SpecTRM: A CAD System for Digital Automation

Nancy G. Leveson, MIT
Jon Damon Reese, Safeware Engineering Corp.
Mats P.E. Heimdahl, Univ. of Minnesota

In the system engineering of complex systems that
include digital automation, the most vexing and poten-
tially costly problems arise in the early stages of devel-
opment. Few adequate tools exist to assist in developing
system requirements and architectures and translating
the system requirements to software requirements. Se-
rious unsolved problems also exist at the other end of
the lifecycle in changing or upgrading automated con-
trol tasks without introducing errors. In addition, these
two system development phases present the most seri-
ous and unsolved problems in certification and hazard
analysis.

SpecTRM-RL (Specification Tools and Requirements
Methodology) is a CAD system for digital automation.
It is not intended to replace engineers, but instead to use
the latest in research ideas to assist engineers in man-
aging the requirements, design, and evolution process.
SpecTRM emphasizes:

¢ Finding errors early in development so they can be
fixed with the lowest cost and impact on the system
design.

e Tracing not only requirements but design rationale
(including safety constraints) throughout the sys-
tem design and documentation.

¢ Building required system properties into the design
from the beginning rather than emphasizing assess-
ment at the end of the development process when
effective response is limited and costly.

e Supporting the construction of families of related
systems and the reuse of the early parts of the sys-
tem development process.

Complex systems cannot be built successfully with-
out the interaction of multiple disciplines—the most
challenging systems include electromechanical compo-
nents, computers, and humans. While we train en-
gineers to be experts in individual fields, these com-
plex heterogenerous systems require knowledge across
engineering disciplines. = The introduction of inte-
grated product teams or other approaches to organiz-
ing projects so specialists work together have helped to

some degree, but the problem goes deeper than simply
management structures. SpecTRM attempts to provide
bridges between diverse groups of system designers and
builders. It does this by providing modeling, specifica-
tion, and analysis tools (1) to ease communication and
coordinated design of components and interfaces and (2)
to provide seamless transitions and mappings between
the various development and maintenance stages.

SpecTRM was designed to act as a workbench for
teams of engineers to enhance communication by us-
ing common models and analysis tools that execute on
the models (see Figure 1). At the heart of the system
development process using SpecTRM is an executable
model of the system components. QOur modeling lan-
guage (SpecTRM-RL) emphasizes readability and re-
quires little training. At the same time, it has a formal
foundation, which allows formal analysis on the models
built. In addition, visualization tools are used to assist
in understanding the models and to provide the most
appropriate views of the system for the task being per-
formed. Visualization tools are also included to provide
animations of the output of the model as it executes.

Tools are also included to generate or assist in gener-
ating various types of analyses such as fault trees, haz-
ard analysis, human error analyses, robustness analysis,
and consistency and completeness analysis. We plan to
add tools for timing analysis, reliability analysis, test
data generation, blackbox test coverage analysis, and
code generation. A safety information system is in-
cluded to assist in maintaining hazard logs and audit
trails. But instead of being separate from the develop-
ment process, hazard and safety information is tightly
integrated into the environment in which safety-related
decisions are made.

SpecTRM is written entirely in Java and is sup-
ported on most Windows, Macintosh, and UNIX plat-
forms. The architecture is based on a client-server
paradigm where the client side can be launched from
Java-enabled Web browsers or as a stand-alone, thus
supporting both individual and shared use of SpecTRM
design and development artifacts (such as specifications,
models, safety information system contents, and mod-



Model Execution

and
_ _ Visualization

Operational Analysis Completeness and

¢ Changes Consistency Analysis

e Incidents/Accidents

e Audits

Specifications and Models \, Saféty Analysis
Automation e Hazard Analysis

Verification AT T8 e SMHA (backward search)

HCI
e Test Data Generation

e Test Coverage

e Software Fault
Tree Analysis

Safety Information System

e Software Deviation Analysis
e Operator Task Analysis

¢ Mode Confusion Analysis

Code Generation

Figure 1: The SpecTRM Systems Engineering Workbench for Digital Systems

eling results). SpecTRM supports revision control, en-
cryption, and access control.

SpecTRM is an example of technology transfer from
the university to industry. Safeware Engineering Cor-
poration is building commercial quality tools to support
SpecTRM and will also act as a conduit from university
research to continually upgrade the SpecTRM CAD sys-
tem with additional tools and analysis capabilities as
they are invented. Parts of SpecTRM have been used
experimentally on real systems including a flight man-
agement system and TCAS II. NASA has contracted to
use this methodology in the safety assessment of the up-
grades they are building for the U.S. Air Traffic Control
System.

The rest of this paper describes some of the unique
features of SpecTRM that differentiate it from other
system engineering tools and environments.

1 Intent Specifications

Many of the goals stated above are achieved through
our unique specification methodology. Intent specifi-
cations are a new way of structuring system specifica-
tions that is based on research in the fundamental prin-
ciples of problem-solving and abstraction that humans

use to make complex tasks intellectually manageable.
The problems in performing system engineering and
software engineering activities are rooted in complex-
ity and intellectual manageability. Psychologists have
found that complexity itself is not a problem if humans
are presented with meaningful information in a coher-
ent, structured context. “People don’t mind dealing
with complexity if they have some way of controlling
or handling it ...if a person is allowed to structure a
complex situation according to his perceptual and con-
ceptual needs” [New66).

One approach found to be effective in dealing with
complexity is the use of hierarchical abstraction—that
is, structuring the situation such that the problem solver
can transfer the problem to a different level of abstrac-
tion. Most specifications use decomposition and refine-
ment to provide hierarchical abstraction, where each
level of the usual specification can be thought of as pro-
viding “what” information while the next lower level
describes “how.” Intent specifications add a type of hi-
erarchical abstraction based on goals or purpose and
thus organize the levels of the specification not only in
terms of what and how but also in terms of “why.” By
organizing the specification in this way, higher-level pur-
pose or intent for design decisions can be immediately
determined.



Systems and software are continually changing and
evolving; they must be designed to be changeable and
the specifications must support evolution without com-
promising the confidence in the properties that were ini-
tially verified. One requirement for correct and safe sys-
tem evolution is knowing the rationale behind a design.
Unfortunately, the reasons why something was done a
certain way are often not recorded. Maintainers of a
system may not know why a particular design feature
was included and inadvertently remove it while making
a change. Recording all the design rationale is difficult
and may not be effective if the necessary information is
difficult to find when a change is made. Intent specifi-
cations record and link the rationale behind design de-
cisions (“why” information) directly in the system spec-
ification so that it is easy to find and use.

System and software specifications in SpecTRM are
organized along three abstraction dimensions: intent,
refinement, and decomposition (see Figure 2). The ver-
tical dimension specifies the level of intent at which the
problem is being considered, i.e., the language or model
that is currently being used. The decomposition and
refinement dimensions allow users to change their focus
of attention to more or less detailed views within each
level or model. The information at each level is fully
linked to related information at the levels above and
below it.

The intent dimension has five levels of abstraction.
The highest level of the specification contains the over-
all goals and safety constraints. Some of the informa-
tion here is generated through the preliminary hazard
analysis process.

The next lower level contains the underlying scien-
tific principles upon which the design at the lower levels
is based and through which the goals and constraints
at the highest level are satisfied. Models and speci-
fications at this level may be subjected to operations
research and other types of system analyses to evaluate
alternative designs (such as various aircraft spacing and
routing alternatives for an ATC system) with respect to
the higher-level goals and constraints. The third level
contains a blackbox functional behavior model of the
system components. These models are executable and
formally analyzable. The fourth and fifth levels contain
design and implementation information.

Because each level is mapped to the appropriate parts
of the intent levels above and below it, traceability of
not only requirements but also design rationale and de-
sign decisions is provided from high-level system goals
and constraints down to code (or physical form if the
function is implemented in hardware) and vice versa.

Each level of an intent specification supports a differ-

ent type of reasoning about the system and represents
a different model of the same system. The model at
each level is described in terms of a different set of at-
tributes or language. Level 1 (System Purpose) assists
system engineers in their reasoning about system-level
properties such as goals, constraints, hazards, priorities,
and tradeoffs. The second level allows engineers to rea-
son about the system in terms of the physical principles
and laws upon which the design is based. The third
level enhances reasoning about the logical design of the
system as a whole and the interactions between compo-
nents as well as the functional state without being dis-
tracted by implementation issues. The lowest two levels
provide the information necessary to reason about in-
dividual component design and implementation issues.
The mappings between levels provide the relational in-
formation that allows reasoning across the hierarchical
levels and tracing from high-level requirements down to
implementation and vice versa.

The intent information represents the design ratio-
nale upon which the specification is based and thus de-
sign rationale is integrated directly into the specifica-
tion. Each level also contains information about under-
lying assumptions upon which the design and validation
is based. Assumptions are especially important during
analysis of operations, such as safety audits. When con-
ditions change such that the assumptions are no longer
true, then a new safety analysis should be triggered.

Because the separation of human factors and the de-
sign of the human-computer interface from the main
system and component design can lead to serious de-
ficiencies in each, we have attempted to integrate both
types of specifications at each level and across levels. In-
terface specifications and specifications of important as-
pects of the system environment are also integrated into
the intent specification. Finally, each level of the intent
specification includes a specification of the requirements
for and results of the verification and validation activi-
ties at each level.

2 Safety Information System

Setting up a comprehensive and usable safety informa-
tion system can be time consuming and costly, but such
a system is crucial to the success of safety efforts and
resources invested in it are well spent. Studies of or-
ganizations and accidents have shown that an effective
safety information system ranks second only to top man-
agement concern about safety in discriminating between
safe and unsafe companies matched on other variables
[Kje87, Lev95].

Control of any activity requires information—a cru-



Decomposition

Refinemey

Environment

Operator

System Components

System
Purpose

System
Principles

Intent
Blackbox

Behavior

Design
Representation

Code
(Physical
Representation)

Figure 2: The form of a SpecTRM-RL specification.

cial aspect of any management system is the feedback
of information on which to base decisions. Information
can be used to describe, to diagnose, to compare, to
evaluate, and to improve. For example, a safety infor-
mation system can provide information necessary (1) to
identify and control hazards and to improve designs and
standards, (2) to evaluate the effectiveness of proposed
or implemented safety controls, (3) to evaluate the im-
plications of suggested changes for their safety impact,
(4) to compare models and risk assessments with actual
behavior, and (5) to detect trends and deviations that
presage an accident.

Documenting and tracking hazards and their reso-
lution are basic requirements for any effective safety
program. A complete hazard log and audit trail will
show what was done and how and why safety decisions
were made during system development, operational use,
maintenance and evolution. The safety information sys-
tem should also contain the most recent update of the
System Safety Program Plan and the status of all the
activities included in the plan, results of hazard anal-
yses, incident and accident information including cor-
rective action, trend analysis data, etc. Interfaces with
various project databases, such as system and software
configuration and control, should be well defined.

One of the most difficult aspects of maintaining a

safety information system is dissemination of informa-
tion in a useful form. If information is not presented to
decision makers in a meaningful way, use of and learn-
ing from the data is inhibited. The information needs
to be presented in a form that people can learn from,
apply to their daily jobs, and use throughout the life
cycle of projects. Also, the method of presenting the
data should be adaptable to the cognitive styles and
models of the users. SpecTRM tightly integrates the
safety information system into the process and engineer-
ing environment in which safety-related decisions are
made. The support provided for complete traceability
from hazard analysis to design and implementation is
valuable in both designing safety into the system and
ensuring that safety is not compromised during opera-
tional use and system evolution.

3 Modeling Language

Building models is not easy and will (and should) only
be done if there is enough payoff from the process. We
believe that formal modeling can provide the most assis-
tance at the system design phase where functionality is
allocated to individual components. It is at this phase
where tools are most needed to assist in design vali-



dation and tradeoff decisions. Models of the allocated
component behavior can be executed and both formally
and informally analyzed to ensure that required system
functionality has been incorporated, the system design
and architecture exhibits various desirable properties
such as fault tolerance and safety, human—machine in-
teractions have been appropriately designed, and trade-
offs between conflicting goals are resolved adequately.
The formal modeling language in SpecTRM, called
SpecTRM-RL (SpecTRM Requirements Language) is
specifically designed to assist at this phase of system
development. It is used in Level-3 of an Intent Specifi-
cation.

SpecTRM-RL reflects lessons we learned from our use
of an earlier language, called RSML, that we designed
for the FAA to specify the requirements for TCAS I, an
aircraft collision avoidance system!. Like many of the
currently popular specification languages, SpecTRM-
RL uses a state machine as its underlying formal model.
And like those languages, SpecTRM-RL is executable
and has an associated suite of visualization and analy-
sis tools. However, SpecTRM-RL is unique in several
ways.

The first is the way that SpecTRM-RL deals with
complexity. The complexity of our new systems is
starting to overwhelm our current tools and cognitive
capabilities. Engineers are attempting to build sys-
tems where the interactions between components cannot
be thoroughly planned, understood, anticipated, and
guarded against. Digital automation is exacerbating
the problems by allowing greater levels of coupling with
more integrated, multi-loop control and large numbers
of dynamically interacting components. Besides allow-
ing and sometimes encouraging new levels of complex-
ity, computers introduce new types of failures modes
not handled well by traditional approaches to designing
for reliability and safety. In addition, computers intro-
duce new types of problems in the interactions between
components, including the interaction between humans
and automation. Increased complexity and coupling is
making it difficult for the designers to consider all the
potential system states or for operators to handle all
normal and abnormal situations and disturbances safely
and effectively.

SpecTRM-RL has been designed to assist with in-
tellectual manageability, both in terms of the difficulty
inherent in building models of complex systems and in
the design and engineering of complex systems them-
selves. Models are completely blackbox, that is, they
describe component behavior only in terms of outputs

L Another paper at this conference describes those lessons
learned.

and the inputs that stimulate or trigger those outputs:
The model does not include any information about the
internal design of the components themselves, only their
externally visible behavior. The overall system behav-
ior is described by the combined behavior of the com-
ponents, and the system design is modeled in terms of
these component behavior models and the interactions
and interfaces between the components.

Blackbox modeling allows separation of concerns so
that the review and analysis of the specified blackbox
functional behavior of a system component can be sepa-
rated from the review and analysis of the internal design
and implementation of the component. We believe that
black box functional specifications are closer to the men-
tal model of the engineer evaluating the system archi-
tecture than specifications that are complicated by the
addition of internal component design decisions. Read-
ability and reviewability will be enhanced by using lan-
guages that allow building models that are semantically
close to the reviewer’s mental model of the system. That
is, the semantic distance between the model in the ex-
pert’s mind and the specification model should be min-
imized. Using blackbox models reduces this distance
compared to models that also include component de-
sign information.

SpecTRM-RL has been tailored to support the spec-
ification of requirements for reactive and, in particu-
lar, control systems. For example, the language sup-
ports specifying complex systems in terms of opera-
tional modes. Modes are abstractions that allow cat-
egorizing classes of system behaviors and therefore en-
hance the understanding of complex system behavior.
However, the mode structure itself can become com-
plex and some mode-related behavior of automated sys-
tems can lead to mode confusion on the part of users.
By including the specification of component behavior in
terms of modes, SpecTRM-RL encourages the design of
simplified mode structures and also allows mode-related
analyses, such as mode confusion analysis (see below).

In our experience using a state-machine modeling
language (such as RSML) for modeling the TCAS II
system requirements, we found that some features of
these languages are error-prone. For example, the se-
mantics of internally broadcast events were difficult for
reviewers to understand and led to different interpre-
tations of specified behavior by different readers of the
models. SpecTRM-RL substitutes less ambiguous and
complex modeling facilities. The semantically complex
features of general-purpose modeling languages are not
needed when building blackbox models only.

In specifying the TCAS II system requirements, we
also learned a lot about readability and understandabil-



ity of formal models—our specification was reviewed by
a large number of people having varied backgrounds
and knowledge, such as computer scientists, aeronauti-
cal engineers, and pilots. Ideally, specification languages
should be both formally analyzable and readable with-
out graduate-level mathematical training.

Readability is critical. While automated tools are
helpful and may even be necessary to analyze some as-
pects of large and complex models, our experience in
using these models for industrial projects is that the
most important errors will be found by expert (human)
review. The analysis tools we build and the mathemat-
ical theories upon which they are based cannot possi-
bly incorporate all the domain-specific knowledge (e.g.,
for TCAS this knowledge includes FAA rules and pro-
cedures, basic aeronautical engineering, human factors
and cognitive psychology) required to find subtle safety-
critical flaws in a complex system design.

On the other hand, the complexity of these sys-
tems leads to the need to use formal models and auto-
mated assistance to support human navigation and un-
derstanding of the models and system specifications and
to perform automated analysis where possible. Note,
however, that any potential design flaws found by auto-
mated tools will need to be evaluated by humans. Thus
readability and understandability of the models is a re-
quirement for human processing of the mathematical
analysis results.

We solve this dilemma in SpecTRM-RL by provid-
ing both a readable specification language we believe is
semantically close to a designer’s mental model of the
system as well as a formal modeling language that un-
derlies the more readable specification language. The
automated analysis tools are based on the underlying
formal model. In SpecTRM-RL, this formal model is
called the Requirements State Machine (RSM), which
is a form of Mealy automaton. Only the most intu-
itive aspects of this formal model need be understood by
readers or even builders of SpecTRM-RL specifications,
and these features can be described in a few minutes.

Flawed understanding of requirements is a major
cause of software-related accidents. Incomplete speci-
fications play a significant role in these misunderstand-
ings. Previously, we defined a set of criteria describing
what is needed for a specification of a process-control
system to be sufficiently complete with respect to safety.
Some of these criteria are derived from mathematical as-
pects of the formal model underlying the specification
language. Others are related to lessons learned from
accidents and incidents. Many are related to human-
computer interaction. A few of the criteria, namely
those related to mathematical completeness, can be

checked by our automated tools (and such checking for
mathematical completeness is provided for most com-
mercial and research modeling languages). Our other
criteria, many of which are derived from basic con-
trol engineering concepts or from experience, have been
used primarily in checklist form in industry. In design-
ing SpecTRM-RL, we included many of the required
features in the language syntax so they can either be
checked by a parser or can easily be checked manually.

4 Analysis Tools

SpecTRM includes a suite of tools (Figure 1) that (1)
assist in building, using, and maintaining the specifi-
cations and models, (2) perform various types of auto-
mated analysis on SpecTRM-RL models, and (3) per-
form or assist in performing various system development
activities.

The intent specification editor is used to create,
change, and use intent specifications. Tools also assist in
building SpecTRM-RL models and visualizations. We
are planning to include facilities to provide the analyst
with various views of the models, both during model
development (design) and evaluation (execution).

The consistency and completeness tool can be used
to identify some types of incompleteness (specifically,
mathematical completeness) and nondeterminism in
SpecTRM-RL models. The tool detects all conditions
for which no behavior has been specified and identifies
parts of the model with inconsistent and nondeterminis-
tic behavior (different behaviors under the same condi-
tions). The specification can be analyzed in small pieces
and need not be finished, which means the requirements
model can be analyzed incrementally as it is being con-
structed.

A set of safety analysis tools are also provided for re-
quirements and hazard analysis. These tools include
support for backward analysis (starting from a haz-
ardous state and identifying predecessor states to de-
termine how and if the hazard can be reached), for-
ward robustness analysis (to evaluate the operation of
the software in an imperfect environment), and some
forms of human task and mode confusion analysis (to
identify features of the required software behavior that
may lead to critical human errors). Additional analy-
sis tools are planned but will not be part of the initial
release of the tool set.

Finally, SpecTRM will include tools to assist in later
phases of the system and software engineering process
including (1) verification (test data generation from the
SpecTRM-RL models, blackbox test coverage analysis,
and software fault tree analysis), (2) code generation,



and (3) operational analysis (e.g., tracing the effect of
proposed changes on safety).

5 Summary

SpecTRM is a system engineering environment to sup-
port modeling and analysis during requirements gener-
ation; functional decomposition and tradeoff analysis;
subsystem specification, implementation, and verifica-
tion; and system maintenance and evolution. A general
goal is to build bridges among disciplines by providing
integrated specifications and modeling tools that can be
used by system engineers, software engineers, hardware
engineers, and human factors experts. We also hope to
provide seamless transitions and mappings between the
various system development and maintenance stages.

Because many automated real-time systems have
safety-critical aspects, SpecTRM provides support for
hazard analysis and building safety into the design. The
safety information and activities on a project are inte-
grated into the development and decision making envi-
ronment.

Beta testing of the basic components of SpecTRM
will begin in Fall 1998. The first full release of the tool
set is planned for June 1999.

References

[Kje87] U. Kjellan. Deviations and Feedback control
of accidents. in J. Rasmussen, K. Duncan, and
J. Leplat (eds.), New Technology and Human
Error, pages 143-156, John Wiley & Sonds,
New York, 1987.

[Lev95] N.G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley Publishing Com-
pany, 1995.

[New66] J.R. Newman. Extensions of Human Capabil-
ity Through Information Processing and Dis-
play Systems. Technical Report SP-2560, Sys-
tem Development Corporation, 1966.



