Designing Specification Languages for
Process Control Systems:
Lessons Learned and Steps to the Future

Nancy G. Leveson!, Mats P.E. Heimdahl?, and Jon Damon Reese

! Aeronautics and Astronautics Dept.
MIT
Room 33-406, 77 Massachusetts Ave.
Cambridge, MA 02139-4307

leveson@mit.edu

2 Computer Science and Engineering Department,
University of Minnesota,
4-192 EE/CS Building, 200 Union Street S.E.
Minneapolis, MN 55455,
heimdahl@cs.umn.edu

Abstract. Previously, we defined a blackbox formal system modeling
language called RSML (Requirements State Machine Language). The
language was developed over several years while specifying the system
requirements for a collision avoidance system for commercial passenger
aircraft. During the language development, we received continual feed-
back and evaluation by FAA employees and industry representatives,
which helped us to produce a specification language that is easily learned
and used by application experts.

Since the completion of the RSML project, we have continued our re-
search on specification languages. This research is part of a larger effort
to investigate the more general problem of providing tools to assist in
developing embedded systems. Our latest experimental toolset is called
SpecTRM (Specification Tools and Requirements Methodology), and the
formal specification language is SpecTRM-RL (SpecTRM Requirements
Language).

This paper describes what we have learned from our use of RSML and
how those lessons were applied to the design of SpecTRM-RL. We discuss
our goals for SpecTRM-RL and the design features that support each of
these goals.

1 Introduction

In 1994, we published a paper describing a blackbox formal system modeling lan-
guage called RSML (Requirements State Machine Language). The language was
developed over several years during an effort to specify the system requirements
for a collision avoidance system for commercial passenger aircraft called TCAS
IT (Traffic Alert and Collision Avoidance System). Because this was to be the

official FAA (Federal Aviation Administration) specification, it was developed
with continual feedback and evaluation by FAA employees, airframe manufac-
turers, airline representatives, pilots, and other external reviewers. Most of the
reviewers were not software engineers or even computer scientists, and we believe
this helped in producing a specification language that is easily learned and used
by application experts. RSML is still being used by the FAA, its subcontractors,
and RTCA committees to specify the upgrades and changes to TCAS II.

Those designing specification languages often have themselves in mind as po-
tential users. However, our familiarity with certain notations, especially mathe-
matical notations, such as predicate calculus, hides their weaknesses. Our first
attempts at designing RSML, therefore, were failures: Our notation was clear to
us but not to the representatives from the airframe manufacturers, component
subcontractors, airlines, and pilot groups that reviewed the TCAS specification
during its development. The feedback from a diverse group of users helped us to
evaluate the evolving specification language more objectively in terms of what
did and did not need to be in the language; how to satisfy our language design
criteria; and its practicality, feasibility, and usability.

Due to pressure to meet FAA deadlines for getting TCAS II on aircraft, we
were unable to use immediately all the lessons learned from that experience and
apply it to the design of RSML. Since that time, we have specified several ad-
ditional systems including a robot, flight management system, and air traffic
control components, each time learning more lessons about the design of for-
mal specification languages. Our research goal is to determine how specification
languages can be designed to reflect these lessons. Our research paradigm is to
determine important goals for specification languages from experience with in-
dustrial applications, to generate hypotheses about how these goals might be
accomplished, and then to instantiate these hypotheses in the design of a spec-
ification language that we will use in future experimentation. In this way, we
hope to build knowledge incrementally about how to most effectively design
specification languages.

Our specification language research is part of a larger research effort to in-
vestigate the more general problem of providing tools to assist in developing
embedded systems. Our latest experimental toolset is called SpecTRM (Spec-
ification Tools and Requirements Methodology), and the formal specification
language is SpecTRM-RL (SpecTRM Requirements Language). In addition to
the general goals we had for designing RSML [9], the lessons we have learned to
date have focused our latest efforts on solving the following problems:

1. Through the use of RSML, we have determined that readability and re-
viewability by domain experts can be further enhanced by minimizing the
semantic distance between the reviewer’s mental model and the constructed
models. The problem we are now addressing is how to construct a modeling
language that will allow and encourage modelers to reduce this semantic
distance in the models they build.

2. Specifiers are used to including internal design in their specifications and
seem to have difficulty building pure blackbox requirements models. So a

second goal was to provide more support and guidance in building software
requirements (versus software design) models.

3. We found certain common features of formal specification languages were
very error-prone in use. In particular, the use of internal broadcast events
accounted for most of the errors found by reviewers of the TCAS specification
and also contributed substantially to the difficulty reviewers had in reading
the models. A third goal for SpecTRM-RL was to determine if such internal
events can be effectively eliminated from state-based modeling languages.

4. Formal models are expensive to produce. Thus, reuse of at least parts of the
language should be supported by the language design. Such features should
also support the design of models for product families.

5. Accidents and major losses involving computers are usually the result of
incompleteness or other flaws in the software requirements, not coding er-
rors [8,12]. We previously defined a set of formal criteria to identify missing,
incorrect, and ambiguous requirements for process-control systems [6, 8]. En-
gineers have made the criteria into checklists and used them on a variety of
applications, such as radar systems, the Japanese module of the Space Sta-
tion, and review criteria for FDA medical device inspectors. Two goals for
SpecTRM-RL are to determine (1) how to enforce as many of the constraints
as possible in the syntax of the language and (2) how to design the language
to enhance the ability to manually check or build tools to automatically check
the specifications for the criteria that cannot be enforced by the language
design itself.

This paper describes what we have learned from our experimentation with
the design of SpecTRM-RL about achieving the first four goals. Our results
for the fifth goal will be described in a future paper. The design features of
SpecTRM-RL that support each of these goals are described but a complete
description of the language, including its syntax, is beyond the scope of this
paper. We are currently producing a SpecTRM-RL language design manual and
automated tools to assist in experimental use of the language.

2 Enhancing Usability and Reviewability

The primary goal for the design of a specification language should be to make
the representation appropriate for the tasks to be performed by the users, i.e., to
make the design user-centered (rather than designed primarily to make analysis
easier or to be faithful to standard mathematical conventions). Software is a
human product and specification languages are used to help humans perform
the various problem-solving activities involved in software engineering. Our goal
is to provide specifications that support human problem-solving and the tasks
that humans must perform in software development and evolution as well as
to allow automated analysis. We attempt to support human problem-solving
by grounding specification design on psychological principles of how humans use
specifications to solve problems as well as on basic system engineering principles.

We discuss two of these aspects here: minimizing semantic distance (problem 1
above) and building blackbox specifications (problem 2 above). Problems 3 and
4, as they reflect on the design of SpecTRM-RL, are discussed in later sections
of this paper.

An important psychological principle for enhancing reviewability is the con-
cept of semantic distance [5]. We define an informal concept of semantic distance,
similar to Norman’s use of the term, as the amount of effort required to translate
from one model to another. We believe that in order to maximize the application
expert’s ability to find errors in a requirements specification, the semantic dis-
tance between their understanding of the required process control behavior (their
mental model of the system) and the specification of that behavior must be min-
imized. This, in turn, implies that the requirements be written entirely in terms
of the components and state variables of the controlled system. Specifically, “pri-
vate” variables and procedures (functions) related only to the implementation of
the requirements and not part of the application expert’s view of the controlled
system should not be used. That is, the specification should be black box.

A blackbox model of behavior permits statements and observations to be
made only in terms of outputs and the inputs that stimulate or trigger those
outputs. The model does not include any information about the internal design
of the component itself, only its externally visible behavior. The overall system
behavior is described by the combined behavior of the components, and the
system design is modeled in terms of these component behavior models and the
interactions and interfaces among the components.

When the description of the required controller behavior includes more than
just its blackbox behavior (e.g., it includes software design information), then the
semantic distance between the required process-control behavior and the spec-
ified controller behavior increases and the relationship between them becomes
more difficult to validate (dy vs. d4 in Figure 1). In fact, if adequately efficient
code can be generated from the requirements specification directly, then an in-
ternal design specification may never be needed. “Adequately efficient” must be
determined for each specific application’s timing requirements. We are working
on this code-generation problem [7].

In addition, the requirements review process involves validating the rela-
tionship between changes in the real-world process and the specified changes
and response in the control function model. Therefore, reviewability will be en-
hanced if the requirements specification explicitly shows this relationship. We
discuss this further in the next section.

Blackbox requirements specification languages not only enhance readability
and reviewability, but they also simplify the transition from system requirements
and system design to software requirements. The gap between system design and
software requirements is frequently cited as a major problem in our interactions
with industry. We believe some of the problem stems from the fact that software
requirements often contain a lot of software design decisions, which makes the
gap between the two specifications larger and more complex to negotiate.

User's Mental |~ Blackbox -
Model of Desired Specification Deifgn_ Implementation
Process-Control |d1 | of Controller | d | SPecification | ¢,
Behavior Behavior -

~ R \ d5 (77,,’,//

Fig. 1. Reviewability increases as the semantic distance between the user’s mental
model of the desired behavior and the specification (d1 vs. d4) decreases.

2.1 Minimizing Semantic Distance

Our language is designed primarily for process-control systems. Therefore we
attempt to minimize the semantic distance d; by basing the specification lan-
guage design on fundamental process control principles. In process control, the
goal is to maintain a particular relationship or function F' over time () between
the input to the system 7Z; and the output from the system O, in the face of
disturbances D in the process (see Figure 2). This system function consists of the
functional description and the set of constraints on the system [11]. At any mo-
ment, there is a unique set of relationships between inputs and outputs whereby
each output value will be related to the past and present values of the inputs and
time. These relationships will involve fundamental chemical, thermal, mechani-
cal, aerodynamic, or other laws as embodied within the nature and construction
of the system. The system is constructed from components whose interaction
implements F' including, usually, a controller or controllers whose function is to
ensure that F' is correctly achieved.

A typical process-control system can be divided into four types of compo-
nents: the process, sensors, actuators, and controller (see Figure 2).

Process: The behavior of the process is monitored through controlled variables
(V,) and controlled by manipulated variables (V). The process can be de-
scribed by the process function Fp, a mapping from V,,, xZ; xDxt — Oz X V..

Sensors: These devices are used to monitor the actual behavior of the process
by measuring the controlled variables. For example, a thermometer may
measure the temperature of a solvent in a chemical process or a barometric
altimeter may measure altitude of an aircraft above sea level. The sensor
function Fg maps V., x t — 7.

Actuators: These are devices designed to manipulate the behavior of the pro-
cess, e.g., valves controlling the flow of a fluid or a pilot changing the direction
and speed of an aircraft. The actuators physically execute commands issued
by the controller in order to change the manipulated variables. The func-
tionality of the actuators is described by the actuator function F4 mapping
Oxt—= Vn.

Disturbances
D

|

System Output

Process

P
Manipulated variables Controlled Variables

Vm Ve

A S

Controller

-]

Output C Input
I

| |
| |
| |
| |
| |
| |
| |
1 |
| |
| |
| |
| |
1 1
| |
1| Actuators Sensors :
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| 1
: Command Signal :
| |
| |

Fig. 2. Basic Process Control Loop

Controller: The controller is an analog or digital device used to implement the
control function. The functional behavior of the controller is described by
a control function (F¢) mapping Z x C x t — O, where C denotes external
command signals. The process may change state not only through inter-
nal conditions and through the manipulated variables, but also by distur-
bances (D) that are not subject to adjustment and control by the controller.
The general control problem is to adjust the manipulated variables so as to
achieve the system goals despite disturbances. Feedback is provided via the
controlled variables in order to monitor the behavior of the process. This
feedback information (along with external command signals C) can be used
as a foundation for future control decisions as well as an indicator of whether
the changes in the process initiated by the controller have been achieved.

To reason about this type of process-controlled system, Parnas and Madey
defined what they call the four-variable model [14]. This model is essentially an
abstraction of part of the traditional feedback process control model presented
here. The approach to modeling used in Parnas Tables [13] and SCR [4, 3] are
based on this four variable model and, thus, built upon this same classic process
control model.

The model presented in this section is an abstraction—responsibility for im-
plementing the control function may actually be distributed among several com-
ponents including analog devices, digital computers, and humans. Furthermore,
the controller may have only partial control over the process—state changes in
the process may occur due to internal conditions in the process or because of
external disturbances or the actuators may not perform as expected. For exam-
ple, the pilot in a TCAS system may not follow the resolution advisory (escape
maneuver) issued by the TCAS controller.

The purpose of a control system requirements specification is to define the
system goals and constraints, the function F¢ (i.e., the required blackbox be-
havior of the controller), and the assumptions about the other components of
the process-control loop that (1) the implementors need to know in order to
implement the control function correctly and (2) the system engineers and ana-
lysts need to know in order to validate the model against the system goals and
constraints.

A blackbox, behavioral specification of such a system function F¢ uses only:

(1) the current process state inferred from measurements of the controlled vari-
ables,

(2) past process states that were measured and inferred,

(3) past corrective actions output from the controller, and

(4) prediction of future states of the controlled process

to generate the corrective actions (or current outputs) needed to maintain F'.

All of this information can be embedded in a state-machine model of the
controlled process, and we specify the blackbox behavior of the controller (i.e.,
the function F¢ to be computed by the controller) using such a state machine
model. In SpecTRM-RL models, the outputs of the controller are specified with
respect to state changes in the model as information is received about the current
state of the controlled process via the controlled variables V.. In the TCAS
example, the control function is specified using a model of the state of all other
aircraft within the host aircraft’s airspace, the state of the on-board components
of its own aircraft (e.g., altimeters, aircraft discretes', cockpit displays), and the
state of ground-based radar stations in the vicinity. Information about this state
is received from the sensors (e.g., antennas and transponders) and commands
are sent to the actuators (e.g., the pilot and transponders).

The state machine model of the control function must be iteratively fine
tuned during requirements development to mimic the current understanding of
the real-world process and the required controller behavior. The state machine
is essentially an abstraction of the behavior of the system function because it
models all the relevant aspects of the components of the process control loop.
Errors in the state machine model represent mismatches between this model and
the desired behavior of the control loop, including the process.

3 Building Blackbox Specifications in SpecTRM-RL

Although RSML allows blackbox behavior specifications, the language itself
does not encourage or enforce them. We found people tend to include design
in the specification when using general state-machine modeling languages such
as RSML or Statecharts. SpecTRM-RL, therefore, was not designed to be a
general modeling language, but rather specifically designed to create blackbox

! Aircraft discretes are airframe-specific characteristics provided as input to TCAS
from hardware switches.

requirements specifications to define an input/output process-control function,
as is also true of SCR and Parnas Tables. General modeling features not needed
for blackbox specifications are not included in SpecTRM-RL, and new abstrac-
tions (such as modes) are included that assist in blackbox modeling of control
system components. Thus, SpecTRM-RL is not just another variant of Stat-
echarts although there are some superficial similarities. Like SCR and Parnas
Tables, SpecTRM-RL enforces the specification of an input/output process con-
trol function. Statecharts allows much more general models to be built.

In order to make our language formal enough to be analyzable (and yet read-
able and reviewable by non-mathematicians), we have defined a formal model
(RSM or Requirements State Machine) that underlies a more readable specifi-
cation language or languages. The RSM is a general behavioral model of the
required control function with the components of the state machine mapped to
the appropriate components of the control loop. This model has been published
previously [6], and we do not refer to it further in this paper. We note only that
the underlying model is a Mealy automaton, as is the model for SCR, Parnas
Tables, Statecharts, and most other languages based on state-machines.

The higher-level specification language based on this underlying model must
allow the modeler to specify the required process-control function F¢. Figure
3 shows a more detailed view of the components of the control loop, including
distinguishing between human and automated controllers.

All control software (and any controller in general) uses an internal model of
the general behavior and current state of the process that it is controlling. This
internal model may range from a very simple model including only a few variables
to a much more complex model with a large number of state variables and
transitions. The model may be embedded in the control logic of an automated
controller or in the mental model maintained by a human controller. It is used
to determine what control actions are needed. The model is updated and kept
consistent with the actual system state through various forms of feedback.

The design of SpecTRM-RL is influenced by our desire to perform safety
analysis on the models. When the controller’s model of the system diverges from
the actual system state, erroneous control commands (based on the incorrect
model) can lead to an accident—for example, the software does not know that
the plane is on the ground and raises the landing gear or it does not identify an
object as friendly and shoots a missile at it. The situation becomes more compli-
cated when there are multiple controllers (both human and automated) because
their internal system models must also be kept consistent. In addition, human
controllers interacting with automated controllers must also have a model of the
automated controllers’ behavior in order to monitor or supervise the automation
as well as the controlled system itself.

One reason the models may diverge is that information about the process
state has to be inferred from measurements. For example, in TCAS, relative
range positions of other aircraft are computed based on round-trip message prop-
agation time. Theoretically, the function F¢ can be defined using only the true
values of the controlled variables or component states (e.g., true aircraft po-

Disturbances

|

Controlled Process

Process inputs—————=> = Process outputs

Controlled Measured
variables variables
Actuators Sensors

A
Automated
Controller
(Assistant)
Internal mode
of process
Controller

Operating Modes

Internal mode
of supervisory
interface

Displays Controls

Human
Supervisor(s)
ffffffffff (Controller(s)) (<------

Internal mode
of process

Internal mode
of automation

Fig. 3. A basic control loop. A blackbox requirements specification captures the con-
troller’s internal model of the process. Accidents occur when the internal model does
not accurately reflect the state of the controlled process.

10

sitions). However, at any time, the controller has only measured values of the
component states (which may be subject to time lags or measurement inaccura-
cies), and the controller must use these measured values to infer the true con-
ditions in the process and possibly to output corrective actions () to maintain
F. In the TCAS example, sensors include on-board devices such as altimeters
that provide measured altitude (not necessarily true altitude) and antennas for
communicating with other aircraft. The primary TCAS actuator is the pilot,
who may or may not respond to system advisories. Pilot response delays are
important time lags that must be considered in designing the control function.
Time lags in the controlled process (the aircraft trajectory) may be caused by
aircraft performance limitations.

The automated controller also has a model of its interface to the human
controllers or its supervisor(s). This interface, which contains the controls, dis-
plays, alarm annunciators, etc. is important because it is the means by which the
two controllers’ models are synchronized. Each of these components is included
explicitly in our models and modeling language. We represent the controlled pro-
cess and supervisory interface models using state machines and define required
behavior in terms of transitions in this machine. The controller outputs (com-
mands to the actuators) are specified with respect to state changes in the model
as information is received about the current state of the controlled process via
controlled variables read by sensors.

Automated Controller Model

Operating Modes

Supervisory Interface

Supervisory modes
Controls
Displays

Controlled Process Model

Process Operating Modes
State Variables

Process Interface Variables (measured
and manipulated variables)

Fig. 4. A SpecTRM-RL model has three parts.

11

Thus a SpecTRM-RL specification of control software is composed of three
interrelated models (Figure 4): (1) a specification of the operating modes of the
controller, (2) a specification of the controllers’s view of its supervisory interface
(the component or components, including human operators, that are controlling
it), and (3) a model of the controlled process.

3.1 The Structure of a SpecTRM-RL Specification

Engineers often use modes in describing required system functionality. Mode
confusion also is frequently implicated in the analysis of operator errors that lead
to accidents. We have included in SpecTRM-RL the ability to describe behavior
in terms of modes both to reduce semantic distance (and enhance reviewability)
and to allow for analysis of various types of mode-related errors [10].

A mode can be defined as a mutually exclusive set of system behaviors.
For example, the following table shows the possible transitions between states
in a simple state machine given two system modes: startup mode and normal
operation mode.

S1 S2 83 S4 S5

Startup mode|s3 s2 s4 85 $1

Normal mode|ss s4 s1 S5 51
Table 1. A simple state machine with two modes defined using a standard state
transition table. The states in the machine (listed at the top of the table) are s;
through ss while the conditions under which the transition is made are listed on the
left (e.g., startup mode and normal mode). Note that transitions may depend on more
conditions than simply the current processing mode.

The startup and normal processing modes in this machine determine how the
machine will behave over the entire set of state transitions. For example, if the
conditions occur that trigger a transition from state s3, the machine will transfer
to state s4 if it is in startup mode or to state s; if it is in normal processing
mode. Note that modes are simply states that play a particular role in the
state machine behavior (i.e., control a sequence or set of state transitions). That
is, they are a convenient abstraction for describing and understanding complex
system behavior, but they do not add any power to the state machine description.
In general, state transitions may be triggered by events, conditions, or simply
the passage of time. The current operating mode determines how these triggers
will be interpreted and what transitions will be taken. Note that there is no
real difference between a state and a mode by this definition. Any conditions or
states could be labelled a “mode” (which indeed is done in some specification
languages), although this is not very helpful and is not the way engineers use
the term “mode”.

Modern aircraft and other complex systems often have a large number of
operating modes and possible combinations of operating modes. In the modeling
and analysis of control systems, we find it useful to distinguish between three
different types of modes:

12

1. Supervisory modes determine who or what is controlling the component at
any time. Control loops may be organized hierarchically, with multiple con-
trollers or components, each being controlled by the layer above and con-
trolling the layer below. In addition, each component may have multiple
controllers (supervisors). For example, a flight control computer in an air-
craft may get inputs from the flight management computer or directly from
the pilot. Required behavior may be different depending on what supervi-
sory mode is currently in effect. Mode-awareness errors related to confusion
in coordination between the multiple supervisors of a control component can
be defined in terms of these supervisory modes.

2. Component operating modes control the behavior of the control component
itself. They may be used to control the interpretation of the component’s
interfaces or to describe the component’s required process-control behavior.

3. Controlled-system (or plant in control theory terminology) operating modes
specify sets of related behaviors of the controlled system and are used to
indicate its operational state. For example, an aircraft may be in takeoff,
climb, level-flight, descent, or landing mode.

The use of modes does not violate the blackbox nature of SpecTRM-RL; they
represent externally visible behavior (required functionality) of the component
and not the internal design of the software to achieve that functionality. For
example, capture mode (which can be armed or not armed) in the flight man-
agement system example shown in Figure 5 indicates whether the aircraft will
automatically level off when a pilot-specified altitude constraint is reached. The
pilot is responsible for setting the altitude constraint and (usually) for directly
or indirectly selecting capture mode.

As stated earlier, a SpecTRM-RL specification has three interrelated models.
The top box of Figure 5 shows the graphical part of an example specification of
a flight management system. The system has seven modes of operation, all of
which have only one value at any one time. The boxes shown under each mode
label represents the discrete values for that mode, e.g., pitch can be in altitude
hold, vertical speed, indicated air speed, or altitude capture mode. The line at the
left of the choices simply groups the choices under the variable and indicates
that only one may be active at any time and does not represent state transitions
(as it did in RSML).

A second part of a SpecTRM-RL model is a specification of the component’s
view of its supervisory interface. The supervisory interface consists of a model of
the operator controls and displays or other means of communication by which the
component relays information to the supervisor. Note that the interface models
are simply the view that the component has of the interfaces—the real state of
the interface may be inconsistent with the assumed state due to various types
of design flaws or failures. For example, a flight control computer in an aircraft
may get inputs from the flight management computer or directly from the pilot.
Required behavior may be different depending on what supervisory mode is
currently in effect. By separating the assumed interface from the real interface,
we are able to model and analyze the effects of various types of errors and

13

Autothrottle Autopilot Thrust Arm Roll Pitch
Oon Oon
AUTOFLIGHT
OPERATING Off Off

MODES

Capture

AIRCRAFT L[I - I - [: - II']
OPERATING F:'?‘Ve ‘ Climbing ‘ ‘ Descendmé eveling \m‘/
ight Off

MODES
Slats Flaps Etc.
AIRCRAFT Retracted |
COMPONENT
MODELS Not

Retracted

Unknown
voow |

Fig. 5. Example of operating modes for a flight management system

14

failures (e.g., communication errors or display hardware failures). In addition,
separating the physical design of the interface from the logical design (required
content) will facilitate changes and allow parallel development of the software
and the interface design.

The third part of a SpecTRM-RL model is the component’s model of the
controlled system (plant). The description of a simple component may include
only a few relevant state variables. If the controlled process or component is
complex, the model of the controlled process may itself be represented in terms
of its operational modes and the states of its subcomponents. In a hierarchical
control system, the controlled process may itself be a controller of another pro-
cess. For example, the flight management system may be controlled by a pilot
and may itself issue commands to a flight control computer, which issues com-
mands to an engine controller. If, during the design process, components that
already exist are used, then those plug-in component models could be inserted
into the SpecTRM-RL process model.

If the SpecTRM-RL model is of a non-control component (e.g., a radar data
processor), there might not be a supervisory interface. There will still be oper-
ating modes, however, and a model of the required input-output function to be
computed by the component.

The language itself consists of a graphical model of the state machine, out-
put message specifications, state variable definitions, operator interface variable
definitions, state transition specifications, macros, and functions.

Graphical State Machine. The SpecTRM-RL notation is driven by the use
of the language to define a function from outputs to inputs. SpecTRM-RL has a
greatly simplified graphical representation (compared to RSML or Statecharts),
which is made possible because we eliminated the types of state machine com-
plexity necessarily for specifying component design but not necessary to specify
the input/output function computed in a pure blackbox requirements specifica-
tion. The architecture of the state transitions becomes so simple that we found
no need to represent it in the graphical state machine—the transitions simply
represent the changes between state variable values.

State values in square boxes represent inferred values. Inferred values are
not input directly but represent the aspects of the process state model that
must be inferred from measurements of monitored process variables. Inferred
process states are used to control the computation of the control function. They
are necessarily discrete in value?, and thus can be represented as a finite state
variable. In practice, such state variables almost always have only a few relevant
values (e.g., altitude below 500 feet, altitude between 500 feet and 10,000 feet,
altitude above 10,000 feet). State values denoted as circles or ovals represent
direct input and output values (controlled or monitored variables).

% If they are not discrete, then they are not used in the control of the function computa-
tion but in the computation itself and can simply be represented in the specification
by arithmetic expressions involving input variables.

15
The supervisory interface model shows the supervisory mode, which describes
how this computer is being supervised, e.g., by a human, computer, or both

(Figure 6). It also shows the state of the controls and the displays (including
oral annunciations, etc.).

SUPERVISORY INTERFACE

SUPERVISORY

Autothrottle Alt Hold Vert. Speed .
AP Button Button Button Button IAS Button Vert. Spd. Altitude
CONTROLS I 1 I 1 I 1 I 1 I 1 Wheel Dial
| on|[off| [on][off | [on][off | [on] off | | on] off | O O
Thrust
DISPLAYS

Fig. 6. Example of SpecTRM-RL model of the supervisory modes

Output Message Specification. Everything starts from outputs in SpecTRM-
RL. By starting from the output specification, the specification reader can de-
termine what inputs trigger that output and the relationship between the inputs
and outputs. RSML did not explicitly show this relationship (although it could
be determined, with some effort, by examining the specification). A simplified
example is shown in Figure 7. More information is actually required by our com-
pleteness criteria than is shown in the example, for instance, specification of
timing assumptions related to the message.

The conditions under which an output is triggered (sent) is simply a predi-
cate logic statement over the various states, variables, and modes in the specifi-
cation. During the TCAS project, we discovered that the triggering conditions
required to accurately capture the requirements were often extremely complex.
The propositional logic notation traditionally used to define these conditions
did not scale well to complex expressions and quickly became unreadable (and
error-prone). To overcome this problem, we decided to use a tabular represen-
tation of disjunctive normal form (DNF) that we call AND/OR tables. We have
maintained this successful notation in SpecTRM-RL. The far-left column of the
AND/OR table lists the logical phrases. Each of the other columns is a conjunc-

16

tion of those phrases and contains the logical values of the expressions. If one
of the columns is true, then the table evaluates to true. A column evaluates to
true if all of its elements match the truth values of the associated predicates. A
dot denotes “don’t care.”

Output Message

Resolution Advisory

TRIGGERING CONDITION
Composite-RA ,,.in state RA
Traffic-Display-Statyg, ,4in state Waiting-To-Send

MESSAGE CONTENTS
FIELD VALUE
Bits 11-17 | Own-Goal-Altitude-Ratg,,
Bits 18-20 | Combined-Contrgl,,,
Bits 21-23 | Vertical-Contro| ,,,
Bits 24-26 | Climb-RA, ,,

Bits 27-29 | Descent-RA ..

Fig. 7. Example of SpecTRM-RL output message specification

The subsecripts in the specification represent whether the value is a variable
(v) or a state (s). The other alternatives, macros (m) and functions (f) are
described later in this paper. The number attached to the subscript is the page
on which the variable, state, macro, or function is defined.

State Variable Definition. State variable values come from inputs or they
may be computed from such input values or inferred from other state variable
values. Figure 8 shows a partial example of a state variable description. Again,
our desire to enforce completeness requires that state variable definitions in-
clude such information as arrival rates, exceptional condition handling, data age
requirements, feedback information, etc. not shown here.

SpecTRM-RL requires all state variables that describe the process state to
include an unknown value. This value is the default value upon startup or upon
specific mode transitions (for example, after temporary shutdown of the com-
puter). This feature is used to ensure consistency between the computer model
of the process state and the real process state by forcing resynchronization of
the model with the outside world after an interruption of processing. Many acci-
dents have been caused by the assumption that the process state does not change

State

L olae |
Supervisory-Interface

> Pilot-Displays
> Resolution-Advisory

s Vertical-Control

DEFINITION

= Blank

INITIALLY

= Other

Some RA-Strengtl ,,, in state Increase-2500fpm
SomeReversal,,, in state Reversed
Composite-RA ,,, in state Climb
Composite-RA ., in state Descend
Corrective-Climb ., in state Yes
Corrective-Descend,, in state Yes
Crossing-Geometfy,q,

= Increase

Some RA-Strength ., in state Increase-2500fpm
Climb-Inhibit_,,, in mode Inhibited
Descend-Inhibjt,,. in mode Inhibited

=Crossing
SomeReversal,g, in state Reversed
Composite-RA . in state Climb

Composite-RA ., in state Descend

Some RA-Strengtl) ,, in state Increase-2500fpm
Corrective-Climp ., in state Yes
Corrective-Descend,, in state Yes
Crossing-Geometfy,qo

= Maintain
Composite-RA ., in state Climb
Some RA-Strength ., in state Increase-2500fpm
Composite-RA ., in state Descend
Corrective-Climi ., in state Yes
Corrective-Descend,, in state Yes

= Reversal
SomeReversal,g, in state Reversed
Composite-RA . in state Climb
Composite-RA ., in state Descend
Corrective-Climp ., in state Yes

Corrective-Descend,, in state Yes

Fig. 8. Example of SpecTRM-RL state variable specification

IR

17

18

while the computer is not processing inputs or by incorrect assumptions about
the initial value of state variables.

Unknown is used for state variables in the supervisory interface model only
if the state of the display can change independently of the software. Otherwise,
such variables must specify an initial value (e.g., blank, zero, etc.) that should
be sent when the computer is restarted.

In the example shown, vertical control is a state variable in the supervisory
interface model and is one of the pieces of information displayed to the pilot as
part of an RA (Resolution Advisory, which is the escape maneuver the pilot is
to implement to avoid the intruder aircraft). Vertical control can have the values
Unknown, Other, Increase, Crossing, Maintain, or Reversal. AND/OR tables are
used to specify which of these values is displayed to the pilot (given the current
state of the aircraft model and the intruder aircraft being avoided). For example,
Maintain is displayed if the Composite-RA state variable is in state “Climb”,
there is no RA-Strength in state “Increase-2500fpm”, and Corrective-Climb and
Corrective-Descend are both not in state “yes” or Maintain is displayed if there
is no RA-Strength in state Increase-2500fpm, Composite RA is in state Descend,
and again both Corrective-Climb and Corrective-Descend are not in state “yes.”
Timing constraints may also be specified as conditions in the tables (i.e., condi-
tions on the state transitions) but are not required in this example.

State Transition Specification. As with all state-machine models, transitions
in the three parts of a SpecTRM-RL model are governed by external events and
the current state of the modeled system. In SpecTRM-RL, the conditions under
which transitions are taken are specified separately from the graphical depiction
of the state machine. We have found that the behavior of real systems is too
complex to write on a line between two boxes. Instead, we again use AND/OR
tables. Figure 9 shows an example specification for a transition.

Macros and Functions. Macros are simply named pieces of AND/OR ta-
bles that can be referenced from within another table. For example, the macro
in Figure 10 is used in the definition of the variable Vertical-Control in Fig-
ure 8. The macros, for the most part, correspond to typical abstractions used
by application experts in describing the requirements and therefore add to the
understandability of the specification. In addition, the abstraction is necessary
to handle the complexity of guarding conditions in larger systems and we found
this a convenient abstraction to allow hierarchical review and understanding of
the specification. Also, rather than including complex mathematical functions
directly in the transition tables, functions are specified separately and referenced
in the tables. For instance, Own-Tracked-Alt in Figure 9 is a function reference.

The macros and function, as well as the concept of parallel state machines, not
only help structure a model for readability; they also help us organize models to
enable specification reuse. Conditions commonly used in the application domain
can be captured in macros and common functions, such as tracking, can be
captured in reusable functions. In addition, the parallel state machines allow

Mode

L Mode |
Own-Aircraft-Operating-Modes

~ | Climb
Inhibit
Inhibited Not Unknown
Inhibited
DEFINITION
INITIALLY — Unknown

Unknown, Not-Inhibited —>Inhibited

Composite-RA ., in state No-RA

Altitude-Climb-Inhibit_,., = True

Own-Tracked-Alt,,, > Aircraft-Altitude-Limit,_,.,

Config-Climb-Inhibit_,., = True

Unknown, Inhibited —>Not-Inhibited

Composite-RA ., in state No-RA

Altitude-Climb-Inhibit,_,., = True

Own-Tracked-Alt,,, > Aircraft-Altitude-Limit, .,

Config-Climb-Inhibi{,_,., = True

Fig. 9. Example of SpecTRM-RL mode or state transition specification

7]
T
T

7]
F

F

7]

F
E

20

the internal model of each system component (discussed in Section 3) and the
different system modes to be captured as separate and parallel state machines.
This helps to accommodate reuse of internal models and operational modes, and
helps us plan for product families (research goal 4 in the introduction). Naturally,
to accomplish reuse, care has to be taken when creating the original model to
determine what parts are likely to change and to modularize these parts so that
substitutions can be easily made. This structuring, however, is beyond the scope
of the current paper.

™ Macro |
Macro

Crossing-Geometry

DEFINITION
Some Crossing 4, in state Int-Cross -
Some Crossing ,, in state Own-Cross .

Fig. 10. Example of SpecTRM-RL macro specification

4 Eliminating Internal Broadcast Events

A third goal for SpecTRM-RL was to eliminate error-prone constructs. Dur-
ing the independent verification and validation (IV&V) of TCAS II, problems
with internal broadcast events (used to synchronize parallel state machines in
Statecharts and RSML) accounted for a clear majority of the errors related to
the syntax and semantics of RSML. Common and difficult to resolve problems
involved proper synchronization of mutually interdependent state machines. In
addition, getting the state machines to correctly model system startup behav-
ior proved to be surprisingly difficult. Internally generated events seem to cause
“accidental complexity” in the specification that is not necessarily present in the
problem being specified.

These problems were not just the most common language-related problems in
the initial specification, they were also the problems that lingered unresolved (or
incompletely resolved) through several cycles of corrections and repeated IV&V.
Note that the problems related to synchronization were not directly caused by
misunderstandings of the RSML event/action semantics; the event/action mech-
anism is quite simple and purposely selected to be intuitive [9]. Instead, the prob-
lems were caused by the complexity of the model and the inherent difficulty of
comprehending the causal relationships between parallel state machines. Thus,
this difficulty is not unique to RSML, it is fundamentally difficult to understand
parallelism and synchronization. Other state-based languages such as Statecharts

21

[1] and the UML behavioral (state machine) models that use event/action se-
mantics are likely to encounter the same problem when used to model complex
systems. When we eliminated internal events, we were surprised at how much
easier it was to rewrite our old specifications (such as TCAS II) and to create
new ones.

The trigger events and actions on the transitions in Statecharts and RSML
are used for two purposes. First, they are used to sequence and synchronize
state machines so the next state relation is computed correctly. For instance,
to determine if an intruding aircraft is a collision threat in TCAS II, we must
first determine how close the intruder is and how close the intruder is allowed to
come before it is considered a threat. Thus, the state variables determining the
intruder status and the sensitivity level of TCAS II must be evaluated before we
determine advisory-status. This is a straightforward (but as mentioned above,
error prone) use of events and actions.

Second, events and actions may be employed to use, in essence, the state
machines as a programming language. The events can be used to create loops
and counters, and events can be implicitly assigned semantic meaning and used
for purposes other than synchronization. In our experience we have found this
freedom of using the events a trap that invites the introduction of design details
in the specification. During the development of the TCAS II model we had to
repeatedly remind ourselves to use events prudently; we have found that even
experienced users of such modeling languages inevitably fall into the trap of
using events and actions to introduce too much design in the models.

To solve this problem in SpecTRM-RL, we simply decided not to use internal
events and instead to rely on the data dependencies in the model to determine
the order in which transitions are taken, i.e., the ordering, if critical, is explicitly
included in the model as opposed to being built into the semantics of the mod-
eling language. In this way, the reviewer need not rely on knowledge about the
semantics of the modeling language to determine if the model correctly matches
the intended functional behavior—that behavior (which state transitions follow
which) is explicitly specified in the constructed model. A similar argument holds
for the modeler. We found that different reviewers of our TCAS specification
were assigning differing semantics to the state transition ordering. In the ex-
ample above, the transitions in the state machine advisory status refer to the
states of intruder status and sensitivity level; thus, intruder status and sensitiv-
ity level will be evaluated before advisory status. This sequencing will assure a
correct evaluation of the next state relation based on the data dependencies of
the transitions and variables. The next state function is recomputed every time
the environment changes an input variable. Naturally, a SpecTRM-RL specifica-
tion cannot include any cycles in the data dependencies. Cycles in a specification
can be easily detected by our tools.

In Statecharts and RSML, a transition is not taken until an explicit event is
generated. When the transition is taken, additional events may be generated as
actions. In this way, the events propagate through the state machine triggering
transitions. In our formalization of the semantics of RSML [2] we view each

22

transition as a simple function mapping one state to the next. The events and
actions on the transitions are used to determine in which order we shall use these
functions to compute the next state. We define the new semantics of SpecTRM-
RL in essentially the same way as for RSML. The only difference is how we
determine in which order to apply the functions representing transitions. We
now rely entirely on the data dependencies between the transitions to determine
a partial order that is used during the computation of the next state relation.
The semantics of SpecTRM-RL have been defined formally, but this definition
is not included for space reasons.

5 Conclusions

In this paper, we described some lessons learned during experimentation with a
formal specification language (RSML) and how we have used what we learned
to drive further research. We showed how a formal modeling language can be
designed to assist system understanding and the requirements modeling effort.
We achieve this by grounding the design of the language in the domain for
which it is intended (process control) and how people actually think about and
conceptualize complex systems.

We have applied these principles to the design of a new experimental lan-
guage called SpecTRM-RL. As mentioned above, SpecTRM-RL evolved from
our previous experiences with using RSML to specify large and complex systems.
In particular, we addressed the problems associated with inclusion of excessive
design in the blackbox specification and internal broadcast events. Qur expe-
rience thus far indicates that the new language design principles introduced in
SpecTRM-RL greatly enhance the usability of a formal notation.

References

1. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, pages 231-274, 1987.

2. Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency in
hierarchical state-base requirements. IEEE Transactions on Software Engineering,
pages 363-377, June 1996.

3. C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency checking
of requirements specifications. ACM Transactions of Software Engineering and
Methodology, 5(3):231-261, July 1996.

4. K.L. Heninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Transactions on Software Engineering, 6(1):2—
13, Januaray 1980.

5. Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation
interfaces. Human—Computer Interaction, 1:311-338, 1985.

6. Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E. Mel-
hart. Software requirements analysis for real-time process-control systems. IEEE
Transactions on Software Engineering, 17(3):241-258, March 1991.

10.

11.

12.

13.

14.

23

D.J. Keenan and M.P.E. Heimdahl. Code generation from hierarchical state ma-
chines. In Proceedings of the International Symposium on Requirements Engineer-
ing, 1997.

N.G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 1995.
N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements spec-
ification for process-control systems. IEEE Transactions on Software Engineering,
pages 684-706, September 1994.

N.G. Leveson, J.D. Reese, S. Koga, L.D. Pinnel, and S.D. Sandys. Analyzing re-
quirements specifications for mode confusion errors. In Proceedings of the Workshop
on Human Error and System Development, 1997.

E.I. Lowe. Computer Control in Process Industries. Peregrinus, 1971.

Robyn R. Lutz. Targeting safety related errors during software requirements anal-
ysis. Journal of Systems Software, 34(3):223-230, September 1996.

David L. Parnas. Tabular representations of relations. Technical Report CLR
report No. 260, McMaster University, Hamilton, Ontario, October 1992.

David L. Parnas and Jan Madey. Functional documentation for computer sys-
tems engineering (volume 2). Technical Report CRL 237, McMaster University,
Hamilton, Ontario, September 1991.

