

SAFETY GUIDED SPACECRAFT DESIGN USING MODEL-BASED SPECIFICATIONS

Cody Fleming
(1)

, Takuto Ishimatsu
(1)

, Yuko Miyamoto
(2)

, Haruka Nakao
(3)

 , Masa Katahira
(2)

, Nobuyuki

Hoshino
(3)

, John Thomas
(1)

, Nancy Leveson
(1)

,

(1)
 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

Email: chf44@mit.edu, takuto@mit.edu, jthomas4@mit.edu, leveson@mit.edu
(2)

 Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan

Email: miyamoto.yuko@jaxa.jp, katahira.masafumi@jaxa.jp
(3)

Japan Manned Space Systems Corporation, Urban Bldg., 1-1-26, Kawaguchi, Tsuchiura, Ibaraki 300-0033, Japan

Email: nakao.haruka@jamss.co.jp, hoshino.nobuyuki@jamss.co.jp

ABSTRACT

Most of the basic design decisions affecting safety are

made in the concept development stage of system

development. Once these decisions are made, the cost of

changing them later in development is often enormous and

perhaps even infeasible. At the same time, most hazard

analysis methods require a fairly complete design to be

most useful. By the time enough design has been

completed for hazard analysis to be able to identify flaws

in the design, the cost of rework and changing basic

decisions is great.

The solution to these problems is to integrate safety

tightly into the system development process from the very

beginning of system conception. In this paper, we describe

a process for tightly intertwining design and analysis

starting in the early development stages. The process

involves defining safety as a control problem (STAMP)

and using model-driven development and executable

requirements specifications.

1. INTRODUCTION

There are several challenges in ensuring the safe

development, deployment, and operation of spacecraft.

First, while most design decisions affecting safety (and

other system properties) are made early in the design

cycle, most hazard analysis techniques require a much

more mature design in order to be most effective.

Sufficient design maturity is not typically achieved until at

least PDR, or even CDR, and the best that can be done to

achieve safety at this late stage is the addition of extra

redundancy or other costly and often not very satisfactory

fixes. This approach can result in significant design

changes and has ramifications for cost, schedule, and

performance. Second, hazard analysis is often done as a

separate activity by an independent group and

communication with the spacecraft designers can be

limited.

The solution to these problems is to integrate safety

tightly into the system development process from the very

beginning of system conception. While spacecraft

designers clearly think about safety as they make design

decisions, they have few tools to help them make optimal

safety-related decisions. In this paper, we will describe a

process for tightly intertwining design and analysis (and

system testing) starting in the early development stages.

The process involves defining safety as a control problem

(STAMP) and using model-driven development and

executable requirements specifications.

In this framework, design and analysis are both supported

by the use of executable models that start from system

requirements and are iterated and refined as basic design

decisions are made. The models have a formal foundation

so they can be analyzed as well as executed and the

system simulated using automated tools. Because the

specifications and models are executable, much important

system testing can be performed before the actual

components are created, therefore reducing the very costly

rework occurring when fundamental design flaws are

discovered during system testing near the end of

development. The models, which are based on state

machines, use basic control concepts familiar to all

spacecraft engineers and carefully designed experiments

have found them to be easily readable and reviewable by

engineers [1,2].

In this paper, we demonstrate the process on a generalized

version (without proprietary information) of a real JAXA

satellite. The new hazard analysis technique, called STPA,

has been presented at a previous IAASS conference [3].

STPA can be integrated into a sophisticated spacecraft

development process using model-based development and

automated tools to assist with important design decisions

and finding design weaknesses or flaws during the entire

development process. The resulting documentation

mailto:chf44@mit.edu
mailto:takuto@mit.edu
mailto:jthomas4@mit.edu
mailto:leveson@mit.edu
mailto:miyamoto.yuko@jaxa.jp
mailto:katahira.masafumi@jaxa.jp
mailto:haruka@jamss.co.jp
mailto:hoshino.nobuyuki@jamss.co.jp

incorporates traceability from requirements to design and

implementation and supports the specification of design

rationale.

2. SPACECRAFT EXAMPLE

The analysis presented herein is representative of the

process used on a real, sophisticated spacecraft

development program. This example system consists of a

spacecraft bus and integrated payload, where management

of operational modes is performed on the ground by

human operators, as well as automatically with spacecraft

software. Our analysis focuses specifically on hazards that

arise due to the interaction between the payload and the

rest of the spacecraft, as opposed to other more general

spacecraft hazards such as launch loads, thermal gradients,

or other space-based environments. The approach

presented in this paper can be extended to a more general

set of hazards.

Depending on a program mission, a payload‘s primary

objectives can have adversarial effects on the rest of the

spacecraft, if not managed correctly. For example, if the

spacecraft is required to do a major orbital maneuver,

there may be competition amongst several sub-systems for

power. Therefore, during momentum dumping, priority

should be given to the Guidance, Navigation, and Control

sub-system. If the payload is operating at full power

consumption along with reaction wheels or GMGs, then

the system risks running out of power.

Another example of potentially hazardous interaction

between the payload and other mission aspects is the use

of active microwave sensor devices on meteorological

satellites, such as the Synthetic Aperture Radar on the

ERS satellites [4] and many other applications. The

radiation given off by the payload instruments can be

hazardous to the spacecraft bus (or launch vehicle) if

mode selection and operation are not handled properly.

These two example hazards, which represent the

interaction of otherwise required properties of the payload

(power consumption, active radiation), provide a basis for

the hazard analysis in this paper.

3. HAZARD ANALYSIS

STAMP (Systems Theoretic Accident Modeling and

Processes) is a model of accident causation that treats

safety as a control problem, rather than as a failure

problem [5]. Its associated hazard analysis technique,

STPA, is also grounded in systems theory. Figure 1 shows

a control structure to enforce safety constraints. Each

hierarchical level of the control structure represents a

control process and control loop with actions and

feedback. Note that these control structures can include

higher levels of organizational controls, both in design

and operation [5].

Figure 1: Hierarchical Control Structure for S/C

Operation

While unsafe control includes inadequate handling of

failures, it also includes system and software design errors

and erroneous human decision making. In this systems

theoretic framework, accidents are viewed as the result of

inadequate enforcement of constraints on system behavior.

The reason behind the inadequate enforcement may

involve classic component failures, but it may also result

from unsafe interactions among components operating as

designed or from erroneous control actions by software or

humans.

3.1. STAMP

Human and automated controllers use a process model
1
 to

determine what control actions are needed. The process

model contains the controller‘s understanding of 1) the

current state of the controlled process, 2) the desired state

1
 Often called a ‗Mental model‘ for human controllers

Ground Station

(C1) Satellite Bus

Power Command

(C2) Payload

Power Command

(C3) Payload

Operation Mode

Select

(T1) Separation Status

(T2) Bus Fault Status

(T3) Bus Operation Mode

(T4) Payload Power Status

(T5) Payload Operation

Mode

SPACECRAFT

Core / Bus

Payload

Data Relay

Satellites

(C2), (C3) (T4), (T5)

(C1), (C2), (C3) (T1), (T2), (T3),

(T4), (T5)

of the controlled process, and 3) the ways the process can

change state. Software and human errors often result from

incorrect process models; therefore, accidents can occur

when an incorrect or incomplete process model causes a

controller to provide control actions that are hazardous.

For example, the ground station crew thinks the spacecraft

has separated from the launch vehicle and instructs

momentum dumping, when in fact the spacecraft has not

yet separated but provided incorrect telemetry. While

process model flaws are not the only causes of accidents

involving software and human errors, it is a major

contributor.

STAMP is based on the observation that there are four

types of hazardous control actions that need to be

eliminated or controlled to prevent accidents:

1. A control action required for safety is not

provided or is not followed

2. An unsafe control action is provided that leads to

a hazard

3. A potentially safe control action is provided too

late, too early, or out of sequence

4. A safe control action is stopped too soon or

applied too long

3.2. STPA

STPA (System Theoretic Process Analysis) is a hazard

analysis technique based upon STAMP. Identifying the

potentially unsafe control actions for the specific system

being considered is the first step in STPA. These unsafe

control actions are used to create safety requirements and

constraints on the behavior of both the system and its

components. Additional analysis can then be performed to

identify the detailed scenarios leading to the violation of

the safety constraints. As in any hazard analysis, these

scenarios are then used to control or mitigate the hazards

in the system design.

Before beginning an STPA hazard analysis, potential

accidents and related system-level hazards are identified

along with the corresponding system safety constraints

that must be controlled. This effort coincides with the

generation of system level goals and subsequent

architecture selection. Continuing the spacecraft example,

consider a payload and bus with mutually competing

requirements (e.g. resource allocation). The high level

goals of such an earth observation satellite are shown

above:

System Level Goals

[G.1] Obtain frequent and accurate earth-

observation measurement

[G.2] Achieve launch readiness by TBD date

[G.3] Obtain measurements from Low Earth Orbit

LEO (~400 km) (this may actually be

considered a mission constraint / requirement)

The accidents to be considered are: hardware damage due

to RF radiation from active payload, and loss of power

(due to payload interaction). The system-level hazards

relevant to this definition of an accident include:

System Level Hazards

[H.1] Bus receives RF radiation from Payload

[H.2] Loss of Bus electric power during Payload

operations

Based on the control structure in Figure 1 and the system-

level goals and hazards listed above, there are necessary

safety-related control actions for both the ground station

and bus avionics.

Safety-Related Control Actions

Ground Station

[CA.1] Satellite Bus Power On/Off Command

[CA.2] Payload Power On/Off Command

[CA.3] Payload Operation Mode Select Command

Avionics (same as above)

Unsafe Control Actions

Next, for the two controllers with which we are

concerned, we must determine how those controllers

might exert unsafe control on the system—an action that

has the potential to result in a hazardous system state or

the lack of an action needed to prevent a hazardous system

state.

To assist in identifying the hazardous control actions, we

use a table to look at all these possibilities for each of the

control actions. Only some of them will turn out to be

hazardous but considering all unsafe control actions will

identify those that are hazardous under certain conditions.

Table 1 shows such a table for the Ground Station control

actions related to the Payload Power On/Off command.

Note that the columns of the table represent the four types

of hazardous control actions illustrated in Section 3.1, and

each example scenario refers back to a system-level

hazard.

Table 1: Potentially hazardous control actions for Ground Station

Control Action

Not Providing

Causes Hazard

Providing Causes

Hazard

Wrong Timing/

Order Causes

Hazard

Stopped Too Soon or

Applied Too Long

Payload Power On

Provided while bus is

not in Mission mode

[H.2]

Provided too soon

before batteries have

been replenished

[H.2]

Provided too soon

during launch

operations [H.1]

Payload Power Off

Not provided while

bus is in diagnostics

or other non-

observational modes

[H.2]

Provided too late after

change in payload

mode may result in

loss of power [H.2]

A procedure has been developed to provide additional

guidance for identifying the hazardous control actions

during the first step of STPA [6]. The approach is based

on the idea that many control actions are only hazardous

in certain contexts. For example, a command to power on

the payload is not hazardous by itself—it depends on the

system state or state of the environment in which the

command is given, for example if the solar arrays are not

optional or the battery is not charged.. The procedure

involves identifying potential control actions, identifying

potentially hazardous states, and then analyzing which

combinations together yield a hazardous control action.

There are two parts of the procedure that can be

performed independently of the others. The first part deals

with control actions that are provided under conditions

that make the action hazardous. The second part deals

with control actions that are not provided under conditions

that make inaction hazardous.

Part A: Control actions provided in a state where the

action is hazardous

In this procedure, a controller and the associated control

actions are selected from the control structure. To

continue the example, the ground station can provide two

basic control actions: Payload Power On or Off. Next, the

controller‘s process model is defined to determine the

environmental and system states that affect the safety of

the control actions.

Controllers use the states or values of the process model to

determine what control actions to provide. In order to

make safe decisions, the control algorithm must use

process model variable values (i.e., system state or

environmental values that are known to the controller). If

the controller does not know the values of system state

and environmental values that are related to hazards, then

the controller cannot be designed to provide safe control

actions. Figure 3 shows the required process model for the

ground station operator to carry out its control safely. The

required variables in the process model are identified by

the definition of the system hazards.

Figure 2 shows the potential states of the system, which

should then be implemented as process model components

of the controller. The required variables in the process

model are identified directly or through derivation by the

definition of the system hazards. For example, hazard H-1

(RF radiation exposure) identifies the state of the payload

operation, e.g. whether it is Launch Mode, as an important

environmental variable in deciding which mode the

payload should be in.

Figure 2: On-Orbit Spacecraft States

Figure 3: Control Diagram for Ground Station

Operators

Once the process model variables have been identified,

the potentially hazardous control actions can be identified

and changed into safety requirements for the controller.

These hazards are identified by examining each potential

combination of relevant process model values in Figure 3

to determine whether issuing that control action in that

state will be hazardous.

Part B: Control actions not provided in a state that makes

inaction hazardous

This part of the procedure considers potential states in

which the lack of a control action is hazardous. The same

basic process is used: identify the corresponding process

model variables and the potential values, create contexts

for the action using combinations of values, and then

consider whether an absence of the specified control

action would be hazardous in the given context. Table 3

shows the hazardous control actions for the power off

command not being provided.

Both Part A and Part B should be done for every control

action, and this example obviously neglects ―Payload

Power on Not Provided‖ (the part b counterpart for

Table 2), and ―Payload Power off Provided‖ (the part a

counterpart for Table 3). In this simple example the

corresponding tables are not needed, as Table 1 already

shows they are not hazardous. However, it is important to

complete both parts, for every control action, in situations

that are much more complex, and processes that have

greater mode interaction.

Table 2: Contexts for Payload Power On Provided

Control

Action
Bus Mode Payload Mode

Hazardous Control Action?
Effect

Mission

Goals?
Any time in

this context

If provided too

early

If provided too

late

Payload Power

On Provided

Launch (doesn‘t matter) H.1, H.2 H.1, H.2 H.1, H.2

Rate Null (doesn‘t matter) H.2 H.2 H.2

Sun Point (doesn‘t matter) H.2 H.2 H.2

Mission (doesn‘t matter) No No No G-1

Slew (doesn‘t matter) No No No

-V (doesn‘t matter) No No No

-H (doesn‘t matter) H.2 H.2 H.2

Controller: G.S.

 Algorithm (1)

 Process Model (2)

Actuator (3)

 S/C Core

Controlled Process: Payload

Operational Mode (4)

 Power bus on/off

 Maintain Bus Mode

 Change Bus Mode

 Maintain P/L Mode

 Change P/L Mode

Sensor (5)

 Mode status from

Payload

Controller: Ground Station

(7) Inadequate or
missing feedback

to controller

(6) Incorrect or
no information

provided by P/L

(2)Process Model Components

 Satellite orbital parameters

 Satellite subsystem states

(momentum, power, etc.)

 Satellite bus operation mode

 P/L operation mode

(1)Control Algorithm

 TBD from design

 (Procedures)

Table 3: Contexts for Payload Power Off Not Provided

Control

Action
Bus Mode

Payload

Mode

Hazardous

Control

Action?

Effect

Mission

Goals?

Payload

Power

Off Not

Provided

Launch

Observation H.1, H.2

Internal H.2

External H.1, H.2

Analysis H.1, H.2

Health

Check
H.2

Safety No

Stand-by H.2

Rate

Null

Same as

Launch
H.2

Sun

Point

Same as

Launch
H.2

Mission
(doesn‘t

matter)
No

Slew
(doesn‘t

matter)
No

-V
(doesn‘t

matter)
No

-H
Same as

Launch
H.2

An important result of this approach is that tables allow

for clear, concise translation of hazardous control actions

to safety constraints on system behavior. Whenever a

control action and set of process states may lead to a

hazard, it should trigger the generation of an associated

safety constraint.

Moreover, the structure of these tables and the logical

relation between control actions, process states, and

hazards lends itself to a formal, model-based safety

verification approach.

4. MODEL-DRIVEN AND EXECUTABLE

SPECIFICATIONS

As described in the Introduction, one of the difficulties in

early project development is the lack of tools necessary to

assist developers in making safety-related design

decisions. Section 3 illustrates a method for performing

hazard analyses in the early design phases
2
, and now we

introduce a model-based approach which helps ensure that

safety-related specifications are developed and captured

effectively.

In this paper, we have used a commercial toolset with a

formal modeling language called SpecTRM-RL

(Specification Tools and Requirements Methodology) to

model the blackbox behavior required of the controllers.

The specific toolset used here is less important than the

desirable properties a tool should have in order to assist in

safety-driven design. SpecTRM-RL is intended to satisfy

two objectives: 1) to be easily readable by design

engineers [1], and 2) contain an underlying formal model

that can be used in mathematical analysis to check for

completeness, consistency, and robustness. This formal,

mathematical analysis helps designers to ascertain the

specifications‘ efficacy in assuring safety, early in project

development. SpecTRM-RL has been used to formally

model the input/output behavior of software [7,8], but it

can also be used to model the completeness and

correctness of procedures used by human operators, as

this example shows.

The underlying theory of SpecTRM-RL is described in

detail elsewhere [1,2,7,8], and we include here only a

brief introduction of the visual properties of the tool.

Figure 4 shows three components of a specification for the

spacecraft control logic: 1) a specification of the inputs

and outputs to the controller 2) a specification of the

control logic or algorithm of the system component that

includes the available control modes, and 3) a

specification of the process model of the controller that

includes the inferred state of the system. In addition, the

specification could include the supervisory modes of the

controller, for example if the design includes control

authority changes when the supervisor is in control mode.

Table 4 (below) illustrates an example of a SpecTRM-RL

and/or table specification; it defines the criteria for the

transition of Payload Mode Select input into Safety or

Observation mode. A full specification would include all

of the modes listed above in Figure 2. The far-left column

of the and/or table lists the logical phrases of a predicate

logic statement. Each of the other columns is a

conjunction of those phrases and contains the logical

values of the expressions. The rows of the table represent

AND relationships while the columns represent OR

relationships. The state variable takes the specified value

2
 These methods can and should be performed iteratively

as the design matures and the specifications become more

detailed.

(in this case, Safety or Observation, depending on the

other spacecraft states) if any of the columns evaluate to

true. If one of the columns evaluates to true, then the

entire table evaluates to that state. A column evaluates to

true if all the rows have the value specified for that row in

the column. An asterisk denotes ―don‘t care‖ while ‗T‘

and ‗F‘ denote true and false, respectively. Note that the

underlying logic allows for consistency checks.

In this example, if the same set of states resulted in the

simultaneous transition to both Observation and Safety,

then the toolset will flag that the specifications are

internally inconsistent. Each of the states and modes in the

graphical representation of Figure 4 will be represented

formally by an And/Or table, and the entire model can be

checked for completeness (no missing transitions or

modes), consistency (no contradictory specifications), and

robustness (determinism, the specification of a response

for every sequence of inputs).

Figure 4: Graphical Specification of System (or Component) Model

In addition to analyses of completeness, consistency and

robustness, SpecTRM safety analysis can be used for

checking the existence of concrete hazardous conditions

in the design. This is an extension of these systems- and

control-theoretic concepts, where safe (and unsafe)

control actions are a function of the context of process

model variables. This extension allows for a systematic

and logical formulation of safety constraints. The

following subsection describes the Safety analysis steps.

1. Identify conditions which lead to system hazardous

scenarios identified by STPA, and define the

conditions using the state variables in the SpecTRM

model described in Figure 3. For example:

Conditions lead to system hazard Hazard Scenario:

Power Loss:

i. Payload Power is On +,

ii. Bus Mode is Launch +,

iii. Payload Operation Mode is Safety.

2. Recursively identify more detailed (refined)

conditions that lead to the original condition,

3. Repeat 1 and 2 until all the conditions are explained

by all inputs into process model.

4. Identify set of possible conditions, and eliminate

impossible sets of impossible conditions (e.g.

logically or physically impossible conditions)

Table 4: And/Or Table for Mode Select Logic

5. CONCLUSION & FUTURE WORK

This paper briefly illustrates a method for assuring safety

in spacecraft early in the design process, when only the

basic architecture and operational modes are known. This

method, called STPA, is based on systems theory, where

safety is an emergent property that arises due to

component interaction and coupling; not merely

component failure. In this framework, safety is assured

through enforcing constraints on system (and thus

component) behavior, where components are required to

make safe control actions.

We introduce an extension of these systems- and control-

theoretic concepts, where safe (and unsafe) control actions

are a function of the context of process model variables.

This new extension allows for a systematic and logical

formulation of safety constraints.

The safety constraints identified using STPA can then be

modeled in a formal specification language, where state

and mode transitions of the system are modeled

mathematically. The inputs and outputs to each controller

in the system are then analyzed for completeness,

consistency, and robustness.

The spacecraft example used here, consisting of a generic

bus, payload, and ground station crew, is simple but

relevant to many spacecraft development programs. We

wish to extend these tools to more complex space systems

that consist of a greater number of components, systems

with increased coupling among components, and more

mode-rich systems.

6. ACKNOWLEDGMENTS

The research described was supported by a grant from

JAMSS. John Thomas is supported by a fellowship from

Sandia Labs.

7. ACRONYMS

STAMP – Systems Theoretic Accident Model and Process

STPA – Systems Theoretic Process and Analysis

SpecTRM-RL – Specification Tools and Requirements

Methodology

8. REFERENCES

1. Leveson, N.G. (2000) Intent Specifications: An

Approach to Building Human-Centered Specifications,

IEEE Transactions on Software Engineering.

2. Zimmerman, M., Lundqvist, K., Leveson, N.G., (2002)

Investigating the Readability of State-Based Formal

Requirements Specification Languages, International

Conference on Software Engineering, Orlando.

3. Ishimatsu, T., et al. (2010) ―Modeling and Hazard

Analysis using STPA‖ 4
th

 IAASS Conference.

4. Drinkwater, M.R., Liu, X., (1997) ERS Satellite

Microwave Radar Observations of Antarctic Sea-Ice

Dynamics, 3
rd

 ERS Symposium, Florence.

5. Leveson, N.G. (2011) Engineering a Safer World:

Systems Thinking Applied to Safety. MIT Press.

6. Thomas, J., Leveson, N.G., (2011) "Performing

Hazard Analysis on Complex, Software- and Human-

Intensive Systems", Proceedings of the 29th

International Conference on Systems Safety, Las

Vegas, NV.

7. Stringfellow, M., et al. (2007) ―Safety-Driven Model-

Based System Engineering Part I‖, MIT Technical

Report.

8. Leveson, N.G. (2002) ―Model-Based Analysis of

Socio-Technical Risk‖, Technical Report, Engineering

Systems Division, MIT.

