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Requirements Specification for 
Process-Control Systems 

Nancy G. Leveson, Mats Per Erik Heimdahl, Student Member, IEEE, Holly Hildreth, and Jon Damon Reese 

Abstract-This paper describes an approach to writing require- 
ments specifications for process-control systems, a specification 
language that supports this approach, and an example application 
of the approach and the language on an industrial aircraft 
collision avoidance system (TCAS 11). The example specification 
demonstrates 1) the practicality of writing a formal requirements 
specification for a complex, process-control system, and 2) the 
feasibility of building a formal model of a system using a speci- 
fication language that is readable and reviewable by application 
experts who are not computer scientists or mathematicians. Some 
lessons learned in the process of this work, which are applicable 
both to forward and reverse engineering, are also presented. 

Index Terms-Process control, reactive systems, requirements, 
blackbox specifications, formal methods, safety analysis, reverse 
engineering. 

I. INTRODUCTION 

MBEDDED software is part of a larger system and has E a primary purpose of providing at least partial control 
of the system or process in which it is embedded. Most such 
software is real-time and reactive (i.e., required to interact with 
and respond to its environment in a timely fashion during 
execution). A high cost is associated with determining the 
correctness of such software and a still higher cost associated 
with its incorrectness. The requirements for complex, embed- 
ded software systems are particularly difficult to specify and 
validate. 

The very first stages of software development have the 
fewest formal procedures to aid the analyst, and this is also the 
time at which the most costly errors are introduced in terms 
of being the last and most difficult to find. Many software 
requirements validation techniques involve building prototypes 
or executable specifications or waiting until the software is 
constructed and then testing the whole system. Although cer- 
tainly much can be learned by “testing” a specification through 
executing it, or a prototype built from it, the confidence that the 
system will have certain properties is limited to the test cases 
that were executed. Our approach is to model the required 
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software blackbox behavior along with the assumptions about 
the behavior of the other components of the system, and 
then to apply formal analysis procedures to the model in 
order to ensure that the software requirements model satisfies 
required system functional goals and constraints, including 
safety. 

Several different safety analysis procedures have been de- 
veloped by members of the Irvine Safety Research Group [ 161, 
[17], [15], [14], but they work on diverse models and have 
not been validated on real software. Our long-term goal is 
to develop a coherent, complete, and practical methodology 
for building safety-critical systems. This paper concentrates 
on the earliest part of the methodology, i.e., requirements 
specification, and demonstrates it on a real system. Future 
papers will describe the analysis procedures we are developing 
and evaluating for our model. 

Most of the information to be included in our system 
requirements model aIready is collected by system engineers 
or software engineers. However, the information is commonly 
scattered throughout the system documentation, is usually 
informally specified, and is not in a form amenable to formal 
analysis. In addition, the information is often specified using 
multiple different and incompatible models within the same 
specification (e.g.. Statemate [8], HatleyPirbhai [ 121, and 
Ward/Mellor [26]) .  For example, Statemate uses Statecharts, 
Activity Charts, and Structure Charts; HatleyPirbhai uses 
data flow diagrams, control flow diagrams, control spec- 
ifications (finite state machines), and a process activation 
table. 

Our approach is to build one state-based model that includes 
all of the information needed to describe the blackbox behavior 
of the components of the system (including but not only 
the computer) and the interface between the components 
and no more. By having all the requirements information 
in one model, formal analysis of the entire system becomes 
feasible and redundancy is reduced. The latter reduces the 
difficulty of changing the specification without introducing 
inconsistency. 

Furthermore, a blackbox model separates the specification 
of requirements from design, simplifying the model and mak- 
ing the requirements model easier to construct, review, and 
formally analyze. Most software requirements specification 
languages include software design information; the original 
A-7 specification [7] is a notable exception. The modeling 
language described in this paper differs from the A-7 language, 
however, in the use of higher-level, global abstractions of 
the entire system and in the goal of providing formal system 
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analysis procedures to operate on the underlying formal model. 
Research has increased on the development of higher-level 
abstractions for embedded systems [3], [24]; and although 
large-scale examples are still lacking, some of these more 
recent ideas are being applied in retrospect to the A-7 sys- 
tem. 

Finally, the language defined here has analysis goals sim- 
ilar to the ProCoS approach [22], but uses state machines 
whereas ProCoS uses process algebras. Consequently, the 
analysis procedures applicable to our model are related to 
ongoing work in automated state space analysis [ lo] ,  [2], 
while the ProCoS approach relies on traditional methods of 
theorem proving to analyze their models. Our approach is 
also similar to some recent work by Pamas [21], which also 
uses tables and state machines but uses trace semantics for 
analysis. 

The most important result of our research is verification 
that building a formal requirements model for a complex 
process control system is possible and that such a model 
can be readable and reviewable by non-computer scientists. 
Few examples exist of the application of formal methods 
to a complex, reactive system requirements specification. In 
order to evaluate our safety analysis ideas, we needed to 
build a model of a realistic system to use as a testbed. This 
paper describes the resulting formal system modeling method 
and its use to specify the system requirements of an aircraft 
collision avoidance system called TCAS 11. In the midst of 
this effort, our model was adopted as the official requirements 
specification for TCAS 11, so the research effort and the 
resulting model had to be industrial quality. The unique part 
of this effort, at least in terms of university research, is that the 
specification language was developed with continual feedback 
and evaluation by FAA employees, airframe manufacturers, 
TCAS manufacturers, airline representatives, pilots, and other 
external reviewers. Most of the reviewers were not software 
engineers or even computer scientists; this helped in producing 
a specification language that is easily learned and used by 
application experts. 

Although we describe a particular language that we used 
for this model, the details of the actual language features are 
less important than the other results of the research: 1) the 
general criteria that any such modeling method and language 
must satisfy, 2) the type of information that must be included 
in such a system requirements model in order for it to be 
analyzable for safety, and 3) the required features of such a 
language in order to make it possible to model real systems and 
to be usable by application experts. All of these are described 
in this paper. Future papers will describe the actual application 
of safety analysis techniques to the model. 

Our results have both forward engineering and reverse 
engineering implications. A detailed design specification writ- 
ten in low-level pseudocode (about 300 pages long) already 
existed for most of our application. Other parts, however, had 
only an English language description. Some of the lessons 
leamed about reverse engineering are described in this pa- 
per. 

The next section briefly describes the application, a collision 
avoidance system called TCAS 11. This is followed by an 

overview of the specification approach and descriptions of both 
the language and the system requirements specification. 

11. THE TRAFFIC ALERT AND COLLISION 
AVOIDANCE SYSTEM (TCAS) 

A real aircraft collision avoidance system (called TCAS 11) 
was used as a testbed to provide immediate evaluation and 
feedback for our modeling and analysis ideas. TCAS I1 has 
been described by the head of the program at the FAA as 
the most complex system to be incorporated into the avionics 
of commercial aircraft. It therefore provides a challenging 
experimental application of formal methods to a real system. 

TCAS is a family of airborne devices that function in- 
dependently of the ground-based air traffic control (ATC) 
system to provide collision avoidance protection for a broad 
spectrum of aircraft types (commercial aircraft and larger 
commuter and business aircraft). TCAS I provides proximity 
waming (traffic advisories) to assist the pilot in the visual 
sighting of intruder aircraft and is intended for use by smaller 
commuter and general aviation aircraft. TCAS I1 provides 
traffic advisories and recommended escape maneuvers (res- 
olution advisories) in a vertical direction to avoid conflicting 
aircraft. TCAS 111 will add resolution advisories in a horizontal 
direction. 

Development of aircraft collision avoidance systems started 
over 20 years ago. In 198 1 ,  the FAA decided to develop and 
implement TCAS 11, and a Minimal Operational Performance 
Standards (MOPS) document was produced using a combina- 
tion of English and pseudocode. Since its adoption in 1983, 
the MOPS has been extensively revised six times to fix errors 
or improve the specification. In 1989, the FAA required that 
TCAS I1 be installed on commercial aircraft with more than 
30 seats by December 1991 and on commercial aircraft with 
10 to 30 seats by 1995. The FAA relaxed the first deadline 
to require installation on half the commercial aircraft fleet by 
1991 and on the remainder by 1993. 

The MOPS document contains information that we would 
classify as system design (in English) and software design (in 
English and pseudocode). Because of perceived deficiencies in 
this document and the difficulty of FAA certification without 
real system or software requirements, an effort was begun 
in 1990 to provide a requirements document for TCAS 11. 
An industry/govemment committee began to write a fairly 
standard English language specification while we started an 
experimental formal specification and safety analysis. Our 
specification was subsequently adopted by the committee as 
the official TCAS requirements specification and the other 
specification effort was abandoned. 

111. SPECIFYING REQUIREMENTS FOR 
PROCESS CONTROL SYSTEMS 

A .  Goals, Constraints, and Requirements 

A system is a set of components working together to achieve 
some common purpose or objective. The requirements speci- 
fication language being described in this paper was designed 
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Fig. 1. A basic process control model 

for process control systems, where the goal is to maintain a 
particular relationship or function F over time ( t )  between 
the input to the system (2,) and the output from the system 
(0,) in the face of disturbances (D) in the process (see Fig. 
1). These relationships will involve fundamental chemical, 
thermal, mechanical, aerodynamic or other laws as embodied 
within the nature and construction of the system. 

Besides the basic objective or function implemented by the 
process, these types of systems may also have constraints on 
their operating conditions. Constraints may be regarded i i S  

boundaries that define the range of conditions within which the 
system may operate. Another way of thinking about constraints 
is that they limit the set of acceptable designs with which the 
objectives may be achieved. 

Constraints may arise from several sources, including qual- 
ity considerations, physical limitations and equipment capac- 
ities (e.g., avoiding equipment overload in order to reduce 
maintenance), process characteristics (e.g., limiting process 
variables to minimize production of byproducts), and safety 
(i.e., avoiding hazardous states). In some systems, the func- 
tional goal is to maintain safety, so safety is part of the overall 
objective as well as potentially part of the constraints. 

As an example, for an airborne collision avoidance system 
like TCAS, 2, can be viewed as all aircraft that fly into the 
airspace of the TCAS-equipped aircraft and 0,3 as all aircraft 
that fly out of the airspace of the TCAS aircraft. The goal 
of the TCAS system is to maintain a minimum separation 
function between the aircraft. Constraints include such things 
as not interfering with the ground-based air traffic contrsol 
(ATC) system, operating with an acceptably low level of 
unwanted alarms (advisories to the pilot), and minimizing the 
amount of deviation of the aircraft from their ATC-assigned 
tracks. 

Note that the goals of a system are just that, i.e., they may 
not be entirely achievable. Although the goal of TCAS I1 

is to eliminate near-misses (i.e., aircraft violating minimum 
separation standards), this cannot be a requirement since it 
is not possible to achieve: It is, however, a legitimate goal. 
Another way of stating this goal is to minimize the number 
of near-misses. The latter, however, is not a measurable 
goal since its achievement cannot be determined. Another 
possibility that theoretically can be evaluated is to reduce near- 
misses. The amount of reduction that is actually achieved then 
becomes a criterion for whether the system can be justified 
based on cost and possible increased risk with respect to 
other hazards in the system. The point here is that goals 
are different from requirements because the goals may not 
be achievable. The actual required and achieved behavior 
can be evaluated with respect to the goals and constraints to 
determine whether the system, as specified and designed, is 
acceptable. 

Early in the development process, tradeoffs between func- 
tional goals and constraints that are conflicting or not com- 
pletely achievable must be identified and resolved according to 
the priorities assigned to them. Identifying these conflicts and 
resolving them is a major task in both the system and software 
requirements analysis process. A second task is ensuring that 
the specified (or required) behavior of the process-control 
system will achieve the goals to an acceptable degree while 
satisfying the constraints. Semantic analysis of our system 
requirements model can potentially address both of these 
elements of correctness since it includes a model of the 
behavior of all the components of the system. 

B. Purpose and Content of Requirements 
Specificarion for Process-Control Systems 

A typical process-control system can be divided into four 
types of components: the process, sensors, actuators, and 
controller (see Fig. 1). 
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The behavior of the process is monitored through cow 
trolled variables (V,) and controlled by manipulated variables 
(V,,,). The process can be described by the process function 
F p ,  a mapping from V,,, x 2, x 2) x t + 0, x V,. LJn- 
fortunately, it is usually difficult to derive a mathematical 
model of the process due to the fact that most processes 
are highly nonlinear (i.e., the process characteristics depend 
on the level of operation), and, even at a constant operating 
level, the process characteristics change with time (i.e., the 
process is nonstationary). Any attempt to provide a niathe- 
matical expression describing the process involves simplifying 
assumptions and therefore will be imperfect. Some of the 
process characteristics, however, can be described, and this 
description can be used to derive and validate the control 
function. 

Sensors are used to monitor the actual behavior of the 
process by measuring the controlled variables. For example, 
a thermometer may measure the temperature of a solvent in 
a chemical process or a barometric altimeter may measure 
altitude of an aircraft above sea level. The sensor function Fs 
maps V,  x t -.+ 2. 

Actuators are devices designed to manipulate the behavior 
of the process, e.g. valves controlling the flow of a fluid 
or a pilot changing the direction and speed of an aircraft. 
The actuators physically execute commands issued by the 
controller in order to change the manipulated variables. The 
functionality of the actuators is described by the actuator 
function FA mapping 0 x t + VTn.  

The controller is an analog or digital device used to im- 
plement the control function. The functional behavior of the 
controller is described by a control function (Fc) mapping 
2 x C x t -+ U, where C denotes extemal command signals. 
The process may change state not only through intemal 
conditions and through the manipulated variables, but also 
by disturbances ( D )  that are not subject to adjustment and 
control by the controller. The general control problem is to 
adjust the manipulated variables so as to achieve the system 
goals despite disturbances. 

This model is an abstraction-responsibility for imple- 
menting the control function may actually be distributed 
among several components including analog devices, digital 
computers, and humans. Furthermore, the controller may have 
only partial control over the process-state changes in the 
process may occur due to intemal conditions in the process 
or because of extemal disturbances or the actuators may not 
perform as expected. For example, the pilot in a TCAS system 
may not follow the resolution advisory (escape maneuver) 
issued by the TCAS controller. 

The purpose of the control-system requirements specifica- 
tion is to detine the system goals and constraints, the function 
Fc (i.e., the required blackbox behavior of the controller), and 
the assumptions about the other components of the process- 
control loop that I )  the implementors need to know in order 
to implement the control function correctly, and 2) the system 
engineers and analysts need to know in order to validate the 
model against the system goals and constraints. 

A blackbox, behavioral specification of the function F c  uses 
only: 

the current process state inferred from measurements of 
the controlled variables, 
past process states that were measured and inferred, 
past corrective actions output from the controller, and 
prediction of future states of the controlled process 

to generate the corrective actions (or current outputs) needed 
to maintain F. 

Information about the process state has to be inferred 
from measurements. For example, in TCAS, relative range 
positions of other aircraft are computed based on round-trip 
message propagation time. Theoretically, the function F c  can 
be defined using only the true values of the controlled variables 
or component states (e.g., true aircraft positions). However, 
at any time, the controller has only measured values of the 
component states (which may be subject to time lags' or 
measurement inaccuracies), and the controller must use these 
measured values to infer the true conditions in the process and 
possibly to output corrective actions (U)  to maintain F .  In 
the TCAS example, sensors include on-board devices such as 
altimeters that provide measured altitude (not necessarily true 
altitude) and antennas for communicating with other aircraft. 
The primary TCAS actuator is the pilot. who may or may 
not respond to system advisories. Pilot response delays are 
important time lags that must be considered in designing the 
control function. Time lags in the actual process may be caused 
by aircraft performance limitations. 

C. An Approach to Writing Requirements 
for  Process-Control Systems 

We specify the blackbox behavior of the controller (i.e., the 
function FC to be computed by the controller) using a state 
machine model. The outputs of the controller are specified 
with respect to state changes in the model as information is 
received about the current state of the controlled process via 
the controlled variables V,. In the TCAS example, the control 
function is specified using a model of the state of all other 
aircraft within the host aircraft's airspace, the state of the on- 
board components of its own aircraft (e.g., altimeters, aircraft 
discretes,* and cockpit display), and the state 01' ground-based 
radar stations in the vicinity. Information about this state is 
received from the sensors (e.g., antennas and transponders) and 
commands are sent to the actuators (e.g., the pilot, antennas, 
and transponders). 

The state machine model of the control function Fc is 
iteratively fine tuned during requirements specification de- 
velopment to mimic the current understanding of the real- 
world process and the required controller behavior. The state 
machine model is essentially an abstraction of the behavior 
of the system function F since it models all the relevant 
aspects of the components of the process control loop. Errors 
in the state machine model represent mismatches between 
this model and the desired behavior of the control loop, 
including the process. We detine the informal concept of 

'Time lags are delays in the system caused by the reaction time of the 

Aircraft Discretes are airframe-specific characteristics provided as input 
sensors, actuators, and the actual process. 

t o  TCAS from hardware witches. 
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semantic distance as the amount of effort required to translate 
from one model to another. We believe that in order to 
maximize the application expert’s ability to find errors in 
the requirements specification, the semantic distance ( d l  in 
Fig. 2) between their understanding of the desired process 
control behavior (their mental model of the system) and 
the specification of that behavior must be minimized. This, 
in tum, implies that the requirements be written entirely in 
terms of the components and state variables of the controlled 
system. Specifically, “private” variables related only to the 
implementation of the requirements and not part of the appli- 
cation expert’s view of the controlled system should not be 
used. 

The requirements review process involves validating the 
relationship between changes in the real-world process iind 
the specified changes and response in the control function 
model. Therefore, reviewability will be enhanced if the re- 
quirements specification explicitly shows this relationship. 
Moreover, when the description of the required controller 
behavior includes more than just its blackbox behavior (e.g., 
includes software design information and functional decom- 
position), then the semantic distance ( (14)  between the process 
control behavior and the specified controller behavior in- 
creases, and the relationship between them becomes more 
difficult to validate. TCAS application experts who know very 
little or nothing about computers or software have been able 
to read our requirements model of TCAS and find errors in 
it. 

In addition, a formal blackbox, behavioral model of the 
requirements makes possible 1) a mathematical verification of 
various desired properties such as consistency of the control 
model with the system goals and constraints, 2) the generation 
of standard system engineering and system safety analyses 
such as fault trees [18], and 3) the application of formal 
correctness and robustness criteria to the specification model 

Although we believe that this type of blackbox specification 
is easier for application experts to review and easier to validate 
using formal analysis procedures, the semantic distance ( d g )  

between the requirements and a standard implementation based 
on functional decomposition is increased. To alleviate this 
problem, the specification step can be divided into separate 
requirements and design specifications or special software 
designs that result naturally from this type of blackbox spec- 
ification may be used. If performance requirements can be 
satisfied, the specification can be implemented directly without 
an intervening design step. 

~ 4 1 .  
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Fig. 3. Design criteria for the language. 

Given the error-proneness of the requirements specification 
step and the few tools available to find these errors, the use of 
pure blackbox specifications (as advocated here and by Pamas 
et al. [ 7 ] )  appears justified. 

IV. SPECIFICATION LANGUAGE 
The first step in designing a specification language or 

modeling method is to determine goals and criteria for the 
language. This section describes general design criteria for 
such a requirements specification language and the language 
actually used to specify TCAS. 

A. Design Criteria for the Specification Language 

We identified several criteria that were important with 
respect to our goals and that we believe apply in general to 
this type of specification language (see Fig. 3). 

The first criterion, as described in the previous section, is 
that the language specify blackbox behavior of the software 
only and not include intemal design information. Because of 
the safety and other types of formal analysis we planned to 
perform on the model, it also had to be based on a state 
machine as the underlying model: this is obviously not a 
requirement for all languages. 

Two other criteria are minimality and simplicity. Minimality 
implies that the specification should contain only the informa- 
tion needed by the developers and analysts. Otherwise, time 
is wasted in specifying things that are not used. Many of the 
popular real-time requirements specification languages include 
facilities that are not strictly necessary. The problem with 
the “kitchen sink” approach is that the specification language 
becomes unnecessarily complex and the specification process 
becomes unnecessarily tedious and time-consuming. Also, for 
readability, information that is of limited help at a particular 
point in the specification should be omitted; the specification 
should help the reader focus on what is important. 

To enhance simplicity, we tried to avoid specification lan- 
guage features that complicated the analysis and the speci- 
fication. Language features that are semantically simple and 
straightforward to define are usually also easy to use and result 
in more readable and reviewable specifications. 

Related to the minimality and simplicity criteria are co- 
herency, consistency, and conciseness. Other specification lan- 
guages for reactive systems, e.g., Statemate [8], Hatleypirbhai 
[ 121, and Wardmellor [26 ] ,  include a variety of diverse 
models, some of which are not formally defined. Our goal 
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was to specify all the required information using one formally- 
defined modeling language based on one underlying state- 
machine model. We also wanted our language to represent 
information as economically as possible while still maintaining 
readability. 

Because of our goal to provide a safety analysis of the 
specification, the language must be unambiguous and the 
underlying model must have a mathematical foundation. At 
the same time, the requirements specification must be readable, 
reviewable, and usable. In some respects, these criteria may 
be conflicting but it is possible to satisfy both if there is a 
separation between the actual specification language and the 
underlying formal model. The specification must be unam- 
biguous and translatable into mathematical notation, but it 
need not itself include arcane mathematical symbols that are 
unfamiliar to the application experts and software developers. 
We spent considerable time and energy developing a notation 
that was readable yet maintained the underlying formal state- 
machine model. This notation has graphical, symbolic. and 
tabular aspects depending on which was best for specifying 
a particular type of information [4]. Because readability and 
writability are often conflicting goals, we chose readability 
in cases where a conflict existed: The added investment in 
constructing the requirements specification pays off in terms 
of discovering more requirements-level errors. 

The specification language was developed while specifying 
TCAS for the FAA, and we therefore received continual feed- 
back by airframe manufacturers, component subcontractors, 
FAA certification experts, airline representatives, and pilot 
group representatives during development. This feedback pro- 
vided invaluable information about the practicality, feasibility, 
and usability of the modeling language during its development. 
It helped us both with determining what did and did not need 
to be in the language and with satisfying our language design 
criteria. 

One of the advantages of the feedback was to help us 
overcome our individual preferences. When devising the spec- 
ification language, we usually had ourselves in mind as the 
user. However, our familiarity with certain notations. espe- 
cially mathematical notations such as predicate calculus, hides 
their weaknesses. Our first attempts at devising our language, 
therefore, were failures: the notation was clear to us but 
not to others. The feedback from a diverse group of users 
helped us to evaluate the evolving specification language more 
objectively. 

A final criterion for our specification became obvious only 
after trying to specify a complex system. We first used 
unrestricted hierarchical abstraction in our model, thinking this 
would aid in understanding the specification. We found that the 
use of what Harel [5] calls “clustering” (grouping states into 
superstates) indeed made the specification more readable. On 
the other hand, the use of what Harel calls “abstraction,” a type 
of information hiding that allows showing only the superstate 
(as an empty state) and hid the component substates, often had 
an undesirable effect on readability. One of the purposes of 
such abstraction is that lower-level information, i.e., substates 
and transitions, can be hidden from the reader and in that way 
the system is presented in digestible chunks. 

Our first modeling attempts maximized this type of hi- 
erarchical abstraction, thinking this would aid our goals of 
readability and understandability. Negative results were im- 
mediately apparent. Predicates (or guarding conditions) for 
transitions that “crossed’ levels became very difficult to un- 
derstand because they referred to nonvisible states. Context, 
which is vitally important to understandability, was lost. Thus, 
the information hiding concept that has contributed so much to 
the design, development, and maintenance of large, complex 
systems, proved detrimental to the understanding of such 
systems-a key element in requirements specification. For 
requirements specification, the reader (and specifier) needs 
as much context and specific detail as possible. We call this 
criterion “information exposure.” 

For the most part, our final TCAS specification has only 
two levels of abstraction-a top level to provide an over- 
all global view and one lower level to model each major 
component in the controlled system. In a few places, a third 
level became necessary to aid understanding and ensure that 
each subcomponent model fit on one page. For TCAS 11, 
this was all that was necessary, and we believe this to be 
true for most process control systems. The use of parallel 
state machines reduces the state explosion problem in state- 
machine models and each component of the process control 
loop usually has a limited number of relevant states and 
transitions. 

B.  Specification Language Description 

Previously, we defined a formal state machine model called 
RSM (Requirements State Machine) for modeling the black- 
box behavior of process-control systems along with formal 
criteria and heuristics to check the model for completeness, 
robustness, and safety [14]. RSM, while appropriate for formal 
analysis, has few of the desirable characteristics of a specifi- 
cation language. So we needed a usable specification language 
to put on top of the underlying RSM model. 

Because our original goal was not to design a new speci- 
fication language, we evaluated our criteria against existing 
languages, decided that Statecharts came the closest, and 
started specifying TCAS 11 using it. However, we soon real- 
ized that reviewers had difficulty understanding some aspects 
of pure Statecharts specifications and that some things we 
needed to specify were not easily described using it. Our 
Specification language evolved as we got feedback on our 
drafts until it no longer is reasonable to refer to the language 
as Statecharts. We call our current formulation RSML (Re- 
quirements State Machine Language). This section describes 
the syntax and semantics of RSML and how it  differs from 
Statecharts. 

A basic state machine is composed of states connected by 
transidcms (see Fig. 4). Defuulr or start states are signified 
by states whose connecting transition has no source. In the 
example, state A is the start state. Transitions define how to 
get from one state to another. In the example, states B and C 
are directly reachable from A. State D is not directly reachable 
from A (no transitions connect the two states); however, state 
D is reachable from iZ via state C.  
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7 
Fig. 4. A basic state machine. 

I s  U” 
I I 

Fig. 5 .  A superstate example. 

Statecharts are finite state machines augmented with hi- 
erarchy, parallelism, and modularity. An introduction to ba- 
sic statechart notation can be found in [5] .  RSML borrows 
the notions of superstates, AND decomposition, broadcast 
communication, statechart arrays, and conditional connectives 
from Statecharts. Other features of Statecharts, e.g., history and 
event selector connectives, were left out either because they 
were unnecessary or the semantics were too complicated to 
allow for formal analysis. We then added some features, such 
as interface descriptions and directed communication between 
state machines, and changed the syntactic notation to make it 
easier for our reviewers to read and review the specification. 
The syntactic extensions were found to be necessary to model 
a realistic problem rather than the small examples often found 
in research papers. We also changed somewhat the semantic 
definition of a “step,” i.e., the semantics of state transitions. 
The rest of this section first describes the features in common 
with Statecharts and then our changes and extension$. 

C. Feutures in Common with Stutechurts 
Superstates: In Statecharts (and RSML), states may be 

grouped into supersrates (see Fig. 5). Such groupings reduce 
the number of transitions by allowing transitions to and from 
the wperstate rather than requiring explicit transitions to and 
from all of the grouped states (suhstates). There are two ways 
to enter a superstate. First, the transition to the superstate may 
end at the superstate’s border (transition A in Fig. 5).  In this 
case, a default state must be specified within the superstate. 

A 

U 

C 

%&& ID@ 
I 

Fig. 6. The parallel state. 

In the example, state S is entered upon taking transition A .  
Alternatively, the transition may be made to a particular state 
inside the superstate (transition B in Fig. 5) .  Note that the 
same superstate may have transitions ending at the border and 
at any number of the inner states. The superstate may be exited 
in two ways (transitions C and D in Fig. 5). Analogous to 
transitions into the superstate, transitions out of the superstate 
may originate from the border or from an inner state. The same 
superstate may contain both types of exiting transitions. 

AND Decomposition: One of the most important innova- 
tions in Statecharts is what Hare1 calls the parallel state3 which 
contains two or more state machines, separated by dashed 
borders (Fig. 6). When the parallel state S is entered, each 
of the state machines A ,  B ,  C, and D within it is entered. All 
state machines are exited when any transition is taken out of 
the parallel state. The use of parallel states greatly reduces the 
size of the specification. For example, we estimate that the 
TCAS system (i.e., the underlying RSM model) contains at 
least lo4* states whereas the graphical state diagram in our 
RSML specification of TCAS has approximately 100 states 
and fits on five pages. Although the syntax of parallel states 
is the same in both Statecharts and RSML, the semantic 
definition is different, as described in the Step Semantics 
sect ion be low. 

Arrays: Both Statecharts and RSML allow the use of 
state-machine arrays (see Fig. 7). State machine arrays are 
semantically equivalent to identical parallel state machines 
uniquely identified by an index. Each of the array elements is 
entered or exited when the array is entered or exited. Individual 
array elements are referenced by the array name and an index 
value. For example, “Other-Aircraft[3]” refers to the third 
array element in the example. We found that defining a special 
token “THIS” that references the element value from within 
that element is useful for passing the identity of the element 
to a function, e.g., Traffic-Score(TH1S). 

Connectives. Conditional connectives are used when tran- 
sitions out of a particular state into two or more different 

Parallel states are also known as “orthogonal products.” “product states,” 
and “AND states.” 
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Other-Aircraft, i:[1..30] 

% 
Fig. 7. A state machine array. 

Fig. 8. In the diagrams, “e” is the triggering event and “X,” “Y,” and “Z’ are 
the guarding conditions; (a) is a state machine without a conditional array; (b) 
is the same state machine using a conditional connective; (c) is the conditional 
connective used to select default state. 

states are taken based on the same event but guarded by 
different conditions (Fig. 8 (a)). The transition from the source 
state to the connective is taken at the occurrence of the 
event. The appropriate destination state is determined based 
on guarding conditions that are defined on the transitions from 
the connective to the destination states (Fig. 8 (b)). Some 
guarding conditions may be placed on the transition from 
source state to connective if all the destination states share 
those conditions. For a complete specification, the guarding 
conditions from the connective to the destination states must be 
mutually exclusive and must form a tautology [ 141. Sometimes 
a state change is not desired. For these cases, a transition leads 
from the conditional connective back to the source state, thus 
explicitly specifying the circumstances for changing state and 
for remaining in a state. 

A transition must begin and end in a state; therefore, 
the actual state transition is the transition from the source 
state to the connective combined with the transition from the 
connective to the destination state. Conditional connectives 
often appear as default “states” (Fig. 8(c)) in RSML, even 
though they are not states. The actual default state is chosen 
based on the conditions on the transitions out of the conditional 
connective. 

D. Changes to Statecharts 

made to these basic features of Statecharts. 
Both syntactic and semantic changes and additions were 

I Component-Name I 
’Input: 
Input-Variable : Type 
Input-Variable : Type 
Input-Variable : Type 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

output: 
Output-Variable : Type 
Output-Variable : Type 
Output-Variable : Type 

Fig. 9. State machine with associated variables. 

Directed Communication: RSML includes the ability to 
model the behavior of all control loop components (not 
just the controller) and the communication between them. 
Physically distinct components are modeled as separate 
(communicating) state machines. Broadcast communication, 
as defined in Statecharts, is an inappropriate abstraction 
for communication between physically distinct components 
(e.g., two aircraft). Intercomponent communication in RSML 
is modeled as directed messages sent and received over 
unidirectional channels between component state machines. 
The limits of internal broadcast communication are denoted 
by thick borders around a component state machine (see 
Fig. 9); intemally broadcast events within a component state 
machine cannot cross thick borders. 

Events: RSML includes two types of events-internal and 
external. Intemal events are communicated within a single 
component state machine using the Statechart broadcast mech- 
anism, i.e., they cannot cross the thick borders around the 
component state machines. Thus, TCAS does not necessarily 
know about any events in the altimeter or in other aircraft 
unless an external message has been sent between these two 
components. Internal events are used only for one very specific 
purpose: RSML specifications are pure blackbox specifications 
of the mathematical (input/output) function to be computed by 
the software; internal events are used to order the evaluation 
of that function. Basically they serve the same purpose as 
parentheses in algebraic equations. 

External events, on the other hand, represent real com- 
munication (message passing) between TCAS and the other 
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Transition(s): -1 -+ [ (Destination State) [ 
Location: 

Trigger Event: 
Condition: 

(path to the transition being considered.) 

(The event that causes this transition to be taken.) 
(Optional guarding condition on the transition.) 

Output Action: (Optional output action.) 
Description: 

MOPS Ref. (Used for tracing requirements to software design) 

Comments: (Optional comments.) 

Fig. 10. Transition definition. 

(Optional English description of the transition information) 

components (sensors, actuators, etc) of the system. They are 
required only because we include in our model the extemal 
interface to the system (in this case, TCAS) and the assumed 
behavior of the other components of the process control loop 
(the altimeters, other aircraft, pilots, etc.). The language does 
not prohibit the use of extemal events as triggering events on 
transitions; however, in the TCAS I1 specification, extemal 
event triggers are restricted to system component interface 
definitions. 

Interface Definitions: The interface description is an impor- 
tant part of any requirements specification language. RSML 
includes an interface description for each separately modeled 
system component, which describes all external communica- 
tion for that component. Our underlying model is communi- 
cating state machines: SEND events in one component trigger 
RECEIVE events in another component. Each communication 
specifies its source and destination. Unlike CSP [9] and some 
communicating state machine models, e.g., [23] ,  RSML does 
not require synchronous intercomponent communication. 

The receipt of a message by a component state machine is 
signalled by the occurrence of an external RECEIVE event. 
These events may trigger state changes within the receiving 
component, i.e., values are assigned to input variables based 
on information communicated in the message. Because the 
state diagrams representing such state transitions are trivial 
and provide no useful information, only the transition descrip- 
tions are included in the RSML specification. The interface 
description includes the source and destination of the message, 
the triggering RECEIVE event and guarding condition, the 
mapping of message field names and values to variable names 
and values, and any internally generated events resulting from 
the receipt of the message. Note again that interface descrip- 
tions describe transitions within the receiving component state 
machine. Thus, guarding conditions will never block receipt 
of a message but may prevent the assignment of message field 
values to input variables. 

Output variable value assignments and the sending of mes- 
sages to other control-loop components are triggered by the 
occurrence of internal events. Each output interface description 
(representing a transition within the sending component state 
machine) contains the message source and destination, the 
internal triggering event and guarding condition, the map- 
ping of output variable names and values to message field 
names and values, and the internally generated extemal SEND 
event. 

Component State Machines: Each state machine in RSML 
may be divided into three parts separated by double solid 
lines (see Fig. 9). The middle part contains the graphical 
state machine. The top and bottom parts contain input and 
output variables, respectively. All RSML inputs are black- 
box inputs while outputs are calculated (derived) blackbox 
outputs. 

Definitions must be provided for all input and output 
variables. Each definition contains: 

Location (the associated RSML state machine, e.g., 
Own-Aircraft) 
Source or Destination (extemal component, e.g., altime- 
ter) 
Type (e.g., integer) 
Expected Range (e.g., -10,000 ... l0,OOO) 
Granularity (e.g., 10) 
Units (e.g., feet) 
Load (e.g., one per second) 
Exception Handling Information (e.g., out of range val- 
ues are treated as zero) 
Traceability information (e.g., MOPS Reference) 

In addition to the above items, output variable descriptions 
also contain triggering events and value assignments. 

Transition Definitions: Transition definitions in RSML con- 
tain five parts: 1) the identification, 2 )  the location, 3) the 
triggering event, 4) the guarding condition, and 5) the output 
action. The identification, location, and triggering event are 
the only required parts. Fig. 10 shows the form of a transition 
definition in RSML. 

Each transition is identified by its source and destination 
states 

-1 - pizq.  
Transitions split by a conditional connective are defined in 

two parts. The first part of the definition is identified by the 
connective destination, while the second part is identified by 
the connective source, - 0 or 0 -m- 
If several transitions have the same definition (i.e., the same 
location, trigger, condition, and output action), then they may 
be defined together. Sometimes a single transition definition 
applies to all transitions into a particular state. The special 
symbol ANY may be used as a shorthand for all source states. 

For example, the following transition identification 
Transition( s): 

p i G + p l  
pZ+pGil 
p-iGq -[Enst) 

might be rewritten using: 

Transition(s): ANY - ~~~t . I 
The locarion field of the transition definition shows where 

in the state machine the transition may be found. The location 
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rrue-Tau-Citppedf.3tir 2 Time-To-CPA A 
( Other-(’apability,.Zlz # TCAS-TA/RA V 

( ( Down-Separationf.mi(low-tirm) 5 Alt-Threshold A 
( Other-VRC,.,,, = No-Intent A Tro-Of-Three,~3z;) ) A 

Vp-Separationf.36r(loa-firm) 5 Alt-Threshold) V 
( (‘urri,nt-Vertiral-Separationr.33~ > 150 ft A 

( ( Inhibit-niased-Climbr.:,39(low-firm) > I)own-Separation~.~~;(low-firm) A 

( I~ihibit-Biased-Clirnbr.~~g(low-fir~n) 5 Down-Separat io~~~.~:~~(luw~lirm) A 
Own-Tracked-Altr.3rg < Other-Tracked~A1tf.344) V 

Own-Trarked-Altr3rg > Other~Tracked-Altol,) 1 ) ) 

Transition condition written in predicate calculus. Fig. 1 I. 

is given as a hierarchical path, using the “D” symbol to 
separate the RSML state labels. For example, a transition at 
the location 

Location: Other-Aircraft D Tracked D Intruder-Statuss-6 1 
has its source and destination states in Intruder-Status (found 
on p. 61 of the requirements specification) which is contained 
in the hierarchy formed by Other-Aircraft and Tracked. The 
location in the example can be traced in Figs. 25, 28, and 29. 

Transitions are taken upon the occurrence of the trigger 
event, provided that the guarding condition is true. Internally 
generated events may be either internal or external events, i.e. 
they are either broadcast within the component state machine 
or are explicitly sent to another component. 

The condition defines what must be true before the transition 
can be taken and is specified using AND/OR tables, described 
below. 

Outpur actions identify events that are generated when the 
transition is taken. 

The rest of the transition definition is for explanation and 
documentation only. The description includes any English 
language description of the transition definition that may be 
appropriate to include and the MOPS Ref. is a reference to 
the pseudocode (design specification) that implements this 
transition. The latter provides traceability and was used in the 
independent verification performed on our TCAS specification. 
An optional Comments section can be used to provide extra 
explanatory information. For example, we sometimes used it 
to explain why a particular decision was made. 

AND/OR Tables: Our first attempt to write the conditions 
for the state transitions used pure predicate calculus (Fig. 
1 I ) ,  as this was what we had seen in previous statechart 
examples [ l ] ,  [ 5 ] ,  and it was natural to us. Our external 
reviewers, however, did not find it natural or reviewable 
and told to us to come up with something else. In fact, we 
found that we had difficulty in writing and reading complex 
predicate calculus expressions ourselves even though we were 
familiar and comfortable with the notation; while developing 
another notation, we found logical errors in our first attempt 
at specifying a part of TCAS that were not at all obvious in 
the original form. 

Our second attempt replaced logical phrases with English 
phrases and a list of Engl.ish-to-logic mappings. Although this 
is superficially more readable, we found that annotating the 
logic with English did not provide an appreciable advantage in 
terms of the underlying complexity of the logical expressions. 

The notation we finally chose is a tabular representation of 
disjunctive normal form (DNF) that we call AND/OR tables. 

Fig. 12. The AND/OR table. 

The far-left column of the AND/OR table lists the logical 
phrases; each of the other columns is a conjunction of those 
phrases and contains the logical values of the expressions. 
If one of the columns is true, then the table evaluates to 
true. A column evaluates to true if all of its elements are 
true. To make all these relationships clearer, we physically 
separated the columns, the far-left column a little more than 
the others. The AND/OR tables do not eliminate the need 
for existential and universal quantifiers; however, their scope 
is limited to a disjunct term or to the entire table, making 
it much easier to parse the expressions. We also discovered 
that omissions became apparent when application experts were 
forced to consider the explicit “don’t cares” (.) that appeared 
in the tables. 

OR 

The above table is equivalent to 

((Expression- 1 A 7 Expression-2) 
V (Expression- 1 A Expression-3)). 

The AND/OR table for the predicate calculus expression in 
Fig. I I is shown in Fig. 12. 

Some evidence of the readability and reviewability of the 
AND/OR tables is that errors we made in our first representa- 
tion of the system were quickly discovered by the application 
experts after only a very minimal (ten minute) tutorial on 
our notation. Below the AND/OR tables, we later added an 
English language description of the guarding conditions on 
each transition. 

Macros and Functions: As we wrote the TCAS require- 
ments, we discovered that some of the AND/OR tables became 
very complicated. Also, some of the logic is repeated in 
several tables. We solved both problems by using macros, 
which are just labeled AND/OR tables. These macros, for 
the most part, correspond to typical abstractions used by the 
application experts in describing the TCAS requirements and 
therefore add to the understandability of the specification. 
We did, however, try to use them sparingly in order not to 
provide too many levels of indirection in the specification. To 
increase flexibility, macros may be parameterized. Also, rather 
than including complex mathematical functions directly in the 
transition tables, such functions are specified separately and 
referenced in the tables. 
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(a) (b) 

Fig. 13. 
same information. 

Transitions: (a) unreadable graphic diagram; (b) transition bus with 

Transition Buses: One of the advantages of Statecharts over 
other state machine models is the ability to reduce a large 
number of states to a conceptually manageable number by 
using superstates and parallel states (AND-decomposition). We 
kept both of these features, but we found it helpful to introduce 
more constructs to reduce clutter. For example, many parts 
of the TCAS model are fully- or almost fully-interconnected, 
i.e., there is a transition from each state to nearly every other 
one. Showing each transition explicitly is confusing and can 
make the graphical diagram unreadable (see Fig. 13(a)); the 
transition bus (Fig. 13(b)) provides the same information. A 
transition must be defined for each source-state/destination- 
state pair on the transition bus, where a source state is a state 
with a transition to the bus and a destination state is a state 
with a transition from the bus. 

Cross Referencing and Identifier Types: Another problem 
arose with writing transition information on the arrows 
between states. This is fine for relatively simple transitions and 
relatively simple statecharts. Even marking the arrows with 
a short tag that identifies the transition logic elsewhere was 
found to complicate the graphics and make it more difficult 
to comprehend when the statechart was complex. Such tags 
are symbolic “noise;” the information is not salient, even 
when using supposedly mnemonic tags, and the resulting 
clutter is more harmful than helpful. Unless the complete 
transition condition can be written on the arrow between 
states (not possible for anything but the trivial examples 
found in textbooks), such transition tags provide no useful 
information to the user except to match the arrow with 
a separate specification of the condition elsewhere in the 
document. The use of a special tag for this purpose merely 
increases the number of names and synonyms that the user 
must remember. 

We opted instead, at first, to put page references on the 
arrow indicating where the transition logic could be found 
in the document (since this was really the information that 
the user needed); later we moved this information under each 
diagram in order to reduce clutter and make the diagrams more 
readable. This had no effect on the ease with which the page 
number information could be obtained. Paging through the 
document when reading transition definitions in order to view 

the corresponding statechart was minimized by including fold- 
out pages of the graphical part of the statecharts visible from 
anywhere in the document. 

Cross referencing was used liberally elsewhere in the lan- 
guage as well. No matter how concise the notational style, 
requirements specifications for large systems span many pages 
(and sometimes volumes) and usually contain references to 
other parts of the specification. We wanted to reduce redun- 
dancy while still making easily accessible all information that 
is needed to understand or review each part of the document. 
Liberal use of page references as subscripts on names defined 
elsewhere was a practical compromise. 

Another problem is how to identify the types of identifiers 
that are used in the specification. Solutions that have been 
used in the past include surrounding the name with special 
symbols as in the A-7 specification [7] or using special fonts. 
Both of these solutions have drawbacks in terms of readability 
and leamability. The RSML approach is to use subscripts. 
Each identifier in the specification is subscripted with a single 
letter denoting its type--v for variable, s for state, m for 
macro, f for function, and e for event-and a page number 
where that element is defined. Page numbers are updated 
automatically when changes are made to the specification. For 
example, aZtztude,-l76 is a variable whose type definition 
can be found on page 176. An alphabetized index also is 
included that shows all the pages on which the name is used 
in the document and denotes the page on which the name is 
originally defined. 

Identity Transitions: Identity transitions originate and ter- 
minate in the same state and generate output actions without 
causing a state change. The need for identity transitions 
arises when output actions are necessary for synchronization 
although no state change is required; the underlying Mealy 
machine model allows associating output actions only with 
transitions and not with states. All identity transitions are 
guarded by the negation of the disjunction of all the conditions 
guarding transitions that are triggered by the same trigger 
event and that originate in the same state. Identity transitions 
are not included in the state-machine graphical diagram in 
order to reduce clutter since they are not needed for reviewing 
the specification but for analysis and completeness reasons. 
Instead, they are grouped in tables. 

Timing: During the specification of TCAS, we needed only 
three temporal functions: the value of a variable at some 
previous point in time, the truth value of a condition at some 
point in the past, and an implicitly generated event based on 
time (i.e., a timeout relative to state entry). Rather than treating 
timeouts specially and defining triggering events for them, 
all timing functions are written as expressions in guarding 
conditions. An example of such an expression is 

t 2 (t(entered(Threat)) + 5.0 secs) 

This expression states that the current time ( ‘ t ’  without an 
argument) is greater than or equal to the time that state Threat 
was entered plus 5.0 seconds. Such expressions evaluate to true 
or false and generally appear as logical phrases in AND/OR 
tables. 
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Fig. 14. Transitions a and b are inconsistent. 

Procedure Strp-('oiistl.rirtion(Var C : configuration. 1 : setofeveotsj ; 
begin 

I : = $ :  
while T c En('T, c', 1) do 

non~let~rrriiriistirally pick a transition t E (En(T. C .  I )  - Tj and add i t  CD T ; 
( '  := Next('oiifig((',T) ; { Calrulate the new ronfigriration ] 

end 

Fig. 15. Step construction in Statecharts. 

TCAS is required to operate based on a cycle, called a 
surveillance cycle, started by an event (Surv-Comp-Event) 
and all temporal requirements are based on this cycle. In the 
TCAS requirements document the function Prev,(x) has been 
overloaded to apply to both variable values, functions, and 
predicates: 

Prev,(v) refers to the value of variable (or function) v at 

Prev,(y) refers to the truth value of p at j surveillance 

Step Semantics: The semantics of Statecharts have been 
described in detail in several papers [ll],  [ 5 ] .  Unfortunately 
the descriptions are not consistent with each other; small 
(but significant) differences exist. The following comparison 
between Statecharts and RSML semantics is based on the 
formal description by Pnueli and Shalev [20]. 

The semantic description of Statecharts in [20] is based 
on the notion of steps. A step is initiated when an external 
event arrives at the model boundary, causing a cascade of 
subsequent intemal events. A step is completed when no 
more intemal events are generated or there are no more 
transitions triggered by the events that were generated, i.e., 
the model has stabilized in a state. It is assumed that a 
step is completed before another extemal event arrives, i.e., 
there is no delay in the response to an external stimulus 
(this assumption is called the synchrony hypothesis). The main 
difference between Statecharts and RSML is in the way a step 
is constructed. 

In both Statecharts and RSML, a step starts when a set of 
external events ( I )  arrives at the model boundary. The set of 
transitions that are triggered by the events in Z are denoted 
by trzggpred(1).  If a transition is taken, a new event may be 
generated. The set of events generated when the transitions in a 
set of transitions T are taken is defined by generated(T).  The 
state (or configuration) of the model is denoted by C, e.g., the 
initial configuration in Fig. 16 is' the set { A ,  C } .  Transitions 
whose source states are members of a particular configuration 
C are said to be relevant to C. 

In the set of transitions denoted by reZevant(C), a (possibly 
empty) subset are triggered by the events in Z, i.e., the 

J surveillance cycles back in time; 

cycles back in time. 

I 
I I 

I 
I 

Fig. 16. A Statechart and RSML example. 

TABLE I 
TWO POSSIBLE STEP CONS rRUCTlONS IN STATECHARTS 

Construction 1 
loop # T En(T) generated(T) C 

0 0 { t l , t 4 }  0 {A7 C )  
1 {tl} { t l , t 3 , t 4 )  

Construction 2 
loop # T En(T) generated(T) C 

0 0 { t l , t 4 )  0 {A7 c> 
1 

transitions that could possibly be taken given a configuration 
G and a set of events Z are defined by 

reZevant(C) n t rzggered(1).  

In this set, only a few transitions are compatible, i.e., can be 
taken together. For example, the transition labeled a in Fig. 14 
is not consistent with the transition labeled b since only one 
of them can be taken. Let the set consistent(T) contain all 
transitions that are compatible with the transitions in the set T.  

The construction of a step in Statecharts is based on an 
enabling function E n  that determines which transitions can 
be taken given a set of extemal events ( I )  and a configuration 
C. In the Statecharts step creation, a transition relevant to C 
and triggered by an event in Z is initially picked and added to 
the set T. T is then expanded by adding transitions that are 
relevant to C, consistent with the transitions already in T, and 
triggered by either an event in I or an event generated by a 
transition in T.  For example, consider the model in Fig. 16. 
When the external event z arrives and the model is in the initial 
configuration {A.C},  tl and t 4  are the only two transitions 
that can be taken. Assume tl is picked and added to T.  Since 
t l  generates the event y, the new set of possible transitions is 
expanded to include t 3 .  Both t 4  and t 3  are consistent with t l ,  
so either one can be picked and added to T.  
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TABLE I1 
THE STEP CONSTRUCTION IN RSML 

I En(T) outer loop # I inner loop # I T 

Exit 

2 1 
2 Exit 
3 0 0 

Comdetion of Step 

TABLE 111 
AN EXAMPLE OF A RSML STATE MACHINE 

LEADING TO AN INFINITE STEP CONSTRUCTION 

. .  . .  . .  

Procedure Strp~(’oiistnirtioriHSMI.(Var C : configuration, Var I : srlofcvmts) : 
begin 

repeat 
‘1 := 0 ; 
while T c Kn(‘1. C. I) do 

( ’  := Sf,xt(‘onfig((’.T) ; { Calrulatp the new (-oiifigiirntion } 
I := grueratcd(T) : { (‘alcolatr the Internal rbrnts generatcd by tlic tmnsitioiis 

rrotidetcrnministicall~ pick transition t E (En(T, (’, 1)  - T) and add i t  l a  T : 

i n  T and usc thmi to roiiliiiiir the constructioii of tlw htep } 
until 1’ = 11 ; 

end 

Fig, 17. Step construction in R S M L  
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Fig. 18. An RSML state machine that will not terminate. 
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In general, the set of transitions that can be added to T can 
be defined with an enabling function: 

tri!ggered(I U generu ted (T) ) .  

The construction of a Statechart step is defined by the 
operational definition in Fig. 15. 

The function Nez tCon f zg  calculates the new state con- 
figuration given the old state configuration C and the set 
of transitions T.  The possible constructions of a step in 
Fig. 16 are summarized in Table I. The configuration at the 
beginning of the step is defined by the set { A ,  C}, assuming 
that I = {z}. Note here that due to the nondeterministic 
nature of the step construction (i.e., the selection of the 
transition to put in T is made nondeterministically), there are 
(in this case) three different ways of constructing a step; two 
constructions yielding different results are illustrated in  the 
table. The behavior defined in construction 1 in Table I is 
counterintuitive since transition t4,  which should ‘‘obviously’’ 
be triggered by the input event 2,  is not taken. 

B Table Definitions 
C Event Definitions 
D Glossary 
E Notation 
F Reference Algorithms 
G Index 

Fig. 19. The table of contents. 
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The semantics of RSML is slightly different and enforces a 
more rigorous causal ordering of the transitions taken within 
a step. The enabling function in the RSML step construction 
does not consider the transitions triggered by the output events 
of the transitions in T to be enabled, i.e., 
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Fig. 20. Component communication. 

The step construction in RSML can now be described by the 
algorithm in Fig. 17. 

This definition forces an RSML state machine to take first 
all transitions triggered by the external event starting the step 
and then the transitions triggered by the events generated as 
a result of that first micro-step. The process is repeated until 
there are no more transitions triggered by the events generated 
by the preceding micro-step. Table I1 shows the construction 
of a step according to the semantics of RSML. 

This approach has one disadvantage compared to the Stat- 
echarts step construction. It can easily be seen that the Stat- 
echarts step construction will always terminate since E74 I’) 
is a finite set. The step construction in RSML state machines 

can potentially be infinite as is shown in Fig. 18 and Table 111. 
The events in Fig. 18 will get altemately generated forever. 

The advantage of the RSML approach is that it is more 
consistent with our intuitive notion of a step. In the example 
shown in Fig. 16, the Statecharts step semantics allows transi- 
tion t 3  to be taken, even though event y is generated after 5. A 
reviewer could be misled by such a specification, not realizing 
that the specification is inconsistent with what is intended. We 
felt that reviewability, in this case, was more important than 
the ability to force termination. 

v. THE SYSTEM REQUIREMENTS SPECIFICATION 

The RSML language was developed using TCAS I1 as 
a testbed. The resulting specification not only acts as an 
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Radio Altimeter 
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Operating-Normal1 y 

Failed-Self-Test 

Not-Sending-Output 

Fig. 21. Altimeter component. 

example of a blackbox process-control system requirements 
specification, but also as an example of a real-life, successful 
application of formal methods to a complex system. We 
caution the reader, however, that compromises in the specific 
model created for TCAS I1 were required due to real-life 
constraints explained further in Section VI (Evaluation and 
Future Goals). 

Fig. 19 shows the contents of the TCAS specification! 
There are similarities in content with the A-7 requirements 
document [7], but we include behavioral descriptions of the 
other components in the process control loop as well as system 
goals and constraints. Physical requirements for the TCAS 
box (e.g., size, weight and materials) and some I/O devices 
(e.g., TCAS antennas) are contained in the MOPS and should 
be in our document, but currently are not (simply due. to 
a lack of resources to retype them). The A-7 specification 
includes sections on possible subsets of the program and the 
characteristics of the computer, which we do not include. Both 
specifications include requirements for timing, accuracy, and 
response to undesired events, but we do not separate them 
from the functional behavior; instead they are included where 
the functional behavior is specified. Jaffe [ 131 has argued that 
functional and timing information is too inextricably connected 
to be usefully separated. 

4The entire TCAS specification is complete at this time except for Section 
III-A. Only a few of the environment components have been specified so far 
due to FAA pressures to deliver the TCAS specification first. Section 111-A is 
primarily required only for the safety analysis. 

The goals and constraints in the first section of the docu- 
ment are written in English. In general, they would be the 
first thing specified when developing the system, although 
they may be modified as the system engineering process 
progresses. 

Normally, the next step in system engineering involves 
identifying and designing (if necessary) the components of the 
control loop. In the case of TCAS, most of the components 
already exist. Early in the system design process, a detailed 
description of the allocation of high-level functional require- 
ments to each physical component along with the interfaces 
between them is generated. 

The environment section of the specification includes a 
high-level system component and communication diagram (see 
Fig. 20). Note that this diagram is a directed graph and not a 
state machine diagram. The TCAS system consists of various 
sensors (e.g., radio altimeter and Mode-S transponder) and 
actuators (e.g., a pilot display and transmitters) aboard the 
aircraft. Some of these communicate with other aircraft (which 
have varying collision avoidance capabilities) and ground 
radar stations. 

The blackbox behavior of each control loop component 
(except TCAS) and the relevant behavior of each process 
component is modeled in the environment section. The RSML 
specifications of the physical components other than TCAS 
itself reflect the assumptions that the designers of TCAS can 
make about the components’ behavior including their failure 
behavior. Including these assumptions in the specification is 
useful in designing the controller software to be robust against 
the effects of design changes to the other components and 
against failures in the environment. 

As an example, Fig. 21 shows the RSML state machine 
description of the radio altimeter. This device provides CAS 
with own (the host) aircraft’s altitude above the ground. An 
accompanying status message indicates, to some extent, the 
reliability of the altitude data based on an altimeter self- 
test mechanism. Under normal operating conditions, the radio 
altitude is correct (within a certain tolerance) and the status 
indicates “okay.” In one possible failure mode, the radio 
altitude is correct, but the status indicates a failure. In a 
second failure mode, the radio altimeter produces no output, 
neither altitude data nor status information. Finally, in the 
third failure mode, the radio altitude sent is incorrect, but the 
status indicates “okay.” In this mode, the altimeter may send 
all zeroes, repeatedly send the maximum, repeatedly send the 
same value, or send random values. 

The environment section also includes the description of 
the communication interface between the components of the 
control loop. This includes CAS inputs and outputs although 
other communication (such as between other aircraft) would 
be included if it were relevant to the operation of TCAS. Figs. 
22 and 23 show examples of an input interface and output 
interface specification, respectively. Fig. 24 shows an example 
of a message formal specification. 

TCAS has three logical subcomponents (see Fig. 20); the 
collision avoidance subsystem (CAS) that contains the actual 
collision-avoidance logic, a surveillance subsystem that han- 
dles communication with other aircraft and the ground radar 
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Interface: 

Standby 
. . . . . . . . . . . . . . . . . . . . . . . . .  
Other-Aircraft, i:[ I ..NI 

_ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - -  
Mode-S-Ground-Statio, i:[ 1..15] 

Source: Mode-S-Transponder 
Destination: CAS 

n i g g e r  Event: RECEIVE( Sensitivity-LevelLCommatid( IIS, SLC)) 
Condition: 

Assignment(s): 

Mode-S-Ground-Station[lIS] D Ground-Commanded-SL,.zs, = Cancel if SLC = 15 { SLC i f2  5 SLC 5 7 

Output  Action: None 
Description: 

If a sensitivity level command is received from own transponder, then set 
Ground-Commanded-SL of the appropriate ground station parallel state. 

M O P S  Ref.: SL-command-processing (p. 3-P21) 

Fig. 22. An example of an input interface definition. 

Interface: 

Source: CAS 
Destination: Mode-S-Transponder 

Trigger Event: Receivpd-lntruder-Intent-F,vent,Js, 
Condition: true 

Assignment( 8 ) :  

VUC = Encode-RACf.3~(Vertical-RAC,.Isr. 

A R A  = Enc0d~-AR.4f .33~(Climb-RA".,~, ,  
Horizontal- RACu.255) 

Descend- U A,., 5 2  ) 

Output Action: SEh.o(Coordination-Update(VRC, AKA)) 

Description: 

MOPS Ref.: RESOLIITIO~.MESSAGEPROCESSING (p.  3 - P l l ) .  

Comments: ARINC 73.5 specifies the format of the coordination update message. It rontains 
additional fields, qurh as sensitivity levpl, that are not specified in the pseudocode. 

Fig. 23. An example of an output interface definition. 

This sends a coordination update message to own transponder 

stations, and a performance monitor. All three could have 
been specified together as one logical component, but for 
historical and political reasons we were required to specify 
the behavior of each separately. The three models are there- 
fore specified as separate components with defined external 
interfaces. CAS is by far the most complex of the three 
and is used here as the example. The following overview 
of the CAS specification guides the reader through exam- 
ples of the various parts of the specification although the 
description is greatly simplified in order to make it un- 
derstandable to those unfamiliar with collision avoidance 
systems. 

The highest level CAS state machine is shown in Fig. 25. At 
this level, CAS is either on or off if it is on, it may be either 
fully operational or in standby mode. As explained previously, 
the control function is specified only in terms of the state of 
the controlled process and the states of relevant control loop 
components. In the case of the CAS logic, the states of three 

Name: Mode S All-Call Reply (squitter) 
Message Format:  DF-11 (All-Call Reply) 
M O P S  Reference: Detection 2.2.8.2.1 

Source: Mode S equipped aircraft. 
Destination: Broadcast. 
Timetype: S-R or Periodic (as squitters at maximum period of 1.2s) 

Data  Representation: 

PI 

Parity/- 
Identity 

33 56 

= 
= 
= 

Comm AJB and extended capability report available. 
Comm A/B/C and extended capability report available. 
Comm AJBJCJD and extended capability report available. 

Comments:  

Generated as a reply to ground sensor all-call interrogation or as squitters 

Fig. 24. Message format definition. 

LGz-l 
Inputs: 

TCAS-Operational-Status : (Operational, Not-Operational } 

I Fully-Operational I 
Own-Aircraft 

Fig. 25. Collision Avoidance System. 

types of process components are modeled: our own aircraft, 
other aircraft, and mode-S ground radar stations. Each of the 
three subcomponents of CAS is elaborated in more detailed 
RSML models. 

Fig. 26 shows the expanded Own-Aircraft portion of the 
CAS model. The top portion of the diagram lists variables 
that represent inputs to CAS from the TCAS sensors that 
are associated with the state of Own-Aircraft. The bottom 
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Own- Aircraft - 
Traffic-Display-Permitted : flrue,False} 
Aircraft-Altitude-Limit : Integer 
Prox-Traffic-Dis lay : flruc,False} 

Config-Climb-Inhibit : flruepalse} 
Altitude-ClimbInhibActive : Vrue, False} 
Increase-ClimbInhibit-Dhte : ~ruePalse} 

Input: 
Own-Alt-Radio : Integer 
Standby-Dismte-Input : grue ,  False} 
Own-Alt-Barometric : Integer 
Mode-Selector : flm, Standby, TA-Only, 3,4,5,6,7} Own-Alt-Rate : Rteger 
Radio-Altimeter-Status : {Valid, Not-Valid} 
Own-Air-Status : {Airborne, On-Ground) 
Own-Mode-S-Address : Integer 
Barometric-Altimeter-Status : (Fine, Coarse} 

EffectivcSL I Auto-SL ; Dtrocnd-mibit 
I 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 

I I 

I I 
I I 

I 
I 
I 
I 
I 
I I 
I I 

- 1  

I Advisory-Ststus (expmded in section) 

output: 
Sound-Aural-Alarm : flrue,False} 
Aural-Alarm-Inhibit : flruepalse} 
Combined-Control-Out : Enumerated 
Vertical-Control-Out : Enumerated 

Climb-RA : Enumerated 
Descend-RA : Enumerated 
Own-Goal-Alt-Rate : Integer 
Vertcal-RAC : Enumerated 
Horizontal-RAC : Enumerated 

\ / 

Fig. 26. Own-Aircraft. 

portion of the diagram lists variables that represent outputs 
from CAS to TCAS actuators. The middle portion of the 
diagram represents the parts of the derived Own-Aircraft state 
necessary for the evaluation of the CAS control function. 

Effective-SL (sensitivity level) controls the dimensions of 
the protected airspace around own aircraft. It is used to control 
the trade-off between necessary protection and unnecessary 
pilot advisories. Higher sensitivity levels increase protection, 
but also increase the incidence of unnecessary alerts. 

There are two primary means that CAS uses to deter- 
mine Effective-SL: ground-based selection and pilot selection. 
Ground-based selection of sensitivity level is not envisioned 
for use in the U.S. airspace at this time; however, the capability 
for such selection has been included in the CAS logic. The 
pilot, on the other hand, can select three modes of operation 
(STANDBY, TA-ONLY, and TAKA) which are converted to 
sensitivity level by the logic. In STANDBY mode, neither 
traffic advisories (TA’s) nor resolution advisories (RA’s) are 
output by CAS. The pilot normally selects STANDBY when 
on the ground. In TA-ONLY mode, only traffic advisories are 
output by CAS. This mode is often selected by the pilot to 

avoid unnecessary distractions while at low altitudes on final 
approach to an airport. When the pilot selects TA/RA mode 
(also called AUTOMATIC), CAS selects sensitivity level 
based on the current altitude of own aircraft (Auto-SL state). 

Alt-Layer effectively divides vertical airspace into layers 
(e.g., Layer-3 is approximately equal to the range 20000 feet 
to 30000 feet). State changes are made using a hysteresis: 
the criteria for transitioning into the Layer-2 state is different 
depending on whether the current state is Layer-I (own aircraft 
is climbing) or Layer-3 (own aircraft is descending). Alt-Layer 
and Effective-SL are used in the determination of individual 
other aircraft threat classification (see Fig. 29). 

Due to aircraft climb performance limitations at high alti- 
tude or in the landing configuration, the CAS logic may inhibit 
a climb maneuver. Descend maneuvers are inhibited if own 
aircraft is too close to the ground to safely command the pilot 
to descend. The increase inhibits (Increase-Climb-Inhibit and 
Increase-Descend-Inhibit) prohibit the command of higher rate 
maneuvers (e.g., 2500 fpm vs. 1500 fpm), and therefore use 
more stringent altitude thresholds. The Advisory-Status part of 
the Own-Aircraft model (Fig. 27) shows the CAS resolution 



LEVESON et al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 701 

No-RA 3 

> 

1, 

Advisory -Status 

Composite-RA 
I 

n- 

1 

I 
Negative 

I 
Climb-VSL I Descend-VSL - 

I 
I 
I 
I 
I 
I 
I 
I I 

I Corrrctiveclimb 

CombinedConbol 

i 

Fig. 27. Advisory status. 
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advisory (RA), if there is one, that is currently displayed to 
the pilot. 

Fig. 28 shows the expanded Other-Aircraft portion of the 
CAS model. Again, the top portion of the diagram lists vari- 
ables that represent inputs to CAS from the TCAS sensors, and 
the bottom portion of the diagram lists variables that represent 
outputs from CAS to TCAS actuators. The middle portion of 
the diagram contains parallel state machines representing the 
derived Other-Aircraft state necessary for the evaluation of 
the CAS control function. 

RM-Send-Status synchronizes coordination interrogations 
with other TCAS-equipped aircraft, where “RM” stands for 
Resolution Message. Coordination interrogations contain in- 
formation about an aircraftls intended vertical maneuver or 
“intent” with respect to a threat. This information is expressed 
in the form of a complement; e.g., if own aircraft has selected a 
climb maneuver against the threat (see Fig. 29), it will transmit 
a message in its coordination interrogation restricting the threat 
aircraft to descend maneuvers against own aircraft. 

CAS can track up to 30 aircraft simultaneously (it can 
track more but is limited by the number of conflicting flight 
scenarios it can resolve simultaneously). The Track-Status 
state reflects whether a particular Other-Aircraft is currently 
being tracked or not. Fig. 29 shows the expanded Tracked 
portion of the Other-Aircraft RSML model. 

The Intruder-Status state within Tracked reflects the cur- 
rent classification of Other-Aircraft (Other-Traffic, Proximate- 
Traffic, Potential-Threat, and Threat). Intruder-Status is deter- 
mined using (among other criteria) Own-Aircraft Effective-SL 
and Alt-Layer. When an intruder is classified as a threat, 
a two-step process is used to select a Resolution Advisory 
(RA). The first step is to select a sense (Climb or Descend). 
Based on the range and altitude tracks of the intruder, the 
CAS logic models the intruder’s path until Closest Point 
of Approach (CPA). The CAS logic computes the predicted 
vertical separation for both climb and descend maneuvers, 
and selects the sense that provides the greater vertical sep- 
aration. 
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lothcr-mdrii  I 
Input: 

Other-Ah : Integer 
Other-Mode-S-Addrrss : Integer 
0th-Sensitivity-Level : {Not-Known. 1.2,3,4,5,6,7} 
0th-Capability : (Non-XAS,TCAS-TA,TCAS-TNRA } 
Othcr-Transponder-Equippage : {ATCRBS,M&-S} 
Other-All-Repaiting : ~rue,False} 
SurveillsncclD : Integer 

Range-Report-Timestamp : Tim 
Other-RangeValid : flrue,False} 
Other-Alt-Valid : flNe,Fakc} 
0th-Bearing : Integer 
Other-Bearing-Valid : flrue.False} 
TA-In-Sms-Level-2 : fl~e,False) 
Other-VRC : { Nonc. Dont-Descend, DontClimb } 
Other-HRC : { Nonc, Dont-Turn-Left, Dont-Tum-Right } 

0th-Range : Integer 

(Expanded next page.) r ;  [-/ 
DntpUk 

Display-Arrow-Out : (up.Down} 
Other-Relative-All-Out : Integer 
Othcr-Range-Out : Integer 
0th-Bearing-Out : Integer 
Othcr-Bearing-OK-Out : flrue,False} 
Othcr-Alt-Reporting-Out : {Truepaise} 
Advisory-Code : {Other,PA,TA,RA} 

L 

Fig. 28. Other aircraft overview. 

The second step in selecting an RA is to select the strength 
of the advisory. The least disruptive vertical rate maneuver that 
will still achieve safe separation is selected. Possible advisory 
strengths are Nominal-1500 fpm (1500 feet per minute), VSL- 
2000, 1000, 500, and 0-fpm (vertical speed limits of 2000, 
1000, 500 and 0 feet per minute; 0-fpm means level flight). 
Advisory strength is continuously evaluated and modified, if 
necessary, during the course of the encounter. After CAS 
has chosen an RA, occasionally the threat aircraft maneuvers 
vertically in a manner that thwarts the RA. In this case, 
CAS may increase the strength of the advisory from 1,500 
feet per minute to 2,500 feet per minute (Increase-2500fpm) 
or it may reverse sense (from Climb to Descend or vice 
versa). 

The Mode-S-Ground Station model is quite simple and, 
therefore, is not shown here. Although theoretically the CAS 
logic uses input from the ground stations, these are not 
operational at this time. 

The specification must include a description of each input 
and output variable. Examples are shown in Figs. 30 and 3 1. 

As an example of a transition definition, Fig. 32 contains 
the definition of the transition from the state Threat to the 
state Other-Traffic, substates of Intruder-Status. In order for 
an intruder to be classified as a Threat, it must be reporting 
its altitude, it must be airbome, and it must satisfy the threat 
altitude and threat range tests. Once classified as a Threat, 
it may not be downgraded (to Potential-Threat, Proximate- 
Traffic, or Other-Traffic) based on the threat altitude test. 
It may be downgraded based on the threat range test, but 
only if it fails on two consecutive attempts-represented by a 
separate transition. However, if the intruder stops reporting 
altitude, or if it reports that it is on the ground, it can 
no longer be classified as a threat. The first and last rows 
of the AND/OR table represent this criteria. Note that this 
transition represents a downgrade directly to Other-Traffic, 
bypassing the intermediate classifications of Potential-Threat 
and Proximate-Traffic. This happens when the intruder is 
no longer airbome (column 4) or when altitude reporting 
is lost and either the bearing or range inputs are invalid 
(columns 1 and 2). Column 3 represents a situation in which 
a partial downgrade to Potential-Threat or Proximate-Traffic 
might have been possible, i.e., altitude reporting is lost, but 
both the range and bearing inputs are valid. If either the 
Potential-Threat-Condition or the Proximate-Traffic-Condition 
were satisfied, the intruder classification would have been 
downgraded to Potential-Threat or Proximate-Traffic, respec- 
tively. However, in this transition, neither criteria are satisfied, 
so the classification is downgraded all the way to Other- 
Traffic. 

As an example of a macro, Fig. 33 contains the Potential- 
Threat-Condition macro referenced in the above transition. In 
order for an intruder to be classified as a Potential-Threat, 
it must satisfy the Potential-Threat-Range-Test. In addition, 
if it is reporting altitude and is airbome, it must satisfy the 
Potential-Threat-Altitude-Test. If it is not reporting altitude, 
own aircraft must be below 15 500 feet. 

Functions and macros are used in a similar way, but func- 
tions retum values. Fig. 34 contains an example of an RSML 
function, Vertical-Resolution-Complement. This function is 
related to the coordination interrogations described earlier 
(Other-Aircraft b RM-Send-Status). If CAS has selected a 
climb maneuver against this particular intruder (Other-Aircraft 
in state Climb), the Vertical Resolution Complement (VRC) is 
Don't Climb. A value of 2 will be assigned to the VRC field 
of the Mode S message. 

The appendices to the document contain additional infor- 
mation to make the specification more readable or changeable. 
The first appendix defines constants. Everywhere a constant is 
used in the document, a label is attached as a subscript, e.g., 
300 fqMINSEP) associates the constant 300 feet with a label 
that designates this as the minimum vertical separation allowed 
between aircraft. A change of the value of this constant (e.g., 
the FAA decides in the future that minimum vertical separation 
should be 350 feet) can be automatically and easily made 
throughout the document. An alternative (and more common) 
solution to the maintenance and change problem for constants 
would be to use the label alone throughout the document and 
put the values associated with the labels into a table. However, 
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Fig. 29. Tracked. 

the latter solution makes the document much less readable and 
requires constant flipping to the constant definition section to 
determine the actual numbers associated with the labels. 

The second appendix, Table Definitions, is used for con- 
stants that are more naturally stored in a tabular form, e.g., 
potential-threat minimum-range threshold indexed by our own 
aircraft sensitivity level. 

We found that a list of events associated with the state 
transition that generates them and the state transitions that are 
triggered by them was helpful in producing the document and 
included this list in a third appendix. 

The Glossary contains definitions of technical terms and 
abbreviations used throughout the document, and the Notation 
Appendix provides a tutorial on the RSML language. 

The Reference Algorjthms appendix contains tracking and 
other algorithms that are not required but are used to define 
criteria for accuracy of the actual algorithms selected. For 
example, a tracker chosen by the designer might be required to 

have at least the accuracy of the alpha-beta tracker specified 
in the Appendix. 

Finally, an index to the document is provided that includes 
an entry for every name used in the document giving the pages 
on which it is used and the page where it is defined. Currently, 
there are over 500 entries in the index. 

VI. EVALUATION AND FUTURE GOALS 

This paper has defined 1) an approach to specifying system 
requirements for real-time, reactive systems; 2) the criteria that 
should be used in designing a language for such requirements; 
3) a language demonstrating the approach and criteria; and 
4) the necessary and desirable contents and organization of a 
system requirements specification using this approach. These 
were developed while writing a system requirements specifica- 
tion for an aircraft collision avoidance system, which provided 
continual evaluation and feedback during development and 
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Input: Other-Mode-S-Address 
Location: Other-Aircraft,20z 

Source: Surveillance 

Type: Integer 

Expected  Range: 1 ... (2” - 2) 

Granularity:  I (unit) 

Units: N / A  

Load: NJA 

Exception handling information: Mode-S addresses outside the valid range (i.e., all 
Os or all 1s)  are presently ignored. It is assumed that no such addresses will ocrur 
because administrative procedures will preclude this event. Duplicate addresses are 
treated similarly. 

MOPS Reference: IDINTR 

Description: The unique address of the Other-Aircraft 

Comments:  This field has no meaning for non-Mode-S-equipped aircraft. No decision 
has been made about what to do about addresses that are outside the valid rangc or 
duplicate addresses due to failures of administrative procedures. 

Fig. 30. Input variable definition. 

Output: Display-Arrow-Out 
Location: Other-Aircraft,zoz 

Destination: Display-Unit 

Type: Enumerated 

Expected Range: {No-Arrow. Up, Down) 

Granularity:  N/A 

Trigger: Display-Arrow-Evaluated-Event,.ael 

Value: Value Condition 
No-Arrow Display-Arrow in s ta te  No-Arrow 
Up Display-Arrow in s t a t e  Up 
Down Display-Arrow in s t a t e  Down 

Units: N/A 

Load: 11s for CAS. 
MOPS Reference: ARROW 

Description: From ATA-STD-TCAS II/lA 4.2.1.10: “A vertical arrow shall be placed 
to the immediate right of the traffic symbol if the vertical speed of the intruder is equal 
to or greater than 500 fpm with the arrow pointing up for climbing traffic and dowii for 
descending traffic.” 

Comments:  

Fig. 31. Output variable definition. 

demonstrated the practicality of writing a formal requirements 
specification for a complex process-control system. 

Because the specification (which was originally intended 
merely to be experimental) was adopted by the FAA during the 
development of RSML, deadlines required us to deliver parts 
of the specification while the notation was still evolving. There 
are some aspects of this type of a specification that still cause 
difficulties in understanding such as the overall event sequenc- 
ing and synchronization. During the independent verification 
and validation of our TCAS specification, we needed to derive 
addition diagrams and tables so that the reviewers could easily 
check the consistency of our specification with the previous, 
pseudocode version. Although parallel state machines and 
other features of the language did reduce the specification 
of states enough to make such state-machine specifications 

Transition(s): - 7 1  
Location: Other-Aircraft D Tracked D Intruder-Status,23; 

Trigger Event: Air-Status-Evaluated-Evente3w 
Condition: 

1994 

Output Action: Intruder-Status-Evaluated-Event..3,9 
Description: 

Columns 1-2 Lost altitude reporting and either the bearing or range inputs are invalid 

Column S Lost altitude reporting and both range and bearing are valid, but neither the proxi- 
mate nor potential threat classification criteria are satisfied. 

Column 4 Aircraft is on ground 

MOPS Ref. Section 7.1. TRAFFICADVISORY. 

Fig. 32. Transition definition. 

practical, the proliferation of events causes problems that need 
to be handled. 

Reviews of our document for correctness by users during 
development made clear that specifications should include 
graphical, symbolic, tabular and textual notation, depending 
on the type of information being conveyed. For example, the 
graphical state machines were a great help during reviews for 
finding certain types of errors as were the tables for finding 
other errors. Even though the state transition information had 
to be removed from the graphical state diagrams and put 
into tables, the graphical representation provided important 
information to reviewers of the document that would have been 
very difficult or impossible to derive from the transition tables 
alone. A language that contains only graphics or only tables 
or only symbolic strings is probably less useful than one in 
which different notational techniques are used to communicate 
different types of information. More research is needed to 
determine the most appropriate notations for each type of 
information that needs to be conveyed. 

One result of this effort was a demonstration that formal 
specifications can be applied to complex, reactive systems and 
that such specifications can be readable and reviewable by 
application experts with a minimal knowledge of mathemat- 
ics and computer science. A lesson to be leamed from the 
experience is that formal specifications can be usable if their 
design takes into consideration the training and backgrounds 
of those who are to read and review the specification. Some 
engineers working with us on the TCAS specification reported 
that they liked the AND/OR table description of the transition 
conditions because it resembles the logic tables that they are 
used to using and that the state machines and logic tables fit 
the way they think about systems. 

Although formal specification languages obviously have to 
be defined in an unambiguous and mathematical way, the 
syntax itself does not have to contain obscure mathematical 
symbols that are familiar and comfortable to neither the appli- 
cation expert nor the implementor of the system. There must 
simply be an unambiguous translation from the specification 
language (in our case RSML) to the formal model (RSM for 
our language) underlying it. Currently, formal specification 
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Macro: Potential-Threat-Condition 
Definition: 

Description: 
potential thrrat range criteria. If the intruder is altitude reporting, it must also satisfy 
the potential threat altitude criteria. I f  the intruder is not altitude reporting, then i t  ic 
considered a potential threat only i f  own altitude is helow 15500 It,,.,,,,,.,. 

MOPS Ref. TRAFFI(!ADVISORY.Traffic~d~isor?-[letection, Rangehit-processing. 

Fig. 33. Macro definition. 

To he considered a P o l e n i d T h r e n f ,  the intruder must satisfy the 

languages are designed primarily by mathematicians who use 
a notation with which they are comfortable, but which is 
foreign to those who must use the language. One solution 
is to train hardware and software engineers to think like 
mathematicians while our alternative solution is to provide 
languages that allow the user to think about the system in 
the way that they have been trained in their discipline. We 
hypothesize that providing a model of a system that is closer 
to the mental model that the reviewer and implementor have of 
the system and closer to the way they have thought about such 
systems in the past will aid in finding errors in the specification 
itself and reduce the numbers of errors that are introduced in 
implementing the specification. This hypothesis, of course, still 
needs to be experimentally validated, although our experience 
provides some anecdotal support. 

Because the specification of the CAS logic, from which we 
built the CAS part of our TCAS model, was low-level pseu- 
docode, the exercise had many features of reverse engineering. 
The pseudocode used is a low-level language containing only: 

1) simple data types (bits, bit strings, character strings, 

2) arithmetic expressions, 
3) the structured control statements IF-THEN-ELSE, 

integers, pointers, and floating point variables), 

IF-ELSEIF-OTHERWISE, REPEAT-WHILE, REPEAT- 
UNTIL, and LOOP-EXITIF-LOOP, and 

4) subroutines (without local variables). 

All variables are global: There are no local variables but there 
is provision for passing parameter names to subroutines to 
show which variables are used by the subroutine (few sub- 
routines actually use this feature in the TCAS specification). 
The only complex data structure allowed is a “group” that 
provides for grouping related variables into a “data structure,” 
i.e., giving them a group name. 

In many ways, the TCAS reverse engineering was even 
more difficult than the usual reverse engineering exercise since 
the language was so low-level and difficult to read. This 
specification has acted as the requirements specification for 
TCAS from 1983 to 1992 and was continually changed as 
errors were found and changes made to the requirements. 
Several lessons can be leamed from our experience that are 
applicable to both forward and reverse engineering efforts in 
general. 

Function: Vertical-Resolution-Complement ( i )  
Return type: 
Definition: 

{ 0. 1, 2 } 

Vertical-Rrsolution-(‘omplement = 

0 if Other-Aircraft..?oz[i] not in state Threat 
1 if Other-Aircraft..mz[i] in state Threat D Descend 
2 if Other-AircraftS.2o2[i] in state Threat D Climb 

Description: 
Mode S message field. Its values have the following meaning: 

This function returns the value of the Vertical-Rrsolution-Complement 

Value 14eaning 
0 
1 Don’t descend. 
2 Don’t climb. 

No vertical resolution advisory complemenl sent. 

Explanation of value selection criteria: If Other-Aircraft is not in state Threat, then 
Vertical-Resolution-Complement has value 0 (no vertical RA complement). If TCAS has 
selected a Descend sense RA against the intruder, then Vertical-Resolution-Complement 
is set to 1 (don’t descend). Likewise, if TCAS has selected a Climb sense RA against the 
intruder, then Vertical-Resolution-Complement is set to 2 (don’t climb). 

MOPS Ref.: Sendinitialintent (p. 6-P57). 

Fig. 34. Function definition. 

First, we had difficulty abstracting away from the design. 
Even when we did not look at the pseudocode, we found it 
difficult in the beginning to eliminate functional decomposition 
and flowchart-like logic, i.e., to specify the problem without 
trying to solve it. With practice we became better at omitting 
design information, but the struggle never entirely abated. 
The very low level of the pseudocode also made the process 
of abstraction more difficult as many purely implementa- 
tion features, such as flags, had to be used extensively in 
the pseudocode. After the specification of the CAS logic 
was completed, an independent verification and validation 
was performed to compare the pseudocode specification and 
the RSML specification. The verifiers experienced the same 
problems that we did, and a large number of identified dis- 
crepancies resulted in no change to the RSML specification 
because they merely represented design peculiarities of the 
pseudocode and not requirements. 

Second, although it may be a function of the particular 
system we were reverse engineering, we found it impossible 
to derive the requirements specification strictly from the pseu- 
docode and an accompanying English language description. 
Although the basic information was all there, the intent was 
missing. Therefore, distinguishing between requirements and 
artifacts of the implementation was not possible in all cases. 
As has been discovered by most people attempting to maintain 
such systems, an audit trail of decisions and the reasons why 
decisions were made is absolutely essential. This was not done 
for TCAS over the 15 years of its development and those 
responsible for the system today are currently attempting to 
reconstruct decision-making information from old memos and 
corporate memory. 

Third, the final requirements specification model would have 
been different and much simpler if we had been starting 
from scratch. Because the TCAS pseudocode specification had 
evolved over a period of more than 15 years, the current 
version contains more complexity than is necessary. What was 
originally a simple conceptual model degraded as changes 
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were made to the pseudocode that simplified the process of 
making the change or minimized the amount of code that 
needed to be changed, but complicated or degraded the original 
conceptual model. As Pamas said in [19]: “The problem is 
that the subsets and extensions are not the programs that we 
would have designed if we had set out to design just that 
product.” This is a common maintenance dilemma, and TCAS 
was no exception. When changes are made to design or code 
without backing up all the way to requirements, such problems 
arise and increase as time passes. For TCAS, the highest-level 
specification was the pseudocode. 

The problem of increasing complexity and lack of con- 
ceptual coherency in the underlying model were exacerbated 
as more and more changes were made over the years and 
more errors introduced due to the increasing difficulty in 
determining the consequences of the changes. What we did 
for the TCAS system was to make the current underlying 
conceptual model explicit. Because of the necessity of building 
a requirements specification that matches the TCAS systems 
actually in use (which were certified against the pseudocode 
specification), our resulting model is more complicated than 
necessary, includes more than the minimum required behavior, 
and is harder to understand than is strictly necessary. This was 
frustrating as we first built a nice, simple model and found that 
we had to complicate it for no better reason than that it had to 
match some errors or poor decisions in the pseudocode. Once 
our specification is complete, future versions of the system 
will hopefully retum to a simpler model. We believe that 
if a blackbox behavioral model of our type had been built 
originally, not only would the final specification be simpler and 
more understandable, but making changes without introducing 
errors or unnecessarily complicating the resulting requirements 
also would have been simplified. 

Now that the specification is complete, our work on vali- 
dating the feasibility and practicality of formal analysis pro- 
cedures on such specifications has begun. Heimdahl [6] has 
1) implemented a simulator for RSML so specifications can 
be executed; 2) formally defined the semantics of RSML 
using composable functions; 3) devised algorithms to perform 
semantic analysis on the underlying RSM formal model to 
ensure completeness and consistency in requirements [ 141; 
and 4) experimentally validated the analysis algorithms on the 
TCAS I1 specification. 

We are currently working on analysis procedures 1) to 
analyze the entire system model for safety [17]; and 2) to 
perform standard system engineering risk analyses such as 
fault tree analysis [18] directly from the system requirements 
specification. Attempts have also begun to derive test data 
satisfying various coverage criteria automatically from the 
specification [251. 
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