
flight path that will
result in a violation
of minimum
separation

N/A

Each of these UCAs can then be analyzed to identify the loss scenarios that could lead to these
UCAs. Two examples are shown in Table 43 for UCA-3.1 and UCA-3.8 and more example scenarios
can be found in Appendix G.

 118

UCA-3.1: Pilot confirms flight path when that flight path pilots the aircraft into another aircraft
or object

UCA-3.8: Pilot provides modified flight path when the modified flight path will pilot the aircraft
toward the other aircraft or object

Table 43: Example Scenarios for UCA-1 and UCA-8

UCA ID Scenario ID Scenario

UCA-3.1 CS-G-3.1.1-1 Pilot confirms the flight path despite receiving feedback that the flight
path pilots the aircraft into another aircraft or object because, under a
period of high workload or stress, the human pilot does not update their
mental model of the state of the airspace (e.g. due to limited attention
resources or cognitive tunneling) and uses their inaccurate mental model
to evaluate the flight path instead. As a result, the human pilot does not
realize that the flight path proposed by the ASEC pilots the aircraft into
another aircraft or object and confirms it, wrongly believing that the flight
path does not pilot the aircraft toward another aircraft or object.

UCA-3.8 CS-G-3.8.1-1 The human pilot provides a modified flight path despite receiving
feedback that the modified flight path will pilot the aircraft toward
another aircraft or object. This might occur if, under conditions of high
workload or stress, the human pilot might only pay attention to a limited
amount of feedback and therefore not notice the feedback indicating that
the modified flight path that they are proposing will pilot the aircraft
toward another aircraft or object. As a result, they wrongly believe they
are providing a suitable modified flight path

By studying the UCAs and scenarios generated by the updates to the STPA analysis described
above, it can be observed that there are three categories of problems identified in the scenarios
that cause the human pilot to issue unsafe control actions that influence the behavior of the ASEC
and result in a hazard or loss. The first category is inadequate coordination between the human
pilot and ASEC that can either delay the human pilot in providing the necessary confirmations or
modifications to the flight path or prevent the full scope of the benefits of sharing responsibilities
from being realized. As a result of inadequate coordination, the human pilot and ASEC are unable
to either understand how they each generated their flight path proposals or indicate to each
other what factors influenced their chosen flight path. The human pilot or ASEC therefore make
independent or partially independent decisions about which flight path should be executed
without fully considering all the factors identified by both of them. Two examples of these
scenarios are shown in Table 44.

 119

Table 44: Scenarios Showing Consequences of Inadequate Coordination for Part 2 Architecture Option 3

Scenario ID Scenario

CS-G-3.1.1-2 The human pilot confirms the flight path despite receiving feedback that the flight
path pilots the aircraft into another aircraft or object because although the human
pilot recognizes that the flight path pilots the aircraft into another aircraft or object,
they wrongly believe the other aircraft or object either is not actually present (i.e. a
false positive detection) or will not actually be a collision threat in the future. As a
result, the human pilot chooses to ignore the feedback indicating that the flight path
proposed by the ASEC will pilot the aircraft into another aircraft or object and
confirms the flight path anyway.

CS-G-1.2.1-4 The ASEC might have the correct process model of the state of the environment, the
aircraft and the airspace around the aircraft and therefore plans a correct trajectory
that does not pilot the aircraft toward another aircraft or object. However, when the
ASEC coordinates with the human pilot, it receives an erroneous modification of the
trajectory by the human pilot that does pilot the aircraft toward another aircraft or
object. If the ASEC incorrectly assumes that the human-modified path is always
correct, it does not validate or assess and executes it even though it flies toward
another aircraft or object.

Scenarios such as these therefore show how the interface between the human pilot and ASEC
must be designed to enable effective coordination between the human pilot and ASEC. For this
reason, this interface between the human pilot and ASEC must not only be designed for useability
and ergonomics but must also account for what the human pilot and ASEC need to receive from
each other to ensure that they can effectively coordinate and make collective decisions together.

The second category is human factors issues that influence the way that the human pilot decides
what inputs to provide to the ASEC. In some scenarios, human decision-making biases and
heuristics might lead a human pilot to wrongly confirm or modify the ASEC’s proposed flight path
while in others, high workload and limited time to perform effective coordination may lead a
pilot to make rushed decisions without fully considering alternatives. Examples of such scenarios
are shown in Table 45.

 120

Table 45: Scenarios Showing Consequences of Human Factors Issues for Part 2 Architecture Option 3

Scenario ID Scenario

CS-G-3.1.1-3 Pilot confirms the flight path despite receiving feedback that the flight path pilots the
aircraft into another aircraft or object. This might occur if, as a result of experience
and operational adaptation, the human pilot might overly trust the ASEC to propose
suitable flight paths and might become reliant on the ASEC. Such biases might
therefore cause the human pilot to either assume that the ASEC is always right and
confirm the flight path without checking it (i.e. essentially rubberstamping the ASEC’s
proposals) or perform only minimal checks to save cognitive effort. As a result, the
human pilot does not notice that the flight path pilots the aircraft into another object
or aircraft and confirms the flight path

CS-G-3.8.1-2 When perceiving the feedback, the human pilot may apply unsafe biases or heuristics
in using that feedback to update their mental model of the state of the airspace. For
example, the human pilot may only notice the most salient feedback and miss less
salient feedback that would show the presence of another aircraft or object.
Alternatively, feedback received by the human pilot earlier in time that does not
show the presence of another aircraft or object may be weighted more heavily in
their decision-making when they propose a modified flight path compared to
feedback received later. As a result, they do not use the later feedback effectively to
recognize that the modified flight path they are providing will pilot the aircraft toward
another aircraft or object and provide a modified flight path that will pilot the aircraft
toward another aircraft or object

Scenarios such as these therefore illustrate how, even though the human pilot is not in direct
control over the selection of actuator movements that are provided to the aircraft, their decision-
making biases and heuristics and their cognitive limitations can still lead to unsafe actuator
movements being issued because this architecture option provides them with the ability to
influence the ASEC’s behavior. For these reasons, the design of the interface between the human
pilot and ASEC must also account for these human factors issues and prevent them from leading
to unsafe system behavior.

The last category is inadequate system design resulting from unsafe assumptions made by system
designers. In this system, the ASEC’s behavior is governed by software written by software
engineers and the human pilot is at least partially dependent on the availability of (or lack of)
feedback provided to them from the system. The design of the system and the software running
on the ASEC as well as the assumptions that the system and software engineers make when
implementing those designs must avoid unsafe assumptions that can lead to unsafe system
behavior. Two example scenarios that illustrate this are shown in Table 46.

 121

Table 46: Scenarios Showing Consequences of Unsafe Assumptions in System Design for Part 2 Architecture Option 3

Scenario ID Scenario

CS-G-3.1.2-1 If the ASEC is unable to detect the other aircraft or object, the feedback received by
the human pilot from the ASEC therefore does not show that the flight path pilots the
aircraft into another aircraft or object. Furthermore, DVE conditions might prevent
the human pilot from independently receiving any other feedback besides the
detections made by the ASEC. As a result, the human pilot does not receive feedback
that indicates that the flight path pilots the aircraft into another aircraft or object and
is unable to recognize that the flight path is wrong because the human pilot can only
observe what the ASEC can detect. This leads the human pilot to make the same
incorrect decision that the ASEC makes, deciding that the flight path does not pilot
the aircraft toward another aircraft or object.

CS-G-3.1.3-1 Although the human pilot does not confirm the flight path, a confirmation is received
by the ASEC because an approval for a previously proposed flight path might be
delayed in arriving. If the ASEC does not have a way to match a received approval to
the flight path that the human pilot was approving, it may assume that any received
approval is for the most recently proposed flight path. This asynchronicity might
therefore result in approvals arriving out of order compared to the order in which
flight paths are proposed. As a result, the ASEC wrongly believes the human pilot had
approved the most recently proposed flight path even though the human pilot has
not actually approved it yet

In some scenarios such as CS-G-3.1.2-1, if the human pilot and ASEC are only provided with the
same set of feedback or if the human pilot only receives the ASEC’s interpretation of sensor
feedback and not the sensor feedback itself, then the human pilot can only observe what the
ASEC can observe. It would therefore be much more difficult for the human pilot to recognize
mistakes or inappropriate flight path proposals from the ASEC and, as a result, the benefits of
sharing responsibilities may be compromised. On the other hand, in scenarios such as CS-G-3.1.3-
1, assumptions encoded in the ASEC’s software can lead to unsafe behavior when those
assumptions turn out to be incorrect under a given set of circumstances. These scenarios
therefore illustrate how important the design of the system and the assumptions that are used
in the design and implementation of the system are, especially for an architecture such this
where there is a heavy reliance on software-based controllers to perform safety-critical functions
and where the human pilot is increasingly dependent on feedback provided to them by software-
based controllers instead of having access to direct, independent feedback.

In summary, this analysis has shown that although this architecture option has the potential to
reduce the workload of the human pilot by relieving them of the need to always maintain control
over the aircraft under all conditions, this benefit comes with significant tradeoffs that must be
carefully considered. Most critically, the interactions between the human pilot and ASEC in this
architecture option can lead to new loss scenarios. In some scenarios, decision-making biases
and heuristics or assumptions used by the human pilot or programmed into the ASEC software

 122

can lead to unsafe control actions. On the other hand, in other scenarios, inadequate
coordination between the human pilot and ASEC could result in unsafe behavior that may negate
the benefits of sharing responsibilities if such unsafe behavior is difficult or impossible to avoid.
This analysis therefore shows that although it might be beneficial for the ASEC to take over the
task of flying the aircraft in real time from the human pilot, the tradeoff is that the change in
architecture in this option requires the introduction of additional requirements and constraints
which can increase the complexity of the system design.

4.6.8 Comparison of Architecture Options

Having described and analyzed each of the three candidate architecture options for the Piloting
Controller, these three architecture options can now be compared to identify the benefits and
tradeoffs of one architecture option over another that will help to inform which architecture
option should be selected for further system development. For each architecture option, the
benefits of that architecture option over the other 2 will be discussed and then those benefits
will be contrasted with the tradeoffs or challenges that will need to be addressed if that
architecture is chosen. This information together with the other analysis results described in this
research should eventually be used to inform a decision when selecting one architecture option
for further system development.

As described in the introduction to the architecture options, the system architecture in option 1
relies the least on automation to assist in the tasks necessary for safe flight in DVE and therefore
most of the responsibilities that are identified are assigned to the human pilot. The ASEC thus
serves simply as a decision aid, assisting the human pilot by providing them with feedback from
the aircraft sensors that the human pilot can use to make decisions when selecting actuator
movements to fly the aircraft. For these reasons, compared to options 2 and 3, the benefits of
architecture option 1 are that there are only a few responsibilities that are shared between the
human pilot and ASEC and therefore less coordination is required between the human pilot and
ASEC to avoid unsafe control actions. Consequently, there are few, if any, scenarios involving
inadequate coordination between the human pilot and ASEC that need to be mitigated or
prevented. Compared to architecture options 2 and 3, this reduces the number of constraints
that are needed to avoid unsafe system behavior. Furthermore, because the ASEC is only
assigned relatively simple responsibilities to carry out, there are also fewer challenges related to
the design and implementation of the ASEC that need to be addressed to ensure that the ASEC’s
software design does not contribute to unsafe system behavior. For these reasons, option 1 has
the potential to be a simpler and less complex system design compared to options 2 and 3.

However, because option 1 relies primarily on the human pilot to carry out many of the
responsibilities, several human factors challenges will need to be addressed to ensure that the
architecture supports the responsibilities assigned to the human pilot and does not instead make
it harder for the human pilot to carry out their assigned responsibilities. As discussed in the
architecture analysis for option 1 in Section 4.6.3, two main challenges for this architecture
option were identified:

 123

1. Feedback mechanisms must be designed to help the human pilot avoid relying on unsafe
human decision-making biases and heuristics

2. The human pilot will experience an increased workload when carrying out the
responsibilities necessary to ensure safe flight in DVEs. This increased workload results
from three main factors:

a. Increased cognitive effort required to validate feedback and update their mental
model

b. Difficult conditions under which the human pilot is expected to make decisions.
These conditions include the need to make decisions quickly and accurately as
well as the need to make decisions under uncertainty or with incomplete
information

c. The larger mental model that the human pilot will need to maintain

For these reasons, if architecture option 1 is selected, it will be important to account for human
factors considerations when designing the feedback mechanisms as well as the displays and other
pilot interfaces to ensure that the human pilot is able to effectively carry out the responsibilities
assigned to them and avoid making the already high anticipated workload even higher.

One way to alleviate the potentially high workload imposed on the human pilot by architecture
option 1 could be to reduce the size of the mental model that the human pilot needs to maintain
so that the human pilot has fewer process model parts to maintain in memory or keep updated.
Unfortunately, the three architecture options show how difficult it is to reduce the size of the
mental model that the human pilot must maintain. Although architecture option 2 assigns more
responsibilities to the ASEC, the number of parts of the process model that are assigned to the
human pilot does not change. It is only in architecture option 3 when the human pilot is no longer
assigned responsibilities for directly controlling the aircraft and the ASEC is assigned control over
the aircraft that the mental model of current weather conditions no longer needs to be assigned
to the human pilot. This thus shows how difficult it is to reduce the size of the human pilot’s
mental model because the ASEC had to advance from being a decision aid in option 1 to being in
direct control over the aircraft to reduce the size of the human pilot’s mental model by 1 part.

An alternative way to reduce the workload of the human pilot is to relieve the human pilot from
carrying out some responsibilities or provide them with assistance in carrying out their assigned
responsibilities. Architecture option 2 therefore does this by sharing some of the responsibilities
with the ASEC so that the ASEC can assist by proposing flight paths or actuator movements for
the human pilot’s consideration. In doing so, architecture option 2 offers several benefits.
Compared to architecture option 1, option 2 not only offers the potential to reduce the workload
of the human pilot but it also provides the human pilot with assistance in interpreting feedback
or considering various alternatives to support the human pilot’s decision making, especially
under cognitively challenging circumstances or when decisions need to be made under
uncertainty or with incomplete information. In addition, compared to architecture option 3,
option 2 keeps the human pilot involved in selecting actuator movements. As a result, it is easier
for the human pilot to modify or override the ASEC’s proposed flight paths because the human
pilot is primarily in control over the aircraft.

 124

However, these benefits have associated tradeoffs. As discussed in the architecture analysis for
option 2, the sharing of responsibilities result in two challenges. The first challenge is that not
only do the feedback mechanisms still need to be designed to help the human pilot avoid relying
on unsafe human decision-making biases and heuristics, the ASEC’s software must also avoid
having human decision-making biases programmed into it to ensure that the benefits of sharing
responsibilities between the human pilot and ASEC are achieved. If the ASEC’s software has
similar (or worse) decision-making biases or heuristics programmed into it, then its behavior may
resemble those of the human pilot, negating some of the benefits of shared responsibilities. The
second challenge is that the sharing of responsibilities can increase the complexity of the system
because additional requirements are needed to ensure adequate coordination is achieved
between the human pilot and ASEC. If there is inadequate coordination, additional loss scenarios
may occur that are more difficult to mitigate or prevent. In addition, the benefits of sharing
responsibilities may be negated or the workload imposed on the human pilot may inadvertently
be increased. As such, the benefits of this architecture option compared to the other two should
be compared against these challenges. If this architecture option is chosen, not only do the
human factors considerations and requirements on feedback design need to be accounted for,
additional constraints and requirements will need to be imposed on the system to prevent unsafe
system behavior caused by inadequate coordination between the human pilot and ASEC.

While architecture option 2 provides the human pilot with assistance in carrying out
responsibilities where increased cognitive effort is required or when complex decisions need to
be made, that option does not assist the human pilot in carrying out responsibilities such as SR-
21 and SR-22 that require decisions to be made quickly and accurately. As such, architecture
option 3 addresses this challenge by transferring those two responsibilities to the ASEC and
applying the same assignments as architecture option 2 for the remaining responsibilities and
the process model parts. As a result, compared to option 2, architecture option 3 attempts to
address most of the challenges identified in the architecture analysis of option 1 by leveraging
the most use of automation out of all three architecture options. This allows the ASEC to not only
help the human pilot detect weather conditions and other aircraft and objects but to also control
the aircraft. The system is therefore no longer dependent on the human pilot providing actuator
movements to the aircraft subsystems quickly and accurately.

However, as might be expected, this architecture option not only inherits all the tradeoffs
identified for option 2 but also incurs some additional tradeoffs due to the change in the role of
the human pilot from a system operator in architecture option 1 and 2 to a supervisor in
architecture option 3. As discussed in the architecture analysis for option 3, these additional
tradeoffs arise due to the additional opportunities for inadequate coordination between the
human pilot and ASEC or inadequately defined system or software requirements that lead to
unsafe system behavior. Because the ASEC is the most heavily involved in flying the aircraft in
this option compared to options 1 and 2, it is even more important that the interfaces between
the human pilot and the ASEC be designed to enable effective coordination between the human
pilot and ASEC. This ensures that they can communicate with each other and perform effective
group decision-making. In addition, although the human pilot is no longer directly involved in
flying the aircraft in this architecture option, unsafe human decision making biases and heuristics

 125

can still lead to unsafe system behavior because the human pilot can influence the behavior of
the ASEC. For these reasons, the additional requirements and constraints needed to avoid these
causal factors from leading to a hazard or loss may make the system more challenging to design
and may also increase the complexity of the system.

In summary, comparing the three architecture options, the level of automation and the level of
involvement of the ASEC in the task of flying the aircraft increases from option 1 to option 3 and
this increase in the use of automation has the potential to reduce the workload of the human
pilot and provide them with assistance in flying the aircraft safely in DVE. However, as the level
of automation increases, so too does the system complexity and the challenges in being able to
successfully design and implement such a system architecture. As the comparison of architecture
options has shown, not only does the design of the feedback mechanisms and interactions
between the human pilot and the system need to account for human factors considerations but
there are also an increasing number of ways that inadequate coordination between the human
pilot and ASEC or unsafe assumptions encoded into the system software can lead to unsafe
system behavior as the level of automation increases. As such, the benefits of increasing the
system’s reliance on automation must be balanced against the tradeoffs in this architecture
analysis to determine if the benefits gained are worth the tradeoffs incurred. Eventually, the
information discussed in this analysis should be used to inform a decision when selecting one of
these architecture options to proceed with further system development.

 126

Chapter 5 Conclusions

5.1 Summary

This thesis developed a new approach to architecture development that overcomes limitations
of current methods, can be applied early in the design process and is appropriate for today’s
increasingly complex systems. Using the new approach, a system can be analyzed in the earliest
stages of system development to create system architectures in a top-down and safety-driven
manner.

Unlike current methods for architecture development that rely on decomposition to create
system architectures, this new approach uses appropriate types of abstraction to guide the
design process and organize the design information. It begins by analyzing the system in its
environment using STPA to identify the system-level interactions that could lead to unsafe
behaviors and then uses the analysis results to drive the identification of solution-neutral,
system-level requirements. This ensures that safety or other emergent properties are designed
into the system from the beginning. Once these system-level requirements have been identified,
they can be used to generate the system-level behavior that describes how the system must
behave to fulfill the system requirements. Finally, the system-level behavior information is used
to inform the creation and assessment of architecture options for the overall system as well as
each of the components. By applying this new approach iteratively, a conceptual architecture for
a system can be created and refined until the detailed design for a system is complete.

There are four key features that differentiate this new approach from current methods for
architecture development:

1. It applies a systems-theoretic approach by proceeding top-down and considering the
system as a whole and the interactions between system components instead of
analyzing the components individually

2. It integrates STPA as the hazard analysis early in the design process. This ensures that
emergent properties such as safety are designed into the system from the beginning
and enables considerations from other disciplines such as human factors to be
integrated into the analysis.

3. It assists system designers in obtaining more information about what is needed to
carry out the responsibilities effectively before architecture options are created. This
enables architectures to be designed to ensure that the responsibilities can be carried
out as effectively as possible.

4. It uses means-ends abstraction to guide the design process instead of being reliant on
functional or physical decomposition to create system architectures. This helps
system designers and reviewers to manage system complexity and identify what the
architecture must do and how it must behave before architectural decisions are made

This thesis also demonstrated this new approach by applying it to create the architecture for a
system involving a human pilot and automated aircraft controller flying aircraft in DVEs. Using

 127

the new approach, the Flight Operations System needed to safely perform medevac flights in
DVEs was analyzed using STPA to generate a set of system-level requirements. The system-level
requirements were then used to generate the system-level behavior information that described
the responsibilities necessary for safe flight as well as the process model parts, feedback sources
and timing requirements that were necessary to enable safe flight. This system-level behavior
information was then used to inform the creation of candidate architectures. First, two
architecture options for the overall Flight Operations System were analyzed and the tradeoffs
between the architecture options was compared to inform the selection of one option for further
development. The chosen architecture was then used to develop and analyze architecture
options for the human pilot and aircraft software controller. The creation and assessment of
these architecture options thus demonstrated how the system design information generated
using the method along with further STPA and other analyses can be used to identify the
tradeoffs between architecture options to inform a decision about which architecture should be
selected for further system development.

5.2 Future Work

Although this new approach to concept and architecture development addresses the three
challenges for creating and assessing system architectures, there are several ways that this new
approach could be further refined to provide additional assistance to system designers and
reviewers in understanding the system to design or reviewing it.

The first is that the decision-making strategy could be defined more formally to avoid ambiguity
and make it easier to translate it into other forms more suitable for detailed system design and
implementation. In this research, the decision-making strategy is defined in a relatively
unstructured manner using natural language. As a result, there can be ambiguities in interpreting
the decision-making strategy or using it create other design artifacts such as a black-box
specification for software development. For these reasons, it may be beneficial to define the
decision-making strategy more formally to reduce ambiguity. However, because the decision-
making strategy is a part of the system-level behavior information, it must still be presented in a
readable format that is easy for anyone who might use the system the specification to
understand. As such, further research is needed to determine if a specification language such as
SpecTRM-RL [31] that is both formal and readable could be used instead of natural language for
defining the decision-making strategy.

The second is that the creation and assessment of architecture options requires additional
structure and guidance to ensure a more systematic approach to creating and assessing these
options. In this research, the architecture options were created and assessed by essentially
applying known or familiar heuristics that are usually used when defining these types of
architectures for aircraft. However, to create truly novel or new designs, the process of creating
and assessing architectures must assist system designers in thinking beyond known or familiar
heuristics or reference designs to help them identify new types of architectures based on the
specific problem they are trying to solve. As such, further research is needed to determine how
the architecture creation and assessment could be better structured to help system designers

 128

consider other types of architectures instead of relying on familiar heuristics or reference
designs.

The third is that the creation and assessment of architecture options also needs to incorporate
information from upstream influences in the system design process. In this research, architecture
options were created and assessed based only on the requirements and system-level behavior
information generated using this new approach along with human factors and other
considerations. However, upstream influences such as stakeholder preferences and priorities
should also influence the system design such that different stakeholder preferences and priorities
result in different architectures even when the requirements and system-level behavior
information remain constant. As such, further research is needed to determine how to
incorporate information from upstream influences such as a stakeholder analysis when creating
and assessing architecture options.

 129

Chapter 6 References

[1] “Systems Engineering for Intelligent Transportation Systems: An Introduction for

Transportation Professionals.” Department of Transportation, Office of Operations, Jan.
2007.

[2] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin, T. M. Shortell, and International
Council on Systems Engineering, Eds., Systems engineering handbook: a guide for system
life cycle processes and activities, 4th edition. Hoboken, New Jersey: Wiley, 2015.

[3] N. Leveson, “An Improved Design Process for Complex Control-Based Systems Using STPA
and a Conceptual Architecture,” Massachusetts Institute of Technology, White Paper,
2019.

[4] E. Crawley et al., “The influence of architecture in engineering systems,” MIT Engineering
Systems Monograph, 2004.

[5] E. F. Crawley, B. Cameron, and D. Selva, System architecture: strategy and product
development for complex systems. Boston: Pearson, 2016.

[6] “ISO/IEC/IEEE 42010 Systems and software engineering - Architecture description,” IEEE.
doi: 10.1109/IEEESTD.2011.6129467.

[7] NASA, NASA Systems Engineering Handbook, rev2 ed. Place of publication not identified:
12TH MEDIA SERVICES, 2017.

[8] N. Leveson, Engineering a safer world: systems thinking applied to safety. Cambridge, Mass:
MIT Press, 2011.

[9] “ISO/IEC/IEEE 15288 Systems and software engineering - System Lifecycle Processes,” IEEE.
[10] G. M. Weinberg, An introduction to general systems thinking: Gerald M. Weinberg, Silver

anniversary ed. New York: Dorset House, 2001.
[11] J. Rasmussen, “The role of hierarchical knowledge representation in decision making and

system management,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15,
no. 2, pp. 234–243, Mar. 1985.

[12] N. G. Leveson, “Intent specifications: an approach to building human-centered
specifications,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 15–35, Jan.
2000.

[13] “Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Concept of Operations
v2.0,” Federal Aviation Administration, Department of Transportation, Mar. 2020.

[14] N. G. Leveson and J. P. Thomas, STPA Handbook. 2018.
[15] K. H. Johnson, “Systems-Theoretic Safety Analyses Extended for Coordination,” MIT

Department of Aeronautics and Astronautics, PhD Dissertation, Feb. 2017.
[16] A. Kharsansky, “A systemic approach toward scalable, reliable and safe satellite

constellations,” MIT System Design and Management Program, Masters Thesis, Sep. 2020.
[17] H. M. Slominski, “Using STPA and CAST to Design for Serviceability and Diagnostics,” MIT

System Design and Management Program, Masters Thesis, May 2020.
[18] M. E. France, “Engineering for Humans: A New Extension to STPA,” MIT Department of

Aeronautics and Astronautics, Masters Thesis, Jun. 2017.
[19] N. G. Leveson, “Rasmussen’s legacy: A paradigm change in engineering for safety,” Applied

Ergonomics, vol. 59, pp. 581–591, Mar. 2017.

 130

[20] N. G. Leveson, “The drawbacks in using the term ‘system of systems,’” Biomedical
Instrumentation & Technology, vol. 47, no. 2, pp. 115–118, 2013.

[21] “Spatial Disorientation Induced by a Degraded Visual Environments: Training and Decision-
Making Solutions Recommended Practice,” United States Helicopter Safety Team, Dec.
2020.

[22] S. P. Baker, J. G. Grabowski, R. S. Dodd, D. F. Shanahan, M. W. Lamb, and G. H. Li, “EMS
Helicopter Crashes: What Influences Fatal Outcome?,” Annals of Emergency Medicine, vol.
47, no. 4, pp. 351–356, Apr. 2006.

[23] J. Vreeken, “Helicopter Flight in a Degraded Visual Environment.” National Aerospace
Laboratory, 2013.

[24] J. Keller, “Three companies to develop synthetic-vision avionics to help land helicopters in
choking dust,” Military & Aerospace Electronics, Oct. 03, 2013. [Online]. Available:
https://www.militaryaerospace.com/computers/article/16715788/three-companies-to-
develop-syntheticvision-avionics-to-help-land-helicopters-in-choking-dust

[25] “Emergency Medical Services Policies and Procedures.” County of Ventura Health Care
Agency, Dec. 01, 2011.

[26] “EMS Aircraft Dispatch-Response-Utilization Policies and Procedures.” Kern County Public
Health Services Department, Apr. 11, 2002.

[27] “Air Medical Services (AMS) Guidelines for all first responders and EMS agencies serving
the Hudson Valley & Westchester EMS Regions.” Hudson Valley-Westchester Inter-
Regional Helicopter Committee, Jan. 2021.

[28] “AC 135-14B: Helicopter Air Ambulance Operations.” Federal Aviation Administration,
Mar. 26, 2015.

[29] R. Cabosky, “Application of Hierarchy to STPA: A Human Factors Study on Vehicle
Automation,” MIT Department of Aeronautics and Astronautics, Masters Thesis, Aug.
2020.

[30] C. D. Wickens, Ed., An introduction to human factors engineering, 2. ed. Upper Saddle
River, NJ: Pearson/Prentice Hall, 2004.

[31] N. Leveson, “An Introductory Guide to SpecTRM.” Safeware Engineering Corp, 2005.
[Online]. Available: https://dspace.mit.edu/bitstream/handle/1721.1/71860/16-358j-
spring-2005/contents/assignments/tutorial.pdf

 131

Appendix A UCAs Identified For STPA Analysis of FOS

As part of this research, UCAs were identified for the Piloting Controller (Table 47) to
demonstrate how the control structure shown in Figure 16 should be analyzed. Although UCAs
for other controllers were not analyzed as part of this research project, a complete STPA analysis
of the control structure should identify UCAs for all control actions in the control structure.

Table 47: UCAs for the Piloting Controller

Control
Action

Providing Not Providing Too Early/Too Late Applied Too
Long/Stopped
Too Soon

Actuator
Movements

UCA-1.1:
Piloting
Controller
provides
actuator
movements
during takeoff
when the
aircraft is not in
a safe
departure state
[H-3, H-4, H-5]

UCA-1.2:
Piloting
Controller
provides
actuator
movements
that steers the
aircraft toward
another aircraft
or object [H-3]

UCA-1.3:
Piloting
Controller
provides
actuator
movements
when the
maneuver will

UCA-1.5: Piloting
Controller does
not provide
actuator
movements when
violation of
minimum
separation is
imminent [H-3]

UCA-1.6: Piloting
Controller does
not provide
actuator
movements during
critical phases of
flight [H-1, H-3]

UCA-1.7: Piloting
Controller
provides actuator
movements too
late during takeoff
after takeoff
clearance is
granted when
another aircraft or
obstacle has
entered the
airspace near the
aircraft [H-3]

UCA-1.8: Piloting
Controller
provides actuator
movements too
late when the
aircraft is near
another aircraft or
obstacle [H-2, H-3]

UCA-1.9: Piloting
Controller
provides actuator
movements too
early during
landing before the
aircraft has
cleared all vertical

UCA-1.10:
Piloting
Controller
applies actuator
movements for
too long during
takeoff after it
has passed the
desired altitude
[H-1, H-3]

UCA-1.11:
Piloting
Controller stops
providing
actuator
movements too
soon during
takeoff before
the desired
altitude is
reached [H-3]

UCA-1.12:
Piloting
Controller stops
applying
actuator
movements too
soon before the
aircraft has

 132

place the
airframe under
extreme
stresses [H-1,
H-2]

UCA-1.4: Pilot
provides
actuator
movements
when the
aircraft has
already landed
[H-1, H-2, H-4]

obstacles on the
ground [H-3]

landed [H-2, H-
4]

 133

Appendix B Loss Scenarios Identified For STPA Analysis of FOS

Scenarios for UCA-1.1
UCA-1.1: Piloting Controller provides actuator movements during takeoff when the aircraft is
not in a safe departure state [H-3, H-4, H-5]

CS-1.1.1: The piloting controller provides actuator movements during takeoff despite receiving
feedback that the aircraft is not in a safe departure state. This could occur because:
1. The piloting controller has the wrong process model of the state of the aircraft and

therefore believes that the aircraft is in a safe departure state. This could occur if:
1.1. The piloting controller receives the feedback indicating that the aircraft is not in a safe

departure state but does not incorporate that feedback into its process model of the
state of the aircraft because:

1.1.1. The piloting controller may wrongly believe that the data is too old/out-of-date.
As a result, the piloting controller ignores that feedback, believing that it should
make use of newer data to update its process model of the state of the aircraft.
[SLR-1]

1.1.2. The piloting controller believes it is receiving conflicting feedback because DVE
conditions have degraded the accuracy of or obscured some (but not all) feedback
sources. The piloting controller therefore chooses to ignore the feedback showing
the presence of the other aircraft or object, believing that it is a false positive or
erroneous. The piloting controller is especially susceptible to this if the majority of
sources appear to agree that no aircraft is present and fewer sources appear to
show otherwise. As a result, the piloting controller updates its process model
based only on what it wrongly believes to be the correct feedback. [SLR-2]

1.1.3. Alternatively, if the piloting controller receives communication from another
controller (e.g. another aircraft, ground personnel, EMS Operations and ATC)
indicating that the aircraft is in a safe departure state, the piloting controller may
assume that the communication from the other controller must be accurate. This
may even be used as proof that the feedback showing that the aircraft is not in a
safe departure state should be ignored as out-of-date or incorrect. As a result, the
piloting controller uses the communication from the other controller to update its
process model and therefore wrongly believes that the aircraft is in a safe
departure state. [SLR-3]

1.2. Under the time constraints of needing to depart for a mission, the piloting controller
either decides to or is told by another controller to expedite departure checks. This
could be the result of unsafe operational adaptation to speed up the time required to
prepare the aircraft for departure or the result of a capability to override or otherwise
influence the checks. As a result, the piloting controller does not perform a complete
update of its process model of the state of the aircraft and therefore might believe
that, based on what it did check, the aircraft is in a safe departure state. [SLR-4]

1.3. The piloting controller had the correct process model of the state of the aircraft and the
expected safe departure state at the point that the aircraft was checked. However,

 134

prior to departure, the state of the aircraft changes and the piloting controller does not
update the process model, believing that there is no need to check the state of the
aircraft again. As a result, they are unaware that the aircraft is no longer in a safe
departure state [SLR-5]

2. The piloting controller has a wrong/incomplete process model of the expected safe
departure state of the aircraft and therefore decides based on this wrong/incomplete
model that the current state of the aircraft matches the desired safe departure state. This
could occur if:
2.1. The data (e.g. aircraft manifest) provided to the piloting controller (e.g. from EMS

Operations and ATC or ground personnel) indicating the expected safe departure state
of the aircraft was incompletely specified but is assumed by the piloting controller to be
complete. The piloting controller therefore updates its process model of the desired
safe departure state of the aircraft based on this wrong or incomplete information.
[SLR-6]

2.2. A last-minute update is made to the expected safe departure state of the aircraft and
the piloting controller does not receive the update. This could occur if:

2.2.1. The update was not provided to the piloting controller due to poor
communication [SLR-7]

2.2.2. Any of the conditions in CS-1.1.1-1.1 above may occur, resulting in the piloting
controller receiving the update but not incorporating it into its process model of
the desired safe departure state. [SLR-1, SLR-2, SLR-3]

CS-1.1.2: The pilot receives feedback that did not indicate that the aircraft was not in a safe
departure state because:
1. The feedback indicating that the aircraft was in an unsafe departure state was available

from the feedback mechanisms/sensors (e.g. reporting systems, aircraft maintenance logs,
warnings/alarms from the aircraft subsystems). However, that data is not received by the
piloting controller. If the piloting controller assumes/is programmed to assume that not
receiving such feedback indicates that there are no outstanding maintenance or
configuration updates, then the piloting controller will make an incorrect update of its
process model of the state of the aircraft and believe the aircraft is in a safe departure
state. Data might be collected by the sensors/feedback mechanisms but not be received by
the piloting controller because:
1.1. The data is missed/dropped before it can be processed by the piloting controller. This

could occur because the piloting controller was preoccupied and unable to process the
incoming data or the piloting controller was unaware of the arrival of the data to be
processed [SLR-8]

1.2. The required data is not made available to the piloting controller even though it is
collected. Examples of this include warnings from the aircraft subsystems that are
buried deep in menus on the display interfaces (if the piloting controller is human),
data not being distributed to the automation (if the piloting controller is automated) or
the piloting controller not having access to manifests, maintenance logs or the status of
preflight activities such as configuration updates. [SLR-9]

 135

1.3. Alternatively, the data is made available but the piloting controller does not check
those data collection mechanisms (e.g. maintenance reports, warning messages) prior
to departure [SLR-9]

1.4. For maintenance or configuration tasks, an update could have been made (or there was
a delay in updating records) showing an outstanding task or issue after the piloting
controller has checked the data collection mechanisms. If the piloting controller is not
notified of this update, then the piloting controller does not have another opportunity
to update their process model of the state of the aircraft [SLR-10]

2. The sensor data required to indicate that the aircraft was in an unsafe departure state is not
available. As a result, no data is collected regarding those aspects of a safe departure state
and the piloting controller is unaware that those aspects are in an unsafe state. The sensor
data might not be available because:
2.1. Maintenance or preflight records for the aircraft are not updated to show the

incomplete or outstanding maintenance task(s) or the state of each task. This could
occur due to delays in updating those records after an issue is discovered or a technical
issue preventing the update of those records [SLR-10]

2.2. Sensors used to detect the unsafe departure state of the aircraft have failed and their
failure does not trigger a warning of the failure from the aircraft subsystems [SLR-9]

2.3. DVE conditions obscure the area around the aircraft and prevents the piloting
controller from seeing if any maintenance or preflight activities are still being
performed on the aircraft (either visually or via other sensor modalities). [SLR-3, SLR-9]

CS-1.1.3: The piloting controller does not provide actuator movements during takeoff but
actuator movements are received by the aircraft because:
1. An adversary spoofs the actuator movements sent from the piloting controller and causes

the aircraft to believe the piloting controller has sent actuator movements [SLR-11]

CS-1.1.4: Actuator movements are not received by the aircraft but the aircraft behaves as
though actuator movements have been received and violates minimum separation or is harmful
to human health because:

1. A subsystem controller fails, sending actuator movements when none were commanded
by the piloting controller [SLR-12]

Scenarios for UCA-1.2
UCA-1.2: Piloting controller provides actuator movements that pilots the aircraft toward
another aircraft or object [H-3]

CS-1.2.1: The piloting controller provides actuator movements despite receiving feedback that
there was another aircraft or object nearby. This could occur because:
1. The piloting controller may have the wrong process model of the state of the environment,

the aircraft or the airspace around the aircraft. As a result, the piloting controller might
wrongly believe that the airspace nearby the aircraft is clear to pilot toward or select
actuator movements that, because of the wrong process model of the state of the aircraft

 136

or environmental conditions, cause the aircraft to move toward instead of away from the
aircraft or object. This may occur because:
1.1. DVE conditions cause more noise in sensor data than is normally present, making the

useful feedback more difficult for the piloting controller to distinguish from the noise or
increasing the likelihood that the piloting controller wrongly decides that the sensor
data shows no useful feedback/detections. [SLR-13, SLR-19]

1.2. Any of the conditions in CS-1.1.1-1.1 could occur in this case as well [SLR-1, SLR-2, SLR-
3]

1.3. DVE causes delays in the piloting controller interpreting the sensor data and using the
sensor data to update its process model. As a result, the piloting controller has the
wrong process model of the airspace around the aircraft until it is able to update its
process model. [SLR-14]

1.4. If another aircraft or controller external to the aircraft providing airspace guidance is in
contact with the aircraft and wrongly believes that the airspace nearby the aircraft is
clear (for any of the same reasons above) or if a-priori data indicates that no ground
obstacles are present, the piloting controller may assume that the external
controller/a-priori data is providing accurate information and disregard the onboard
sensors in favor of the guidance provided by the external controller. If the piloting
controller is human, this may also contribute to confirmation bias, causing the piloting
controller not to look for any other evidence that another aircraft or object is nearby.
As a result, the piloting controller wrongly updates its process model of the airspace
nearby the aircraft [SLR-3, SLR-15]

1.5. The piloting controller had the correct process model of the airspace at the point that it
checked. However, between the time that the piloting controller checked the state of
the airspace and the time that it begins its maneuver, an object or other aircraft enters
the nearby airspace. However, the piloting controller, believing that the airspace is
clear, does not check that airspace again and therefore now has the wrong process
model of the nearby airspace when it actually begins its maneuver. [SLR-16]

2. The piloting controller may have the wrong belief about the future behavior of the other
aircraft or object and therefore believes that providing actuator movements will not pilot
the aircraft toward the other aircraft or object. This might occur because:
2.1. The other aircraft does not coordinate its movements sufficiently with this aircraft and

therefore the piloting controller is forced to make assumptions based on the
movement patterns it has observed and predict the other aircraft’s intent [SLR-17, SLR-
18]

2.2. The other aircraft does coordinate its movements with this aircraft but, at the last
minute or for some other reason, is forced to change its intended movements but does
not communicate this new intent to the piloting controller [SLR-17, SLR-18]

3. The piloting controller is forced to make a quick decision to avoid violating minimum
separation that does not fully account for all objects and aircraft in the airspace. As a result,
the piloting controller tries to avoid one object/aircraft and collides with another
aircraft/object instead. [SLR-17, SLR-18]

 137

CS-1.2.2: The piloting controller receives feedback that did not indicate that another aircraft or
object was nearby because:

1. DVE degrades or obscures sensors, leading to wrong, incomplete or missing feedback
about the environment, DVE conditions or the state of the aircraft. This could also be
caused by a sensor suite that was not designed to operate in a particular set of DVE
conditions [SLR-2, SLR-15, SLR-19]

2. Changes in aircraft position are so slow/subtle that, especially under some DVE
conditions, the piloting controller is unable to distinguish the feedback showing the
aircraft shifting or drifting in position. As a result, the pilot’s mental model of the state
or position of the aircraft does not match the aircraft’s actual state or position [SLR-20]

3. The feedback indicating the presence of another aircraft or object nearby was delayed
in arriving. This might occur because DVE conditions increase the processing time
needed before the piloting controller receives the feedback. As a result, the piloting
controller selects actuator movements based on its current process model of the
airspace which does not reflect the presence of another aircraft or object. [SLR-14, SLR-
21]

4. Feedback not showing the presence of another aircraft or object nearby was delayed in
arriving. As a result, if the piloting controller is not aware of the delay, it might wrongly
choose to incorporate that feedback even though it is already out-of-date. [SLR-1]

CS-1.2.3: The piloting controller does not provide actuator movements that pilots the aircraft
toward another aircraft or object but actuator movements to do so are received by the aircraft
because:
1. A similar cybersecurity reason as CS-1.1.3-1 would apply here as well [SLR-11]

CS-1.2.4: Actuator movements are not received by the aircraft but the aircraft still violates
minimum separation with the nearby aircraft or object because:

1. DVE conditions (e.g. wind gusts) move the aircraft toward the other aircraft or object
with enough force or at a high enough rate that the piloting controller is unable to react
quickly enough or with appropriate amplitude to correct the disturbance [SLR-22]

Scenarios for UCA-1.5
UCA-1.5: Piloting Controller does not provide actuator movements when violation of minimum
separation is imminent [H-3]

CS-1.5.1: The piloting controller does not provide actuator movements despite receiving
feedback that violation of minimum separation is imminent. This could occur because:
1. The piloting controller may be unable to select new actuator movements before the

violation of minimum separation occurs. This could occur if:
1.1. The piloting controller is unable to select new actuator movements quickly enough to

avoid violation of minimum separation. This might occur if the piloting controller
recognizes the imminent violation too late or takes too long to select new actuator
movements [SLR-23]

 138

1.2. There is no viable path that would allow the piloting controller to avoid the current
violation of minimum separation without causing another one (i.e. no viable escape
path) [SLR-24]

2. The piloting controller has the wrong belief about the future movement of the other aircraft
or object and believes that the other aircraft or object will no longer pose a threat. [SLR-18]

CS-1.5.2: The piloting controller receives feedback that did not indicate that violation of
minimum separation is imminent. These scenarios are the same as CS-1.2.2.

CS-1.5.3: The piloting controller does provide actuator movements but actuator movements
are not received by the aircraft because:
1. A similar cybersecurity reason as CS-1.1.3-1 would apply here as well [SLR-11]

CS-1.5.4: Actuator movements are received by the aircraft but the aircraft still violates
minimum separation because:
1. The piloting controller may have the wrong process model of the environment conditions

and selects actuator movements that are insufficient to effect the desired change in flight
path [SLR-25]

2. The piloting controller selects actuator movements that avoid one violation of minimum
separation but causes another one [SLR-25, SLR-26]

 139

Appendix C System-Level Requirements

Table 48 shows how system-level requirements should be recorded along with traceability links
to the scenarios they are meant to mitigate or prevent as well as the underlying rationale and
assumptions.

Table 48: System-Level Requirements

Req ID System-Level Requirement Scenario Links Rationale/Assumptions

SLR-1 The FOS must be able to determine if
any feedback it is receiving about the
aircraft’s mission readiness, state of
the aircraft and the airspace around it
is too old

CS-1.1.1-1.1.1,
CS-1.2.1-1.2, CS-
1.2.2-4

Assumes that it is
possible to determine
the validity/expiry
period for all feedback
information

SLR-2 The FOS must account for prevailing
DVE conditions and their possible
effect on feedback sources when
making use of feedback information

CS-1.1.1-1.1.2,
CS-1.2.1-1.2, CS-
1.2.2-1

Assumes that there is
minimal ambiguity in
deconflicting feedback
that appears to be in
conflict once a
framework/guidance is
established for
determining how
feedback sources
might be affected by
DVEs

SLR-3 The FOS must verify the accuracy of

any inputs from another

aircraft/controller before updating

process models based on that input

CS-1.1.1-1.1.3,
CC-1.1.2-2.2.2,
CS-1.2.1-1.2, CS-
1.2.1-1.4

Assumes that all
possible inputs from
external sources can be
verified in some
manner using other
available data

SLR-4 The FOS must confirm that all aspects
of the aircraft state match the safe
departure state prior to departure

CS-1.1.1-1.2

SLR-5 The FOS must always be able to
determine if the state of the aircraft
changes between the time that it was
checked and departure

CS-1.1.1-1.3

 140

Req ID System-Level Requirement Scenario Links Rationale/Assumptions

SLR-6 The FOS must confirm that data
provided to it about the expected
safe departure state of the aircraft
has been fully specified

CS-1.1.1-2.1 Assumes that it is
possible to
unambiguously define
when the safe
departure state is “fully
specified” and evaluate
whether that has been
achieved

SLR-7 The FOS must ensure that all relevant
personnel are aware of any changes
to the expected safe departure state
of the aircraft

CS-1.1.1-2.2.1

SLR-8 The FOS must process all feedback to
make a deliberate decision if it is to
be ignored/dropped

CS-1.1.2-1.1

SLR-9 The FOS must ensure that it is
receiving all data required to
determine the expected safe
departure state and determine the
current state of the aircraft under all
DVE conditions at all times

CS-1.1.2-1.2, CS-
1.1.2-1.3, CS-
1.1.2-2.3

SLR-10 The FOS must ensure that flight crews
are aware of the most updated state
of any maintenance tasks on the
aircraft

CS-1.1.2-1.4

SLR-11 The FOS must ensure that only
authorized actuator movements are
executed

CS-1.1.3-1, CS-
1.5.3-1

SLR-12 All FOS equipment and systems must
be able to operate in the expected
DVE conditions

CS-1.1.4-1 Assumes that
component failure can
be avoided if
components are
designed to operate in
expected DVE
conditions

SLR-13 The FOS must be able to distinguish
useful detections/feedback from the
noise that might be present in
feedback data under all DVE
conditions at all times

CS-1.2.1-1.1

 141

Req ID System-Level Requirement Scenario Links Rationale/Assumptions

SLR-14 The FOS must be able to process
sensor data and use it to update its
process model sufficiently quickly
(within TBD seconds)

CS-1.2.1-1.3, CS-
1.2.2-3

<Rationale for the
threshold time in
which sensor data
must be processed>

SLR-15 The FOS must receive all data
required to determine the state of the
environment and conditions around
the aircraft under all DVE conditions
at all times

CS-1.2.1-1.4, CS-
1.2.2-1

SLR-16 The FOS must always be able to
determine if the state of the airspace
changes between the time that it was
checked and the commencement of a
maneuver

CS-1.2.1-1.5

SLR-17 The FOS must take into account the
current and future movements of
other aircraft in the vicinity when
selecting actuator movements

CS-1.2.1-2.1, CS-
1.2.1-2.2, CS-
1.2.1-3

Assumes that even
without the other
aircraft coordinating
sufficiently, there is
still enough
information available
to select actuator
movements that avoid
violation of minimum
separation

SLR-18 The FOS must ensure that aircraft
movements are selected such that
sufficient reaction time is available to
react and prevent violation of
minimum separation if intent or
movements of the other aircraft are
different than expected

CS-1.2.1-2.1, CS-
1.2.1-2.1, CS-
1.2.1-3, CS-1.5.1-
2

Assumes that there is
enough clear airspace
nearby to leave enough
space between aircraft
such that enough
reaction time is
available if an aircraft
moves in an
unexpected way

SLR-19 The FOS must be able to detect all
objects and other aircraft in the
environment under all DVE conditions
at all times

CS-1.2.1-1.1, CS-
1.2.2-1

SLR-20 The FOS must be able to detect slow
or subtle changes in the state of the
aircraft under all DVE conditions at all
times

CS-1.2.2-2

 142

Req ID System-Level Requirement Scenario Links Rationale/Assumptions

SLR-21 The FOS must select actuator
movements that minimize the risk of
violation of minimum separation
when information about the state of
the airspace is in a degraded
condition (e.g. delayed)

CS-1.2.2-3 Assumes that it is
possible to find a set of
actuator movements
that presents the
lowest risk of violating
minimum separation.
This requires both a
framework for making
that evaluation and
enough space between
aircraft that a relatively
low-risk solution can
be found

SLR-22 The FOS must be able to respond
quickly enough and with an
appropriate magnitude to
disturbances to prevent unintended
movements of the aircraft

CS-1.2.4-1 Assumes that there are
no conditions under
which unintended
movements of the
aircraft is unavoidable.

Also assumes that it is
desirable to always
avoid undesirable
movement of the
aircraft

SLR-23 The FOS must be able to respond
quickly enough to avoid violations of
minimum separation

CS-1.5.1-1.1

SLR-24 The FOS must ensure that a viable
path is always available to avoid a
violation of minimum separation

CS-1.5.1-1.2 Assumes that there is
enough space between
aircraft to be able to
find a viable path to
avoid violating
minimum separation

SLR-25 The FOS must select actuator
movements that are sufficient and
appropriate to effect the desired
change in flight path under the given
environmental conditions

CS-1.5.4-1, CS-
1.5.4-2

 143

Req ID System-Level Requirement Scenario Links Rationale/Assumptions

SLR-26 The FOS must ensure that actuator
movements avoid all possible
violations of minimum separation

CS-1.5.4-2 Assumes that it is
possible to avoid all
violations of minimum
separation. This
includes not only
enough space between
aircraft but also that a
framework exists for
how to avoid multiple
possible violations at
once

Appendix D FOS System-Level Behavior Information

Decision-Making Strategy, Refined Control Actions and Required Process Model Parts

Table 49: Full Details for Decision-Making Strategy, Refined Control Actions and Required Process Model Parts

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-1. Determine if
feedback received
about the
aircraft’s mission
readiness, state of
the aircraft and
the airspace is too
old [SLR-1]

FOS will compare the
timestamp of the
feedback with
timestamp for the
current time and
calculate the
difference. If the
difference exceeds
<TBD threshold>, the
feedback is
considered too old

Model of System Behavior

• Threshold for out-of-date data

Aircraft Mission Readiness, State of the
aircraft, Current state of the airspace

• Time of feedback measurement

<Rationale for how that
threshold is determined>

<Assumptions with respect to
always having that timestamp
available>

Assumes that the threshold is
constant in all DVE and
operational conditions (e.g. will
not change based on speed of
flight)

 145

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-2. Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

FOS will compare
current weather
conditions to its
understanding of
which data sources
are affected by which
DVE conditions to
determine which
feedback sources to
trust

Model of system behavior

• Known effects of DVE on
feedback sources

Model of Current Weather Conditions

• Ambient air temperature

• Wind speed

• Visibility

• <Other conditions as needed>

Assumes that there is no real-
time way to determine if an
instrument is compromised by
DVE conditions and therefore a
priori knowledge is required

<Rationale for why each
environmental condition is
included and what instrument is
anticipated to be affected by that
condition>

SR-3. Validate the inputs
or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

FOS will cross-check
the feedback received
from other controllers
with another data
source to confirm that
the feedback from the
other controller and
the other data source
agree before using the
feedback

Model of System Behavior

• Data sources used to maintain
each parameter in the process
model

Assumes that it is possible to
cross-check all feedback within
the time limits available and with
the data available

<Any assumptions related to the
risk of confusion when multiple
data sources are available or the
risks associated with ignoring the
input if it cannot be successfully
cross-checked>

 146

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-4. Confirm that all
aspects of the
aircraft state
match the
expected safe
departure state
before providing
actuator
movements to
depart [SLR-4]

FOS compares current
aircraft state to
expected safe
departure state

 Current Aircraft Mission Readiness

• State of cargo load

• State of personnel load

Current Aircraft System State

• State of all aircraft subsystems

Expected safe departure state

• Cargo required

• Personnel required

• Expected state of aircraft
subsystems

<Rationale for why the piloting
controller comparing current and
expected safe departure state is
chosen instead of alternative
options (e.g. preflight personnel
doing all the checks and then just
informing the pilot)>

<Rationale for why each
feedback item needs to be
checked>

SR-5. Determine if the
state of the
aircraft changes
between the time
that it was
checked and
departure [SLR-5]

Based on the last time
the aircraft state was
compared to the
expected safe
departure state, if the
aircraft system state is
updated after that
time, perform the
comparison again

Expected Safe Departure State:

• Last time state was compared to
current aircraft state

Current Aircraft System State:

• Time of last update

 147

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-6. Confirm that data
about the
expected safe
departure state of
the aircraft has
been fully
specified and
received [SLR-6,
SLR-9]

The FOS uses a
standardized template
of information that
defines the expected
safe departure state
for a specific mission.
The FOS should check
that everything in the
template is specified
for the mission. The
FOS should also check
that all controllers
who need to receive
the information have
successfully received
it

Expected safe departure state

• Template of information that
should be specified for a mission

• Controllers that need to
know/modify this information

• Confirmation of receipt by
controllers

This assumes that the
information needed to
completely specify a mission can
be written in terms of a
template. If the definition of
“completely specified” depends
on the mission, then a more
flexible method of defining the
criteria for evaluating if a mission
has been “completely specified”
will need to be defined

SR-7. Ensure that all
relevant personnel
are aware of any
changes to the
expected safe
departure state of
the aircraft [SLR-7]

When anything in the
expected safe
departure state
changes after the time
of last update, the
FOS should ensure
that it receives
confirmation of
receipt for the update
from every controller

Expected safe departure state

• Time of last update

• Controllers that need to
know/modify this information

• Confirmation of receipt by
controllers

 148

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-8. Process all
feedback to make
a deliberate
decision if it is to
be
ignored/dropped
[SLR-8]

Perform the decision
making strategies in
SR-1, SR-2 and SR-3 to
determine if any of
those considerations
result in a decision to
ignore the data

All process model parts as listed in SR-1,
SR-2 and SR-3

Assumes that data might only be
ignored/dropped if it is:

1. Out of date
2. In conflict with other data

sources
3. Considered untrustworthy

under current DVE
conditions

SR-9. Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

For each piece of
feedback information
required to maintain
the process models,
ensure that updated
data is being received
at the expected
update frequency

Model of System Behavior

• Expected update frequency for
each input

• Time since last update for each
input

• State of all data sources

<Rationale for the update
frequency expected>

 149

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-10. Ensure that flight
crews are aware
of the most
updated state of
any maintenance
tasks on the
aircraft [SLR-10]

Confirmation of
receipt should be
received for any
changes to
maintenance tasks on
the aircraft occurring
after the time that a
mission has been
briefed to flight crews

Aircraft Mission Readiness

• Time of mission briefing

Current Aircraft State

• Maintenance tasks on aircraft

• Time of update to maintenance
tasks

• Confirmation of receipt of update

SR-11. Ensure that only
authorized
actuator
movements are
executed [SLR-11]

The authenticity and
integrity of the
actuator movements
should be verified
before they are
executed using <TBD>
cryptographic
methods

Model of System Behavior

• Keys associated with controllers
on the aircraft

Assumes that risks of
unauthorized actuator
movements only occur after the
control column sensors (e.g.
unauthorized physical access to
the control column is not
considered)

Key-based authentication
methods are well-established
methods of authenticating
messages

 150

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-12. Be able to operate
in the expected
DVE conditions
[SLR-12]

Compare <TBD
metrics> based on
expected worst-case
DVE conditions and
the conditions that
the equipment is
designed to operate in
to ensure that the
systems being used
have been designed to
operate in those
conditions

Model of System Behavior

• Worst case conditions that the
equipment is designed to be used
in

• Metrics to determine suitability
of equipment

<Rationale for the metrics
chosen>

SR-13. Distinguish useful
feedback from
noise in feedback
data [SLR-13]

Use typical noise and
expected signal
strength under all DVE
conditions to help
isolate signal from
noise and cross check
with other data
sources to confirm

Model of System Behavior

• Typical noise expected for each
data source under DVE condition

• Expected signal strength for each
data source under DVE condition

• Data sources used to maintain
each part of the process model

<Assumptions about minimum
signal strengths>

<Assumptions about the
conditions under which a weak
signal might be received>

<Assumptions/rationale about
typical noise based on noise
assessments>

 151

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-14. Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Use data from
<selected sensor
types> selected for
SR-18, detect the
environmental
conditions or objects
and other aircraft in
the environment
within <TBD> seconds

All process model contents in Current
Weather Conditions and Current
Airspace State

<Rationale for the time available
to perform the detections based
on sensors selected in SR-18,
reliability of detection, difficulty
in making required detections
and the time needed to make
those detections>

SR-15. Determine if the
state of the
airspace changes
between the time
that it was
checked and the
commencement of
a maneuver [SLR-
16]

If the process model
was last updated
more than TBD
seconds prior to
commencing actuator
movements, the
process model should
be updated again

Current Airspace State:

• Time of last feedback
measurement

• Threshold at which airspace state
process model is out of date

<Rationale for how that
threshold is chosen>

 152

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-16. Account for the
current and future
movements of
other aircraft in
the vicinity when
selecting actuator
movements [SLR-
17]

Anticipate current and
future position of
other aircraft and
avoid own aircraft
being in the same
location

Model of Current Airspace State

• IDs, Positions and Speeds of
other aircraft and objects

Anticipated Future Airspace State

• Intent (expected future
movement) of other aircraft and
objects

• Own Aircraft Intent

Model of Current Aircraft Navigation
State

• Current air speed

• Current altitude

• Current position

<Rationale for why this method
of accounting for future
movements of aircraft>

Assumes intent can always be
communicated before actuator
movements need to be provided
either by own aircraft or the
other aircraft

 153

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-17. Ensure that
aircraft
movements are
selected such that
sufficient reaction
time is available if
intent or
movements of
other aircraft are
not what was
expected, even if
no violation of
minimum
separation is
initially expected
[SLR-18]

The decision-making
strategy for SR-16
should be carried out
such that the closest
point of approach is
no less than the
closest point of
approach distance to
ensure that there is
sufficient time to
change course if the
other aircraft behaves
in unanticipated ways

All process model parts in SR-16 and the
following:

Model of System Behavior

• Closest point of approach
distance

<Rationale for closest point of
approach distance based on
anticipated speeds, reaction
times etc.>

SR-18. Detect all objects
and other aircraft
in the
environment
under all DVE
conditions at all
times [SLR-19]

Use data from <sensor
choices> to measure
the position and
speed of objects and
aircraft in the airspace

All process model contents in
Current Weather Conditions and
Current Airspace State

<Rationale for sensor choices
based on anticipated objects and
DVE conditions that might be
encountered, reliability of
detection, difficulty in making
required detections, time needed
to make those detections and
noise assumptions made in SR-
13>

<Assumptions about minimum
object size and DVE conditions>

 154

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-19. Detect slow or

subtle changes in

the state of the

aircraft under all

DVE conditions at

all times [SLR-20]

Based on the
navigation tolerance
requirements used to
select landing zones
and flight paths, the
FOS must be able to
navigate within those
tolerances and detect
changes in position,
altitude and airspeed
that exceed those
tolerances so that
they can be
counteracted

Current Aircraft Navigation State

• Current position

• Current altitude

• Current airspeed

Model of System Behavior:

• Navigation tolerances to be
maintained during flight

<Assumptions/rationale for
where the navigation accuracy
assumptions come from>

<Rationale for the accuracy
thresholds>

 155

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-20. Select actuator
movements that
minimize the risk
of violation of
minimum
separation when
information about
the state of the
airspace is in a
degraded
condition (e.g.
delayed) [SLR-21]

Based on the FOS’
own aircraft intent, if
it is possible to wait to
receive the delayed
feedback, the FOS
should do so

If not, based on the
last determinations of
the current airspace
state and anticipated
future airspace state,
the FOS should select
actuator movements
using established
guidelines for how to
minimize the
likelihood of violating
minimum separation

Anticipated Future Airspace State:

• Own aircraft intent

• Intent of other aircraft and
objects

Current Airspace State:

• IDs, Positions and speeds of
other aircraft and objects

Model of System Behavior

• Established guidelines for
minimizing risk of violating
minimum separation

<Rationale for why reliance on
established guidelines is
necessary>

Assumes that there will always
be an apparent movement
available that will minimize the
likelihood of violating minimum
separation

 156

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-21. Respond quickly
and with
appropriate
magnitude to
disturbances to
prevent
unintended
movement of the
aircraft [SLR-22]

Based on <anticipated
worst case DVE
conditions such as
wind gusts or
turbulence effects>,
unintended
movement must be
detected within
<some time or
distance threshold>
and an appropriate
actuator movement
selected based on
<required responses
to maintain stable
flight>

Model of Current Weather Conditions

• Outside air temperature

• Wind speed

• Visibility

• <Other conditions as needed>

Model of Current Aircraft Navigation
State

• Current air speed

• Current altitude

• Current position

Model of System Behavior

• Actuator movements selection
guidelines for handling the
aircraft in DVE conditions

Assumes that the goal of
preventing unintended
movement is always appropriate
(as opposed to accommodating
some unintended movement to
reduce airframe stress)

<Rationale for worst case DVE
conditions and response
thresholds>

 157

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-22. Respond quickly
enough and with
appropriate
magnitude to
select and effect
the desired
change in flight
path under the
given
environmental
conditions [SLR-
23, SLR-25]

Normal decision
making process
needed to select
actuator movements,
however decision
making must happen
more quickly

Model of Current Weather Conditions

• Outside air temperature

• Wind speed

• Visibility

• <Other conditions as needed>

Model of Current Aircraft Navigation
State

• Current air speed

• Current altitude

• Current position

Model of System Behavior

• Actuator movements selection
guidelines for handling the
aircraft in DVE conditions

Assumes the “rules” for selecting
actuator movements will be the
same whether in DVE conditions
or not but those decisions will
need to be more responsive to
disturbances caused by some
DVE conditions than normal

SR-23. Ensure that a
viable flight path is
always available to
avoid any
violations of
minimum
separation [SLR-
24]

Based on current and
anticipated airspace
state, select a flight
path that offers the
most options for
deviation/change if
other violations of
minimum separation
occur

Model of Current Airspace State

• IDs, Positions and speeds of
other aircraft and objects

Anticipated Future Airspace State

• Intent (expected future
movement) of other aircraft and
objects

 158

Resp.
ID

Responsibility Decision-Making
Strategy

Required Process Model Contents Rationale and Assumptions

SR-24. Select a viable
flight path that
avoids all possible
violations of
minimum
separation [SLR-
26]

Based on current and
anticipated airspace
state, select a flight
path that accounts for
all currently known
possible violations of
minimum separation

Model of Current Airspace State

• IDs, Positions and Speeds of
other aircraft and objects

Anticipated Future Airspace State

• Intent (expected future
movement) of other aircraft and
objects

Sources of Feedback

Table 50: Full Details for Feedback Sources

Process Model
Sub-Part

Required Information Source of Information Rationale/assumptions for source of information

Current Aircraft
Mission Readiness

State of cargo load
Piloting Controller or
preflight personnel

Some cargo might be loaded by maintenance or
preflight personnel but others might be loaded by crew.
Therefore, it is simplest for pilot to ensure that
everything is on board regardless of who loaded it

State of Personnel load Piloting Controller

To determine the presence of personnel on board, it is
easiest for the piloting controller to determine that on
its own

Time of mission briefing
EMS Operations and
ATC

EMS Operations and ATC are the ones who are plan and
brief the mission so they would know the time that the
briefing was given

 159

Process Model
Sub-Part

Required Information Source of Information Rationale/assumptions for source of information

Time of last feedback
measurement

Piloting Controller
Since either the Piloting Controller checks the state of
the aircraft, they know what time they checked it

Current Aircraft
System State

State of all aircraft
subsystems

Aircraft Subsystems
These values are measured by sensors on the aircraft

Time of last feedback
measurement

Aircraft Subsystems

Maintenance Tasks on
the Aircraft Maintenance

Personnel

Since maintenance personnel are in charge of
maintenance tasks, they know best the maintenance
state of each aircraft and when they last updated
maintenance tasks

Time of update to
maintenance tasks

Confirmation of receipt
of update

Piloting Controller
Since the Piloting Controller received the update, they
know what time they received it

Current Aircraft
Navigation State

Current Air Speed

Aircraft subsystems These values are measured by sensors on the aircraft Current Altitude

Current Position

Expected Safe
Departure State

Expected state of aircraft
subsystems

Maintenance
Personnel

Since maintenance personnel are in charge of
maintenance tasks, they know best the maintenance
state of the aircraft

Time of Last Comparison
to Current Aircraft State

Piloting Controller
Since either the Piloting Controller checks the state of
the aircraft, they know what time they checked it

Time of last update

EMS Operations and
ATC

Maintenance
Personnel

Since EMS Operations and ATC plans the mission, they
know what is required for the mission

Cargo required

EMS Operations and
ATC

Personnel required

Template of mission
information

 160

Process Model
Sub-Part

Required Information Source of Information Rationale/assumptions for source of information

Controllers that need to
know/modify safe
departure state
information

Since EMS Operations and ATC plans the mission, they
know what is required for the mission

Confirmation of receipt
of departure state
information

Current Weather
Conditions

Ambient Air
Temperature

Aircraft Subsystems These values are measured by sensors on the aircraft
Wind Speed

Visibility

Current Airspace
State

IDs, Positions and Speeds
of other aircraft and
objects

Aircraft Subsystems

Reports from other
controllers

EMS Operations and
ATC

These values are expected to be determined using on-
board sensor data but may also be determined by
feedback from other controllers such as EMS Operations
and ATC or other aircraft

Time of last feedback
measurement

Aircraft Subsystems

Threshold at which
airspace state process
model is out-of-date

EMS Operations and
ATC

Since EMS Operations and ATC plan missions and define
best practices, they know when airspace state
information should be considered out of date

Anticipated Future
Airspace State

Intent of other aircraft Other aircraft

Own aircraft intent Piloting Controller

Model of System
Behavior

Expected update
frequency for each input

Since EMS Operations and ATC knows aircraft
capabilities, they can provide this feedback

 161

Process Model
Sub-Part

Required Information Source of Information Rationale/assumptions for source of information

Time since last update
for each input

EMS Operations and
ATC/Maintenance
Personnel

Since all of this information is related to the mission
being planned and the equipment needed, the feedback
comes from EMS Operations and ATC

Threshold for out-of-date
data

EMS Operations and
ATC

Known effects of DVE on
feedback sources

Data sources used to
maintain each part of the
process model

Keys associated with
controllers on the aircraft

Worst case conditions
that the equipment is
designed to be used in

Metrics to determine
suitability of equipment

Typical noise expected
for each data source
under DVE conditions

Expected signal strength
for each data source
under DVE conditions

Navigation tolerances to
be maintained during
flight

Closest point of approach
distance

 162

Process Model
Sub-Part

Required Information Source of Information Rationale/assumptions for source of information

Established guidelines for
minimizing risk of
violating minimum
separation

<Rationale for the guidelines>

Actuator movements
selection guidelines for
handling the aircraft in
DVE conditions

Since all of this information is related to the mission
being planned and the equipment needed, the feedback
comes from EMS Operations and ATC

State of all data sources

Timing Requirements

To show how timing requirements should be defined and documented, Table 51 shows the timing requirements for the non-
feedback validation responsibilities. Although not shown, timing requirements should also be defined for the feedback validation
responsibilities as well.

Non-Feedback-Validation Responsibilities

Table 51: Full Details for Timing Requirements for Non-Feedback-Validation Responsibilities

Resp. ID Responsibility Timing Requirements Rationale/Assumptions

SR-4

Confirm that all aspects of the aircraft
state match the expected safe departure
state before providing actuator
movements to depart [SLR-4]

Occurs once per mission

<The shortest amount of time that
would be available to perform this
responsibility in an emergency
deployment>

<Rationale or assumptions
about how the emergency
deployment scenario was
defined that led to the timing
requirements>

SR-5 Determine if the state of the aircraft
changes between the time that it was
checked and departure [SLR-5]

 163

Resp. ID Responsibility Timing Requirements Rationale/Assumptions

SR-6 Confirm that data about the expected
safe departure state of the aircraft has
been fully specified and received [SLR-6,
SLR-9]

SR-7 Ensure that all relevant personnel are
aware of any changes to the expected
safe departure state of the aircraft [SLR-
7]

Occurs <TBD> per deployment based on
historical mission data

<Based on shortest time available in an
emergency deployment, determine
how quickly such changes need to be
disseminated

<Rationale for how historical
mission data was used to
determine frequency of
occurrence>

<Rationale for how the speed
of dissemination of information
must occur>

SR-10 Ensure that flight crews are aware of the
most updated state of any maintenance
tasks on the aircraft [SLR-10]

SR-11 Ensure that only authorized actuator
movements are executed [SLR-11]

Many times per mission

<Determine limitation based on latency
requirements of aircraft control
system>

<Rationale for or link to latency
requirements of aircraft control
system>

SR-12 Be able to operate in the expected DVE
conditions [SLR-12]

Occurs once per mission

<The shortest amount of time that
would be available to perform this
responsibility in an emergency
deployment>

<Rationale or assumptions
about how the emergency
deployment scenario was
defined that led to the timing
requirements>

 164

Resp. ID Responsibility Timing Requirements Rationale/Assumptions

SR-15 Determine if the state of the airspace
changes between the time that it was
checked and the commencement of a
maneuver [SLR-16]

Many times per mission

<Determine limitation based on latency
requirements of aircraft control
system>

<Rationale for or link to latency
requirements of aircraft control
system>

SR-16 Account for the current and future
movements of other aircraft in the
vicinity when selecting actuator
movements

<Timing requirements here would be
defined based on the most urgent
scenario expected to be encountered
and how quickly the piloting controller
would need to select actuator
movements in that scenario>

<Rationale about the scenario
used to define this timing
constraint>

SR-17 Ensure that aircraft movements are
selected such that sufficient reaction
time is available if intent or movements
of other aircraft are not what was
expected, even if no violation of
minimum separation is initially expected
[SLR-18]

SR-18 Detect all objects and other aircraft in
the environment under all DVE
conditions at all times [SLR-19]

SLR-19 Detect slow or subtle changes in the
state of the aircraft under all DVE
conditions at all times [SLR-21]

SR-20 Select actuator movements that
minimize the risk of violation of
minimum separation when information
about the state of the airspace is in a
degraded condition (e.g. delayed) [SLR-
21]

 165

Resp. ID Responsibility Timing Requirements Rationale/Assumptions

SR-21 Respond quickly and with appropriate
magnitude to disturbances to prevent
unintended movement of the aircraft

<Timing requirements here would be
defined by aircraft dynamics and effects
of DVE conditions>

<Rationale about aircraft
dynamics and DVE conditions
being considered>

SR-22 Respond quickly enough and with
appropriate magnitude to select and
effect the desired change in flight path
under the given environmental
conditions

<Similar to R-3.1.3, aircraft dynamics
and DVE conditions would define timing
requirements>

<Rationale about aircraft
dynamics and DVE conditions
being considered>

SR-23 Ensure that a viable flight path is always
available to avoid any violations of
minimum separation

<Timing constraint that defines how
often the piloting controller should re-
evaluate whether they have a viable
flight path options should they need to
avoid a collision>

<The shortest amount of time that
would be available to perform this flight
path evaluation>

<Rationale/assumptions that
led to defining how often the
piloting controller should re-
evaluate whether they have
viable flight path options>

SR-24 Select a viable flight path that avoids all
possible violations of minimum
separation

<Timing constraint that defines how
often the piloting controller should re-
evaluate that their flight path is still
valid>

<The shortest amount of time that
would be available to perform this flight
path evaluation>

<Rationale/assumptions that
led to defining how often the
piloting controller should re-
evaluate their flight path>

Appendix E Responsibility Assignments for Part 1 Architecture
Option 1

This appendix shows the full set of responsibility assignments for part 1 architecture option 1 for
both feedback validation responsibilities and non-feedback-validation responsibilities.

Non-Feedback-Validation Responsibilities

Table 52: Non-Feedback-Validation Responsibility Assignments for Part 1 Architecture Option 1

Resp.
ID

Responsibility

Assigned to

Rationale/Assumptions
EMSA

TC
MP PC AS

SR-4 Confirm that all aspects
of the aircraft state
match the expected safe
departure state before
providing actuator
movements to depart
[SLR-4]

 X

Since the piloting controller is primarily
responsible for controlling the aircraft
and executing the mission, this related
responsibility for making final
confirmation that the aircraft is in a
safe departure state before departing
should also be assigned to the piloting
controller

SR-5 Determine if the state of
the aircraft changes
between the time that it
was checked and
departure [SLR-5]

 X

Since this is related to SR-4, for the
same reasons that SR-4 is assigned to
the piloting controller, so should this
one

SR-6 Confirm that data
about the expected
safe departure state of
the aircraft has been
fully specified and
received [SLR-6, SLR-9]

X X

Since the expected safe departure
state is dependent on the needs of
a specific mission, EMS Operations
and ATC has to be assigned
responsibility for planning the
mission. However, the piloting
controller could also confirm that
the information it receives is
complete

 167

Resp.
ID

Responsibility

Assigned to

Rationale/Assumptions
EMSA

TC
MP PC AS

SR-7 Ensure that all relevant
personnel are aware of
any changes to the
expected safe
departure state of the
aircraft [SLR-7]

X

Assuming that changes are likely to
either come from EMS Operations
and ATC or need to be approved by
EMS Operations and ATC, then EMS
Operations and ATC will be
informed of any changes that are
needed and therefore is in the best
position to disseminate any changes

SR-10 Ensure that flight
crews are aware of the
most updated state of
any maintenance tasks
on the aircraft [SLR-10]

 X

Similar to SR-7, assuming that
changes to the state of
maintenance tasks either come
from the maintenance personnel or
must be raised with the
maintenance personnel, the
maintenance personnel are
therefore in the best position to
disseminate any changes to
maintenance tasks to flight crews

SR-11 Ensure that only
authorized actuator
movements are
executed [SLR-11]

 X

Since the execution of actuator
movements to move actuators is
performed by the aircraft
subsystems, the responsibility for
only executing authorized actuator
movements is assigned to the
aircraft subsystems

SR-12 Be able to operate in
the expected DVE
conditions [SLR-12]

X

Since EMS Operations and ATC is
responsible for planning a mission,
that planning should include
selection of appropriate equipment,
thus this responsibility is assigned to
EMS Operations and ATC

 168

Resp.
ID

Responsibility

Assigned to

Rationale/Assumptions
EMSA

TC
MP PC AS

SR-15 Determine if the state of
the airspace changes
between the time that it
was checked and the
commencement of a
maneuver [SLR-16]

 X

Since the piloting controller is
responsible for controlling the aircraft
and this responsibility relates to how to
maintain safe control of the aircraft, it
is assigned to the piloting controller

SR-16 Account for the current
and future movements
of other aircraft in the
vicinity when selecting
actuator movements
[SLR-17]

 X

All of these responsibilities relate to
selecting appropriate flight paths and
actuator movements, all of which are
within the scope of the piloting
controller’s responsibility for
maintaining safe control over the
aircraft. As such, these responsibilities
are all assigned to the piloting
controller

SR-17 Ensure that aircraft
movements are selected
such that sufficient
reaction time is available
if intent or movements
of other aircraft are not
what was expected, even
if no violation of
minimum separation is
initially expected [SLR-
18]

 X

SR-18 Detect all objects and
other aircraft in the
environment under all
DVE conditions at all
times [SLR-19]

 X X

Under DVE conditions, the piloting
controller’s direct observations will
need to be augmented by a sensor
suite that is part of the aircraft
subsystems

SR-19 Detect slow or subtle
changes in the state of
the aircraft under all DVE
conditions at all times
[SLR-20]

 X

All of these responsibilities relate to
selecting appropriate flight paths and
actuator movements, all of which are
within the scope of the piloting
controller’s responsibility for

 169

Resp.
ID

Responsibility

Assigned to

Rationale/Assumptions
EMSA

TC
MP PC AS

SR-20 Select actuator
movements that
minimize the risk of
violation of minimum
separation when
information about the
state of the airspace is in
a degraded condition
(e.g. delayed) [SLR-21]

 X

maintaining safe control over the
aircraft. As such, these responsibilities
are all assigned to the piloting
controller

SR-21 Respond quickly and
with appropriate
magnitude to
disturbances to prevent
unintended movement
of the aircraft [SLR-22]

 X

SR-22 Respond quickly enough
and with appropriate
magnitude to select and
effect the desired change
in flight path under the
given environmental
conditions [SLR-23, SLR-
25]

 X

SR-23 Ensure that a viable flight
path is always available
to avoid any violations of
minimum separation
[SLR-24]

 X

SR-24 Select a viable flight path
that avoids all possible
violations of minimum
separation [SLR-26]

 X

 170

Feedback Validation Responsibilities

Table 53: Feedback Validation Responsibilities for Part 1 Architecture Option 1

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-1

Determine if
feedback received
about the
aircraft’s mission
readiness, state of
the aircraft and
the airspace is too
old [SLR-1]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

PC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Since most of these process
models are used to fly the
aircraft or select a flight
path, the piloting controller
is in the best position to
decide when feedback is too
old.

For the model of system
behavior, EMSATC is
assigned because it is that
they will evaluate feedback
they might receive to
determine when those
models may need to be
updated

SR-2

Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

Aircraft Mission Readiness N/A

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

Since this responsibility is
dependent on prevailing
weather conditions during
the flight, this responsibility
must be carried repeatedly
and in real-time as discussed
in the timing requirements
section. As such, the piloting
controller is the only
controller equipped to do
this.

This assumes that feedback
for aircraft mission
readiness, expected safe
departure state and model
of system behavior will not
be affected by DVE and
hence this responsibility
does not apply for those
process model parts.

 171

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-3

Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

EMSATC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Similar to SR-1, the piloting
controller is in the best
position to decide when
feedback is too old since
these process model parts
are used to fly the aircraft or
select a flight path.

This includes the model of
system behavior which
could have its parameters
updated based on input that
needs to be validated

SR-8

Process all
feedback to make
a deliberate
decision if it is to
be
ignored/dropped
[SLR-8]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

EMSATC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Similar to SR-1, the piloting
controller is in the best
position to decide when
feedback is too old since
these process model parts
are used to fly the aircraft or
select a flight path.

This is marked as N/A for
the model of system
behavior because it is
assumed that the piloting
controller will not get real-
time feedback about the
model of system behavior
that will need to be
validated

 172

Resp
ID

Responsibility Assignments for Each Process Model Part Rationale/Assumptions

SR-9

Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

Aircraft Mission Readiness PC

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure State N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

Similar to SR-2, these
responsibilities have to be
performed repeatedly
during flight as described in
the timing requirements
section. As such, the piloting
controller is the only
controller in the system that
is equipped to do this.

These assignments assume
that continuous feedback is
not expected for the
expected safe departure
state and model of system
and hence this responsibility
does not apply for those
process model parts.

SR-13

Distinguish useful
feedback from
noise in feedback
data [SLR-13]

Aircraft Mission Readiness PC

Current Aircraft System State PC

Current Aircraft Navigation
State

PC

Expected Safe Departure State N/A

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior N/A

SR-14

Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Aircraft Mission Readiness PC

Current Aircraft System
State

PC

Current Aircraft Navigation
State

PC

Expected Safe Departure
State

EMSATC

Current Weather Conditions PC

Current Airspace State PC

Anticipated Future Airspace
State

PC

Model of System Behavior EMSATC

Similar to SR-2, these
responsibilities have to be
performed repeatedly
during flight as described in
the timing requirements
section. As such, the piloting
controller is the only
controller in the system that
is equipped to do this.

These assignments assume
that continuous feedback is
not expected for the
expected safe departure
state and model of system
and hence this responsibility
does not apply for those
process model parts.

 173

Appendix F Responsibility Assignments for Part 2 Architecture
Option 1

Assignment of Non-Feedback-Validation Responsibilities

Table 54: Assignment of Non-Feedback-Validation Responsibilities for Part 2 Architecture Option 1

Resp.
ID

Responsibility Assigned to Rationale/Assumptions

Pilot ASEC

SR-4 Confirm that all aspects of the
aircraft state match the
expected safe departure state
before providing actuator
movements to depart [SLR-4]

X

Expected safe departure state is most
easily obtained by human pilot instead of
ASEC

SR-5 Determine if the state of the
aircraft changes between the
time that it was checked and
departure [SLR-5]

X

Since the state of the aircraft requires
consideration of more than just sensor
inputs, the human pilot is better
positioned to interpret these other inputs
than automation

SR-6 Confirm that data about the
expected safe departure state
of the aircraft has been fully
specified and received [SLR-6,
SLR-9]

X

Since the human pilot will be checking the
aircraft against the safe departure state, it
is convenient for them to also check that
the safe departure state is fully specified
so that they can clarify any uncertainties if
necessary

SR-15 Determine if the state of the
airspace changes between the
time that it was checked and
the commencement of a
maneuver [SLR-16]

X X

Since this is relatively simple checking of
the maneuver path, the ASEC is able to
warn the human pilot of potential
collisions but the human pilot is expected
to perform an independent verification as
well

SR-16 Account for the current and
future movements of other
aircraft in the vicinity when
selecting actuator movements
[SLR-17]

X

Coordinating with other aircraft and
adapting to work with their movements is
more easily done in real-time by a human
than automation

SR-17 Ensure that aircraft movements
are selected such that sufficient
reaction time is available if
intent or movements of other
aircraft are not what was
expected, even if no violation
of minimum separation is
initially expected [SLR-18]

X

Since this involves integrating intent
information alongside current airspace
state and aircraft state information to
decide the best path to take and the best
actuator movements to apply, this is best
done by a human pilot

 174

Resp.
ID

Responsibility Assigned to Rationale/Assumptions

Pilot ASEC

SR-18 Detect all objects and other
aircraft in the environment
under all DVE conditions at all
times [SLR-19]

X X

This is shared because the ASEC can
provide the human pilot with detection
information but the human pilot can also
perform independent visual identification
(when conditions allow) or integrate other
types of data sources to verify a detection.
Hence, this responsibility is shared
between the human pilot and ASEC

SR-19 Detect slow or subtle changes
in the state of the aircraft
under all DVE conditions at all
times [SLR-20] X

Given the potential magnitude of these
changes in the state of the aircraft, it may
be difficult to design appropriate feedback
mechanisms with sufficient saliency for a
human pilot to notice those changes and
they would be easier detected by
automation

SR-20 Select actuator movements
that minimize the risk of
violation of minimum
separation when information
about the state of the airspace
is in a degraded condition (e.g.
delayed) [SLR-21]

X

Similar to SR-17, this decision making is
complex enough and the definition of risk
minimization is likely vague enough that it
is better performed by a human pilot than
by automation

SR-21 Respond quickly and with
appropriate magnitude to
disturbances to prevent
unintended movement of the
aircraft [SLR-22]

X X

Assumes that the ASEC will not be able to
stabilize the aircraft sufficiently under all
DVE conditions and that a human pilot
would respond more appropriately in
some situations

Also assumes that ASEC will be able to
help stabilize the aircraft under limited
DVE conditions and therefore the ASEC
will sometimes be used

SR-22 Respond quickly enough and
with appropriate magnitude to
select and effect the desired
change in flight path under the
given environmental conditions
[SLR-23, SLR-25]

X X

SR-23 Ensure that a viable flight path
is always available to avoid any
violations of minimum
separation [SLR-24]

X

Assumes that automation sophistication
will not be sufficient to select flight paths
under all conditions and therefore it
makes more sense for a human pilot to
retain this function

SR-24 Select a viable flight path that
avoids all possible violations of
minimum separation [SLR-26]

X

Assumes that automation sophistication
will not be sufficient to select flight paths
under all conditions and therefore it
makes more sense for a human pilot to
retain this function

 175

Assignment of Feedback Validation Responsibilities

Table 55: Assignment of Feedback Validation Responsibilities for Part 2 Architecture Option 1

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-1 Determine if
feedback received
about the
aircraft’s mission
readiness, state of
the aircraft and
the airspace is too
old [SLR-1]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft
Navigation State

ASEC

Expected Safe Departure
State

Pilot

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Assuming the threshold is fixed
or is easily determined based
on simple interpretations of
environmental factors or state
of aircraft, this responsibility is
repetitive and would be easily
accomplished by automation

Mission readiness, safe
departure states and
anticipated future airspace
state are more easily received
by the pilot, hence the pilot
should check these rather than
the aircraft

SR-2 Account for
prevailing DVE
conditions and
their possible
effect on feedback
sources when
making use of
feedback
information [SLR-
2]

Aircraft Mission Readiness N/A

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot

Expected Safe Departure
State

N/A

Current Weather
Conditions

Pilot

Current Airspace State Pilot

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Mission readiness and
expected safe departure state
is communicated verbally to
the pilot and therefore is
unaffected by DVE. Similarly,
current aircraft system state is
not affected by DVE since it is a
detection of internal aircraft
system states.

Assumes that the
determinations involved are
more quickly made by a human
than for those rules to be
implemented in automation

 176

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-3 Validate the
inputs or feedback
received from
other controllers
before using that
input or feedback
to update process
models [SLR-3]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot

Expected Safe Departure
State

N/A

Current Weather
Conditions

Pilot

Current Airspace State Pilot

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

The variety of possible inputs
made by other aircraft or
controllers would be more
easily handled by a human,
except for the aircraft system
state which would be more
easily handled by automation
since the system state is
already generated and
monitored by automation

Expected safe departure state
and model of system behavior
are marked as N/A because
they were not assigned to the
Piloting Controller in part 1

SR-8 Process all
feedback to make
a deliberate
decision if it is to
be
ignored/dropped
[SLR-8]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot

Expected Safe Departure
State

Pilot

Current Weather
Conditions

Pilot

Current Airspace State Pilot

Anticipated Future
Airspace State

Pilot

Model of System Behavior Pilot

As stated in the system-level
behavior, this responsibility
involves carrying out the
decision making strategies of
SR-1, SR-2 and SR-3. Since most
of these are carried out by the
Pilot, the pilot has
responsibility for deciding to
keep or drop a piece of
feedback. The only exception is
the aircraft system state where
the ASEC is assigned this
responsibility for that process
model

 177

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-9 Ensure that all
data needed to
determine the
state of the
aircraft, state of
the airspace and
the environmental
conditions around
the aircraft under
all DVE conditions
is available at all
times [SLR-9, SLR-
15]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Monitoring the inputs for
aircraft system state,
navigation state and
environmental conditions is a
repetitive task best done by
automation.

For anticipated future airspace
state and aircraft mission
readiness, since that feedback
may include verbal radio
communication, the pilot
shares the responsibility to
ensure that needed
information is available.

Expected safe departure state
and model of system behavior
are not updated based on real-
time data and are therefore
N/A

SR-13 Distinguish useful
feedback from
noise in feedback
data [SLR-13]

Aircraft Mission Readiness N/A

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

ASEC

Current Airspace State Pilot
ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

Especially when identifying
weak signals, automation is
better at the pattern
recognition necessary to
extract weak signals

Assumes that the risk of false
negative detections of weak
signals is acceptably low

Mission readiness, expected
safe departure state and model
of system behavior do not rely
on real-time feedback and
therefore are not affected by
noise

 178

Resp
ID

Responsibility Assignments for Each Process Model
Part

Rationale/Assumptions

SR-14 Process sensor
data and use it to
update its process
model sufficiently
quickly [SLR-14]

Aircraft Mission Readiness Pilot

Current Aircraft System
State

ASEC

Current Aircraft Navigation
State

Pilot
ASEC

Expected Safe Departure
State

N/A

Current Weather
Conditions

Pilot
ASEC

Current Airspace State Pilot
ASEC

Anticipated Future
Airspace State

Pilot

Model of System Behavior N/A

For everything but the aircraft
system state, the pilot is
primarily the one updating the
process model parts and the
ASEC only assists in the aircraft
navigation state, weather
conditions and airspace state.

Expected safe departure state
is not updated using sensors
and therefore is N/A

Expected safe departure state
and model of system behavior
are marked as N/A because
they were not assigned to the
Piloting Controller in part 1

 179

Appendix G Additional STPA Analysis for Architecture Option 3

In this appendix, additional examples of UCAs and scenarios from the STPA analysis conducted
for the new control actions introduced as part of Architecture Option 3 in Part 2 of the
architecture creation process are presented.

Revised STPA Analysis of ASEC Actuator Movements Control Action

UCA-1.2: ASEC provides actuator movements that steers the aircraft toward another aircraft or
object

CS-G-1.2.1: The ASEC provides actuator movements that steers the aircraft toward another
aircraft or object despite receiving feedback that there was another aircraft or object nearby.
This could occur because:
1. The ASEC may have the wrong process model of the state of the environment, the aircraft or

the airspace around the aircraft and therefore wrongly believes that the nearby airspace is
clear to pilot toward and plans a trajectory or path toward the other object or aircraft.
Although the ASEC coordinates with the human pilot to confirm the trajectory that it planned,
the trajectory planned by the ASEC is confirmed without modification. As a result, the
erroneous trajectory planned by the ASEC is not corrected and the ASEC proceeds to execute
the planned trajectory, believing the human pilot agreed with its plan. The ASEC might receive
confirmation of its erroneously planned trajectory because:
1.1. The human pilot and ASEC might have the same shared process model of the current

state of the airspace. As a result, like the ASEC, the human pilot also does not recognize
that the planned trajectory is headed toward a nearby object or aircraft and therefore
does not correct the trajectory and agrees with the ASEC. The reasons that this might
occur are described in scenarios CS-1.1.2-1 and CS-1.1.2-2 that were generated for UCAs
issued by the human pilot.

1.2. Alternatively, the human pilot and ASEC might not have the same shared process model
of the current state of the airspace. If the human pilot has a different and correct process
model of the state of the airspace, the human pilot might recognize the error in the
planned trajectory and correctly modify it but the correctly modified trajectory is not
received by the ASEC and instead the ASEC is told the human pilot agreed with its
erroneous trajectory. The reasons that this might occur are described in scenarios CS-
1.1.3-1 and CS-1.1.3-2 that were generated for UCAs issued by the human pilot.

2. The human pilot might also have a different but also erroneous or incomplete process model
of the state of the airspace. Under these conditions, the human pilot might still correctly
recognize the error in the ASEC’s planned trajectory. However, although the modifications
that the human pilot makes addresses the error that the ASEC made, the human pilot’s
modified trajectory now pilots the aircraft toward a different aircraft or object in the airspace
instead. The reasons that this might occur are described in scenarios CS-1.8.1-1, CS-1.8.1-2
and CS-1.8.1-3 that were generated for UCAs issued by the human pilot.

 180

3. Even if the ASEC does not receive a confirmation from the human pilot, the human pilot may
be delayed in providing a confirmation or a modification to the flight path to the ASEC (e.g.
due to the need for coordination, it takes the human pilot some time to understand the
ASEC’s proposed flight path). If the ASEC has a timeout programmed into it, it may wrongly
decide that when the timeout has expired, it should simply execute its incorrect proposal
without waiting for the human pilot.

4. The ASEC might have the correct process model of the state of the environment, the aircraft
and the airspace around the aircraft and therefore plans a correct trajectory that does not
pilot the aircraft toward another aircraft or object. However, when the ASEC coordinates with
the human pilot, it receives an erroneous modification of the trajectory by the human pilot
that does pilot the aircraft toward another aircraft or object. However, the ASEC incorrectly
assumes that the human-modified path is correct so does not question it and executes it even
though it flies toward another aircraft or object.

5. The ASEC might currently be on a trajectory that would pilot it toward another aircraft or
object. The ASEC recognizes that its current trajectory must be modified, correctly computes
a modified trajectory that avoids the other aircraft or object and then coordinates with the
human pilot to confirm its new plan. However, the ASEC is programmed to continue its
current flight path until the human pilot responds to its proposed new trajectory. If the
human pilot is delayed in responding, the ASEC therefore continues to fly its existing
trajectory toward the other aircraft or object.

For the other three basic scenario types (unsafe feedback path, unsafe control path and unsafe
controlled process behavior), these scenarios are the same as those generated in the original
STPA analysis in Section 3.4 because the ASEC is positioned at the same location in the control
structure as the Piloting Controller was. So, those loss scenarios will not be replicated here.

STPA Analysis of Human Pilot Control Actions

Table 56: Example UCAs for Human Pilot Control Actions

Control Action Providing Not Providing Provide too
early/too late

Applied too
long/Stopped too
soon

Confirm Flight
Path

UCA-3.1: Pilot
confirms flight
path when that
flight path pilots
the aircraft into
another aircraft
or object

UCA-3.2: Pilot
confirms flight

UCA-3.4: Pilot
does not confirm
flight path when
a new flight path
is needed to
avoid piloting
the aircraft into
another aircraft
or object

UCA-3.6: Pilot
confirms the
flight path too
late after the last
opportunity to
avoid violation
of minimum
separation has
passed

N/A

 181

path when that
flight path is
infeasible or
outside the
capabilities of
the airframe

UCA-3.3: Pilot
confirms flight
path that
exceeds the
bounds of the
mission
parameters (e.g.
exceeds max
altitude or
operational
area)

UCA-3.5: Pilot
does not confirm
the flight path
when a new
flight path is
needed because
the existing
flight path no
longer meets the
needs of the
mission (e.g.
mission
parameters
change)

UCA-3.7: Pilot
confirms the
flight path too
early before
other personnel
or cargo on
board the
aircraft are
prepared for the
change in flight
path

Modify Flight
Path

UCA-3.8: Pilot
provides
modified flight
path when the
modified flight
path will pilot
the aircraft
toward the
other aircraft or
object

UCA-3.9: Pilot
provides
modified flight
path that is
infeasible or
exceeds the
capabilities of
the airframe

UCA-3.10: Pilot
provides
modified flight
path that
exceeds the

UCA-3.11: Pilot
does not provide
modified flight
path when the
path needs to be
modified to
prevent violation
of minimum
separation

UCA-3.12: Pilot
does not provide
modified flight
path when the
path needs to be
modified due to
a change in the
mission
parameters

UCA-3.13: Pilot
provides
modified flight
path too late
after the aircraft
begins to
execute the
unmodified new
flight path that
will result in a
violation of
minimum
separation

UCA-3.14: Pilot
provides
modified flight
path too late to
avoid the
imminent
violation of
minimum
separation
caused by the

N/A

 182

bounds of the
mission
parameters (e.g.
exceeds max
altitude or
operational
area)

unmodified flight
path

Each of these UCAs can then be analyzed to identify the loss scenarios that could lead to these
UCAs. Some examples are shown below for UCA-1 and UCA-8.

UCA-3.1: Pilot confirms flight path when that flight path pilots the aircraft into another aircraft
or object

CS-G-3.1.1: Pilot confirms the flight path despite receiving feedback that the flight path pilots
the aircraft into another aircraft or object. This might occur if:
1. Under a period of high workload or stress, the human pilot does not update their mental

model of the state of the airspace (e.g. due to limited attention resources or cognitive
tunneling) and uses their inaccurate mental model to evaluate the flight path instead. As a
result, the human pilot does not realize that the flight path proposed by the ASEC pilots the
aircraft into another aircraft or object and confirms it, wrongly believing that the flight path
does not pilot the aircraft toward another aircraft or object.

2. Even though the human pilot recognizes that the flight path pilots the aircraft into another
aircraft or object, they wrongly believe the other aircraft or object either is not actually
present (i.e. a false positive detection) or will not actually be a collision threat in the future.
As a result, the human pilot chooses to ignore the feedback indicating that the flight path
proposed by the ASEC will pilot the aircraft into another aircraft or object and confirms the
flight path anyway.

3. As a result of experience and operational adaptation, the human pilot might overly trust the
ASEC to propose suitable flight paths and might become reliant on the ASEC. Such biases
might therefore cause the human pilot to either assume that the ASEC is always right and
confirm the flight path without checking it (i.e. essentially rubberstamping the ASEC’s
proposals) or perform only minimal checks to save cognitive effort. As a result, the human
pilot does not notice that the flight path pilots the aircraft into another object or aircraft
and confirms the flight path

CS-G-3.1.2: The human pilot receives feedback that does not indicate that the flight path pilots
the aircraft into another aircraft or object. This might occur if:
1. The ASEC might not be able to detect the other aircraft or object for reasons discussed in

CS-1.2.2. The feedback received by the human pilot from the ASEC therefore does not show
that the flight path pilots the aircraft into another aircraft or object. Furthermore, DVE
conditions might prevent the human pilot from independently receiving any other feedback
besides the detections made by the ASEC. As a result, the human pilot is unable to

 183

recognize that it is wrong because the human pilot can only observe what the ASEC can
detect. This leads the human pilot to make the same incorrect decision that the ASEC
makes, deciding that the flight path does not pilot the aircraft toward another aircraft or
object. The human pilot therefore confirms that flight path.

2. Even if the ASEC might have detected the other aircraft or object in some but not all of its
sensors, the human pilot might not be presented with sufficient feedback about the
detections from individual sensors because the system may only show the pilot the post-
processed integrated view of that data instead. As a result, they will be unable to notice
that some sensors do detect an aircraft or object in the path proposed by the ASEC.

CS-G-3.1.3: The human pilot does not confirm the flight path but a confirmation is received by
the ASEC. This might occur if:
1. An approval for a previously proposed flight path might be delayed in arriving. If the ASEC

does not have a way to match a received approval to the flight path that the human pilot
was approving, it may assume that any received approval is for the most recently proposed
flight path. This asynchronicity might therefore result in approvals arriving out of order
compared to the order in which flight paths are proposed. As a result, the ASEC wrongly
believes the human pilot had approved the most recently proposed flight path even though
the human pilot has not actually approved it yet.

2. If a controller in the system is compromised/hacked, an approval from the human pilot may
be maliciously spoofed as originating from the human pilot even though they have not yet
actually provided any confirmation.

CS-G-3.1.4: The human pilot does not confirm the flight path and no confirmation is received by
the ASEC but the ASEC still proceeds to execute the new flight path and violates minimum
separation. This might occur if:
1. A timeout might be programmed into the ASEC such that if a confirmation is not received

from the human pilot within a threshold amount of time, the ASEC assumes its proposal is
acceptable and begins executing it. As a result, if the human pilot is delayed because they
need to coordinate with the ASEC or are unaware of the timeout time, they may take longer
than the ASEC expects to make a decision and the ASEC may begin executing the flight path
anyway. This is similar to CS-1.2.1-3.

UCA-3.8: Pilot provides modified flight path when the modified flight path will pilot the aircraft
toward another aircraft or object

CS-G-3.8.1: The human pilot provides a modified flight path despite receiving feedback that the
modified flight path will pilot the aircraft toward another aircraft or object. This might occur if:
1. Under conditions of high workload or stress, the human pilot might only pay attention to a

limited amount of feedback and therefore not notice the feedback indicating that the
modified flight path that they are proposing will pilot the aircraft toward another aircraft or
object. As a result, they wrongly believe they are providing a suitable modified flight path.

 184

2. When perceiving the feedback, the human pilot may apply unsafe biases or heuristics in
using that feedback to update their mental model of the state of the airspace. For example,
the human pilot may only notice the most salient feedback and miss less salient feedback
that would show the presence of another aircraft or object. Alternatively, feedback received
by the human pilot earlier in time that does not show the presence of another aircraft or
object may be weighted more heavily in their decision-making when they propose a
modified flight path compared to feedback received later. As a result, they do not use the
later feedback effectively to recognize that the modified flight path they are providing will
pilot the aircraft toward another aircraft or object.

3. Even if the human pilot correctly perceives the feedback, under conditions of high workload
or stress or when they need to make a correction quickly, they might only consider a limited
number of alternative flight paths or only consider the most available flight path options
based on past experience. Alternatively, due to cognitive tunneling, the human pilot might
become so focused on the immediate several seconds of the flight path such that they do
not fully evaluate the rest of the flight path that they are proposing. As a result of any of
these decision making heuristics and biases, they make a rushed decision when providing a
modified flight path without fully considering whether that flight path avoids all other
aircraft and objects. They therefore do not notice that they missed a location where there is
another aircraft or object in the flight path they have chosen. As a result, they provide this
modified flight path, wrongly believing that it does not pilot the aircraft toward another
aircraft or object.

CS-G-3.8.2: The human pilot does not receive feedback that the modified flight path will pilot
the aircraft toward another aircraft or object. These scenarios are the same as CS-1.1.2 above.

CS-G-3.8.3: The human pilot does not provide a modified flight path that pilots the aircraft
toward another aircraft or object but the ASEC receives a modified flight path that does pilot
the aircraft toward another aircraft or object. This might occur because:
1. A modified flight path might be delayed in arriving. If the ASEC does not have a way to

match a received flight path to the flight path that the human pilot was reviewing, it may
assume that any received flight path modification is for the most recently proposed flight
path. This asynchronicity might therefore result in modified flight paths arriving out of order
compared to the order in which flight paths are proposed. As a result, the ASEC wrongly
believes the human pilot has provided a modified flight path that it should execute. If the
state of the airspace has changed such that this previously provided flight path now
intersects the location of another aircraft or object (even if it did not when it was originally
provided), the ASEC will therefore have received a flight path modification that pilots the
aircraft toward another aircraft or object even though the human pilot did not intentionally
provide it.

2. If a controller in the system is compromised/hacked, a modified flight path that pilots the
aircraft toward another aircraft or object is maliciously spoofed such that it appears to be
sent by the human pilot even though the human pilot did not actually provide it.

 185

CS-G-3.8.4: The human pilot does not provide a modified flight path that pilots the aircraft
toward another aircraft or object and the ASEC does not receive one. However, the ASEC
executes a modified flight path that does pilot the aircraft toward another aircraft or object.
These scenarios are the same as CS-1.1.4 above.

