
684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 9, SEPTEMBER 1994

Requirements Specification for
Process-Control Systems

Nancy G. Leveson, Mats Per Erik Heimdahl, Student Member, IEEE, Holly Hildreth, and Jon Damon Reese

Abstract-This paper describes an approach to writing require-
ments specifications for process-control systems, a specification
language that supports this approach, and an example application
of the approach and the language on an industrial aircraft
collision avoidance system (TCAS 11). The example specification
demonstrates 1) the practicality of writing a formal requirements
specification for a complex, process-control system, and 2) the
feasibility of building a formal model of a system using a speci-
fication language that is readable and reviewable by application
experts who are not computer scientists or mathematicians. Some
lessons learned in the process of this work, which are applicable
both to forward and reverse engineering, are also presented.

Index Terms-Process control, reactive systems, requirements,
blackbox specifications, formal methods, safety analysis, reverse
engineering.

I. INTRODUCTION

MBEDDED software is part of a larger system and has E a primary purpose of providing at least partial control
of the system or process in which it is embedded. Most such
software is real-time and reactive (i.e., required to interact with
and respond to its environment in a timely fashion during
execution). A high cost is associated with determining the
correctness of such software and a still higher cost associated
with its incorrectness. The requirements for complex, embed-
ded software systems are particularly difficult to specify and
validate.

The very first stages of software development have the
fewest formal procedures to aid the analyst, and this is also the
time at which the most costly errors are introduced in terms
of being the last and most difficult to find. Many software
requirements validation techniques involve building prototypes
or executable specifications or waiting until the software is
constructed and then testing the whole system. Although cer-
tainly much can be learned by “testing” a specification through
executing it, or a prototype built from it, the confidence that the
system will have certain properties is limited to the test cases
that were executed. Our approach is to model the required

Manuscript received November 9, 1992; revised June, 1994. This work has
been partially supported by NSF Grant CCR-9006279, NASA Grant NAG-I-
668, and NSF CER Grant DCR-8521398. Recommended for acceptance by
J . Gannon.

N. 0. Leveson is with the Department of Computer Science and Engi-
neering, FR-35 University of Washington, Seattle, WA 98 195 USA; e-mail:
leveson@cs.washington.edu.

M. P. E. Heimdahl is with the Computer Science Department, A-7 14 Wt:lln
Hall, Michigan State University, East Lansing. MI 48824- 1027 USA; e-”:
heimdahl@cps.msu.edu.

H. Hildreth and Jon D. Reese are with the Information and Computcr
Science Department, University of Califomia, Irvine, Irvine, CA 92717 USA.

IEEE Log Number 9404465.

software blackbox behavior along with the assumptions about
the behavior of the other components of the system, and
then to apply formal analysis procedures to the model in
order to ensure that the software requirements model satisfies
required system functional goals and constraints, including
safety.

Several different safety analysis procedures have been de-
veloped by members of the Irvine Safety Research Group [161,
[17], [15], [14], but they work on diverse models and have
not been validated on real software. Our long-term goal is
to develop a coherent, complete, and practical methodology
for building safety-critical systems. This paper concentrates
on the earliest part of the methodology, i.e., requirements
specification, and demonstrates it on a real system. Future
papers will describe the analysis procedures we are developing
and evaluating for our model.

Most of the information to be included in our system
requirements model aIready is collected by system engineers
or software engineers. However, the information is commonly
scattered throughout the system documentation, is usually
informally specified, and is not in a form amenable to formal
analysis. In addition, the information is often specified using
multiple different and incompatible models within the same
specification (e.g.. Statemate [8], HatleyPirbhai [121, and
Ward/Mellor [26]) . For example, Statemate uses Statecharts,
Activity Charts, and Structure Charts; HatleyPirbhai uses
data flow diagrams, control flow diagrams, control spec-
ifications (finite state machines), and a process activation
table.

Our approach is to build one state-based model that includes
all of the information needed to describe the blackbox behavior
of the components of the system (including but not only
the computer) and the interface between the components
and no more. By having all the requirements information
in one model, formal analysis of the entire system becomes
feasible and redundancy is reduced. The latter reduces the
difficulty of changing the specification without introducing
inconsistency.

Furthermore, a blackbox model separates the specification
of requirements from design, simplifying the model and mak-
ing the requirements model easier to construct, review, and
formally analyze. Most software requirements specification
languages include software design information; the original
A-7 specification [7] is a notable exception. The modeling
language described in this paper differs from the A-7 language,
however, in the use of higher-level, global abstractions of
the entire system and in the goal of providing formal system

0098-5589/94$04.00 0 1994 IEEE

mailto:leveson@cs.washington.edu
mailto:heimdahl@cps.msu.edu

LEVESON et 01.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 685

analysis procedures to operate on the underlying formal model.
Research has increased on the development of higher-level
abstractions for embedded systems [3], [24]; and although
large-scale examples are still lacking, some of these more
recent ideas are being applied in retrospect to the A-7 sys-
tem.

Finally, the language defined here has analysis goals sim-
ilar to the ProCoS approach [22], but uses state machines
whereas ProCoS uses process algebras. Consequently, the
analysis procedures applicable to our model are related to
ongoing work in automated state space analysis [lo] , [2],
while the ProCoS approach relies on traditional methods of
theorem proving to analyze their models. Our approach is
also similar to some recent work by Pamas [21], which also
uses tables and state machines but uses trace semantics for
analysis.

The most important result of our research is verification
that building a formal requirements model for a complex
process control system is possible and that such a model
can be readable and reviewable by non-computer scientists.
Few examples exist of the application of formal methods
to a complex, reactive system requirements specification. In
order to evaluate our safety analysis ideas, we needed to
build a model of a realistic system to use as a testbed. This
paper describes the resulting formal system modeling method
and its use to specify the system requirements of an aircraft
collision avoidance system called TCAS 11. In the midst of
this effort, our model was adopted as the official requirements
specification for TCAS 11, so the research effort and the
resulting model had to be industrial quality. The unique part
of this effort, at least in terms of university research, is that the
specification language was developed with continual feedback
and evaluation by FAA employees, airframe manufacturers,
TCAS manufacturers, airline representatives, pilots, and other
external reviewers. Most of the reviewers were not software
engineers or even computer scientists; this helped in producing
a specification language that is easily learned and used by
application experts.

Although we describe a particular language that we used
for this model, the details of the actual language features are
less important than the other results of the research: 1) the
general criteria that any such modeling method and language
must satisfy, 2) the type of information that must be included
in such a system requirements model in order for it to be
analyzable for safety, and 3) the required features of such a
language in order to make it possible to model real systems and
to be usable by application experts. All of these are described
in this paper. Future papers will describe the actual application
of safety analysis techniques to the model.

Our results have both forward engineering and reverse
engineering implications. A detailed design specification writ-
ten in low-level pseudocode (about 300 pages long) already
existed for most of our application. Other parts, however, had
only an English language description. Some of the lessons
leamed about reverse engineering are described in this pa-
per.

The next section briefly describes the application, a collision
avoidance system called TCAS 11. This is followed by an

overview of the specification approach and descriptions of both
the language and the system requirements specification.

11. THE TRAFFIC ALERT AND COLLISION
AVOIDANCE SYSTEM (TCAS)

A real aircraft collision avoidance system (called TCAS 11)
was used as a testbed to provide immediate evaluation and
feedback for our modeling and analysis ideas. TCAS I1 has
been described by the head of the program at the FAA as
the most complex system to be incorporated into the avionics
of commercial aircraft. It therefore provides a challenging
experimental application of formal methods to a real system.

TCAS is a family of airborne devices that function in-
dependently of the ground-based air traffic control (ATC)
system to provide collision avoidance protection for a broad
spectrum of aircraft types (commercial aircraft and larger
commuter and business aircraft). TCAS I provides proximity
waming (traffic advisories) to assist the pilot in the visual
sighting of intruder aircraft and is intended for use by smaller
commuter and general aviation aircraft. TCAS I1 provides
traffic advisories and recommended escape maneuvers (res-
olution advisories) in a vertical direction to avoid conflicting
aircraft. TCAS 111 will add resolution advisories in a horizontal
direction.

Development of aircraft collision avoidance systems started
over 20 years ago. In 198 1 , the FAA decided to develop and
implement TCAS 11, and a Minimal Operational Performance
Standards (MOPS) document was produced using a combina-
tion of English and pseudocode. Since its adoption in 1983,
the MOPS has been extensively revised six times to fix errors
or improve the specification. In 1989, the FAA required that
TCAS I1 be installed on commercial aircraft with more than
30 seats by December 1991 and on commercial aircraft with
10 to 30 seats by 1995. The FAA relaxed the first deadline
to require installation on half the commercial aircraft fleet by
1991 and on the remainder by 1993.

The MOPS document contains information that we would
classify as system design (in English) and software design (in
English and pseudocode). Because of perceived deficiencies in
this document and the difficulty of FAA certification without
real system or software requirements, an effort was begun
in 1990 to provide a requirements document for TCAS 11.
An industry/govemment committee began to write a fairly
standard English language specification while we started an
experimental formal specification and safety analysis. Our
specification was subsequently adopted by the committee as
the official TCAS requirements specification and the other
specification effort was abandoned.

111. SPECIFYING REQUIREMENTS FOR
PROCESS CONTROL SYSTEMS

A . Goals, Constraints, and Requirements

A system is a set of components working together to achieve
some common purpose or objective. The requirements speci-
fication language being described in this paper was designed

686

Is ;
I
I
I

IEEE TRANSAflIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 9, SEPTEMBER 1994

i 0 s
I Y Y I V

I

I

I
I
I
I
I
I
I
I
I
I

Fig. 1. A basic process control model

for process control systems, where the goal is to maintain a
particular relationship or function F over time (t) between
the input to the system (2,) and the output from the system
(0,) in the face of disturbances (D) in the process (see Fig.
1). These relationships will involve fundamental chemical,
thermal, mechanical, aerodynamic or other laws as embodied
within the nature and construction of the system.

Besides the basic objective or function implemented by the
process, these types of systems may also have constraints on
their operating conditions. Constraints may be regarded i i S

boundaries that define the range of conditions within which the
system may operate. Another way of thinking about constraints
is that they limit the set of acceptable designs with which the
objectives may be achieved.

Constraints may arise from several sources, including qual-
ity considerations, physical limitations and equipment capac-
ities (e.g., avoiding equipment overload in order to reduce
maintenance), process characteristics (e.g., limiting process
variables to minimize production of byproducts), and safety
(i.e., avoiding hazardous states). In some systems, the func-
tional goal is to maintain safety, so safety is part of the overall
objective as well as potentially part of the constraints.

As an example, for an airborne collision avoidance system
like TCAS, 2, can be viewed as all aircraft that fly into the
airspace of the TCAS-equipped aircraft and 0,3 as all aircraft
that fly out of the airspace of the TCAS aircraft. The goal
of the TCAS system is to maintain a minimum separation
function between the aircraft. Constraints include such things
as not interfering with the ground-based air traffic contrsol
(ATC) system, operating with an acceptably low level of
unwanted alarms (advisories to the pilot), and minimizing the
amount of deviation of the aircraft from their ATC-assigned
tracks.

Note that the goals of a system are just that, i.e., they may
not be entirely achievable. Although the goal of TCAS I1

is to eliminate near-misses (i.e., aircraft violating minimum
separation standards), this cannot be a requirement since it
is not possible to achieve: It is, however, a legitimate goal.
Another way of stating this goal is to minimize the number
of near-misses. The latter, however, is not a measurable
goal since its achievement cannot be determined. Another
possibility that theoretically can be evaluated is to reduce near-
misses. The amount of reduction that is actually achieved then
becomes a criterion for whether the system can be justified
based on cost and possible increased risk with respect to
other hazards in the system. The point here is that goals
are different from requirements because the goals may not
be achievable. The actual required and achieved behavior
can be evaluated with respect to the goals and constraints to
determine whether the system, as specified and designed, is
acceptable.

Early in the development process, tradeoffs between func-
tional goals and constraints that are conflicting or not com-
pletely achievable must be identified and resolved according to
the priorities assigned to them. Identifying these conflicts and
resolving them is a major task in both the system and software
requirements analysis process. A second task is ensuring that
the specified (or required) behavior of the process-control
system will achieve the goals to an acceptable degree while
satisfying the constraints. Semantic analysis of our system
requirements model can potentially address both of these
elements of correctness since it includes a model of the
behavior of all the components of the system.

B. Purpose and Content of Requirements
Specificarion for Process-Control Systems

A typical process-control system can be divided into four
types of components: the process, sensors, actuators, and
controller (see Fig. 1).

LEVESON et U/.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 687

The behavior of the process is monitored through cow
trolled variables (V,) and controlled by manipulated variables
(V,,,). The process can be described by the process function
F p , a mapping from V,,, x 2, x 2) x t + 0, x V,. LJn-
fortunately, it is usually difficult to derive a mathematical
model of the process due to the fact that most processes
are highly nonlinear (i.e., the process characteristics depend
on the level of operation), and, even at a constant operating
level, the process characteristics change with time (i.e., the
process is nonstationary). Any attempt to provide a niathe-
matical expression describing the process involves simplifying
assumptions and therefore will be imperfect. Some of the
process characteristics, however, can be described, and this
description can be used to derive and validate the control
function.

Sensors are used to monitor the actual behavior of the
process by measuring the controlled variables. For example,
a thermometer may measure the temperature of a solvent in
a chemical process or a barometric altimeter may measure
altitude of an aircraft above sea level. The sensor function Fs
maps V, x t -.+ 2.

Actuators are devices designed to manipulate the behavior
of the process, e.g. valves controlling the flow of a fluid
or a pilot changing the direction and speed of an aircraft.
The actuators physically execute commands issued by the
controller in order to change the manipulated variables. The
functionality of the actuators is described by the actuator
function FA mapping 0 x t + VTn.

The controller is an analog or digital device used to im-
plement the control function. The functional behavior of the
controller is described by a control function (Fc) mapping
2 x C x t -+ U, where C denotes extemal command signals.
The process may change state not only through intemal
conditions and through the manipulated variables, but also
by disturbances (D) that are not subject to adjustment and
control by the controller. The general control problem is to
adjust the manipulated variables so as to achieve the system
goals despite disturbances.

This model is an abstraction-responsibility for imple-
menting the control function may actually be distributed
among several components including analog devices, digital
computers, and humans. Furthermore, the controller may have
only partial control over the process-state changes in the
process may occur due to intemal conditions in the process
or because of extemal disturbances or the actuators may not
perform as expected. For example, the pilot in a TCAS system
may not follow the resolution advisory (escape maneuver)
issued by the TCAS controller.

The purpose of the control-system requirements specifica-
tion is to detine the system goals and constraints, the function
Fc (i.e., the required blackbox behavior of the controller), and
the assumptions about the other components of the process-
control loop that I) the implementors need to know in order
to implement the control function correctly, and 2) the system
engineers and analysts need to know in order to validate the
model against the system goals and constraints.

A blackbox, behavioral specification of the function F c uses
only:

the current process state inferred from measurements of
the controlled variables,
past process states that were measured and inferred,
past corrective actions output from the controller, and
prediction of future states of the controlled process

to generate the corrective actions (or current outputs) needed
to maintain F.

Information about the process state has to be inferred
from measurements. For example, in TCAS, relative range
positions of other aircraft are computed based on round-trip
message propagation time. Theoretically, the function F c can
be defined using only the true values of the controlled variables
or component states (e.g., true aircraft positions). However,
at any time, the controller has only measured values of the
component states (which may be subject to time lags' or
measurement inaccuracies), and the controller must use these
measured values to infer the true conditions in the process and
possibly to output corrective actions (U) to maintain F . In
the TCAS example, sensors include on-board devices such as
altimeters that provide measured altitude (not necessarily true
altitude) and antennas for communicating with other aircraft.
The primary TCAS actuator is the pilot. who may or may
not respond to system advisories. Pilot response delays are
important time lags that must be considered in designing the
control function. Time lags in the actual process may be caused
by aircraft performance limitations.

C. An Approach to Writing Requirements
for Process-Control Systems

We specify the blackbox behavior of the controller (i.e., the
function FC to be computed by the controller) using a state
machine model. The outputs of the controller are specified
with respect to state changes in the model as information is
received about the current state of the controlled process via
the controlled variables V,. In the TCAS example, the control
function is specified using a model of the state of all other
aircraft within the host aircraft's airspace, the state of the on-
board components of its own aircraft (e.g., altimeters, aircraft
discretes,* and cockpit display), and the state 01' ground-based
radar stations in the vicinity. Information about this state is
received from the sensors (e.g., antennas and transponders) and
commands are sent to the actuators (e.g., the pilot, antennas,
and transponders).

The state machine model of the control function Fc is
iteratively fine tuned during requirements specification de-
velopment to mimic the current understanding of the real-
world process and the required controller behavior. The state
machine model is essentially an abstraction of the behavior
of the system function F since it models all the relevant
aspects of the components of the process control loop. Errors
in the state machine model represent mismatches between
this model and the desired behavior of the control loop,
including the process. We detine the informal concept of

'Time lags are delays in the system caused by the reaction time of the

Aircraft Discretes are airframe-specific characteristics provided as input
sensors, actuators, and the actual process.

t o TCAS from hardware witches.

688 IEEE TRANSACTIONS ON SOITWARE ENGINEERING. VOL. 20. NO. 9, SEmEMBER 1994

_ -
-i A - I 7-7

I Desired I I Black-box 1 I Specificatlonof I I I
behavior controller functional

Fig. 2. Semantic distance

semantic distance as the amount of effort required to translate
from one model to another. We believe that in order to
maximize the application expert’s ability to find errors in
the requirements specification, the semantic distance (d l in
Fig. 2) between their understanding of the desired process
control behavior (their mental model of the system) and
the specification of that behavior must be minimized. This,
in tum, implies that the requirements be written entirely in
terms of the components and state variables of the controlled
system. Specifically, “private” variables related only to the
implementation of the requirements and not part of the appli-
cation expert’s view of the controlled system should not be
used.

The requirements review process involves validating the
relationship between changes in the real-world process iind
the specified changes and response in the control function
model. Therefore, reviewability will be enhanced if the re-
quirements specification explicitly shows this relationship.
Moreover, when the description of the required controller
behavior includes more than just its blackbox behavior (e.g.,
includes software design information and functional decom-
position), then the semantic distance ((14) between the process
control behavior and the specified controller behavior in-
creases, and the relationship between them becomes more
difficult to validate. TCAS application experts who know very
little or nothing about computers or software have been able
to read our requirements model of TCAS and find errors in
it.

In addition, a formal blackbox, behavioral model of the
requirements makes possible 1) a mathematical verification of
various desired properties such as consistency of the control
model with the system goals and constraints, 2) the generation
of standard system engineering and system safety analyses
such as fault trees [18], and 3) the application of formal
correctness and robustness criteria to the specification model

Although we believe that this type of blackbox specification
is easier for application experts to review and easier to validate
using formal analysis procedures, the semantic distance (d g)

between the requirements and a standard implementation based
on functional decomposition is increased. To alleviate this
problem, the specification step can be divided into separate
requirements and design specifications or special software
designs that result naturally from this type of blackbox spec-
ification may be used. If performance requirements can be
satisfied, the specification can be implemented directly without
an intervening design step.

~ 4 1 .

Blackhox
Minimal
Semantically simple
Coherent, consistent. and concise
[Jnamblgnons underlying language with a formal foundation for analysis
Readable. rrvirwablr. and usablr by application pxprrts arid drvelnpers
Flexihlp notations (graphiral. tabular, symbolir) t i t 4 tn the, hrst way tn provide thr

RentIat,ility given priority over writability
l s r r nwds given priority owr personal preferericcs
Iiiforindtion exposure

particular type of information

Fig. 3. Design criteria for the language.

Given the error-proneness of the requirements specification
step and the few tools available to find these errors, the use of
pure blackbox specifications (as advocated here and by Pamas
et al. [7]) appears justified.

IV. SPECIFICATION LANGUAGE
The first step in designing a specification language or

modeling method is to determine goals and criteria for the
language. This section describes general design criteria for
such a requirements specification language and the language
actually used to specify TCAS.

A. Design Criteria for the Specification Language

We identified several criteria that were important with
respect to our goals and that we believe apply in general to
this type of specification language (see Fig. 3).

The first criterion, as described in the previous section, is
that the language specify blackbox behavior of the software
only and not include intemal design information. Because of
the safety and other types of formal analysis we planned to
perform on the model, it also had to be based on a state
machine as the underlying model: this is obviously not a
requirement for all languages.

Two other criteria are minimality and simplicity. Minimality
implies that the specification should contain only the informa-
tion needed by the developers and analysts. Otherwise, time
is wasted in specifying things that are not used. Many of the
popular real-time requirements specification languages include
facilities that are not strictly necessary. The problem with
the “kitchen sink” approach is that the specification language
becomes unnecessarily complex and the specification process
becomes unnecessarily tedious and time-consuming. Also, for
readability, information that is of limited help at a particular
point in the specification should be omitted; the specification
should help the reader focus on what is important.

To enhance simplicity, we tried to avoid specification lan-
guage features that complicated the analysis and the speci-
fication. Language features that are semantically simple and
straightforward to define are usually also easy to use and result
in more readable and reviewable specifications.

Related to the minimality and simplicity criteria are co-
herency, consistency, and conciseness. Other specification lan-
guages for reactive systems, e.g., Statemate [8], Hatleypirbhai
[121, and Wardmellor [26] , include a variety of diverse
models, some of which are not formally defined. Our goal

LEVESON er al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 689

was to specify all the required information using one formally-
defined modeling language based on one underlying state-
machine model. We also wanted our language to represent
information as economically as possible while still maintaining
readability.

Because of our goal to provide a safety analysis of the
specification, the language must be unambiguous and the
underlying model must have a mathematical foundation. At
the same time, the requirements specification must be readable,
reviewable, and usable. In some respects, these criteria may
be conflicting but it is possible to satisfy both if there is a
separation between the actual specification language and the
underlying formal model. The specification must be unam-
biguous and translatable into mathematical notation, but it
need not itself include arcane mathematical symbols that are
unfamiliar to the application experts and software developers.
We spent considerable time and energy developing a notation
that was readable yet maintained the underlying formal state-
machine model. This notation has graphical, symbolic. and
tabular aspects depending on which was best for specifying
a particular type of information [4]. Because readability and
writability are often conflicting goals, we chose readability
in cases where a conflict existed: The added investment in
constructing the requirements specification pays off in terms
of discovering more requirements-level errors.

The specification language was developed while specifying
TCAS for the FAA, and we therefore received continual feed-
back by airframe manufacturers, component subcontractors,
FAA certification experts, airline representatives, and pilot
group representatives during development. This feedback pro-
vided invaluable information about the practicality, feasibility,
and usability of the modeling language during its development.
It helped us both with determining what did and did not need
to be in the language and with satisfying our language design
criteria.

One of the advantages of the feedback was to help us
overcome our individual preferences. When devising the spec-
ification language, we usually had ourselves in mind as the
user. However, our familiarity with certain notations. espe-
cially mathematical notations such as predicate calculus, hides
their weaknesses. Our first attempts at devising our language,
therefore, were failures: the notation was clear to us but
not to others. The feedback from a diverse group of users
helped us to evaluate the evolving specification language more
objectively.

A final criterion for our specification became obvious only
after trying to specify a complex system. We first used
unrestricted hierarchical abstraction in our model, thinking this
would aid in understanding the specification. We found that the
use of what Harel [5] calls “clustering” (grouping states into
superstates) indeed made the specification more readable. On
the other hand, the use of what Harel calls “abstraction,” a type
of information hiding that allows showing only the superstate
(as an empty state) and hid the component substates, often had
an undesirable effect on readability. One of the purposes of
such abstraction is that lower-level information, i.e., substates
and transitions, can be hidden from the reader and in that way
the system is presented in digestible chunks.

Our first modeling attempts maximized this type of hi-
erarchical abstraction, thinking this would aid our goals of
readability and understandability. Negative results were im-
mediately apparent. Predicates (or guarding conditions) for
transitions that “crossed’ levels became very difficult to un-
derstand because they referred to nonvisible states. Context,
which is vitally important to understandability, was lost. Thus,
the information hiding concept that has contributed so much to
the design, development, and maintenance of large, complex
systems, proved detrimental to the understanding of such
systems-a key element in requirements specification. For
requirements specification, the reader (and specifier) needs
as much context and specific detail as possible. We call this
criterion “information exposure.”

For the most part, our final TCAS specification has only
two levels of abstraction-a top level to provide an over-
all global view and one lower level to model each major
component in the controlled system. In a few places, a third
level became necessary to aid understanding and ensure that
each subcomponent model fit on one page. For TCAS 11,
this was all that was necessary, and we believe this to be
true for most process control systems. The use of parallel
state machines reduces the state explosion problem in state-
machine models and each component of the process control
loop usually has a limited number of relevant states and
transitions.

B. Specification Language Description

Previously, we defined a formal state machine model called
RSM (Requirements State Machine) for modeling the black-
box behavior of process-control systems along with formal
criteria and heuristics to check the model for completeness,
robustness, and safety [14]. RSM, while appropriate for formal
analysis, has few of the desirable characteristics of a specifi-
cation language. So we needed a usable specification language
to put on top of the underlying RSM model.

Because our original goal was not to design a new speci-
fication language, we evaluated our criteria against existing
languages, decided that Statecharts came the closest, and
started specifying TCAS 11 using it. However, we soon real-
ized that reviewers had difficulty understanding some aspects
of pure Statecharts specifications and that some things we
needed to specify were not easily described using it. Our
Specification language evolved as we got feedback on our
drafts until it no longer is reasonable to refer to the language
as Statecharts. We call our current formulation RSML (Re-
quirements State Machine Language). This section describes
the syntax and semantics of RSML and how it differs from
Statecharts.

A basic state machine is composed of states connected by
transidcms (see Fig. 4). Defuulr or start states are signified
by states whose connecting transition has no source. In the
example, state A is the start state. Transitions define how to
get from one state to another. In the example, states B and C
are directly reachable from A. State D is not directly reachable
from A (no transitions connect the two states); however, state
D is reachable from iZ via state C.

690 IEEE TRANSACTIONS ON SOITWARE ENGINEERING. VOL. 20, NO. 9. SEFTEMBER 1994

7
Fig. 4. A basic state machine.

I s U”
I I

Fig. 5 . A superstate example.

Statecharts are finite state machines augmented with hi-
erarchy, parallelism, and modularity. An introduction to ba-
sic statechart notation can be found in [5] . RSML borrows
the notions of superstates, AND decomposition, broadcast
communication, statechart arrays, and conditional connectives
from Statecharts. Other features of Statecharts, e.g., history and
event selector connectives, were left out either because they
were unnecessary or the semantics were too complicated to
allow for formal analysis. We then added some features, such
as interface descriptions and directed communication between
state machines, and changed the syntactic notation to make it
easier for our reviewers to read and review the specification.
The syntactic extensions were found to be necessary to model
a realistic problem rather than the small examples often found
in research papers. We also changed somewhat the semantic
definition of a “step,” i.e., the semantics of state transitions.
The rest of this section first describes the features in common
with Statecharts and then our changes and extension$.

C. Feutures in Common with Stutechurts
Superstates: In Statecharts (and RSML), states may be

grouped into supersrates (see Fig. 5). Such groupings reduce
the number of transitions by allowing transitions to and from
the wperstate rather than requiring explicit transitions to and
from all of the grouped states (suhstates). There are two ways
to enter a superstate. First, the transition to the superstate may
end at the superstate’s border (transition A in Fig. 5). In this
case, a default state must be specified within the superstate.

A

U

C

%&& ID@
I

Fig. 6. The parallel state.

In the example, state S is entered upon taking transition A .
Alternatively, the transition may be made to a particular state
inside the superstate (transition B in Fig. 5) . Note that the
same superstate may have transitions ending at the border and
at any number of the inner states. The superstate may be exited
in two ways (transitions C and D in Fig. 5). Analogous to
transitions into the superstate, transitions out of the superstate
may originate from the border or from an inner state. The same
superstate may contain both types of exiting transitions.

AND Decomposition: One of the most important innova-
tions in Statecharts is what Hare1 calls the parallel state3 which
contains two or more state machines, separated by dashed
borders (Fig. 6). When the parallel state S is entered, each
of the state machines A , B , C, and D within it is entered. All
state machines are exited when any transition is taken out of
the parallel state. The use of parallel states greatly reduces the
size of the specification. For example, we estimate that the
TCAS system (i.e., the underlying RSM model) contains at
least lo4* states whereas the graphical state diagram in our
RSML specification of TCAS has approximately 100 states
and fits on five pages. Although the syntax of parallel states
is the same in both Statecharts and RSML, the semantic
definition is different, as described in the Step Semantics
sect ion be low.

Arrays: Both Statecharts and RSML allow the use of
state-machine arrays (see Fig. 7). State machine arrays are
semantically equivalent to identical parallel state machines
uniquely identified by an index. Each of the array elements is
entered or exited when the array is entered or exited. Individual
array elements are referenced by the array name and an index
value. For example, “Other-Aircraft[3]” refers to the third
array element in the example. We found that defining a special
token “THIS” that references the element value from within
that element is useful for passing the identity of the element
to a function, e.g., Traffic-Score(TH1S).

Connectives. Conditional connectives are used when tran-
sitions out of a particular state into two or more different

Parallel states are also known as “orthogonal products.” “product states,”
and “AND states.”

LEVESON er al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 69 I

Other-Aircraft, i:[1..30]

%
Fig. 7. A state machine array.

Fig. 8. In the diagrams, “e” is the triggering event and “X,” “Y,” and “Z’ are
the guarding conditions; (a) is a state machine without a conditional array; (b)
is the same state machine using a conditional connective; (c) is the conditional
connective used to select default state.

states are taken based on the same event but guarded by
different conditions (Fig. 8 (a)). The transition from the source
state to the connective is taken at the occurrence of the
event. The appropriate destination state is determined based
on guarding conditions that are defined on the transitions from
the connective to the destination states (Fig. 8 (b)). Some
guarding conditions may be placed on the transition from
source state to connective if all the destination states share
those conditions. For a complete specification, the guarding
conditions from the connective to the destination states must be
mutually exclusive and must form a tautology [141. Sometimes
a state change is not desired. For these cases, a transition leads
from the conditional connective back to the source state, thus
explicitly specifying the circumstances for changing state and
for remaining in a state.

A transition must begin and end in a state; therefore,
the actual state transition is the transition from the source
state to the connective combined with the transition from the
connective to the destination state. Conditional connectives
often appear as default “states” (Fig. 8(c)) in RSML, even
though they are not states. The actual default state is chosen
based on the conditions on the transitions out of the conditional
connective.

D. Changes to Statecharts

made to these basic features of Statecharts.
Both syntactic and semantic changes and additions were

I Component-Name I
’Input:
Input-Variable : Type
Input-Variable : Type
Input-Variable : Type

I
I
I
I
I
I
I
I
I
I

output:
Output-Variable : Type
Output-Variable : Type
Output-Variable : Type

Fig. 9. State machine with associated variables.

Directed Communication: RSML includes the ability to
model the behavior of all control loop components (not
just the controller) and the communication between them.
Physically distinct components are modeled as separate
(communicating) state machines. Broadcast communication,
as defined in Statecharts, is an inappropriate abstraction
for communication between physically distinct components
(e.g., two aircraft). Intercomponent communication in RSML
is modeled as directed messages sent and received over
unidirectional channels between component state machines.
The limits of internal broadcast communication are denoted
by thick borders around a component state machine (see
Fig. 9); intemally broadcast events within a component state
machine cannot cross thick borders.

Events: RSML includes two types of events-internal and
external. Intemal events are communicated within a single
component state machine using the Statechart broadcast mech-
anism, i.e., they cannot cross the thick borders around the
component state machines. Thus, TCAS does not necessarily
know about any events in the altimeter or in other aircraft
unless an external message has been sent between these two
components. Internal events are used only for one very specific
purpose: RSML specifications are pure blackbox specifications
of the mathematical (input/output) function to be computed by
the software; internal events are used to order the evaluation
of that function. Basically they serve the same purpose as
parentheses in algebraic equations.

External events, on the other hand, represent real com-
munication (message passing) between TCAS and the other

692 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEFTEMBER 1994

Transition(s): -1 -+ [(Destination State) [
Location:

Trigger Event:
Condition:

(path to the transition being considered.)

(The event that causes this transition to be taken.)
(Optional guarding condition on the transition.)

Output Action: (Optional output action.)
Description:

MOPS Ref. (Used for tracing requirements to software design)

Comments: (Optional comments.)

Fig. 10. Transition definition.

(Optional English description of the transition information)

components (sensors, actuators, etc) of the system. They are
required only because we include in our model the extemal
interface to the system (in this case, TCAS) and the assumed
behavior of the other components of the process control loop
(the altimeters, other aircraft, pilots, etc.). The language does
not prohibit the use of extemal events as triggering events on
transitions; however, in the TCAS I1 specification, extemal
event triggers are restricted to system component interface
definitions.

Interface Definitions: The interface description is an impor-
tant part of any requirements specification language. RSML
includes an interface description for each separately modeled
system component, which describes all external communica-
tion for that component. Our underlying model is communi-
cating state machines: SEND events in one component trigger
RECEIVE events in another component. Each communication
specifies its source and destination. Unlike CSP [9] and some
communicating state machine models, e.g., [23] , RSML does
not require synchronous intercomponent communication.

The receipt of a message by a component state machine is
signalled by the occurrence of an external RECEIVE event.
These events may trigger state changes within the receiving
component, i.e., values are assigned to input variables based
on information communicated in the message. Because the
state diagrams representing such state transitions are trivial
and provide no useful information, only the transition descrip-
tions are included in the RSML specification. The interface
description includes the source and destination of the message,
the triggering RECEIVE event and guarding condition, the
mapping of message field names and values to variable names
and values, and any internally generated events resulting from
the receipt of the message. Note again that interface descrip-
tions describe transitions within the receiving component state
machine. Thus, guarding conditions will never block receipt
of a message but may prevent the assignment of message field
values to input variables.

Output variable value assignments and the sending of mes-
sages to other control-loop components are triggered by the
occurrence of internal events. Each output interface description
(representing a transition within the sending component state
machine) contains the message source and destination, the
internal triggering event and guarding condition, the map-
ping of output variable names and values to message field
names and values, and the internally generated extemal SEND
event.

Component State Machines: Each state machine in RSML
may be divided into three parts separated by double solid
lines (see Fig. 9). The middle part contains the graphical
state machine. The top and bottom parts contain input and
output variables, respectively. All RSML inputs are black-
box inputs while outputs are calculated (derived) blackbox
outputs.

Definitions must be provided for all input and output
variables. Each definition contains:

Location (the associated RSML state machine, e.g.,
Own-Aircraft)
Source or Destination (extemal component, e.g., altime-
ter)
Type (e.g., integer)
Expected Range (e.g., -10,000 ... l0,OOO)
Granularity (e.g., 10)
Units (e.g., feet)
Load (e.g., one per second)
Exception Handling Information (e.g., out of range val-
ues are treated as zero)
Traceability information (e.g., MOPS Reference)

In addition to the above items, output variable descriptions
also contain triggering events and value assignments.

Transition Definitions: Transition definitions in RSML con-
tain five parts: 1) the identification, 2) the location, 3) the
triggering event, 4) the guarding condition, and 5) the output
action. The identification, location, and triggering event are
the only required parts. Fig. 10 shows the form of a transition
definition in RSML.

Each transition is identified by its source and destination
states

-1 - pizq.
Transitions split by a conditional connective are defined in

two parts. The first part of the definition is identified by the
connective destination, while the second part is identified by
the connective source, - 0 or 0 -m-
If several transitions have the same definition (i.e., the same
location, trigger, condition, and output action), then they may
be defined together. Sometimes a single transition definition
applies to all transitions into a particular state. The special
symbol ANY may be used as a shorthand for all source states.

For example, the following transition identification
Transition(s):

p i G + p l
pZ+pGil
p-iGq -[Enst)

might be rewritten using:

Transition(s): ANY - ~~~t . I
The locarion field of the transition definition shows where

in the state machine the transition may be found. The location

LEVESON er al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 693

rrue-Tau-Citppedf.3tir 2 Time-To-CPA A
(Other-(’apability,.Zlz # TCAS-TA/RA V

((Down-Separationf.mi(low-tirm) 5 Alt-Threshold A
(Other-VRC,.,,, = No-Intent A Tro-Of-Three,~3z;)) A

Vp-Separationf.36r(loa-firm) 5 Alt-Threshold) V
((‘urri,nt-Vertiral-Separationr.33~ > 150 ft A

((Inhibit-niased-Climbr.:,39(low-firm) > I)own-Separation~.~~;(low-firm) A

(I~ihibit-Biased-Clirnbr.~~g(low-fir~n) 5 Down-Separat io~~~.~:~~(luw~lirm) A
Own-Tracked-Altr.3rg < Other-Tracked~A1tf.344) V

Own-Trarked-Altr3rg > Other~Tracked-Altol,) 1))

Transition condition written in predicate calculus. Fig. 1 I.

is given as a hierarchical path, using the “D” symbol to
separate the RSML state labels. For example, a transition at
the location

Location: Other-Aircraft D Tracked D Intruder-Statuss-6 1
has its source and destination states in Intruder-Status (found
on p. 61 of the requirements specification) which is contained
in the hierarchy formed by Other-Aircraft and Tracked. The
location in the example can be traced in Figs. 25, 28, and 29.

Transitions are taken upon the occurrence of the trigger
event, provided that the guarding condition is true. Internally
generated events may be either internal or external events, i.e.
they are either broadcast within the component state machine
or are explicitly sent to another component.

The condition defines what must be true before the transition
can be taken and is specified using AND/OR tables, described
below.

Outpur actions identify events that are generated when the
transition is taken.

The rest of the transition definition is for explanation and
documentation only. The description includes any English
language description of the transition definition that may be
appropriate to include and the MOPS Ref. is a reference to
the pseudocode (design specification) that implements this
transition. The latter provides traceability and was used in the
independent verification performed on our TCAS specification.
An optional Comments section can be used to provide extra
explanatory information. For example, we sometimes used it
to explain why a particular decision was made.

AND/OR Tables: Our first attempt to write the conditions
for the state transitions used pure predicate calculus (Fig.
1 I) , as this was what we had seen in previous statechart
examples [l] , [5] , and it was natural to us. Our external
reviewers, however, did not find it natural or reviewable
and told to us to come up with something else. In fact, we
found that we had difficulty in writing and reading complex
predicate calculus expressions ourselves even though we were
familiar and comfortable with the notation; while developing
another notation, we found logical errors in our first attempt
at specifying a part of TCAS that were not at all obvious in
the original form.

Our second attempt replaced logical phrases with English
phrases and a list of Engl.ish-to-logic mappings. Although this
is superficially more readable, we found that annotating the
logic with English did not provide an appreciable advantage in
terms of the underlying complexity of the logical expressions.

The notation we finally chose is a tabular representation of
disjunctive normal form (DNF) that we call AND/OR tables.

Fig. 12. The AND/OR table.

The far-left column of the AND/OR table lists the logical
phrases; each of the other columns is a conjunction of those
phrases and contains the logical values of the expressions.
If one of the columns is true, then the table evaluates to
true. A column evaluates to true if all of its elements are
true. To make all these relationships clearer, we physically
separated the columns, the far-left column a little more than
the others. The AND/OR tables do not eliminate the need
for existential and universal quantifiers; however, their scope
is limited to a disjunct term or to the entire table, making
it much easier to parse the expressions. We also discovered
that omissions became apparent when application experts were
forced to consider the explicit “don’t cares” (.) that appeared
in the tables.

OR

The above table is equivalent to

((Expression- 1 A 7 Expression-2)
V (Expression- 1 A Expression-3)).

The AND/OR table for the predicate calculus expression in
Fig. I I is shown in Fig. 12.

Some evidence of the readability and reviewability of the
AND/OR tables is that errors we made in our first representa-
tion of the system were quickly discovered by the application
experts after only a very minimal (ten minute) tutorial on
our notation. Below the AND/OR tables, we later added an
English language description of the guarding conditions on
each transition.

Macros and Functions: As we wrote the TCAS require-
ments, we discovered that some of the AND/OR tables became
very complicated. Also, some of the logic is repeated in
several tables. We solved both problems by using macros,
which are just labeled AND/OR tables. These macros, for
the most part, correspond to typical abstractions used by the
application experts in describing the TCAS requirements and
therefore add to the understandability of the specification.
We did, however, try to use them sparingly in order not to
provide too many levels of indirection in the specification. To
increase flexibility, macros may be parameterized. Also, rather
than including complex mathematical functions directly in the
transition tables, such functions are specified separately and
referenced in the tables.

694 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEFTEMBER 1994

(a) (b)

Fig. 13.
same information.

Transitions: (a) unreadable graphic diagram; (b) transition bus with

Transition Buses: One of the advantages of Statecharts over
other state machine models is the ability to reduce a large
number of states to a conceptually manageable number by
using superstates and parallel states (AND-decomposition). We
kept both of these features, but we found it helpful to introduce
more constructs to reduce clutter. For example, many parts
of the TCAS model are fully- or almost fully-interconnected,
i.e., there is a transition from each state to nearly every other
one. Showing each transition explicitly is confusing and can
make the graphical diagram unreadable (see Fig. 13(a)); the
transition bus (Fig. 13(b)) provides the same information. A
transition must be defined for each source-state/destination-
state pair on the transition bus, where a source state is a state
with a transition to the bus and a destination state is a state
with a transition from the bus.

Cross Referencing and Identifier Types: Another problem
arose with writing transition information on the arrows
between states. This is fine for relatively simple transitions and
relatively simple statecharts. Even marking the arrows with
a short tag that identifies the transition logic elsewhere was
found to complicate the graphics and make it more difficult
to comprehend when the statechart was complex. Such tags
are symbolic “noise;” the information is not salient, even
when using supposedly mnemonic tags, and the resulting
clutter is more harmful than helpful. Unless the complete
transition condition can be written on the arrow between
states (not possible for anything but the trivial examples
found in textbooks), such transition tags provide no useful
information to the user except to match the arrow with
a separate specification of the condition elsewhere in the
document. The use of a special tag for this purpose merely
increases the number of names and synonyms that the user
must remember.

We opted instead, at first, to put page references on the
arrow indicating where the transition logic could be found
in the document (since this was really the information that
the user needed); later we moved this information under each
diagram in order to reduce clutter and make the diagrams more
readable. This had no effect on the ease with which the page
number information could be obtained. Paging through the
document when reading transition definitions in order to view

the corresponding statechart was minimized by including fold-
out pages of the graphical part of the statecharts visible from
anywhere in the document.

Cross referencing was used liberally elsewhere in the lan-
guage as well. No matter how concise the notational style,
requirements specifications for large systems span many pages
(and sometimes volumes) and usually contain references to
other parts of the specification. We wanted to reduce redun-
dancy while still making easily accessible all information that
is needed to understand or review each part of the document.
Liberal use of page references as subscripts on names defined
elsewhere was a practical compromise.

Another problem is how to identify the types of identifiers
that are used in the specification. Solutions that have been
used in the past include surrounding the name with special
symbols as in the A-7 specification [7] or using special fonts.
Both of these solutions have drawbacks in terms of readability
and leamability. The RSML approach is to use subscripts.
Each identifier in the specification is subscripted with a single
letter denoting its type--v for variable, s for state, m for
macro, f for function, and e for event-and a page number
where that element is defined. Page numbers are updated
automatically when changes are made to the specification. For
example, aZtztude,-l76 is a variable whose type definition
can be found on page 176. An alphabetized index also is
included that shows all the pages on which the name is used
in the document and denotes the page on which the name is
originally defined.

Identity Transitions: Identity transitions originate and ter-
minate in the same state and generate output actions without
causing a state change. The need for identity transitions
arises when output actions are necessary for synchronization
although no state change is required; the underlying Mealy
machine model allows associating output actions only with
transitions and not with states. All identity transitions are
guarded by the negation of the disjunction of all the conditions
guarding transitions that are triggered by the same trigger
event and that originate in the same state. Identity transitions
are not included in the state-machine graphical diagram in
order to reduce clutter since they are not needed for reviewing
the specification but for analysis and completeness reasons.
Instead, they are grouped in tables.

Timing: During the specification of TCAS, we needed only
three temporal functions: the value of a variable at some
previous point in time, the truth value of a condition at some
point in the past, and an implicitly generated event based on
time (i.e., a timeout relative to state entry). Rather than treating
timeouts specially and defining triggering events for them,
all timing functions are written as expressions in guarding
conditions. An example of such an expression is

t 2 (t(entered(Threat)) + 5.0 secs)

This expression states that the current time (‘ t ’ without an
argument) is greater than or equal to the time that state Threat
was entered plus 5.0 seconds. Such expressions evaluate to true
or false and generally appear as logical phrases in AND/OR
tables.

LEVESON et al.: REQUIREMENTS SPECIF'ICATION FOR PROCESS-CONTROL SYSTEM

~

695

Fig. 14. Transitions a and b are inconsistent.

Procedure Strp-('oiistl.rirtion(Var C : configuration. 1 : setofeveotsj ;
begin

I : = $:
while T c En('T, c', 1) do

non~let~rrriiriistirally pick a transition t E (En(T. C . I) - Tj and add i t CD T ;
(' := Next('oiifig((',T) ; { Calrulate the new ronfigriration]

end

Fig. 15. Step construction in Statecharts.

TCAS is required to operate based on a cycle, called a
surveillance cycle, started by an event (Surv-Comp-Event)
and all temporal requirements are based on this cycle. In the
TCAS requirements document the function Prev,(x) has been
overloaded to apply to both variable values, functions, and
predicates:

Prev,(v) refers to the value of variable (or function) v at

Prev,(y) refers to the truth value of p at j surveillance

Step Semantics: The semantics of Statecharts have been
described in detail in several papers [ll], [5] . Unfortunately
the descriptions are not consistent with each other; small
(but significant) differences exist. The following comparison
between Statecharts and RSML semantics is based on the
formal description by Pnueli and Shalev [20].

The semantic description of Statecharts in [20] is based
on the notion of steps. A step is initiated when an external
event arrives at the model boundary, causing a cascade of
subsequent intemal events. A step is completed when no
more intemal events are generated or there are no more
transitions triggered by the events that were generated, i.e.,
the model has stabilized in a state. It is assumed that a
step is completed before another extemal event arrives, i.e.,
there is no delay in the response to an external stimulus
(this assumption is called the synchrony hypothesis). The main
difference between Statecharts and RSML is in the way a step
is constructed.

In both Statecharts and RSML, a step starts when a set of
external events (I) arrives at the model boundary. The set of
transitions that are triggered by the events in Z are denoted
by trzggpred(1). If a transition is taken, a new event may be
generated. The set of events generated when the transitions in a
set of transitions T are taken is defined by generated(T). The
state (or configuration) of the model is denoted by C, e.g., the
initial configuration in Fig. 16 is' the set { A , C } . Transitions
whose source states are members of a particular configuration
C are said to be relevant to C.

In the set of transitions denoted by reZevant(C), a (possibly
empty) subset are triggered by the events in Z, i.e., the

J surveillance cycles back in time;

cycles back in time.

I
I I

I
I

Fig. 16. A Statechart and RSML example.

TABLE I
TWO POSSIBLE STEP CONS rRUCTlONS IN STATECHARTS

Construction 1
loop # T En(T) generated(T) C

0 0 { t l , t 4 } 0 {A7 C)
1 {tl} { t l , t 3 , t 4)

Construction 2
loop # T En(T) generated(T) C

0 0 { t l , t 4) 0 {A7 c>
1

transitions that could possibly be taken given a configuration
G and a set of events Z are defined by

reZevant(C) n t rzggered(1).

In this set, only a few transitions are compatible, i.e., can be
taken together. For example, the transition labeled a in Fig. 14
is not consistent with the transition labeled b since only one
of them can be taken. Let the set consistent(T) contain all
transitions that are compatible with the transitions in the set T.

The construction of a step in Statecharts is based on an
enabling function E n that determines which transitions can
be taken given a set of extemal events (I) and a configuration
C. In the Statecharts step creation, a transition relevant to C
and triggered by an event in Z is initially picked and added to
the set T. T is then expanded by adding transitions that are
relevant to C, consistent with the transitions already in T, and
triggered by either an event in I or an event generated by a
transition in T. For example, consider the model in Fig. 16.
When the external event z arrives and the model is in the initial
configuration {A.C}, tl and t 4 are the only two transitions
that can be taken. Assume tl is picked and added to T. Since
t l generates the event y, the new set of possible transitions is
expanded to include t 3 . Both t 4 and t 3 are consistent with t l ,
so either one can be picked and added to T.

696 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING. VOL. 20. NO. 9, SEPTEMBER 1994

TABLE I1
THE STEP CONSTRUCTION IN RSML

I En(T) outer loop # I inner loop # I T

Exit

2 1
2 Exit
3 0 0

Comdetion of Step

TABLE 111
AN EXAMPLE OF A RSML STATE MACHINE

LEADING TO AN INFINITE STEP CONSTRUCTION

.

Procedure Strp~(’oiistnirtioriHSMI.(Var C : configuration, Var I : srlofcvmts) :
begin

repeat
‘1 := 0 ;
while T c Kn(‘1. C. I) do

(’ := Sf,xt(‘onfig((’.T) ; { Calrulatp the new (-oiifigiirntion }
I := grueratcd(T) : { (‘alcolatr the Internal rbrnts generatcd by tlic tmnsitioiis

rrotidetcrnministicall~ pick transition t E (En(T, (’, 1) - T) and add i t l a T :

i n T and usc thmi to roiiliiiiir the constructioii of tlw htep }
until 1’ = 11 ;

end

Fig, 17. Step construction in R S M L

: [2 x/y

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

t3 :

Fig. 18. An RSML state machine that will not terminate.

1 Introduction
2 Goals and Constraints

2.1 High Level Goals..
2.2 High Level Constraints..

3.1 Components
3.2 Input Interfaces..

3 Environment

3.3 Output Interfaces
3.4 Message Formats..

4 TCAS Physical Requirements
5 Surveillance Requirements
6 CAS Requirements

5.1 Own Aircraft.
5.1.1 Own Aircraft Inputs..
5.1.2 Own Aircraft Outputs..
5.1.3 Own Aircraft Transitions..

5.2 Other Aircraft
5.2.1 Other Aircraft Inputs..
5.2.2 Other Aircraft Outputs
5.2.3 Other Aircraft Transitions.

5.3 Ground Station..
5.3.1 Ground Station Inputs

1
1 1
1 1
16
23
25
58
66
71
85
97

125
130
132
147
156
200
207
223
230
293
294

5.3.2 Ground Station Outputs 294
5.3.3 Ground Station Transitions.. 295

5.4 CAS Macros.. 296
5.5 CAS Functions.. 330

En(T, C, I) = r & ~ ~ ~ ~ t (c) n 7 Performance Monitor Requirements 365
W T L S LS ten 1 (T) n A Constant Definitions 367

In general, the set of transitions that can be added to T can
be defined with an enabling function:

tri!ggered(I U generu ted (T)) .

The construction of a Statechart step is defined by the
operational definition in Fig. 15.

The function Nez tCon f zg calculates the new state con-
figuration given the old state configuration C and the set
of transitions T. The possible constructions of a step in
Fig. 16 are summarized in Table I. The configuration at the
beginning of the step is defined by the set { A , C}, assuming
that I = {z}. Note here that due to the nondeterministic
nature of the step construction (i.e., the selection of the
transition to put in T is made nondeterministically), there are
(in this case) three different ways of constructing a step; two
constructions yielding different results are illustrated in the
table. The behavior defined in construction 1 in Table I is
counterintuitive since transition t4, which should ‘‘obviously’’
be triggered by the input event 2, is not taken.

B Table Definitions
C Event Definitions
D Glossary
E Notation
F Reference Algorithms
G Index

Fig. 19. The table of contents.

371
379
383
39 1
403
410

The semantics of RSML is slightly different and enforces a
more rigorous causal ordering of the transitions taken within
a step. The enabling function in the RSML step construction
does not consider the transitions triggered by the output events
of the transitions in T to be enabled, i.e.,

LEVESON et al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 697

Fig. 20. Component communication.

The step construction in RSML can now be described by the
algorithm in Fig. 17.

This definition forces an RSML state machine to take first
all transitions triggered by the external event starting the step
and then the transitions triggered by the events generated as
a result of that first micro-step. The process is repeated until
there are no more transitions triggered by the events generated
by the preceding micro-step. Table I1 shows the construction
of a step according to the semantics of RSML.

This approach has one disadvantage compared to the Stat-
echarts step construction. It can easily be seen that the Stat-
echarts step construction will always terminate since E74 I’)
is a finite set. The step construction in RSML state machines

can potentially be infinite as is shown in Fig. 18 and Table 111.
The events in Fig. 18 will get altemately generated forever.

The advantage of the RSML approach is that it is more
consistent with our intuitive notion of a step. In the example
shown in Fig. 16, the Statecharts step semantics allows transi-
tion t 3 to be taken, even though event y is generated after 5. A
reviewer could be misled by such a specification, not realizing
that the specification is inconsistent with what is intended. We
felt that reviewability, in this case, was more important than
the ability to force termination.

v. THE SYSTEM REQUIREMENTS SPECIFICATION

The RSML language was developed using TCAS I1 as
a testbed. The resulting specification not only acts as an

698 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING. VOL. 20, NO. 9, SEhTEMBER 1994

Radio Altimeter

b
Operating-Normal1 y

Failed-Self-Test

Not-Sending-Output

Fig. 21. Altimeter component.

example of a blackbox process-control system requirements
specification, but also as an example of a real-life, successful
application of formal methods to a complex system. We
caution the reader, however, that compromises in the specific
model created for TCAS I1 were required due to real-life
constraints explained further in Section VI (Evaluation and
Future Goals).

Fig. 19 shows the contents of the TCAS specification!
There are similarities in content with the A-7 requirements
document [7], but we include behavioral descriptions of the
other components in the process control loop as well as system
goals and constraints. Physical requirements for the TCAS
box (e.g., size, weight and materials) and some I/O devices
(e.g., TCAS antennas) are contained in the MOPS and should
be in our document, but currently are not (simply due. to
a lack of resources to retype them). The A-7 specification
includes sections on possible subsets of the program and the
characteristics of the computer, which we do not include. Both
specifications include requirements for timing, accuracy, and
response to undesired events, but we do not separate them
from the functional behavior; instead they are included where
the functional behavior is specified. Jaffe [131 has argued that
functional and timing information is too inextricably connected
to be usefully separated.

4The entire TCAS specification is complete at this time except for Section
III-A. Only a few of the environment components have been specified so far
due to FAA pressures to deliver the TCAS specification first. Section 111-A is
primarily required only for the safety analysis.

The goals and constraints in the first section of the docu-
ment are written in English. In general, they would be the
first thing specified when developing the system, although
they may be modified as the system engineering process
progresses.

Normally, the next step in system engineering involves
identifying and designing (if necessary) the components of the
control loop. In the case of TCAS, most of the components
already exist. Early in the system design process, a detailed
description of the allocation of high-level functional require-
ments to each physical component along with the interfaces
between them is generated.

The environment section of the specification includes a
high-level system component and communication diagram (see
Fig. 20). Note that this diagram is a directed graph and not a
state machine diagram. The TCAS system consists of various
sensors (e.g., radio altimeter and Mode-S transponder) and
actuators (e.g., a pilot display and transmitters) aboard the
aircraft. Some of these communicate with other aircraft (which
have varying collision avoidance capabilities) and ground
radar stations.

The blackbox behavior of each control loop component
(except TCAS) and the relevant behavior of each process
component is modeled in the environment section. The RSML
specifications of the physical components other than TCAS
itself reflect the assumptions that the designers of TCAS can
make about the components’ behavior including their failure
behavior. Including these assumptions in the specification is
useful in designing the controller software to be robust against
the effects of design changes to the other components and
against failures in the environment.

As an example, Fig. 21 shows the RSML state machine
description of the radio altimeter. This device provides CAS
with own (the host) aircraft’s altitude above the ground. An
accompanying status message indicates, to some extent, the
reliability of the altitude data based on an altimeter self-
test mechanism. Under normal operating conditions, the radio
altitude is correct (within a certain tolerance) and the status
indicates “okay.” In one possible failure mode, the radio
altitude is correct, but the status indicates a failure. In a
second failure mode, the radio altimeter produces no output,
neither altitude data nor status information. Finally, in the
third failure mode, the radio altitude sent is incorrect, but the
status indicates “okay.” In this mode, the altimeter may send
all zeroes, repeatedly send the maximum, repeatedly send the
same value, or send random values.

The environment section also includes the description of
the communication interface between the components of the
control loop. This includes CAS inputs and outputs although
other communication (such as between other aircraft) would
be included if it were relevant to the operation of TCAS. Figs.
22 and 23 show examples of an input interface and output
interface specification, respectively. Fig. 24 shows an example
of a message formal specification.

TCAS has three logical subcomponents (see Fig. 20); the
collision avoidance subsystem (CAS) that contains the actual
collision-avoidance logic, a surveillance subsystem that han-
dles communication with other aircraft and the ground radar

LEVESON er al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM

1

699

5 6 8 9 32

Interface:

Standby
.
Other-Aircraft, i:[I ..NI

_ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - -
Mode-S-Ground-Statio, i:[1..15]

Source: Mode-S-Transponder
Destination: CAS

n i g g e r Event: RECEIVE(Sensitivity-LevelLCommatid(IIS, SLC))
Condition:

Assignment(s):

Mode-S-Ground-Station[lIS] D Ground-Commanded-SL,.zs, = Cancel if SLC = 15 { SLC i f2 5 SLC 5 7

Output Action: None
Description:

If a sensitivity level command is received from own transponder, then set
Ground-Commanded-SL of the appropriate ground station parallel state.

M O P S Ref.: SL-command-processing (p. 3-P21)

Fig. 22. An example of an input interface definition.

Interface:

Source: CAS
Destination: Mode-S-Transponder

Trigger Event: Receivpd-lntruder-Intent-F,vent,Js,
Condition: true

Assignment(8) :

VUC = Encode-RACf.3~(Vertical-RAC,.Isr.

A R A = Enc0d~-AR.4f .33~(Climb-RA".,~, ,
Horizontal- RACu.255)

Descend- U A,., 5 2)

Output Action: SEh.o(Coordination-Update(VRC, AKA))

Description:

MOPS Ref.: RESOLIITIO~.MESSAGEPROCESSING (p. 3 - P l l) .

Comments: ARINC 73.5 specifies the format of the coordination update message. It rontains
additional fields, qurh as sensitivity levpl, that are not specified in the pseudocode.

Fig. 23. An example of an output interface definition.

This sends a coordination update message to own transponder

stations, and a performance monitor. All three could have
been specified together as one logical component, but for
historical and political reasons we were required to specify
the behavior of each separately. The three models are there-
fore specified as separate components with defined external
interfaces. CAS is by far the most complex of the three
and is used here as the example. The following overview
of the CAS specification guides the reader through exam-
ples of the various parts of the specification although the
description is greatly simplified in order to make it un-
derstandable to those unfamiliar with collision avoidance
systems.

The highest level CAS state machine is shown in Fig. 25. At
this level, CAS is either on or off if it is on, it may be either
fully operational or in standby mode. As explained previously,
the control function is specified only in terms of the state of
the controlled process and the states of relevant control loop
components. In the case of the CAS logic, the states of three

Name: Mode S All-Call Reply (squitter)
Message Format: DF-11 (All-Call Reply)
M O P S Reference: Detection 2.2.8.2.1

Source: Mode S equipped aircraft.
Destination: Broadcast.
Timetype: S-R or Periodic (as squitters at maximum period of 1.2s)

Data Representation:

PI

Parity/-
Identity

33 56

=
=
=

Comm AJB and extended capability report available.
Comm A/B/C and extended capability report available.
Comm AJBJCJD and extended capability report available.

Comments:

Generated as a reply to ground sensor all-call interrogation or as squitters

Fig. 24. Message format definition.

LGz-l
Inputs:

TCAS-Operational-Status : (Operational, Not-Operational }

I Fully-Operational I
Own-Aircraft

Fig. 25. Collision Avoidance System.

types of process components are modeled: our own aircraft,
other aircraft, and mode-S ground radar stations. Each of the
three subcomponents of CAS is elaborated in more detailed
RSML models.

Fig. 26 shows the expanded Own-Aircraft portion of the
CAS model. The top portion of the diagram lists variables
that represent inputs to CAS from the TCAS sensors that
are associated with the state of Own-Aircraft. The bottom

700 IEEE TRANSACTIONS ON SOFI’WARE ENGINEERING. VOL. 20, NO. 9. SEPTEMBER 1994

Own- Aircraft -
Traffic-Display-Permitted : flrue,False}
Aircraft-Altitude-Limit : Integer
Prox-Traffic-Dis lay : flruc,False}

Config-Climb-Inhibit : flruepalse}
Altitude-ClimbInhibActive : Vrue, False}
Increase-ClimbInhibit-Dhte : ~ruePalse}

Input:
Own-Alt-Radio : Integer
Standby-Dismte-Input : grue , False}
Own-Alt-Barometric : Integer
Mode-Selector : flm, Standby, TA-Only, 3,4,5,6,7} Own-Alt-Rate : Rteger
Radio-Altimeter-Status : {Valid, Not-Valid}
Own-Air-Status : {Airborne, On-Ground)
Own-Mode-S-Address : Integer
Barometric-Altimeter-Status : (Fine, Coarse}

EffectivcSL I Auto-SL ; Dtrocnd-mibit
I

I

.

4

I I

I I
I I

I
I
I
I
I
I I
I I

- 1

I Advisory-Ststus (expmded in section)

output:
Sound-Aural-Alarm : flrue,False}
Aural-Alarm-Inhibit : flruepalse}
Combined-Control-Out : Enumerated
Vertical-Control-Out : Enumerated

Climb-RA : Enumerated
Descend-RA : Enumerated
Own-Goal-Alt-Rate : Integer
Vertcal-RAC : Enumerated
Horizontal-RAC : Enumerated

\ /

Fig. 26. Own-Aircraft.

portion of the diagram lists variables that represent outputs
from CAS to TCAS actuators. The middle portion of the
diagram represents the parts of the derived Own-Aircraft state
necessary for the evaluation of the CAS control function.

Effective-SL (sensitivity level) controls the dimensions of
the protected airspace around own aircraft. It is used to control
the trade-off between necessary protection and unnecessary
pilot advisories. Higher sensitivity levels increase protection,
but also increase the incidence of unnecessary alerts.

There are two primary means that CAS uses to deter-
mine Effective-SL: ground-based selection and pilot selection.
Ground-based selection of sensitivity level is not envisioned
for use in the U.S. airspace at this time; however, the capability
for such selection has been included in the CAS logic. The
pilot, on the other hand, can select three modes of operation
(STANDBY, TA-ONLY, and TAKA) which are converted to
sensitivity level by the logic. In STANDBY mode, neither
traffic advisories (TA’s) nor resolution advisories (RA’s) are
output by CAS. The pilot normally selects STANDBY when
on the ground. In TA-ONLY mode, only traffic advisories are
output by CAS. This mode is often selected by the pilot to

avoid unnecessary distractions while at low altitudes on final
approach to an airport. When the pilot selects TA/RA mode
(also called AUTOMATIC), CAS selects sensitivity level
based on the current altitude of own aircraft (Auto-SL state).

Alt-Layer effectively divides vertical airspace into layers
(e.g., Layer-3 is approximately equal to the range 20000 feet
to 30000 feet). State changes are made using a hysteresis:
the criteria for transitioning into the Layer-2 state is different
depending on whether the current state is Layer-I (own aircraft
is climbing) or Layer-3 (own aircraft is descending). Alt-Layer
and Effective-SL are used in the determination of individual
other aircraft threat classification (see Fig. 29).

Due to aircraft climb performance limitations at high alti-
tude or in the landing configuration, the CAS logic may inhibit
a climb maneuver. Descend maneuvers are inhibited if own
aircraft is too close to the ground to safely command the pilot
to descend. The increase inhibits (Increase-Climb-Inhibit and
Increase-Descend-Inhibit) prohibit the command of higher rate
maneuvers (e.g., 2500 fpm vs. 1500 fpm), and therefore use
more stringent altitude thresholds. The Advisory-Status part of
the Own-Aircraft model (Fig. 27) shows the CAS resolution

LEVESON et al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 701

No-RA 3

>

1,

Advisory -Status

Composite-RA
I

n-

1

I
Negative

I
Climb-VSL I Descend-VSL -

I
I
I
I
I
I
I
I I

I Corrrctiveclimb

CombinedConbol

i

Fig. 27. Advisory status.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I ;z I I I

I
I
I
I
I

advisory (RA), if there is one, that is currently displayed to
the pilot.

Fig. 28 shows the expanded Other-Aircraft portion of the
CAS model. Again, the top portion of the diagram lists vari-
ables that represent inputs to CAS from the TCAS sensors, and
the bottom portion of the diagram lists variables that represent
outputs from CAS to TCAS actuators. The middle portion of
the diagram contains parallel state machines representing the
derived Other-Aircraft state necessary for the evaluation of
the CAS control function.

RM-Send-Status synchronizes coordination interrogations
with other TCAS-equipped aircraft, where “RM” stands for
Resolution Message. Coordination interrogations contain in-
formation about an aircraftls intended vertical maneuver or
“intent” with respect to a threat. This information is expressed
in the form of a complement; e.g., if own aircraft has selected a
climb maneuver against the threat (see Fig. 29), it will transmit
a message in its coordination interrogation restricting the threat
aircraft to descend maneuvers against own aircraft.

CAS can track up to 30 aircraft simultaneously (it can
track more but is limited by the number of conflicting flight
scenarios it can resolve simultaneously). The Track-Status
state reflects whether a particular Other-Aircraft is currently
being tracked or not. Fig. 29 shows the expanded Tracked
portion of the Other-Aircraft RSML model.

The Intruder-Status state within Tracked reflects the cur-
rent classification of Other-Aircraft (Other-Traffic, Proximate-
Traffic, Potential-Threat, and Threat). Intruder-Status is deter-
mined using (among other criteria) Own-Aircraft Effective-SL
and Alt-Layer. When an intruder is classified as a threat,
a two-step process is used to select a Resolution Advisory
(RA). The first step is to select a sense (Climb or Descend).
Based on the range and altitude tracks of the intruder, the
CAS logic models the intruder’s path until Closest Point
of Approach (CPA). The CAS logic computes the predicted
vertical separation for both climb and descend maneuvers,
and selects the sense that provides the greater vertical sep-
aration.

702 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 1994

lothcr-mdrii I
Input:

Other-Ah : Integer
Other-Mode-S-Addrrss : Integer
0th-Sensitivity-Level : {Not-Known. 1.2,3,4,5,6,7}
0th-Capability : (Non-XAS,TCAS-TA,TCAS-TNRA }
Othcr-Transponder-Equippage : {ATCRBS,M&-S}
Other-All-Repaiting : ~rue,False}
SurveillsncclD : Integer

Range-Report-Timestamp : Tim
Other-RangeValid : flrue,False}
Other-Alt-Valid : flNe,Fakc}
0th-Bearing : Integer
Other-Bearing-Valid : flrue.False}
TA-In-Sms-Level-2 : fl~e,False)
Other-VRC : { Nonc. Dont-Descend, DontClimb }
Other-HRC : { Nonc, Dont-Turn-Left, Dont-Tum-Right }

0th-Range : Integer

(Expanded next page.) r ; [-/
DntpUk

Display-Arrow-Out : (up.Down}
Other-Relative-All-Out : Integer
Othcr-Range-Out : Integer
0th-Bearing-Out : Integer
Othcr-Bearing-OK-Out : flrue,False}
Othcr-Alt-Reporting-Out : {Truepaise}
Advisory-Code : {Other,PA,TA,RA}

L

Fig. 28. Other aircraft overview.

The second step in selecting an RA is to select the strength
of the advisory. The least disruptive vertical rate maneuver that
will still achieve safe separation is selected. Possible advisory
strengths are Nominal-1500 fpm (1500 feet per minute), VSL-
2000, 1000, 500, and 0-fpm (vertical speed limits of 2000,
1000, 500 and 0 feet per minute; 0-fpm means level flight).
Advisory strength is continuously evaluated and modified, if
necessary, during the course of the encounter. After CAS
has chosen an RA, occasionally the threat aircraft maneuvers
vertically in a manner that thwarts the RA. In this case,
CAS may increase the strength of the advisory from 1,500
feet per minute to 2,500 feet per minute (Increase-2500fpm)
or it may reverse sense (from Climb to Descend or vice
versa).

The Mode-S-Ground Station model is quite simple and,
therefore, is not shown here. Although theoretically the CAS
logic uses input from the ground stations, these are not
operational at this time.

The specification must include a description of each input
and output variable. Examples are shown in Figs. 30 and 3 1.

As an example of a transition definition, Fig. 32 contains
the definition of the transition from the state Threat to the
state Other-Traffic, substates of Intruder-Status. In order for
an intruder to be classified as a Threat, it must be reporting
its altitude, it must be airbome, and it must satisfy the threat
altitude and threat range tests. Once classified as a Threat,
it may not be downgraded (to Potential-Threat, Proximate-
Traffic, or Other-Traffic) based on the threat altitude test.
It may be downgraded based on the threat range test, but
only if it fails on two consecutive attempts-represented by a
separate transition. However, if the intruder stops reporting
altitude, or if it reports that it is on the ground, it can
no longer be classified as a threat. The first and last rows
of the AND/OR table represent this criteria. Note that this
transition represents a downgrade directly to Other-Traffic,
bypassing the intermediate classifications of Potential-Threat
and Proximate-Traffic. This happens when the intruder is
no longer airbome (column 4) or when altitude reporting
is lost and either the bearing or range inputs are invalid
(columns 1 and 2). Column 3 represents a situation in which
a partial downgrade to Potential-Threat or Proximate-Traffic
might have been possible, i.e., altitude reporting is lost, but
both the range and bearing inputs are valid. If either the
Potential-Threat-Condition or the Proximate-Traffic-Condition
were satisfied, the intruder classification would have been
downgraded to Potential-Threat or Proximate-Traffic, respec-
tively. However, in this transition, neither criteria are satisfied,
so the classification is downgraded all the way to Other-
Traffic.

As an example of a macro, Fig. 33 contains the Potential-
Threat-Condition macro referenced in the above transition. In
order for an intruder to be classified as a Potential-Threat,
it must satisfy the Potential-Threat-Range-Test. In addition,
if it is reporting altitude and is airbome, it must satisfy the
Potential-Threat-Altitude-Test. If it is not reporting altitude,
own aircraft must be below 15 500 feet.

Functions and macros are used in a similar way, but func-
tions retum values. Fig. 34 contains an example of an RSML
function, Vertical-Resolution-Complement. This function is
related to the coordination interrogations described earlier
(Other-Aircraft b RM-Send-Status). If CAS has selected a
climb maneuver against this particular intruder (Other-Aircraft
in state Climb), the Vertical Resolution Complement (VRC) is
Don't Climb. A value of 2 will be assigned to the VRC field
of the Mode S message.

The appendices to the document contain additional infor-
mation to make the specification more readable or changeable.
The first appendix defines constants. Everywhere a constant is
used in the document, a label is attached as a subscript, e.g.,
300 fqMINSEP) associates the constant 300 feet with a label
that designates this as the minimum vertical separation allowed
between aircraft. A change of the value of this constant (e.g.,
the FAA decides in the future that minimum vertical separation
should be 350 feet) can be automatically and easily made
throughout the document. An alternative (and more common)
solution to the maintenance and change problem for constants
would be to use the label alone throughout the document and
put the values associated with the labels into a table. However,

LEVESON et al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 703

Fig. 29. Tracked.

the latter solution makes the document much less readable and
requires constant flipping to the constant definition section to
determine the actual numbers associated with the labels.

The second appendix, Table Definitions, is used for con-
stants that are more naturally stored in a tabular form, e.g.,
potential-threat minimum-range threshold indexed by our own
aircraft sensitivity level.

We found that a list of events associated with the state
transition that generates them and the state transitions that are
triggered by them was helpful in producing the document and
included this list in a third appendix.

The Glossary contains definitions of technical terms and
abbreviations used throughout the document, and the Notation
Appendix provides a tutorial on the RSML language.

The Reference Algorjthms appendix contains tracking and
other algorithms that are not required but are used to define
criteria for accuracy of the actual algorithms selected. For
example, a tracker chosen by the designer might be required to

have at least the accuracy of the alpha-beta tracker specified
in the Appendix.

Finally, an index to the document is provided that includes
an entry for every name used in the document giving the pages
on which it is used and the page where it is defined. Currently,
there are over 500 entries in the index.

VI. EVALUATION AND FUTURE GOALS

This paper has defined 1) an approach to specifying system
requirements for real-time, reactive systems; 2) the criteria that
should be used in designing a language for such requirements;
3) a language demonstrating the approach and criteria; and
4) the necessary and desirable contents and organization of a
system requirements specification using this approach. These
were developed while writing a system requirements specifica-
tion for an aircraft collision avoidance system, which provided
continual evaluation and feedback during development and

704 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEITEMBER

Input: Other-Mode-S-Address
Location: Other-Aircraft,20z

Source: Surveillance

Type: Integer

Expected Range: 1 ... (2” - 2)

Granularity: I (unit)

Units: N / A

Load: NJA

Exception handling information: Mode-S addresses outside the valid range (i.e., all
Os or all 1s) are presently ignored. It is assumed that no such addresses will ocrur
because administrative procedures will preclude this event. Duplicate addresses are
treated similarly.

MOPS Reference: IDINTR

Description: The unique address of the Other-Aircraft

Comments: This field has no meaning for non-Mode-S-equipped aircraft. No decision
has been made about what to do about addresses that are outside the valid rangc or
duplicate addresses due to failures of administrative procedures.

Fig. 30. Input variable definition.

Output: Display-Arrow-Out
Location: Other-Aircraft,zoz

Destination: Display-Unit

Type: Enumerated

Expected Range: {No-Arrow. Up, Down)

Granularity: N/A

Trigger: Display-Arrow-Evaluated-Event,.ael

Value: Value Condition
No-Arrow Display-Arrow in s ta te No-Arrow
Up Display-Arrow in s t a t e Up
Down Display-Arrow in s t a t e Down

Units: N/A

Load: 11s for CAS.
MOPS Reference: ARROW

Description: From ATA-STD-TCAS II/lA 4.2.1.10: “A vertical arrow shall be placed
to the immediate right of the traffic symbol if the vertical speed of the intruder is equal
to or greater than 500 fpm with the arrow pointing up for climbing traffic and dowii for
descending traffic.”

Comments:

Fig. 31. Output variable definition.

demonstrated the practicality of writing a formal requirements
specification for a complex process-control system.

Because the specification (which was originally intended
merely to be experimental) was adopted by the FAA during the
development of RSML, deadlines required us to deliver parts
of the specification while the notation was still evolving. There
are some aspects of this type of a specification that still cause
difficulties in understanding such as the overall event sequenc-
ing and synchronization. During the independent verification
and validation of our TCAS specification, we needed to derive
addition diagrams and tables so that the reviewers could easily
check the consistency of our specification with the previous,
pseudocode version. Although parallel state machines and
other features of the language did reduce the specification
of states enough to make such state-machine specifications

Transition(s): - 7 1
Location: Other-Aircraft D Tracked D Intruder-Status,23;

Trigger Event: Air-Status-Evaluated-Evente3w
Condition:

1994

Output Action: Intruder-Status-Evaluated-Event..3,9
Description:

Columns 1-2 Lost altitude reporting and either the bearing or range inputs are invalid

Column S Lost altitude reporting and both range and bearing are valid, but neither the proxi-
mate nor potential threat classification criteria are satisfied.

Column 4 Aircraft is on ground

MOPS Ref. Section 7.1. TRAFFICADVISORY.

Fig. 32. Transition definition.

practical, the proliferation of events causes problems that need
to be handled.

Reviews of our document for correctness by users during
development made clear that specifications should include
graphical, symbolic, tabular and textual notation, depending
on the type of information being conveyed. For example, the
graphical state machines were a great help during reviews for
finding certain types of errors as were the tables for finding
other errors. Even though the state transition information had
to be removed from the graphical state diagrams and put
into tables, the graphical representation provided important
information to reviewers of the document that would have been
very difficult or impossible to derive from the transition tables
alone. A language that contains only graphics or only tables
or only symbolic strings is probably less useful than one in
which different notational techniques are used to communicate
different types of information. More research is needed to
determine the most appropriate notations for each type of
information that needs to be conveyed.

One result of this effort was a demonstration that formal
specifications can be applied to complex, reactive systems and
that such specifications can be readable and reviewable by
application experts with a minimal knowledge of mathemat-
ics and computer science. A lesson to be leamed from the
experience is that formal specifications can be usable if their
design takes into consideration the training and backgrounds
of those who are to read and review the specification. Some
engineers working with us on the TCAS specification reported
that they liked the AND/OR table description of the transition
conditions because it resembles the logic tables that they are
used to using and that the state machines and logic tables fit
the way they think about systems.

Although formal specification languages obviously have to
be defined in an unambiguous and mathematical way, the
syntax itself does not have to contain obscure mathematical
symbols that are familiar and comfortable to neither the appli-
cation expert nor the implementor of the system. There must
simply be an unambiguous translation from the specification
language (in our case RSML) to the formal model (RSM for
our language) underlying it. Currently, formal specification

LEVESON ef al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 705

Macro: Potential-Threat-Condition
Definition:

Description:
potential thrrat range criteria. If the intruder is altitude reporting, it must also satisfy
the potential threat altitude criteria. I f the intruder is not altitude reporting, then i t ic
considered a potential threat only i f own altitude is helow 15500 It,,.,,,,,.,.

MOPS Ref. TRAFFI(!ADVISORY.Traffic~d~isor?-[letection, Rangehit-processing.

Fig. 33. Macro definition.

To he considered a P o l e n i d T h r e n f , the intruder must satisfy the

languages are designed primarily by mathematicians who use
a notation with which they are comfortable, but which is
foreign to those who must use the language. One solution
is to train hardware and software engineers to think like
mathematicians while our alternative solution is to provide
languages that allow the user to think about the system in
the way that they have been trained in their discipline. We
hypothesize that providing a model of a system that is closer
to the mental model that the reviewer and implementor have of
the system and closer to the way they have thought about such
systems in the past will aid in finding errors in the specification
itself and reduce the numbers of errors that are introduced in
implementing the specification. This hypothesis, of course, still
needs to be experimentally validated, although our experience
provides some anecdotal support.

Because the specification of the CAS logic, from which we
built the CAS part of our TCAS model, was low-level pseu-
docode, the exercise had many features of reverse engineering.
The pseudocode used is a low-level language containing only:

1) simple data types (bits, bit strings, character strings,

2) arithmetic expressions,
3) the structured control statements IF-THEN-ELSE,

integers, pointers, and floating point variables),

IF-ELSEIF-OTHERWISE, REPEAT-WHILE, REPEAT-
UNTIL, and LOOP-EXITIF-LOOP, and

4) subroutines (without local variables).

All variables are global: There are no local variables but there
is provision for passing parameter names to subroutines to
show which variables are used by the subroutine (few sub-
routines actually use this feature in the TCAS specification).
The only complex data structure allowed is a “group” that
provides for grouping related variables into a “data structure,”
i.e., giving them a group name.

In many ways, the TCAS reverse engineering was even
more difficult than the usual reverse engineering exercise since
the language was so low-level and difficult to read. This
specification has acted as the requirements specification for
TCAS from 1983 to 1992 and was continually changed as
errors were found and changes made to the requirements.
Several lessons can be leamed from our experience that are
applicable to both forward and reverse engineering efforts in
general.

Function: Vertical-Resolution-Complement (i)
Return type:
Definition:

{ 0. 1, 2 }

Vertical-Rrsolution-(‘omplement =

0 if Other-Aircraft..?oz[i] not in state Threat
1 if Other-Aircraft..mz[i] in state Threat D Descend
2 if Other-AircraftS.2o2[i] in state Threat D Climb

Description:
Mode S message field. Its values have the following meaning:

This function returns the value of the Vertical-Rrsolution-Complement

Value 14eaning
0
1 Don’t descend.
2 Don’t climb.

No vertical resolution advisory complemenl sent.

Explanation of value selection criteria: If Other-Aircraft is not in state Threat, then
Vertical-Resolution-Complement has value 0 (no vertical RA complement). If TCAS has
selected a Descend sense RA against the intruder, then Vertical-Resolution-Complement
is set to 1 (don’t descend). Likewise, if TCAS has selected a Climb sense RA against the
intruder, then Vertical-Resolution-Complement is set to 2 (don’t climb).

MOPS Ref.: Sendinitialintent (p. 6-P57).

Fig. 34. Function definition.

First, we had difficulty abstracting away from the design.
Even when we did not look at the pseudocode, we found it
difficult in the beginning to eliminate functional decomposition
and flowchart-like logic, i.e., to specify the problem without
trying to solve it. With practice we became better at omitting
design information, but the struggle never entirely abated.
The very low level of the pseudocode also made the process
of abstraction more difficult as many purely implementa-
tion features, such as flags, had to be used extensively in
the pseudocode. After the specification of the CAS logic
was completed, an independent verification and validation
was performed to compare the pseudocode specification and
the RSML specification. The verifiers experienced the same
problems that we did, and a large number of identified dis-
crepancies resulted in no change to the RSML specification
because they merely represented design peculiarities of the
pseudocode and not requirements.

Second, although it may be a function of the particular
system we were reverse engineering, we found it impossible
to derive the requirements specification strictly from the pseu-
docode and an accompanying English language description.
Although the basic information was all there, the intent was
missing. Therefore, distinguishing between requirements and
artifacts of the implementation was not possible in all cases.
As has been discovered by most people attempting to maintain
such systems, an audit trail of decisions and the reasons why
decisions were made is absolutely essential. This was not done
for TCAS over the 15 years of its development and those
responsible for the system today are currently attempting to
reconstruct decision-making information from old memos and
corporate memory.

Third, the final requirements specification model would have
been different and much simpler if we had been starting
from scratch. Because the TCAS pseudocode specification had
evolved over a period of more than 15 years, the current
version contains more complexity than is necessary. What was
originally a simple conceptual model degraded as changes

706 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 1994

were made to the pseudocode that simplified the process of
making the change or minimized the amount of code that
needed to be changed, but complicated or degraded the original
conceptual model. As Pamas said in [19]: “The problem is
that the subsets and extensions are not the programs that we
would have designed if we had set out to design just that
product.” This is a common maintenance dilemma, and TCAS
was no exception. When changes are made to design or code
without backing up all the way to requirements, such problems
arise and increase as time passes. For TCAS, the highest-level
specification was the pseudocode.

The problem of increasing complexity and lack of con-
ceptual coherency in the underlying model were exacerbated
as more and more changes were made over the years and
more errors introduced due to the increasing difficulty in
determining the consequences of the changes. What we did
for the TCAS system was to make the current underlying
conceptual model explicit. Because of the necessity of building
a requirements specification that matches the TCAS systems
actually in use (which were certified against the pseudocode
specification), our resulting model is more complicated than
necessary, includes more than the minimum required behavior,
and is harder to understand than is strictly necessary. This was
frustrating as we first built a nice, simple model and found that
we had to complicate it for no better reason than that it had to
match some errors or poor decisions in the pseudocode. Once
our specification is complete, future versions of the system
will hopefully retum to a simpler model. We believe that
if a blackbox behavioral model of our type had been built
originally, not only would the final specification be simpler and
more understandable, but making changes without introducing
errors or unnecessarily complicating the resulting requirements
also would have been simplified.

Now that the specification is complete, our work on vali-
dating the feasibility and practicality of formal analysis pro-
cedures on such specifications has begun. Heimdahl [6] has
1) implemented a simulator for RSML so specifications can
be executed; 2) formally defined the semantics of RSML
using composable functions; 3) devised algorithms to perform
semantic analysis on the underlying RSM formal model to
ensure completeness and consistency in requirements [141;
and 4) experimentally validated the analysis algorithms on the
TCAS I1 specification.

We are currently working on analysis procedures 1) to
analyze the entire system model for safety [17]; and 2) to
perform standard system engineering risk analyses such as
fault tree analysis [18] directly from the system requirements
specification. Attempts have also begun to derive test data
satisfying various coverage criteria automatically from the
specification [251.

ACKNOWLEDGMENT

Important contributions to this effort were made by R.
Ortega and R. Greenberg, both of whom were graduate stu-
dents at UCI. We would also like to acknowledge the help
of M. DeWalt, J. Treacy, L. Nivert, and T. Choyce of the
FAA and the members of the RTCA Working Group on

TCAS Requirements, especially K. Ybarra of Honeywell, D.
Lubkowski and U. Satyen of MITRE, G. Kyriakos of Bendix,
A. Johnson and J. Perez of Rockwell Collins, A. Drumm of
Lincoln Labs, and Captain R. Beins (United Airlines) of the
TCAS Pilots Working Group.

REFERENCES

G. R. Bruns, S. L. Gerhart, I. Forman, and M. Graf. “Design technology
assessment: The statecharts approach,” Tech. Rep. STP-107-86. MCC,
Mar. 1986.
E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic,” Trans. Prog.
Lung. and Syst., vol. 8, no. 2, pp. 244-263, Apr. 1986.
S. Faulk, J. Brackett, P. Ward, and J. Kirby Jr. “The core method for
real-time requirements,” IEEE Software, vol .9, no. 5. Sept. 1992.
M. Fitter and T. R. G. Green. “When do diagrams make good computer
languages,’’ Int. J. Man-Machine Studies, vol. 1 I , 1979.
D. Harel. Statecharts: “A visual formalism for complex systems,” Sci.
of Comput. Prog., vol. 8, pp. 231-274, 1987.
Mats P. E. Heimdahl, “Static analysis of state based requirements:
Analysis for completeness and consistency,” Ph.D. thesis, Univ. of
Califomia, Irvine, 1994.
K. L. Heninger, “Specifying software for complex systems: New tech-
niques and their application,” IEEE Trans. Software Eng., vol. SE-6, no.
1, Jan. 1980.
D. Harel, H. Lachover, A. Naamad, A. Pnueli. M. Politi. R. Sherman, A.
Shtull-Trauring, and M. Trakhtenbrot, “Statemate: A working environ-
ment for the development of complex reactive systems,” IEEE Trans.
Software Eng., vol. 16, no. 4, Apr. 1990.
C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM,
vol. 21, no. 8, pp. 666477, 1978.
G. J. Holzmann, Design and validation of computer protocols. Engle-
wood Cliffs, NJ: Prentice Hall, 1991.
D. Harel and A. Pnueli, “On the development of reactive systems”
K.R. Apt, Ed., Logics and Models of Concurrent Systems. New York:
Springer-Verlag, 1985, pp. 477-498.
D. Hatley and I. Pirbhai, Strategies for Real Time System Specification.
New York: Dorset House Publishing, 1987.
M. S. Jaffe, “Completeness, Robustness, and Safety in Real-Time
Software Requirements and Specifications,” Ph.D. thesis, Univ. of
Califomia, Irvine, 1988.
M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. Melhart,
“Software requirements analysis for real-time process-control systems,”
IEEE Trans. Sofhvare Eng., vol. 17, no. 3,, Mar. 1991.
N. G. Leveson, S. S. Cha, and T. J. Shimeall, “Safety Verification of
Ada Programs using Software Fault Trees,” IEEE Software, vol. 14, no.
I , July 1991.
N. G. Leveson and P. R. Harvey, “Analyzing Software Safety,” IEEE
Trans. on Software Eng., SE-vol. 9, no. 5 . pp. 569-579, Sept. 1983.
N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE
Trans. on Software Eng., vol. 13, no. 3, Mar. 1987.
B. E. Melhart. “An external interaction model for specifying require-
ments of embedded software,” Tech. Rep. Draft, Texas Christian Univ.,
Jan. 1991.
D. L. Pamas, “Designing software for ease of extension and contrac-
tion,” IEEE Trans. Software Eng.. vol. SE-5, no. 2, pp. 128-138, Mar.
1979.
A. Pnueli and M. Shalev, “What is in a step?’ J .W. De Baker, Liher
Amicorum, J. Klop, J. Meijer, and J. Rutten, Eds. Amsterdam: CWI,
pp. 373-400, 1989.
D. L. Pamas and Y. Wang, “The trace assertion method of module
interface specification,” Tech. Rep. 89-261, Queen’s Univ., Kingston,
ON, 1989.
A. P. Ravn and H. Rischel, “Requirements capture for embedded real-
time systems, “ in IMACS Symp. MCTS, 1991.
A. C. Shaw, “Communicating real-time state machines,” IEEE Trans.
Software Eng., vol. 18, no. 9, pp. 805-816, Sept. 1992.
A. J. van Schouwen, “The A-7 requirements model: Re-examination for
real-time systems and an application to monitoring systems,” Tech. Rep.
90-276, Queen’s Univ., Kingston, ON, May 1990.
E. Weyuker, T. Goradia, and A. Singh. “Automatically generating test
data from boolean specification,” IEEE Transactions Software Eng., vol.
20, no. 5, May 1994.
P. Ward and S. Mellor, Structured Development for Real-Time Systems.
New York: Yourdon Press, 1985.

LEVESON el al.: REQUIREMENTS SPECIFICATION FOR PROCESS-CONTROL SYSTEM 707

Nancy Leveson (received the bachelor’s degree in
math, an M.S. in business administration (operations
research), and a Ph.D. in computer science from
UCLA.

She is Boeing Professor of Computer Science
and Engineering at the University of Washington
(and Adjunct Professor at the University of British
Columbia). Her research interests are in software
safety and reliability.

Dr. Leveson is the Editor-in-Chief of IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING and a

member of the Board of Directors of the Computing Research Association,
the National Research Council Commission on Engineering and Technical
Systems, and the ACM Committee on Computers and Public Policy. She
recently completed a study of the Space Shuttle Flight Software Processes
for NASA and the National Research Council. She consults widely on safety-
critical systems for both government and industry.

evolution, and domain m

Holly Hildreth received the B.S. degree in com-
puter science in 1987 from Califomia State Uni-
versity, Dominguez Hills, and the M.S. degree in
computer science in 1991 from the University of
Califomia, Irvine.

She is currently working toward the Ph.D. degree
in computer science at the University of Califomia,
Irvine. She is also with TRW Space and Defense,
Redondo Beach, CA. Her research interests in-
clude requirements engineering, formal specification
languages, reverse engineering. maintenance and

iodeling for process-control software.

Mats Per Erik Heimdahl (S’90-M’92-S’92) re-
ceived the M.S. degree in computer science and
engineering from The Royal Institute of Technol-
ogy, Stockholm, Sweden, in 1988, and the Ph.D.
degree from the University of Califomia at Irvine,
in 1994.

He is currently an Assistant Professor at the
Computer Science Department at Michigan State
University. His research interests include require-
ments specification, formal methods, static analysis,
and software development for critical systems.

Jon Damon Reese was born in Waxahachie, TX, on
October 24, 1966. He received the B.A. degree in
computer science and linguistics from Rice Univer-
sity in 1989, and the M.S. degree in information and
computer science from the University of California,
Irvine, in 1991. He is currently pursuing a Ph.D. in
the area of software safety.

