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1 Preface

This manual provides instructions for writing Intent Specifications, including an in-
formal description of the SpecTRM-RL language and hints on creating SpecTRM-RL
models. Several examples of intent specifications exist and can be found on either the
Safeware Engineering website (www.safeware-eng.com) or on sunnyday.mit.edu/SpecTRM.
The most current small example is of an altitude switch. We also have most of an in-

tent specification for TCAS-II, but note that the design of SpecTRM-RL has changed

in minor ways since the TCAS example was created. Example specifications of air
traffic control software, the mobility and positioning software for a robot, an un-
manned autonomous helicopter, and some spacecraft control software are in various
stages of preparation and will appear on the websites when completed.

Intent specifications are based on fundamental ideas in system theory and cog-
nitive engineering!. The goal is not simply to record information but to provide
specifications that support human problem-solving and the tasks that humans must
perform in software development and evolution. A paper describing intent specifica-
tions and the rationale behind their design can also be found on the web sites cited
above (it is in the queue to be published in IEEE Trans. on Software Engineering).

2 Overview

An intent specification differs from a standard specification primarily in its structure:
Hierarchical abstraction is based on intent (“why”) rather than simply the more
usual what and how. Because each level is mapped to the appropriate parts of the
intent levels above and below it, traceability of design rationale and design decisions
is provided from high-level system requirements and constraints down to code (or
physical form if the function is implemented in hardware) and vice versa. One of
the goals of intent specifications is to include safety information within the system
specification or at least links to the safety database. To be used in decision making,
safety analysis information must be available to the system and specialist engineers
when they are making design decisions and in a form that they can use.

There are five levels in an intent specification, each level supporting a different
type of reasoning about the system. The information at each level includes emergent
information about the level below and represents a different model of the same system.
Each level is not simply a refinement (which is done within each level) but describes
the system in terms of a different set of attributes or language. Figure 1 shows the
overall structure.

L Cognitive engineering is a term that has come to denote the combination of ideas from systems
engineering, cognitive psychology, and human factors to cope with the challenges of building high-
tech systems composed of humans and machines. These challenges have necessitated augmenting
traditional human factors approaches to consider the cognitive capabilities and limitations of the
human element in complex systems.
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Figure 1: The structure of an intent specification.

The highest level of an intent specification assists system engineers in their reason-
ing about system-level properties such as goals, constraints, hazards, priorities, and
tradeoffs among them. The second level, System Design Principles, allows engineers
to reason about the system in terms of the physical principles and laws upon which
the design is based. The third or Blackbox Behavior level, enhances reasoning about
the logical design of the system as a whole and the interactions between the com-
ponents as well as the functional state without being distracted by implementation
issues. The lowest two levels provide the information necessary to reason about in-
dividual component design and implementation issues. The mappings between levels
provide the relational information that allows reasoning across the hierarchical levels
and tracing from high-level requirements down to implementation and vice versa.

The intent information represents the design rationale upon which the specification
is based and thus design rationale is integrated directly into the specification. Each
level also contains information about underlying assumptions upon which the design
and validation is based. Assumptions are used to explain a decision or to record
fundamental information on which the design is based.

Assumptions are especially important in safety analyses; operational safety de-
pends on the accuracy of the assumptions and models underlying the design and
hazard analysis processes. The operational system should be monitored to ensure
(1) that it is constructed, operated, and maintained in the manner assumed by the
designers, (2) that the models and assumptions used during initial decision making
and design were correct, and (3) that the models and assumptions are not violated
by changes to the system, including workarounds and unauthorized changes in proce-




dures, or by changes in the environment. Operational feedback on trends, incidents,
and accidents should trigger reanalysis when appropriate. Linking requirements, de-
sign features, and assumptions underlying them throughout the document with the
hazard analyses will assist in performing maintenance and evolution activities.

Assumptions underlying safety and other analyses may be (and usually are) in-
cluded in a safety analysis document (or at least should be), but are not usually traced
to the parts of the implementation they affect. Thus the system safety engineer may
know that a safety analysis assumption has changed (e.g., the pacemakers are now
being used on children rather than the adults for which the device was originally de-
signed and validated), but it is a very difficult and resource-intensive process to figure
out what parts of the design used that assumption unless traceability is maintained
to and within the system specification.

Each of the five intent levels is also organized in terms of the more common part-
whole abstractions, i.e., parallel decomposition and refinement. Each level contains
information about the environment, the operator and operational procedures, the
human-machine interface, and the system (and its components). Each level of an
intent specification also includes a specification of the requirements and results of
verification and validation activities of the information at That specification level.

The specification as a whole allows a seamless transition from system to component
(including software) specifications and the integration of formal and informal aspects
of system and software development. Because the structuring is based on what is
known about human problem solving, we believe that this type of specification will
enhance human processing and use of specifications and will also enhance our ability to
engineer for quality and to build evolvable and changeable systems without degrading
quality. The structure is designed to facilitate the tracing of system level requirements
and constraints into the design and the assurance of various system properties (such
as safety) in the initial design and implementation as well as reduce the costs of
implementing changes and reanalysis when the system is changed, as it inevitably
will be.

Although various types of tools might be used to create intent specifications, Safe-
ware Engineering Corp. has a set of tools that assist in creating intent specifications
as well as executing the executable parts of the specification and performing various
types of analysis. This tool set is still in early development but an alpha test version
including some basic functionality is currently in ”use” testing. Additional tools and
facilities will be added as they become available.

In the SpecTRM tool set, the first number or letter in a link tells you where it is
located (and what type of information is in it):

Number 1-5: Requirement on Levels 1 to 5, respectively

G: Goal (Level 1)

EA: Environmental Assumption (Level 1)

EC: Environment Constraint (Level 1)

OP: Operator behavioral requirement, assumption, or constraint (Level 1)
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L: System Limitation (Level 1)

C: Non-safety-related design constraint (Level 1)
SC: Safety-related design constraint (Level 1)
FTA-z: Line z of the Fault Tree Analysis

The rest of this manual describes the information to be found at each of the five
levels of an intent specification and the language at each level that is supported by
the SpecTRM tools. Note that although the levels of the intent specification roughly
correspond to the basic phases of the system engineering process, a pure ” waterfall”
model is not being implied. Every real process contains iteration and skipping around
among phases. But the final documentation should be organized around and reflect,
as Parnas has suggested, a "rational” design process. Such an organization will make
the documentation easier to understand. Most of the information included in an
intent specification is usually documented somewhere for any complex system; intent
specifications simply prescribe a structure that will make it easier to find and use the
information when needed for system engineering and software engineering tasks.

3 Level 1: System Purpose, Constraints, and Lim-
itations

The highest level of an intent specification contains the (1) system goals and re-
quirements, (2) system-level design constraints, (3) assumptions and limitations of
the system, (4) assumptions about the environment in which the component will op-
erate, and (5) results of analyses for system-level qualities such as preliminary and
system hazard analyses. Most of the information at this level is generated during the
conceptual design phase, but information will probably be added or changed during
later design phases. This level will be the starting place for those unfamiliar with the
system when trying to learn about it and to understand why it was designed the way
it was.

We recommend putting the following types of information on this level, although
not every category of information may be appropriate for every system and additional
categories of information may also be useful for some systems. Examples of most of
these sections can be found in our system specification for TCAS-II.

Introduction: A brief overview of the system for those who have no information
about it.

Historical Perspective: Relevant historical information about the development of
the system or of related systems (perhaps previous versions and why they are being
superceded).



Environment Description: The “givens” or environment in which the system
being specified will function including the components that already exist or at least
are not being designed as part of this system development. In TCAS, this section
includes descriptions of relevant properties of the Mode-S transponder and its con-
trol panel; altitude reporting data that will be sent to the TCAS unit (high-level
type information only, detailed physical descriptions are included in lower levels of
the specification); antennas; aircraft discretes read by TCAS; aircraft identification,
attitude, and heading information available to TCAS; the relation of TCAS warnings
to other aircraft alerts and warnings (e.g., the system priority for windshear, Ground
Proximity Warning System, and TCAS alerts, and the behavior expected of TCAS
when TCAS is inhibited by one of these alerts).

Environment Assumptions: The assumptions about how the environment in
which the system being designed will operate. The correct operation of the system as
well as the hazard analyses will be based on these assumptions. Examples for TCAS:
The other aircraft have operating transponders; all aircraft have legal identification
numbers; altitude information is available from intruding targets with a minimum
precision of 100 feet; threat aircraft will not make an abrupt maneuver that thwarts
the TCAS escape maneuver.

Environment Constraints: Constraints on the design of the environment to as-
sure correct behavior of the system being designed. For TCAS, for example, the
behavior or interaction of non-TCAS equipment with TCAS must not degrade the
performance of the TCAS equipment. Constraints on the environment are similar to
assumptions about the environment (and could be combined into one section), but
constraints reflect how the new system can be integrated into and operate within a
larger system while assumptions specify what assumptions the system being designed
is making about the environments within which it will operate. Any environment
assumptions or constraints linked to the hazard analysis may lead to restrictions on
the use of the system or to the need for system safety analyses to determine that the
requirements hold for any larger system in which the system being specified is used.

System Functional Goals: High-level goals for the system. Usually, in the early
stages of a project, goals are stated in very general terms. One of the first steps
in defining system requirements is to refine the goals into testable and achievable
high-level requirements (the assumption is made here that requirements must be
measurable and testable to be called a requirement). For TCAS, a high-level goal
is to [G1] Provide affordable and compatible collision avoidance system options for a
broad spectrum of National Airspace System users.

High-Level Requirements: Testable and achievable refinements of the system
functional goals. For G1 above, this might include a requirement to



1.1: Provide collision avoidance protection for any two aircraft closing horizontally
at any rate up to 1200 knots and vertically up to 10,000 feet per minute.

ASSUMPTION: Commercial aircraft can operate up to 600 knots and 5000
fom during vertical climb or controlled descent (and therefore two planes
can close horizontally up to 1200 knots and vertically up to 10,000 fpm).

As another example:

1.2: TCAS shall operate in enroute and terminal areas with traffic densities up to
0.3 aircraft per square nautical miles (i.e., 24 aircraft within 5 nmi).

AssuMPTION: Traffic density may increase to this level by 1990, and this
will be the maximum density over the next 20 years.

Design and Safety Constraints: Restrictions on how the system can achieve its
goals. For example, TCAS is not allowed to interfere with the ground-level air traffic
control system while it is trying to maintain adequate separation between aircraft.
Avoiding interference is not a goal or purpose of TCAS—the best way to achieve it is
not to build the system at all. It is instead a constraint on how the system can achieve
its goals, i.e., a constraint on the potential system designs. Because of the need to
evaluate and clarify tradeoffs among alternative designs, separating these two types
of intent information (goals, requirements, and design constraints) is important.

For safety-critical systems, constraints should be further separated into normal
and safety-related. Examples of non-safety constraints for TCAS-II are:

C1: The system must use the transponders routinely carried by aircraft for ground
ATC purposes.

C2: No deviations from current FAA policies and philosophies must be required.

Safety-related constraints should have two-way links to the system hazard log and
perhaps links to any analysis results that led to that constraint being identified. Haz-
ard analyses specified on this level are linked to Level 1 requirements and constraints
on this level, to design features on Level 2, and to system limitations (or accepted
risks). Links are created and maintained automatically by the Safeware tools.

Example TCAS safety constraints are:

SC1: The system must generate advisories that require as little deviation as possible
from ATC clearances.

SCbh: The system must not disrupt the pilot and ATC operations during critical phases
of flight nor disrupt aircraft operation.



SC5.1: The pilot of a TCAS-equipped aircraft must have the option to switch to
the Traffic-Advisory-Only mode where TAs are displayed but display of
resolution advisories is inhibited.

ASSUMPTION: This feature will be used during final approach to par-
allel runways, when two aircraft are projected to come close to each
other and TCAS would call for an evasive maneuver.

Note in SC5.1 how refinement occurs at the same level of the intent specification.
As stated earlier, the other intent specification levels are not refinements but rather
specify emergent (intent) properties about the level below and use different models
and languages (attributes).

System Limitations: Limitations may be related to the basic functional require-
ments, e.g.,

L1: TCAS does not currently indicate horizontal escape maneuvers and therefore
does not (and is not intended to) increase horizontal separation.

or to environment assumptions, e.g.,

L2: TCAS provides no protection against aircraft with nonoperational transponders.

L3: Aircraft performance limitations constrain the magnitude of the escape maneu-
ver that the flight crew can safely execute in response to a resolution advisory. It
15 possible for these limitations to preclude a successful resolution of the conflict.

L4: TCAS is dependent on the accuracy of the threat aircraft’s reported altitude.
Separation assurance may be degraded by errors in intruder pressure altitude as
reported by the transponder of the intruder aircraft.

AssuMPTION: This limitation holds for existing airspace, where many air-
craft use pressure altimeters rather than GPS. As more aircraft install GPS
systems with greater accuracy than current pressure altimeters, this limi-
tation will be reduced or eliminated.

Limitations often involved accepted risks, i.e., hazards that could not be com-
pletely eliminated, mitigated, reduced to an acceptable level, or in some other way
resolved satisfactorily, e.g.,

L5: TCAS will not issue an advisory if it is turned on or enabled to issue resolution
advisories in the middle of a conflict (—FTA-405).

2The pointer to FTA-405 denotes the box labelled 405 in the Level-1 fault tree



L6: If only one of two aircraft is TCAS equipped while the other has only ATCRBS
altitude-reporting capability, the assurance of safe separation may be reduced
(—FTA-290).

Finally, limitations may be related to problems encountered or tradeoffs made
during the system design process (recorded on lower levels of the intent specification).
For example, TCAS has a Level 1 performance monitoring requirement that led to
the inclusion of a self-test function in the system design to determine whether TCAS
is operating correctly. The following system limitation relates to this self-test facility:

L7: Use by the pilot of the self-test function in flight will inhibit TCAS operation for
up to 20 seconds depending upon the number of targets being tracked. The ATC
transponder will not function during some portion of the self-test sequence.

Limitations will commonly have links or pointers to operational procedures and
entries in user manuals. For example, L7 might be linked to a corresponding entry in
the Aircraft Flight Manual for TCAS-II.

Operator Requirements: Operator behavior assumptions, requirements, and con-
straints. This information is used in the design of the human-computer interface, the
system logic, operator tasks and procedures, operator documentation (e.g., aircraft
flight manuals), and training plans and programs. Example TCAS II operator re-
quirements are:

O1: After the threat is resolved, the pilot shall return promptly and smoothly to
his/her previously assigned flight path.

O2: The pilot must not maneuver on the basis of a Traffic Advisory only.

Explanations would normally be provided for the rationale underlying each of
these requirements as well as links to other parts of the system intent specification
related to these operator requirements.

Human-Interface Requirements: Requirements and constraints on the human-
computer interface (controls, displays, aural alerts).

Hazard and Other System Analyses: Analysis results for system-level (emer-
gent) properties such as safety or security. For the TCAS specification, a preliminary
hazard analysis (including fault-tree analysis) is included and linked to other sections
of this Level 1 specification such as the safety-critical design constraints, system lim-
itations, related system requirements, etc. and also to design decisions based on the
hazard analysis that appear in lower levels of the specification. Whenever changes
are made to the system (during development or during maintenance and evolution),



the safety of any proposed change needs to be evaluated. This process can be difficult
and expensive. By providing links throughout the levels of the intent specification, it
should be possible to assess whether a particular design decision or piece of code was
based on the hazard analysis or a safety-related design constraint before it is changed
and to determine whether the change will affect safety.

Level 1 Verification and Validation: FEach level contains information about re-
quired V&V procedures for the level as well as a record of the results. At this highest
conceptual level, the V&V activity might involve reviews by various groups.

4 Level 2: System Design Principles

The second level of the specification contains the basic system design and scientific
and engineering principles needed to achieve the behavior specified in the top level. It
answers the question “why” for the design decisions in the level below and describes
any basic principles or assumptions upon which the system design depends. It de-
scribes how the requirements above will be achieved and how the constraints will be
enforced. The horizontal dimension again allows abstraction and refinement of the
basic system design principles.

Information at this level may be specified using English or other types of engineer-
ing and mathematical notations such as differential equations. The information on
this level should be specified using notations familiar to and commonly used by engi-
neers. Assumptions and the rationale upon which the design features are predicated
is again included throughout the Level 2 specification.

For TCAS, this level includes such general principles as the basic tau concept,
which is related to all the high-level alerting goals and constraints:

2.1: Each TCAS-equipped aircraft is surrounded by a protected volume of airspace.
The boundaries of this volume are shaped by the tau and DMOD criteria.

2.1.1: TAU: In collision avoidance, time-to-go to the closest point of approach
(CPA) is more important than distance-to-go to the CPA. Tau is an ap-
proximation of the time in seconds to CPA. Tau equals 3600 times the slant
range in nmi, divided by the closing speed in knots.

2.1.2: DMOD: If the rate of closure is very low, a target could slip in very close
without crossing the tau boundaries and triggering an advisory. In order
to provide added protection against a possible maneuver or speed change

by either aircraft, the tau boundaries are modified (called DMOD). DMOD
varies depending on own aircraft’s altitude regime. See Table 2.

The principles are linked to the related higher level requirements, constraints,
assumptions, limitations, and hazard analysis as well as linked to lower-level system



design and documentation. As stated, assumptions used in the formulation of the
design principles should also be specified at this level. For example, the TCAS design
has a built-in bias against generating advisories that would result in the aircraft
crossing paths (called altitude crossing advisories).

2.36 A bias against altitude crossing RAs is also used in situations involving in-
truder level-offs at least 600 feet above or below the TCAS aircraft. In such a
situation, an altitude-crossing advisory is deferred if an intruder aircraft that is
projected to cross own aircraft’s altitude is more than 600 feet away vertically
(4 Alt_Separation_Test,, 351).

ASSUMPTION: In most cases, the intruder will begin a level-off maneuver
when it is more than 600 feet away and so should have a greatly reduced
vertical rate by the time it is within 200 feet of its altitude clearance (thereby
either not requiring an RA if it levels off more than ZTHR® feet away or
requiring a non-crossing advisory for level-offs bequn after ZTHR is crossed
but before the 600 foot threshold is reached).

The example above would include a pointer down to the part of the black box
behavior specification on Level 3 (Alt_Separation_Test) that embodies the design
principle.

As another example of the type of links that may be found between Level 2
and the levels above and below it, consider the following. TCAS II advisories may
need to be inhibited because of an inadequate climb performance for the particular
aircraft on which TCAS II is installed. The collision avoidance maneuvers posted
as advisories (called RAs or Resolution Advisories) by TCAS II assume an aircraft’s
ability to safely achieve them. If it is likely they are beyond the capability of the
aircraft, then TCAS II must know beforehand so it can change its strategy and issue
an alternative advisory. The performance characteristics are provided to TCAS II
through the aircraft interface. An example design principle (related to this problem)
found on Level 2 of the intent specification is:

2.39: Because of the limited number of inputs to TCAS for aircraft performance in-
hibits, in some instances where inhibiting RAs would be appropriate it is not
possible to do so (TL3). In these cases, TCAS may command maneuvers that
may significantly reduce stall margins or result in stall warning (15C9.1). Con-
ditions where this may occur include . ... The aircraft flight manual or flight
manual supplement should provide information concerning this aspect of TCAS
so that flight crews may take appropriate action (| [Pilot procedures on Level 3
and Aircraft Flight Manual on Level /).

3The vertical dimension, called ZTHR, used to determine whether advisories should be issued
varies from 750 to 950 feet, depending on the TCAS aircraft’s altitude.
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Finally, principles may reflect tradeoffs between higher-level goals and constraints.
As examples:

2.2: Tradeoffs must be made between necessary protection (G1) and unnecessary ad-
visories (SC5H). This is accomplished by controlling the sensitivity level, which
controls the tau, and therefore the dimensions of the protected airspace around
each TCAS-equipped aircraft. The greater the sensitivity level, the more protec-
tion is provided but the higher is the incidence of unnecessary alerts. Sensitivity
level is determined by . ..

2.38: The need to inhibit CLIMB RAs because of inadequate aircraft climb performance
will increase the likelihood of TCAS II (a) issuing crossing maneuvers, which
in turn increases the possibility that an RA may be thwarted by the intruder
maneuvering (1SC7.1, FTA-1150), (b) causing an increase in DESCEND RAs
at low altitude (15C8.1), and (c) providing no RAs if below the descend inhibit
level (1200 feet above ground level on takeoff and 1000 feet above ground level
on approach,).

This level of the TCAS specification includes system design principles for the
general TCAS-II system components, the surveillance and collision avoidance logic,
performance monitoring, pilot tasks and procedures, and the pilot-TCAS interface.

Level 2 Verification and Validation: V&V of the Level 2 system design princi-
ples may involve simulations, experiments, engineering analyses, and other validation
procedures.

5 Level 3: Blackbox Behavior

This level describes the blackbox behavior of the system components, including hu-
mans, the logical aspects of the interfaces between the components (detailed physical
design is found at Level 4), and any assumed relevant environment behavior (e.g.,
performance requirements on equipment interacting with the system being specified).
The description includes no internal component design information and behavior is
described only in terms of externally visible variables, objects, and mathematical
functions.

The environment description on Level 3 includes the assumed behavior of the
external components (such as altimeters and transponders for TCAS), including per-
haps failure behavior, upon which the correctness of the system design is predicated.
It also contains a description of the interfaces and communication between the system
and its environment.

Differing formats are appropriate for the various types of information contained
at this level, but Safeware Tools include support for a specification language called
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SpecTRM-RL used for modeling blackbox software requirements (blackbox software
behavior). SpecTRM-RL models are executable and, because they have an underlying
formal model, they are formally analyzable while still being reviewable and readable
with minimal training. We are in the process of developing an operator procedure
modeling language with the same underlying formal model although most likely a
different representation or interface to users. By basing the specification on the same
underlying model, operator procedures can potentially be executed and analyzed
along with the other models of the system components. Various types of analysis tools
for SpecTRM-RL specifications are under development or planned for the future.

This level does not contain information about physical design or implementation.
Any of the components theoretically could be implemented using analog or digital
technology although practical considerations will normally limit the implementation
medium. The levels above (Level 1 and Level 2) will answer questions about the
intent or purpose of the information in this level. Again, links are maintained to
provide relational information.

The V&V section on this level will normally provide testing requirements for the
logical blackbox behavior and other types of analysis (such as completeness analyses)
and results. Because SpecTRM-RL models are executable, they can be subjected to
dynamic analysis (testing), static analysis, as well as used in hardware-in-the-loop
simulation. Thus the requirements can be tested and validated before the code is
written.

Safeware Engineering Corporation and their university partners (MIT and the
University of Minnesota) are developing techniques and tools for defining test coverage
of blackbox requirements specifications and for generating test data from the Level 3
SpecTRM-RL models. In addition, if this level contains information about operator
behavioral requirements (such as operational procedures and task analyses), then this
section will also contain information about the validation of these procedures (e.g.,
use testing and simulation).

5.1 SpecTRM-RL Description

“Designing Specification Languages for Process Control Systems: Lessons Learned
and Steps to the Future” (by Leveson, Heimdahl, and Reese) describes the rationale
behind the design of SpecTRM-RL. Here we include only an informal description for
users of the language. The formal syntax and semantic description will be provided
in a separate document.

The design of SpecTRM-RL is greatly influenced by our desire to provide a com-
bined specification and modeling language. Most formal modeling languages are too
difficult to read to be used as the system specification language (which needs to be
reviewed and used by people with a large variety of backgrounds and expertise).
However, the practicalities of system development are such that rarely will there be
resources to provide a separate modeling effort for the specification, and the con-
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Figure 2: The Parts of a SpecTRM-RL Specification.

tinual changes common to most software development projects will require frequent
updates to ensure that the formal model is consistent with the current requirements
and system design. SpecTRM-RL was designed to satisfy both objectives: to be easily
readable enough to serve as the official system specification of the behavioral require-
ments and to have an underlying formal model that can be executed and subjected
to mathematical analysis.

A SpecTRM-RL specification is composed of four main parts (Figure 2): (1) a
specification of the supervisory modes of the controller being modeled, (2) a spec-
ification of its operating modes (3) a model of the controlled process (or plant in
control theory terminology) that includes the inferred operating modes and system
state (these are inferred from the measured inputs), and (4) a specification of the
inputs and outputs to the controller.
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Figure 3 shows the graphical part of the specification for a simple altitude switch.
The graphical notation mimics the typical engineering drawing of a control loop.
The supervisory interface is shown to the left of the main controller model. Every
automated controller has at least two interfaces: one with the supervisor(s) that issues
instructions to the automated controller (the supervisory interface) and one with each
controlled system component (controlled system interface).

The supervisory interface consists of a model of the operator controls and a model
of the displays or other means of communication by which the component relays
information to the supervisor. Note that the interface models are simply the logical
view that the controller has of the interfaces—the real state of the interface may be
inconsistent with the assumed state due to various types of design flaws or failures.
By separating the assumed interface from the real interface, we are able to model
and analyze the effects of various types of errors and failures (e.g., communication
errors or display hardware failures). In addition, separating the physical design of the
interface from the logical design (required content) will facilitate changes and allow
parallel development of the software and the interface design. During development,
mockups of the physical screen or interface design can be generated and tested using
the SpecTRM-RL simulator to generate outputs.

In the altitude switch example, there are two control inputs: a reset signal that
has the value true or false and an inhibit button that inhibits operation of the altitude
switch. The inhibit button can either be in the on or off position. The only display
related to the altitude switch is a fault indicator lamp that can also either be on or
off. There is only one supervisory mode—cockpit controlled—which is shown in the
upper left quadrant of the component model.

The bottom left quadrant of Figure 3 provides information about the operating
modes for the controller itself. These are not internal states of the altitude switch
(which are not included in our specifications) but simply represent externally visible
behavior about the controller’s modes of operation. In the example, there are three
modes: startup, operational, and internal-fault-detected (which will result in the fault
indicator light being lit in the cockpit and cessation of activity until the reset button
is pushed) as well as inhibited and not inhibited.

The right half of the controller model represents inferred information about the
operating modes and states of the controlled system (the plant in control theory
terminology). A simple plant model may include only a few relevant state variables.
If the controlled process or component is complex, the model of the controlled process
may itself be represented in terms of its operational modes and the states of its
subcomponents. In a hierarchical control system, the controlled process may itself be
a controller of another process. For example, the flight management system may be
controlled by a pilot and may itself issue commands to a flight control computer, which
issues commands to an engine controller. If, during the design process, components
that already exist are used, then those plug-in component models could be inserted
into the SpecTRM-RL process model. Parts of a SpecTRM-RL model are easily
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reused or changed to represent different members of a product family.

In the altitude switch example, defining the control algorithm requires using infor-
mation about the altitude level with respect to a given threshold, the inferred status
of the DOI, and the validity of the altimeter information being provided.

Inputs representing the state of the plant (monitored or measured variables) are
shown with arrows pointing to the controller. For the altitude switch, these variables
provide the current status (on or off) of the device of interest (DOI) that the altitude
switch turns on and inputs about the status and value of three altimeters on the
aircraft (one analog and two digital) that provide information to the altitude switch
about the current measured altitude of the aircraft as well as the status of that
information (i.e., normal operation, test data, no computed data provided, or failed),

The output commands are denoted by outward pointing arrows. In the example,
they include a signal to power-on the device (DOI) and a strobe to a watchdog timer
so that proper action can be taken (by another system component) if the altitude
switch fails. The outputs in this example are simple “high” signals on a wire or line
to the device.

In the altitude switch example, defining the control algorithm requires using infor-
mation about the altitude level with respect to a given threshold, the inferred status
of the DOI, and the validity of the altimeter information being provided.

It is important to note that the internal design of the altitude switch is not included
in the model. The altitude switch operating modes are externally visible (and must
be known for the pilot to understand its operation) and the aircraft model is used to
describe the externally visible behavior of the altitude switch in terms of the process
being controlled (and not in terms of its own internal data structures and algorithms).

Because of the simplicity of the altitude switch example, there are a few general
aspects of a SpecTRM-RL model that are not included, all involving the ability to
specify modes. Modes are abstractions on states and are not necessary for defining
blackbox behavior. They are useful, however, in understanding or explaining the
behavior of complex systems. SpecTRM-RL allows specifying several additional types
of modes: supervisory modes, control modes, and controlled-system operating modes,
and display modes.

Supervisory modes are useful when a component may have multiple supervisors
at any time. For example, a flight control computer in an aircraft may get inputs
from the flight management computer or directly from the pilot. Required behavior
may differ depending on what supervisory mode is currently in effect. Mode-awareness
errors related to confusion in coordination between multiple supervisors can be defined
(and the potential for such errors theoretically identified from the models) in terms
of these supervisory modes.

Control Modes control the behavior of the controller itself. They may be used to
control the interpretation of the component’s interfaces or to describe the component’s
required process-control behavior.

A third type of mode, controlled-system or plant operating modes, can be used
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to specify sets of related behaviors of the controlled system (plant) model. They are
used to indicate its operational status. For example, it may be helpful to define the
operational state of an aircraft in terms of it being in takeoff, climb, cruise, descent,
or landing mode.

In systems with complex displays (such as Air Traffic Control systems), it may
also be useful to define various display modes.

The SpecTRM-RL language contains a graphical notation, output message spec-
ifications, mode and state variable definitions, operator interface control inputs and
display outputs, input variable definitions, output variable definitions, macros, and
functions. Each of these features is described, in turn, below.

5.1.1 Graphical Notation

The SpecTRM-RL notation is driven by the intended use of the language to define
a blackbox function from outputs to inputs. SpecTRM-RL has a greatly simplified
graphical representation (compared to RSML or Statecharts), which is made possible
because we eliminated the types of state machine complexity necessary for specifying
component design but not necessary to specify the input/output function computed
in a pure blackbox requirements specification. Some features are also the result
of wanting to provide a useful interface for the designer when the model is being
executed.

Input and output variables are denoted by ovals. We use this notation because
the SpecTRM-RL simulator allows the designer to step through executions of the
models. Currently the active state and mode values light up, and we hope eventually
to have the current value of each input and output variable displayed in the oval (the
tools currently show these in a different window). Next to the oval is the name of the
input or output variable and a description of its possible contents.

State values in square boxes represent inferred values. Such variables are neces-
sarily discrete in value?®, and thus can be represented as a state variable with a finite
number of possible values. In practice, such state variables almost always have only
a few relevant values (e.g., altitude below a threshold, altitude at or above a thresh-
old, cannot-be-determined, and unknown). Values for state variables in the plant
model are required in SpecTRM-RL to include an “unknown” value. The meaning
and purpose of the unknown state are described below.

The possible values for a state variable are shown with a line connecting the
boxes. The line simply denotes that the values are disjoint, that is, the variable may
assume only one value at a time. A small arrow pointing at a box denotes the default
(startup) value for the state variable or mode.

41f they are not discrete, then they are not used in the control of the function computation but in
the computation itself and can simply be represented in the specification by arithmetic expressions
involving input variables.
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5.1.2 Output Message Specification

Everything starts from outputs in SpecTRM-RL. By starting from the output speci-
fication, the specification reader can determine what inputs trigger that output and
the relationship between the inputs and outputs. Other state-machine specification
languages, such as RSML or Statecharts, do not explicitly show this relationship
(although it can be determined, with some effort, by examining the specification).

The general format of an output specification is shown in the appendix and an ex-
ample specification for the altitude switch example in Figure 4. Some of the notation
(particularly that at the top of the specification) is included in order to assist with
building complete specifications and stem from our description of criteria for complete
process-control specifications (see Chapter 15, “Software Hazard and Requirements
Analysis” in Safeware by Leveson).

For output variables, the following information can and should be included: des-
tination of the output, acceptable values, any initiation delay or completion deadline
along with any required exception-handling behavior if the deadlines cannot be met,
feedback information about how the controller will determine that the output com-
mand has been successfully implemented (see “Output to Trigger Event Relation-
ships” in Chapter 15 of Safeware), and any other output commands that reverse this
output. In many systems, it is important to indicate a maximum time in which the
output command remains effective before it is executed. After this time, the output
essentially “times out” and should not be executed. This information can either be
provided in the output message (if the timeout is implemented by the output com-
mand actuator) or included in the reversal information if the controller must issue a
reversal to undo the command’s effect. Reversal information is also useful in identify-
ing accidentally omitted behavior from the specification, i.e., most output actions to
provide a change in the controlled plant or supervisory interface have complementary
actions to undo that change. References are pointers to other levels of the intent
specification related to this part of the specification.

The conditions under which an output is triggered (sent) is simply a predicate
logic statement over the various states, variables, and modes in the specification.
From our experience in specifying complex systems, we have found that the trigger-
ing conditions required to accurately capture the requirements are often extremely
complex. The propositional logic notation traditionally used in computer science no-
tations to define these conditions did not scale well to complex expressions and quickly
became unreadable (and error prone). To overcome this problem, we use a tabular
representation of disjunctive normal form (DNF) that we call AND/OR tables®.

SFor those familiar with other state-machine specification languages that use tables, such as SCR,
it is useful to note that tables are used very differently here. In such languages, the actual transitions
between states are described in a table. We do not do this in SpecTRM-RL; instead, the tables are
used simply to represent one predicate logic statement about the conditions on one transition arrow
between states. Therefore our tables are of much more limited size and their use scales up to very
large and complex system specifications while still remaining relatively small.
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The far-left column of the AND/OR table lists the logical phrases of the predicate.
Each of the other columns is a conjunction of those phrases and contains the logical
values of the expressions. If one of the columns evalutes to true, then the entire table
evaluates to true. A column evaluates to true if all of its elements match the truth
values of the associated predicates. A dot or empty square denotes “don’t care.”

The tables are divided into two parts: an upper part denoting the relevant operat-
ing modes of the controller for that column and a lower part describing any additional
conditions for triggering the output. We have found that this separation assists in
completeness checking, particularly when humans are writing and reviewing specifi-
cations.

For the altitude switch power-on output in the example shown in Figure 4, the
output is triggered (sent) when all the following conditions are true: the altitude is
below the threshold, the DOI is off, the altitude switch is operational, and the previous
altitude was at or above the threshold (the requirements for the altitude switch say
that if the switch is turned off while the aircraft is below the threshold altitude, the
DOI is not powered on again until the aircraft is above the threshold altitude and
again passes down through it). The Prev built-in function allows referring to previous
values of state variables and modes, inputs, or outputs.

Subscripts will be used in future versions of SpecTRM-RL to denote whether a
variable in the table is an input variable (i), a state variable (s), a macro (m) or a
function (f). A number will be attached to the subscript to indicate the page on which
the input variable, state variable, macro, or function is defined. The current tool does
not yet support this feature, although this information can be easily determined by
a reader of the specification.

Every output command column must include a reference to the operating mode(s)
under which the command is sent. It is assumed that if not specified, then the output
cannot occur in that mode.

5.1.3 Constants

The specification of constant values represents a tradeoff design decision in most
specification languages. There are two choices: (1) use the constant value everywhere
it is referenced and when changes are made all these locations must be identified
and updated or (2) assign an identifier name to the constant, and use that identifier
(instead of the constant) throughout the specification and have the reader look up
the current value in a table somewhere.

If the constant values, such as the altitude threshold, are included directly in
the specification (rather than included in a table somewhere other than where it is
used), the specification will be easier to read and review because the reviewer will not
need to continually flip to another page where the constant is defined when reading
the specification. On the other hand, changing the value of the constant when the
requirements change can then be tricky and error prone. Using a table simplifies the
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Output Command

DOI-Power-On

Destination: DOI
Acceptable Values: {high}
Initiation Delay: 0 milliseconds
Completion Deadline: 50 milliseconds
Exception-Handling:
Feedback Information:
Variables: DOI-status-signal
Values: high (on)
Relationship: Should be on if ASW sent signal to turn on
Min. time (latency): 2 seconds
Max. time: 4 seconds
Exception Handling: DOI-Status changed to Fault-Detected

Reversed By: Turned off by some other component or components. Do not know which ones.
Comments:

References: * 2.4.5 + 4.7

CONTENTS

= discrete signal on line PWR set to high

TRIGGERING CONDITION

Operating Mode | Operational T
Not Inhibited

—

State Values | poj.status = On

—

Altitude = Below-threshhold

—

Prev(Altitude) = At-or-above-threshold
20

Figure 4: Example of an Output Specification



updating problem because the change need only be made in one place.

We provide a compromise solution to this specification language design problem
that satisfies both the readability and changability requirements. The constant itself
is used throughout the specification with a subscript that attaches an identifier to
it. The constant identifiers are maintained in a table in the specification, but the
reviewer need not refer to this table (it is only included for convenience). When a
constant is changed, for example, an altitude threshold, the tools can automatically
search for instances in the specification and update them all.

5.1.4 Input Variable Definition

Our desire to enforce completeness in the language itself leads to language features
that allow the inclusion of information (if relevant) about arrival rates, exceptional
condition handling, data age requirements, etc. No input data is good forever; after
some point in time it becomes obsolete and should not be used. We provide a special
value, obsolete, that any input variable can assume a specified time after it is received.

The specification of control and display inputs and outputs are similar to inputs
and outputs from the controlled process. The general forms are shown in the appendix
and an example in Figure 5. In the example, the definition essentially says that the
value comes from the altitude field in the DA1-message and is assigned when a message
arrives. If no message has arrived in the past 2 seconds, the previous value is used. If
the last message arrived more than 2 seconds before, the data is considered obsolete.
The input variable also starts with the obsolete (undefined) value. Because of the
similarity of the form of most input definitions, we may simplify the notation in the
future.

Supervisory modes may need to be specified for input values to determine which
inputs to use at any time.

5.1.5 State Variable Definition

State variable values are inferred from the values of input variables or from other
state variable values. Figure 6 shows a partial example of a state variable description
for the altitude switch.

SpecTRM-RL requires all state variables that describe the process state to include
an unknown value. This value is the default value upon startup or upon specific mode
transitions (for example, after temporary shutdown of the computer). This feature
is used to ensure consistency between the computer model of the process state and
the real process state upon startup or after leaving control modes where processing
of inputs has been interrupted. By making Unknown the default state value and
by changing to the unknown value upon changes to control modes where inputs are
not being process, the use of an unknown state value forces resynchronization of
the model with the outside world after an interruption in processing inputs. Many
accidents have been caused by the assumption that the process state does not change
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Input Value

DA1-Alt-Signal

Source: Digital Altimeter 1
Type: integer
Possible Values (Expected Range): -20..2500
Exception-Handling: Values below -20 are treated as -20 and values above 2500 as 2500

Units: feet AGL

Granularity: 1 foot

Arrival Rate (Load): one per second average
Min-Time-Between-Inputs: 100 milliseconds
Max-Time-Between-Inputs: none

Obsolescence: 2 seconds
Exception-Handling:

Description:

Comments:

References: T2.11 W.Z

Appears in: Altitude

DEFINITION

= FIELD (Altitude in DA1-Message)

El

Receive DA1-Message FROM Digital-altimeter-1

= PREV (DA1-Alt-Signal)

Receive DA1-Message FROM Digital-altimeter-1

Time > Time (DA1-Message arrived) + 2 seconds

= Obsolete

Receive DA1-Message FROM Digital-Altimeter-1
Time > Time (DA1-Message arrived) + 2 seconds

Startup

22
Figure 5: Example of an Input Specification



| State Value |

Altitude

Obsolescence: 2 seconds
Exception-Handling: Because the altitude-status-signals change to obsolete after 2 seconds,
altitude will change to Unknown if all input signals are lost for 2 seconds.
Description:  When at least one altimeter reports an altitude below the threshold, then the aircraft is
assumed to be below the threshold. 2.12.1
Comments:
References: ¢ 2.12 ¢ 410
Appears in: DOI-Power-On

DEFINITION
= Unknown
Startup ? ]
Controls.Reset =T ] 7 B
Analog-ALT = Unknown ] 7
Dig-Altl = Unknown NN 7
Dig-Alt2 = Unknown BN E

The altitude is assumed to be unknown at startup, when the pilot issues
a reset command, and when no recent input has come from any altimeter.

= Below-threshold

Analog-Valid-and-Below

Dig1-Valid-and-Below_

Dig2-Valid-and-Below_

At least one altimeter reports a valid altitude below the threshold..

= At-or-above-threshold

Analog-VaIid-and-Abovem
Digl-VaIid-and-Abovem
DigZ—VaIid—and—Abovem

At least one altimeter reports a valid altitude above the threshold and none below.

= Cannot-be-determined

Analog-Alt = Invalid
Dig-Altl = Invalid
Dig-Alt2 = Invalid

23

No valid data is received from any altimeter (all report test or failed status).
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| Macro |

Digl-Valid-and-Below

Description:

Comments:

References: ¢2.5.1 ¢4.3, 4.8.2
Appears in: Altitude

DEFINITION

Dig1-alt = Valid
DA1-Alt-Signal < 2000«

Figure 7: Example of a Macro Specification

while the computer is idle or by incorrect assumptions about the initial value of state
variables on startup or restart.

If a model of a supervisory display is included in the specification, the unknown
is used for state variables in the supervisory display model only if the state of the
display can change independently of the software. Otherwise, such variables must
specify an initial value (e.g., blank, zero, etc.) that should be sent when the computer
is restarted.

5.1.6 Macros and Functions

Macros are simply named pieces of AND/OR tables that can be referenced from
within another table. For example, the macro in Figure 7 is used in the definition
of the state variable altitude in the altitude switch example. Its use is not necessary,
but simplifies the specification of altitude and thus makes it easier to understand
while also allowing easy changes or reuse. Macros, for the most part, correspond to
typical abstractions used by application experts in describing the requirements and
therefore add to the understandability of the specification. In addition, we found this
a convenient feature for expressing hierarchical abstraction and enhancing hierarchical
review and understanding of the specification. For very complex models (e.g., a flight
management system), we have found that macros are almost required for humans to
be able to handle the complexity involved in constructing the specification.

Rather than including complex mathematical functions directly in the transition
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tables, functions may be specified separately and referenced in the tables.

The macros and functions, as well as other features of SpecTRM-RL not only help
structure a model for readability; they also help organize models to enable specifica-
tion reuse. Conditions commonly used in the application domain can be captured in
macros and common functions can be captured in reusable functions. Naturally, to
accomplish reuse, care has to be taken when creating the original model to determine
what parts are likely to change and to modularize these parts so that substitutions
can be easily made.

6 Hints on Developing SpecTRM-RL Models

We have found that users of requirements modeling languages often use these lan-
guages to describe internal component design, which makes the specifications very
hard for experts to review. SpecTRM-RL was designed specifically to avoid that
problem and to provide assistance in writing blackbox requirements specifications,
but the process can seem overwhelming when the specifier is faced with a complex
system and a blank sheet of paper. This section includes techniques that I find useful
in building SpecTRM-RL models. There is no “correct” way to solve a problem, of
course, and others may find other procedures easier for them. I provide these guide-
lines simply for beginners who need help getting started or for those having trouble
devising their own heuristics.

Any software requirements and blackbox behavioral modeling should start from
requirements. | find that the latest design techniques that start with defining objects
and only later consider functional requirements result in designs that are unneces-
sarily complicated, inefficient, and difficult to review and validate (with respect to
system requirements). I suspect that they actually exacerbate the difficult problems
associated with changing requirements (which they are supposed to assist with), but
I have no evidence of that. While such object-oriented approaches may well be the
best for general information and business systems, I believe that starting from re-
quired functions rather than objects is the most appropriate approach for specifying
and designing embedded control systems.

1. Start with a blank graphical model. Fill in obvious components but don’t worry
if there is not much there at first. It will be filled in as the specification process
proceeds.

2. Next start with the outputs. As Parnas has said, if inputs are not used to
determine outputs, nobody cares whether you read them or not. The required
outputs can be determined from the functional requirements. If, for example,
you are designing a mobility and positioning system for a robot, the functional
requirements will lead you to quickly determine that the software must provide
movement and manuevering commands.
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3. Determine the triggering conditions for each output, i.e., those conditions under
which a particular output must be produced. You will probably find that you
miss some conditions at first and will need to return to the output specifications
to add conditions that were omitted in the early attempts to build the model.
Consider each of your identified operating modes and whether the value of the
output will depend on the mode.

4. Specifying the triggering conditions will lead to recognizing inferred system
states and input values that are needed, and these should be added to the
graphical state model as they are identified.

5. Working backward to the inferred states and thence to inputs will identify
additional inputs and inferred states necessary to describe the required behavior.

6. Take the completeness criteria (the tools will in the future assist with this
process) and make sure each criterion is satisfied in the specification. A checklist
and how to use it with SpecTRM-RL specifications will be provided soon and
tools to assist with this process are also planned.

7. The final step is to get the specification reviewed by others. Visualization tools
are planned to assist with understanding and reviewing the specification.

7 Level 4: Physical Design Representations

This level of an intent specification contains the normal physical design representa-
tions with links to the level above. The contents will depend on whether the particular
function is being implemented using analog or digital devices and what it is. The de-
sign intent information may not all be completely linked and traceable upward to the
levels above—for example, design decisions not based on higher level requirements or
constraints, such as the use of a particular graphics package because the program-
mers are familiar with it or it is easy to learn. Knowing that these decisions are not
linked to higher level purpose is important during software maintenance and evolution
activities.

We currently have no specific suggestions for formats. Our sample TCAS-II spec-
ification contains the Human—Computer Interface Specifications, the Aircraft Flight
Manual, Software Design Specifications, Hardware Design Specifications, and Ver-
ification (Testing) Requirements. It is likely that the information will actually be
kept in separate documents and the specification simply contain appropriate point-
ers. The Safeware tools allow on-line specifications to contain hyperlinks so that
accessing information from different documents is simplified.
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8 Level 5: Physical Implementation
This level of the specification contains the actual software, hardware assembly and

installation instructions, training requirements or training plan, etc. Again, the in-
formation will most likely be kept in several different physical documents.

9 Appendices

Various types of information may be included in appendices. For TCAS, we included
reference algorithms, physical measurement conventions, a glossary, and an index.

10 Appendix: Format of SpecTRM-RL Compo-
nents
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Output Command

Name

Destination:
Acceptable Values:
Units:
Granularity:
Exception Handling:
Hazardous Values:

Timing Behavior:
Initiation Delay:
Completion Deadline:
Output Capacity Assumptions: (rate at which actuators can accept and react to data produced by component)
Load: (number of outputs N within an interval of time D)
Min time between outputs:
Max time between outputs:
Hazardous timing behavior:
Exception-Handling:
Feedback Information:
Variables:
Values:
Relationship:
Min. time (latency):
Max. time:
Exception Handling:
Reversed By:
Comments:
References: * +

DEFINITION




| Operating Mode |

Name
Description:
Comments:
References:
Appears in:
DEFINITION

i
i

29
Figure 9: General Form of a Operating Modes Specification



| State Value |

Name

Obsolescence:
Exception-Handling:

Related inputs:
Description:
Comments:
References:
Appears in:

Related Inputs: (so can check that behavior specified for all values of related inputs, assumes staysin
same state for other inputs)

DEFINITION

= Unknown

Startup H This table must include al conditions under

which the value changes to unknown, such as
startup, timeouts, transitions to particular
modes or states such as maintenance or
off-line mode, ...

i

Figure 10: General Form of an Inferred State Variable Specification

30



Input Value

Name

Source:

Type:
Possible Values (Expected Range):

Units: (the applicability of these will depend on the value type)
Granularity:
Exception-Handling:

Timing Behavior: (continuous, periodic, random, s-r)

Load: (number of inputs N within an interval of time D)
Min-Time-Between-Inputs:
Max-Time-Between-Inputs:
Max-Time-Before-First-Input:
Related Outputs: (if sr)

Latency : Min-time-after-output

Min-time-after-output

Exception-Handling:

Obsolescence:
Exception-Handling:

Description:
Comments:
References: T ¢
Appears in:
DEFINITION
=FIELD (...)
Receive xx-Message from ... Event that triggers change
=PREV (..)
Receive xx-message from ... Conditions under which
(timing statement) . previous val ue used.
= Obsolete
Startup .

Receive xx-message from ...

(timing statement)

Fioctite 11 General Form of an Inpiit Specification



| Control Input |

Name
Source: I'M NOT SURE ABOUT THE FORM OF THIS YET
Type:
Possible Values (Expected Range):
Units:
Granularity:

Exception-Handling:

Timing Behavior:
Load: (number of inputs N within an interval of time D)
Min-Time-Between-Inputs:
Max-Time-Between-Inputs:
Exception-Handling:

Obsolescence:
Exception-Handling:

Description:
Comments:
References: ﬂ\ ¢
Appears in:
DEFINITION
=FIELD (...)
=PREV (..)
= Obsolete

H
@

Figure 12: General Form of32 Control Input Specification



Display Output
Name

] ] I'M NOT SURE ABOUT THE FORM OF THIS YET
Destination:

Type: (discrete values, queue)
Acceptable Values:

Units:
Granularity:
Hazardous Values:

Update Requirements:

Update Delay:
Update Completion Deadline:
Output Capacity Assumptions: (rate at which humans can accept and react to data produced by component)

Update Load: (number of outputs N within an interval of time D)
Min update rate:
Max update rate:

Deletion Requirements (including data age):
Hazardous timing behavior:
Exception-Handling:

Failure Indication: (usualy blank or message)
Reversed By:

Comments:

References: 4 *

DEFINITION

99

Figure 13: General Form of a Display Output Specification



Description:

Comments:

References:

Appears in:

DEFINITION

i

Figure 14: General Formg,pf a Macro Specification



