Completeness and Consistency in
Hierarchical State-Based Requirements

Mats P.E. Heimdahl

Michigan State University
Department of Computer Science, A-714 Wells Hall
East Lansing, Michigan 48824-1027
heimdahl@cps.msu.edu

Nancy G. Leveson
University of Washington

Computer Science and Engineering, FR-35

Seattle, WA 98195

Abstract

This paper describes methods for automatically analyzing formal, state-based re-
quirements specifications for some aspects of completeness and consistency. The ap-
proach uses a low-level functional formalism, simplifying the analysis process. State-
space explosion problems are eliminated by applying the analysis at a high level of
abstraction; i.e., instead of generating a reachability graph for analysis, the analysis
is performed directly on the model. The method scales up to large systems by de-
composing the specification into smaller, analyzable parts and then using functional
composition rules to ensure that verified properties hold for the entire specification.
The analysis algorithms and tools have been validated on TCAS II, a complex, air-
borne, collision-avoidance system required on all commercial aircraft with more than
30 passengers that fly in U.S. airspace.

1 Introduction

A software requirements specification should be a comprehensive statement of a software
system’s intended behavior. Unfortunately, requirements specifications are often incom-
plete, inconsistent and ambiguous. We know that many serious conceptual errors are
introduced in this first stage of software development—errors introduced during the re-
quirements stage have been shown to be more difficult and more expensive to correct than
errors introduced later in the lifecycle, and they are more likely than implementation errors
to be safety critical [20, 21]. Therefore, it is important to provide methods and techniques
to eliminate requirements-related errors as early as possible.

To provide analysis procedures to find errors in specifications, it is first necessary to
determine the desirable properties of a specification. Previously, we defined formal criteria
for requirements completeness, consistency and safety. Jaffe, in his dissertation, defined
a rigorous basis for ascertaining whether or not a given set of software requirements is
internally complete, i.e, closed with respect to statements and inferences that can be made
on the basis of information included in the specification [17]. Emphasis is placed on aspects
of requirements specification that are usually not adequately handled, including timing and
robustness, and on aspects that are particularly related to safety and accidents.

The definition of specification completeness provided by Jaffe was subsequently formal-
ized using a simple Mealy-machine model called RSM (Requirements State Machine) [16].
The RSM notation was developed solely as a means for formally defining our criteria, and
lacks most desirable properties of a true requirements specification language. To be useful
in practical applications, these criteria need to be translated into criteria applicable to a
real specification language. Although the criteria could be applied to many languages, we
chose to work with a formal, state-based specification language called RSML (Require-
ments State Machine Language). RSML was developed by the Irvine Safety Research
Group using a real aircraft collision-avoidance system called TCAS II (Traffic alert and
Collision Avoidance System II) as a testbed [19].

This paper describes an automated approach to analyzing an RSML specification for
two qualities: (1) completeness with respect to a set of criteria related to robustness (a
response is specified for every possible input and input sequence) and (2) consistency (the
specification is free from conflicting requirements and undesired nondeterminism). The
need for consistency is obvious, but the robustness criteria require further explanation.

Embedded software is part of a larger system and usually provides at least partial
control over the system in which it is embedded. This type of software is often reactive
in that it must react or respond to environmental conditions as reflected in the inputs
arriving at the software boundary. A robust system will detect and respond appropriately
to violations of assumptions about the system environment (such as unexpected inputs).
Robustness with respect to a state-machine description implies the following:

1. Every state must have a behavior (transition) defined for every possible input.

2. The logical OR of the conditions on every transition out of any state must form a
tautology.

3. Every state must have a software behavior (transition) defined in case there is no

input for a given period of time (a timeout).

Thus, the software must be prepared to respond in real time to all possible inputs and input
sequences. That is, the software must be complete with respect to its input domain. In
the rest of this paper, we use the term d-complete to represent this aspect of requirements
completeness.

Manually verifying compliance with our set of criteria is a time-consuming and error-
prone process. Thus, tools that support automated verification would be highly desirable.
This analysis, unfortunately, is computationally expensive and infeasible in most specifi-
cation languages. To overcome this problem, the semantics of RSML was defined with
analyzability as one of the main goals.

In order to accomplish our goal of analyzability, we view a specification expressed in
RSML as a mathematical relation composed from simple, analyzable parts. The compo-
sitionality is achieved through the definition of the next-state relation and by enforcing
some simple restrictions on the way in which a system can be modeled. The compositional
approach allows us to split a large problem into small manageable partitions, perform the
analysis on each separate piece, and then combine the individual analysis results into a
statement about the entire system. Analysis procedures that are too costly to apply to
the monolithic problem can then be applied to manageable subsets of the problem and the
individual results combined to make a statement about the original problem.

Related approaches to requirements analysis include methods based on formal proof
systems and different static analysis techniques such as reachability analysis and model
checking.

Formal proof systems: Formal proof systems can be powerful tools in the verification of
critical properties of algorithms [25]. Attempts have been made to extend the use of formal
proofs and apply them to requirements specifications, for example, the ProCoS (Provably
Correct Systems) project [23, 24]. Unfortunately, the languages used in the theorem prov-
ing approach, such as process algebras and higher order logics, are not understandable by
the non-software professionals involved in most requirements specification efforts and thus
are not suitable as high-level requirements languages. Also, formal proofs are notoriously
difficult to derive, and these approaches may not be practical for complex systems.

Reachability analysis: Modeling a system as a finite-state machine and then perform-
ing reachability analysis of the global state space has been successfully used in the analysis
of communication protocol specifications [8, 14, 15]. The main problem with reachability
analysis is that it relies on the generation of a global reachability graph and, therefore,
quickly runs into a state-space explosion problem.

Model checking: Model checking is conceptually simple and is applicable in a wide
variety of languages and application areas [1, 6, 7]. Early work in model checking also
relied on a global reachability graph. Consequently, the approach suffered from state-
space explosion problems. Newer approaches relying on a symbolic representation of the
state space can significantly improve the performance of the model checking approach [5].
Symbolic model checking has been applied to large models [5, 4], but only for systems with

simple, repetitive elements—such as those commonly found in hardware applications. The
time and space complexity of the symbolic approach is affected not only by the size of the
specification but also by the regularity of specification. Software requirements specifications
lack this necessary regular structure, and it is unclear how well the symbolic approach will
perform on these specifications. Model checkers are currently unable to handle as complex
a software specification as the TCAS II requirements specification.

Our approach differs from these techniques in that it performs the analysis directly on
a high-level requirements model without generating a global reachability graph. Thus, the
analysis is both conceptually simple and eliminates the problem with state-space explosion.

To ensure that the formal RSML specification language and the associated analysis
algorithms and tools are appropriate for large and realistic systems, a testbed specification
was developed for TCAS I [18]. The testbed is currently being used to develop and validate
various types of analysis algorithms and tools on the underlying formal model. TCAS II
has been described by the head of the TCAS program at the FAA as the most complex
system to be incorporated into the avionics of commercial aircraft. It therefore provides a
challenging experimental application of formal methods to a real system.

This paper documents our approach to static analysis of RSML and gives examples of
the types of problems that d-completeness and consistency analysis are capable of detecting.
Section 2 gives a short introduction to the features of RSML necessary to understand this
paper. Section 3 provides a formal definition of these RSML features. The definition is
based on the notion that a transition in a simple state machine can be viewed as a function
mapping the current state to the next state and the behavior of a hierarchical state machine
can be viewed as a composition of simple functions. Automated analysis procedures for
d-completeness and consistency are outlined in Section 4. An evaluation of the algorithms
and examples of the types of problems this analysis is capable of detecting is described in
Section 5. Section 6 presents conclusions.

2 Overview of the RSML Notation

RSML is a state-based requirements specification language suitable for the specification of
reactive systems. RSML includes several features developed by Harel for Statecharts [10, 9]:
superstates, AND decomposition, broadcast communication, and conditional connectives.
In addition, RSML has some unique syntactic and semantic features that were developed
to enhance readability, reviewability, and analyzability and our ability to handle complex
systems.

A complete description of RSML is provided in [19]. This section contains only a
description of the RSML features necessary to understand this paper.

A simple finite-state machine is composed of states connected by transitions (see Fig-
ure 1). Default or start states are signified by states whose connecting transition has no
source. In Figure 1, state A is the start state. Transitions define how to get from one state
to another. In Figure 1, states B and C are directly reachable from A. State D is only
indirectly reachable from A via state C.

Figure 1: A Basic State Machine

g
Y
It

Figure 2: A superstate example.

Superstates. In RSML (and Statecharts), states may be grouped into superstates (see
Figure 2). Such groupings reduce the number of transitions by allowing transitions to and
from the superstate rather than requiring explicit transitions to and from all of the grouped
states (substates). Superstates can be entered in two ways. First, the transition to the
superstate may end at the superstate’s border (transition A in Figure 2). In this case, a
default state must be specified within the superstate. In the example, state S is entered
upon taking transition A. Alternatively, the transition may be made to a particular state
inside the superstate (transition B in Figure 2). The same superstate may have transitions
ending at the border and at any number of the inner states. The superstate may be exited
in two ways (transitions C' and D in Figure 2). Analogous to transitions into the superstate,
transitions out of the superstate may originate from the border or from an inner state. The
same superstate may contain both types of exiting transitions. Note that all transitions
to and from the superstate boundary can be redrawn to cross the boundary and enter the
substates explicitly (Figure 3).

AND Decomposition. One of the most important innovations in Statecharts is what
Harel calls the parallel state', which contains two or more state machines separated by
dashed borders (Figure 4). When the parallel state S is entered, each of the state machines
A, B,C, and D within it is entered. All state machines are exited when any transition is
taken out of the parallel state. The use of parallel states greatly reduces the size of

!Parallel states are also known as “orthogonal products”, “product states”, and “AND states”.

/_\C
S£JD

Figure 4: The parallel state

the specification. For example, we estimate that the TCAS system (i.e., the complete
reachability graph) contains at least 10° states, whereas the hierarchical state diagram in
our RSML specification of TCAS has approximately 140 states and fits on five pages.

Transition Definitions. Transition definitions in RSML contain five parts: (1) the iden-
tification (the source and destination of the transition), (2) the location, (3) the triggering
event, (4) the guarding condition, and (5) the output action. The identification, location,
and triggering event are the only required parts. Figure 5 shows the syntax of a transition
definition in RSML.

Transitions are taken upon the occurrence of the trigger event, provided that the guard-
ing condition is true. The guarding condition defines preconditions on the transition and
is specified using AND /OR tables, described below. Output actions identify events that are
generated when the transition is taken. These newly generated events may now trigger
transitions elsewhere in the state machine.

Although specification languages such as Statecharts and RSML can be used for many
purposes, RSML was explicitly designed to be used for pure black-box requirements spec-
ifications. Such specifications describe only the externally visible behavior of the system
component being defined in terms of a model of the relationship (mathematical relation)
between the inputs and outputs. In addition, RSML specifications describe this behavior
(relation) only in terms of variables and conditions of objects external to the computer
(the sensors, actuators, and system components controlled by the software).

Therefore, internal events in RSML specifications are used only for one very specific

Transition(s): |[ESL-4]— |[ESL-2|

Location: Own-Aircraft > Effective-SLg 3

Trigger Event: Auto-SL-Evaluated-Evente o7g
Condition:

Auto-SLg 39 in state ASL-2

A [AutoSL. s in one of {ASL-2,ASL-3,ASL-4,ASL-5,ASL-6,ASL-7}
N Lowest-Groundgoy = 2

D Mode-Selector = one of {TA/RA,TA-Ouly,3,4,5,6,7}
Mode-Selectory_z4 = TA-Only

Output Action: Effective-SL-Evaluated-Eventc_a7g

Figure 5: A transition definition from TCAS IL.

purpose: to order the evaluation of the mathematical (input/output) relation to be com-
puted by the software. Basically, they serve the same purpose as parentheses in algebraic
equations. Viewing an RSML specification as a mathematical relation is the basis for our
formalization of the language and will be described in detail in Section 3.

AND/OR Tables. Statecharts use predicate calculus to describe the guarding condi-
tions on the transitions [2, 9]. Our TCAS external reviewers (including avionics engineers,
component engineers, airline representatives, and pilots), however, did not find this nota-
tion natural or reviewable. Instead, we decided to use a tabular representation of disjunc-
tive normal form (DNF) that we call AND/OR tables (see Figure 5 for an example from
the TCAS II requirements).

The far-left column of the AND/OR table lists the logical phrases. Each of the other
columns is a conjunction of those phrases and contains the logical values of the expressions.
If one of the columns is true, then the table evaluates to true. A column evaluates to true
if all of its elements are true. A dot denotes “don’t care.”

The next section formally defines the structure of these basic syntactic features and gives
a formal definition of the semantics of RSML based on the composition of mathematical
functions.

3 A Functional Framework

The behavior of a finite-state machine can be formally defined using a next-state relation.
In RSML, this relation is modeled by transitions and the sequencing of events. Thus, one
can view a graphical RSML specification as the definition of the mathematical next-state

relation F. If, however, the relation F' behaved as a mathematical function, and it was
defined over all possible system states, some highly desirable properties of requirements
specifications would be satisfied:

e The model M would have a response specified for every possible input (i.e., it would
be d-complete),

e The model would have no conflicting requirements (i.e., it would be consistent), and
e The model would be deterministic.

Thus, by forcing the behavior of an RSML specification to be a mathematical function,
we can guarantee the d-completeness, consistency, and determinism of a requirements
specification. This is really the essence of the difference between our approach and others.
Instead of allowing the next-state relation to be defined in a way that makes the analysis
procedures difficult and then working hard to find analysis procedures that will work on the
resulting model, we limit F' (the next-state relation) in the language semantic definition in
a way that makes the analysis relatively easy. Our resulting analysis algorithms are simple
and can be performed directly on the model without needing to generate any part of the
reachability graph.

As a side benefit, during the TCAS specification development we found that this next-
state relation was easier for the reviewers to interpret correctly than the alternatives we
tried (it seemed to satisfy their intuitive understanding of state machines better). In fact,
we decided on this semantic definition before we discovered that it simplified the analysis.
Perhaps this just confirms the hypothesis that has been occasionally raised that languages
for which the formal semantic definitions are simple also seem to be the easiest for users
to understand and use correctly.

It may seem overly restrictive to require that the behavior of the software be limited to a
mathematical function. However, safety-critical software should not be incompletely spec-
ified. In [16], we define requirements completeness as the specification being sufficient to
distinguish the behavior of the desired software from that of any other, undesired program
that might be designed. Nondeterministic specifications often hide dangerous incomplete-
ness in this sense. In this paper, we show a nondeterminism in the TCAS specification
we found that was unplanned, had serious safety implications, and was not obvious to us
when developing the specification. If one of several possible alternatives is preferable with
respect to some desired system quality, then this decision needs to be made by application
experts, not by the programmers or software engineers, and it should be made during the
requirements analysis process rather than later. Identifying nondeterminism in the specifi-
cation will help with this decision-making. If two behaviors are identical with respect to all
desired system qualities (which is highly unlikely), there is still the problem of determining
this equivalence. In most cases, it is easier to evaluate a single deterministic behavior for
all desired qualities than to evaluate multiple behaviors for all required qualities. In addi-
tion, nondeterministic behavior is usually undesirable with respect to the human-machine
interface.

This section provides a formal definition of the semantics of the basic features of RSML.
Section 3.1 defines the static structure of the state hierarchies. Section 3.2 describes how

Figure 6: A sample state hierarchy

|
|
|
|
|
|
|
:
|
|
|
|
|
|
|
|

the dynamic behavior defined by the transitions and events in RSML can be viewed as
compositions of functions. Those readers primarily interested in the use of the analysis
tools and not in the formal foundation might skip to Section 4.

3.1 Hierarchical State-Machines
An RSML state machine M can be described by a six-tuple: M = (S, 0,7, V, ¢, F') where:

S is a finite set of states. These states are used to model the global system states. It is
important to note the difference between the elements of S (states) and the global
state. Due to the hierarchical and parallel nature of the state machines, the global
state is always described by a set of states.

o is a function mapping a state onto a set of states (S — 2%).2 This function defines the
hierarchy relation (or parent/child relation) on the states. In the graphical notation,
this relation is visualized as containment (states are contained within superstates).
For example, in Figure 6 the state A contains the states {B, C, D, E} (o(A) =
{B, C, D, E}). o is defined to be cycle free.

Definition 1 The hierarchy function o is defined by:

Pa) = {a)
o'(z) = {the immediate descendants of '}
) = | o)
yEot(x)
@) = Uoite
@) = Uoite)

225 is the power set of S, i.e., the set of all subsets of S.

o'(z) is in the remainder of this paper referred to as o(z). This definition implies
that o*(x) contains {z} and all its descendants. o¥(z) does not contain {z}, only
its descendants.

7 1s a partitioning function. = partitions the descendants of a state into disjoint sets.
The partitions of a state’s descendants must be mutually exclusive. In Figure 7,
for example, 7(A) partitions the descendants of A into two disjoint sets (71(A) and
ma(A)). In the graphical notation, this partitioning is denoted using dashed lines.
Thus, 71(A) = {B, C} and w3(A) = {D, E}. The cardinality (k4) of A is in this
case 2. It should be noted that z is a parallel state (AND state) if k, > 2 and we
refer to the different partitions of the descendants of x as parallel components. The
partitions of a state’s descendants are required to be mutually exclusive.

Definition 2 Let y,z € o(x). The partitioning function 7 is defined by:

oY) N0t (2) A0 i i ¢ () = y) A (mla) = 2))

Informally, if o(y) and o(z) intersect, then y and z are equivalent.?

V' is a set containing the input and output histories of the model (the complete variable
traces).

co is the initial global state of the machine, ¢y € (2° x V). A global state is an ordered pair
consisting of a set of states, known as the configuration of the machine, and a trace

from V. The initial global state in Figure 6 is defined by the pair ({A, B, D},).
The properties of a configuration are formally defined in Appendix A.

F' is a relation defining the global state changes in the machine M (and the possible
changes in the output variables). F is a mapping C — C, where C' C (25 x V). The
relation [is also referred to as the behavior of M.

In the definitions above, there are few restrictions on the nature of a global state. All
that is required is that a global state ¢; is an element of C'. From the discussion in Section 2,
it is clear that there are certain combinations of states that are not allowed when describing
the global state. In Figure 7, for example, the states B and C cannot both be part of the
global state, that is, the machine cannot be in the state B and the state C' simultaneously.
The restrictions governing the structure of a global state have been formally defined for
Statecharts by Harel [11]. These definitions are also applicable to RSML. Although the
definitions are not essential for understanding the remainder of the paper, for completeness
they have been included in Appendix A.

The remainder of this section is devoted to the next-state relation F'. We will show how
the transitions in RSML can be viewed as mathematical functions and how these functions
can be composed to form the complex behavior of the global next-state relation F'.

3The notation 3! is used to denote “There exists a unique”.

10

3.2 Next-State Mapping

The hierarchies and parallelism (defined by the functions ¢ and =), together with the
definitions in Appendix A, enforce a rigorous structure on the possible global states (the set
(). The dynamic behavior (the possible global state changes) is defined by the next-state
relation F' (C' +— C). In a model of a system with nontrivial functionality, this mapping
will be complex. However, the mapping can be viewed as a composition of smaller, less
complex mappings. Specifically, F' can be viewed as composed of simple functions.

In the graphical notation, these simple functions are defined by transitions. The domain
of a function is defined by the source, i.e., the state that the tail of the transition is leaving,
and the guarding condition on the transition. The image of a function is defined by the
destination of a transition, i.e., the state the transition enters, and possible output. The
functions represented by the transitions are then composed depending on the structure of
the particular state machine being considered and the events defined on the transition.

The semantics of RSML are defined using three basic functional compositions:

Union: The union composition of two functions (¢ U k) merges the domains of the func-
tions.

Definition 3 The functional properties are maintained under union (U) if

Ya € (Dom(g) U Dom(h))
Card({(z,b)|(z,b) e gUR}) =1

Union composition of two functions is allowed if the domains of the functions do not
overlap, or the domains overlap but the functions are equivalent for all elements in
the intersection.*

Serial: Serial composition g(k(c)) (or goh) corresponds to normal functional composition.

Definition 4 Serial composition (g o h) is allowed iff

Dom(g) 2 Im(h)

Informally, serial composition is allowed if the image of the first function applied is
a subset of the domain of the second function, i.e., the second function is defined for
all possible results of the first function.

Parallel: Parallel application is denoted (h, ¢)(x). Parallelism is modeled as interleaving,
i.e., an arbitrary ordering of functional applications.

Definition 5 Parallel composition is allowed iff

Domly)
Dom(h)

Im(h) A
Im(g)

4The notation Clard(X) is used to denote the cardinality of the set X.

2
2

11

Figure 7: A sample state machine.

Parallel composition is allowed if both possible serial compositions are allowed. If
g o h(z) # hog(z), ie., the ordering of the functional application is important,
parallel composition will lead to nondeterminism and the properties of a function are
lost.

In RSML, union composition occurs between nonparallel transitions triggered by the
same event. For example, the functions representing the transitions ¢y, t5, and ¢35 in Figure 7
(assuming all are triggered by the same event) are composed in union.

Transitions triggered by the same event, but in parallel state components, are composed
in parallel. In Figure 7, transitions ¢3 and ?4 are composed in parallel (assuming they are
triggered by the same event).

Finally, serial application is caused by the event propagation mechanism. Assume the
transition t5 is triggered by some external event and generates event e as an action. This
event is picked up by transition tg—that is, tg is triggered by e. Thus ¢5 is the transition
taken first and ¢¢ second. This sequencing is modeled as applying the functions representing
t5 and tg in series: f;; o fi.(c).

In this way the complete behavior of any model can be hierarchically defined as a
composition of the behaviors of its parts.

Before we can define the complete behavior of an RSML specification, we have to
investigate the nature of the functions defined by the transitions. A function f can be
textually defined by

fle) ={(c = Q) U Qa if (z € ¢) A p(c)

where (), and (), are sets of states, x is a state, and p is an arbitrary predicate over the
configuration ¢. In the graphical representation, this function represents a transition with
the tail in the state = and the guarding condition p. If the transition is taken, the structure
of the state machine may cause more states than x to be exited—for example, if z is a
superstate. The set of states that is exited when the transition is taken is denoted by Q)
and the set that is entered by Q4. In the definition above, the set {c¢ | (z € ¢) A p(c)}
defines the domain of the function (Dom(f)), and Qs and @4 are the source (Source(f))
and destination (Dest(f)) of f respectively.

The functional definition of a complete RSML specification is hierarchically built up
from (composed of) the functional definitions of its components. We start by defining

12

the behavior of the simplest possible state machine, that is, a state machine consisting of
one state and no transitions. An atomic state (a state without descendants) that has no
transitions is defined to have no behavior.

Definition 6 The behavior (g) of an atomic state «a, i.e., o(a) = 0:

ga:w

The behavior of a set of states grouped in a parallel state component is defined as the
union of (1) the behaviors of the states included in the component and (2) the functions
introduced at this level of abstraction describing transitions between the states. The
notation ¢ J m; denotes a function (transition) ¢ introduced in the parallel state component
7. In Figure 7, the function represented by t4 belongs to w1 (A).

Definition 7 A function g belongs to the parallel component #; (denoted by
g ;) iff:

Jdx € Source(g) : x € 7;

Definition 8 The behavior of a parallel state component 7;(s):

mem;(s) gn7i(s)

Informally, a parallel state component behaves either as one of its states, i.e., the state it is
currently in, or according to the transitions between the states contained in the component.

The behavior of a composed state (a superstate) is defined as the parallel composition
of its parallel state components. The set {1,...,ks} is an enumeration of the parallel state
components into which o(s) is partitioned. In Figure 7, for example, o(A) is partitioned
into four parallel state components.

Definition 9 The behavior of a composed state s, i.e., o(s) # 0:

Gs = {Gri(s)s Gma(s)> - - » Gy, (s)) Where 2 € {1,... Ky}

Informally, one can view the components of the composed states as processes, and the
behavior of the composed state as the parallel execution of these processes.

The rules defined above govern the behavior under one specific event, i.e., all transitions
in the model triggered by this one event are composed according to these rules. The
behavior for all individual events in the model can now be modeled in a similar way. If
an event e is generated, the function defined by the behavior under e, i.e., the behavior
generated by composing all transitions triggered by e, is applied, and a new system state is
calculated. The only remaining part to model is the event propagation mechanism. Since
output actions can be associated with transitions, they are also associated with functions.
After a function has been applied and a new system state calculated, a new function is
applied based on the output actions from the previous function.

13

The set of all functions with the output action a is denoted f,, and the composed
behavior of the state machine for event e is denoted F'°. The function defining the behavior
of M under the event ¢ must be applied after a function with the action e has been applied,
ie, ...F(f.(...)).... The different possible compositions of functions defining F' could
be explicitly listed to define the complete behavior. Listing all the possible compositions
is generally infeasible, however, and it is easier to define rules for how to combine the
behaviors under individual events to form the complete behavior of M.

Definition 10 Let z € C'. The Yield of a function application is defined as:

Yield(g(z)) = {lg € fo}
Yield(g(z)) = {alg € fa}
Yield((fi(z), fa(2), ..., faz)) = |J Yield(f)

1€{1,2,...,n}
Yield(g) if € Dom(g)
Yield((gUh)(z)) = Yield(h) if @ € Dom(h)

Yield(g) U Yield(h) if € Dom(g) N Dom(h)

An evaluation of F' is always started by the arrival of an input. A sequence of function
applications will follow. This sequence will ultimately be terminated by the application of
a function with no yield (f3). The next function is always determined by the yield of the
previous function.

Definition 11 The next function application is defined by:

Fe iff € is an input event

(F F%, ... F) where ¢; € Yield of the previous function applied

Note that in order for the compositions defined in this section to maintain the properties
of a function, all rules for serial and parallel composition defined in the beginning of
Section 3.2 have to be followed.

4 Analysis Approach

If the relation F' defining the dynamic behavior of the model is a function, then d-
completeness , consistency, and determinism are assured. By investigating the fairly simple
compositions defining the dynamic behavior of the system, these properties can be evalu-
ated.

The analysis approach is based on the compositional properties of the semantic defi-
nition. The base step in the analysis is to assure that transitions out of atomic states do
not conflict and never leave the behavior undefined, i.e., the requirements are d-complete
with respect to the individual atomic states. In this way, we can guarantee that if the
model is in this state and an event triggering any transition out of the state is generated,

14

struct Stateq

String name;
State parent;
StateList children;
TransitionArray all_trans_out;
X
struct Transitionf{
State source;
State dest;
Condition cond; // The guarding condition on the transition
Event trigger;
EventArray actions;
InfoSet uses; // All elements in M this transition depends on

InfoSet effects; // All elements in M this transition effects

Table 1: Data structures used to represent the state space

a transition out is defined independently of the global state and the input that has arrived
at the model boundary. The rules for union, parallel, and serial composition can then
be applied to show that the behavior of the entire hierarchical and parallel machine is
d-complete and consistent. That is, by only investigating the functional compositions, we
can ensure that the d-completeness and consistency properties verified for a single state
are not compromised by hierarchies, parallelism, and event propagation.

This section outlines algorithms analyzing a model for the satisfaction of functional
properties.

Union Composition: Union composition requires that the domains of the functions
describing the transitions involved in the composition are disjoint, i.e., no two transitions
out of the same state can be satisfied at the same time. In addition, functions require that
the entire domain is covered. Thus, there must be a satisfiable transition out of every state
independent of what input arrives at the model boundary.

The guarding conditions on the transitions triggered by the same event are pairwise
compared to see if they are mutually exclusive. Two transitions with guarding conditions
that are not mutually exclusive represent conflicting requirements. In addition, if the
logical OR of the conditions on all transitions out of the state triggered by the same event
does not form a tautology, then there are conditions for which no behavior is specified, i.e.,
the requirements are incomplete. Tables 1-3 outline the data structures and the algorithm
used to analyze for d-completeness and consistency of individual states.

In RSML, the conditions are represented by AND/OR tables (Figure 5). The conditions
for state transition in TCAS II are quite complex, resulting in many cases in large tables
and requiring costly logical AND and OR operations on the transitions (satisfiability of

struct Conflict{
Transition transi;
Transition trans?2;
Condition cond;

Table 2: Data structure for conflicting transitions

void Complete_Consistent_Under_e(State state, Event e){
Condition defined_for;
defined_for = FALSE;
for (int i = 0; i < size_of(state.all_trans_out); i++){
if (state.all_trans_out[i].trigger == e){
defined_for = defined_for || state.all_trans_out[i].cond;
¥
¥
for (j = i; j < size_of(state.all_trans_out); j++){
if (state.all_trans_out[j].trigger == e){
conflict_condition = state.all_trans_out[i].cond &&
state.all_trans_out[j].cond;
if (conflict_condition != FALSE){
create a new conflict;
conflict.transl = state.all_trans_out[i];
conflict.trans2 = state.all_trans_out[j];
conflict.cond = conflict_condition;
Append(conflict_array, conflict);

¥
}

if (!'defined_for) /* If there are no transitions
triggered by e */
output ("Ho transition out of the state'" state "is satisfied");
output ("under the event" e "if" !defined_for);
output (""There are conflicts between the following transitions:'");

output(conflict_array);

Table 3: D-completeness and consistency in state s under event e

16

boolean functions is known to be an N P problem). Our analysis tools use Binary Decision
Diagrams (BDDs) [3] for the manipulation of the conditions. BDDs are data structures
used to represent boolean functions in a canonical form. Initially, our main concern was
the performance of the AND and OR operations needed to check for mutual exclusion and
complete coverage. With BDDs, Boolean formula manipulation can be performed in time
linear to the size of the BDD structure. Unfortunately, in the worst case the size of the BDD
structure is exponential in the number of terms in the boolean function it is representing.
The BDD approach has provided excellent performance for all examples from TCAS we
have tried. Since the BDDs manipulate predicates symbolically, the analysis is conservative
and spurious error reports may be generated. This issue will be covered in more detail in
Section 5.1.1.

Serial Composition: Serial application of functions arises out of the event propagation
mechanisms provided in RSML (and Statecharts). A transition triggered by event e; may
generate event e, as an action, i.e., if e; occurs, the transition is taken and e, is generated.
The event e; may now trigger another transition somewhere else in the model. If an event
is generated but does not trigger any transition, it is likely that this event was generated in
error or that transitions triggered by this event are missing from the requirements. Serial
composition of functions requires that the image of the first function is a subset of the
domain of the second function. In the graphical model, this requirement implies that if
an event is generated, there must always be a transition elsewhere in the model ready to
be triggered by this event. All states have a set of transitions enabled (or ready) that can
be taken when the model is in a specific state. Using one bottom-up pass over the state
hierarchy, all states can be annotated with the transitions enabled in them.

It is also possible to annotate each state with the states that can co-exist in the global
state description. With this annotation, assuring that all events generated as actions will
be used is straight forward.

Parallel Composition: Parallel composition occurs when two (or more) transitions in
parallel state machines are triggered by the same event (or events generated simultane-
ously). If the truth value of the guarding condition of one transition can be affected by
a state change caused by a parallel transition, then there exists a possibility of nondeter-
minism, and the transitions are said to conflict with each other.

A pairwise comparison of all parallel transitions can assure determinism: If no two
transitions conflict, then the model is deterministic. Table 4 and 5 outline the data struc-
tures and algorithm used for this analysis. The pairwise comparison of all transitions
existing in parallel and triggered by simultaneous events is potential costly; in the worst
case (all transitions are parallel), the algorithm requires O(n?) comparisons (where n is the
number of transitions in the model). Fortunately, the number of parallel transitions in real
systems seems to be fairly limited, and this straight forward approach has been shown to
be adequate to analyze a major part of a large real life system (TCAS II) for determinism

12].

17

struct Event{

String name;

TransitionArray transitions; // All transitions triggered by this
event

3

struct Nondeterministic{
Trans transi;
Trans trans?2;

Table 4: Data structure for non-deterministic pairs of transition

NondeterministicArray NondeterministicTransitions(Event e)

{

NondeterministicArray resultArray;

for(i = 0 ; 1 < size_of(e.transitions); i++){
for(j = i+1l; j < size_of(e.transitions); j++){
if (parallel((e.transition[i]),
(e.transition[j])) &&
(conflicts(e.transitions[i] .uses,
e.transitions[j].effects) ||
conflicts(e.transitions[j] .uses,
e.transitions[i] .effects))){
AppendPair(result_array, e.transition[i],
e.transitionl[j]);

i
b
b

return resultArray;

b

Table 5: Determinism under event e

18

In summary, the algorithms described in this paper are all quite simple. This simplicity
results from, and is an advantage of, our functional definition of the semantics of RSML.
Unfortunately, the algorithms outlined above all have high worst-case complexity. For
example, checking the union compositions is exponential with respect to the size of the
guarding conditions, and checking determinism is O(n?) with respect to the number of par-
allel transitions. However, by using our functional composition approach, all algorithms
work on fairly small problems, i.e., individual compositions, and this complexity is accept-
able. The compositional approach allows us to determine if these properties are maintained
when hierarchies, parallelism, and event propagation are introduced and avoids the prob-
lems of combinatorial explosion of the problem size and exponential growth in analysis
effort. Experiments (described in the next section) have shown that our approach to anal-
ysis can be effectively applied to large systems.

5 Automated Analysis Tools and Their Evaluation
of the TCAS II System Requirements Specifica-
tion

Manually assuring d-completeness and consistency is an extremely tedious, time-consuming,
and error-prone task. Tool support for the analysis algorithms have been implemented as
an integral part of a simulator for RSML. The simulator accepts a textual representation
of RSML and allows execution of a requirements specification.

A prototype graphical interface allows browsing the specification and animating exe-
cutions. The analysis tools outlined in the previous section are integrated into this sim-
ulator. In addition to the results from the analysis algorithms (reporting inconsistency,
incompleteness, and nondeterminism), the tools generate other useful information, such as
uses hierarchies and event propagation tables.

Although the TCAS specification effort was originally planned to be experimental only,
the government/industry groups responsible for TCAS II liked RSML so much that the
specification was adopted as the official FAA TCAS II System Requirements Specification
[18]. As a result, our initial baseline specification was subjected to an extensive (and
expensive) independent verification and validation (IV&V) effort.

We have applied the analysis techniques described in this paper to major parts of our
baseline TCAS II specification. Initial comparison of the errors found during IV&V and
by our automated analysis indicates that inconsistency problems found during IV&V were
also found by our automated analysis tools. Some subtle inconsistency problems not found
during the official IV&V process were also found. More consistency problems are expected
to be detected as the analysis progresses.

The analysis procedures also found many instances of incompleteness. Unfortunately,
we have not been able to correlate these results with the IV&V effort since the IV&V effort
did not include inspection for incompleteness. During IV&V, only the conditions under
which state changes take place were reviewed; the conditions under which the state is not
changed were not addressed.

The rest of this section provides some examples of the types of problems the analysis

19

Transition(s): |[ASL-1]|— |ASL-1]

Location: Own-Aircraft o Auto-SLg 3

Trigger Event: Descend-Inhibit-Evaluated-Evente_g79
Condition:

A Own-Air-Status,.3¢ = On-Ground
N Traffic-Display-Permittedy_sg
D Mode-Selector,_34 = Standby

Output Action: Auto-SL-Evaluated-Event._o7g

Figure 8: The identity transition for Auto-SL state ASL-1

exposes. Drawbacks with the current implementation of the analysis procedures are also
discussed.

5.1 D-completeness

Because d-completeness was not a priority in our initial TCAS requirements development
(highest priority was placed on simply getting what was specified correct), we found abun-
dant incompleteness during the later analysis process. In retrospect, we believe that if we
had had our completeness analysis tools to alert us to incompleteness as we were develop-
ing the specification, the resulting document would have been much more complete. An
example from the baseline document suffices to illustrate both the complexity of develop-
ing d-complete requirements and some problems with the current implementation of the
analysis tools.

In TCAS, the concept of sensitivity level is used to determine how close an intruder
is allowed to get before an advisory is presented to the pilot. A higher sensitivity level
indicates a more sensitive setting of TCAS 1I, i.e., an advisory will be generated earlier
(while the planes are farther apart). This example is taken from Auto-SL, a concept of
sensitivity level based mainly on the aircraft altitude. Consider the transition in Figure 8.
This transition defines when the model stays in Auto-SL state ASL-1. The automated
analysis techniques detected an incompleteness—mno transition out of the state is satisfied
under a given condition (when a descend-inhibit-evaluated-event has occurred) shown in
Figure 9. The analysis result reflects all conditions under which no transition out of this
state can be taken. The abundance of predicates results from the diversity of the guarding
conditions on the other transitions out of this state. This diversity makes it extremely
difficult to determine manually (without the assistance of our analysis tools) the conditions
for which no behavior has been specified.

Given the output shown in Figure 9, the analyst can determine what response the model

20

No transition out of ASL_1
is satisfied under Descend_Inhibit_Evaluated_Event if :

Own_Air_Status == On_Ground
Own_Air_Status == Airborne
Traffic_Display_Permitted == cTrue
Climb_Desc_Inhibit()
Radarout_EQ_0()
Radar_Bad_For_RADARLOST_Cycles() :
Effective_SL In One Of {ESL_1,ESL_2,ESL_3}:
Effective_SL In State ESL_4 :
Effective_SL In State ESL_5
Effective_SL In State ESL_6
Effective_SL In State ESL_7
Own_Alt_Barometric >= ZSL4T05 :
Own_Alt_Barometric >= ZSL5T06 : . F . .FF . . F.
Own_Alt_Barometric >= ZSL6T07 :
Own_Alt_Barometric <= ZSL6T05 :. .F . . FF . . .F.
Own_Alt_Barometric <= ZSL7T06 :. ..F . . F.F._F
Own_Alt_Radio <= ZSL4T02 :FTTFFF......TTFF
Own_Alt_Radio >= ZSLA4TO05 S D
Own_Alt_Radio > ZSL5T04 T O A

Own_Alt_Radio <= ZSL5T04 : . F .o 00 ... F .

Homom oA
Homom oA
Homom oA
oo oA
oMo
oMo
HmAAm
HmAAm
HmAAm
HmAAm
oA oH
oA oH
oA oH
Homm oA

R I R R R]
oo

R I R R R R R
R I R R R]

oA Mo
Mo oA Mmoo oA

oo o
mmm AT AT T T

oo
Mo om oo
I R
o Moo
o omom o
R R I R R R R R
oo
o omom o
oA Mo
oMo om
o omom o
Mo om oM oA T A Mmoo

Comm Mo T T om oM om oA
I R

o)
m
o)
m

Figure 9: D-completeness analysis result for Auto-SL state ASL-1

should have for all conditions identified by the tool and modify the guarding conditions on
the transitions to make the model d-complete (Figure 10). In this case the desired behavior
was to stay in ASL-1 under all conditions identified by the analysis. In the general case,
it is likely that more than one transition will need to be modified in order to cover these
“forgotten” conditions. With this modification, the set of transitions out of state ASL-1
is d-complete , and the tool will report that there are no conditions where the behavior is
unspecified (Figure 11).

5.1.1 Spurious Error Reports

During initial experiments with our first prototype tool, spurious error reports were not
a serious problem [13]. All spurious reports could be traced either to (1) a lack of type
checking capability or (2) the inability of the tool to adequately include information about
the structure of the state machine in the analysis. For example, consider the input variable
Air-Status of the enumerated type {Airborne, On-Ground} (appearing in the first two rows
of Figure 9). Without information about the all inclusive and mutually exclusive nature
of enumerated types, the tool would generate additional error reports and indicate that
additional transitions out of ASL-1 are needed for the case

N Air-Status = Airborne
D | Air-Status = On-Ground

This is a clearly erroneous report because the input Air-Status must have one of these
values; we do not need to specify what to do under this unsatisfiable condition. Similar
problems relating to the structure of the state machine also led to spurious error reports.
These drawbacks were trivial to address, and an updated version of the tool eliminates our

21

ASL-1| — [ASL-1]

Location: Own-Aircraft o Auto-SLg3g

Transition(s):

Trigger Event: Descend-Inhibit-Evaluated-Evente_o7g
Condition:

Own-Air-Status,.3¢ = On-Ground
Traffic-Display-Permitted,_sg
Mode-Selector,_34 = Standby
Climb-Desc-Inhibit()
Own-Air-Status,.3g = Airborne
Radar-Bad-For-RADARLOST-Cycles()
Radarout-EQ-0()

Effective-SL in one of ESL-1,ESL-2,ESL-3
Effective-SL in state ESL-4
Effective-SL in state ESL-5
Effective-SL in state ESL-6
Effective-SL in state ESL-7
Own-Alt-Barometric,.33 > ZSL4TO5
Own-Alt-Barometric,.33 > ZSL5TO6
Own-Alt-Barometric,.33 > ZSL6TO7
Own-Alt-Barometric,.33 < ZSL6TO5
Own-Alt-Barometric,.33 < ZSL7TO6
Own-Alt-Radio,.3; < ZSL4TO2
Own-Alt-Radio,.3; < ZSL5TO4
Own-Alt-Radio,.3; > ZSL4TO5

o=z

v

AAIVIV

CL L T A]
CL L L T

CL LT LT A]]

L= L L L = L]

HEERCEERRRE BB R

RN

Output Action: Auto-SL-Evaluated-Event._o7g

Figure 10: Transition modified for d-completeness

No transition out of ASL_1
is satisfied under Descend_Inhibit_Evaluated_Event if :

FALSE

Figure 11: Analysis result for the modified specification

22

R T

EEEHEREEEENCREREE R

BN RN

HEERERRE R RN

LA L A A=]

S L A A=]

RN R RN

Other-Tracked-Range-Rateg 945 > 10 T
Other-Tracked-Rangeg 945 > 0.55
|Other-Tracked-Range-Rateg.o45 - Other-Tracked-Rangeg 245] < 0.00278

s

Table 6: A spurious report of an omitted condition.

previous problems with spurious errors.

Unfortunately, these changes do not eliminate all spurious error reports. Two features
of the predicates in RSML complicates the analysis: (1) the use of simple arithmetic and
(2) the use of mathematical functions. Contradictory predicates involving these features
cannot be detected by the symbolic BDD approach. The number of spurious error reports
increases dramatically when the number of predicates including these features increases.
For example, the analysis tool may generate an error report including the condition in
Table 6 (indicating that no transition has been specified for this condition). Any error
report containing this condition is spurious because the predicates in Table 6 cannot be
satisfied simultaneously. The current implementation of our tool is unable to eliminate
this type of spurious error report. The problem is amplified when predicates use references
to mathematical functions instead of constant values.

The problem with simple arithmetic expressions in the predicates can be addressed by
using a theorem prover. Currently, however, the conflicts must be detected and eliminated
by manual inspection. An ongoing project is attempting to augment our tool with theorem
proving capability, and we hope to eliminate the problems with arithmetic expressions
shortly.

The use of function references is a more serious challenge. We are investigating how as-
sertions or invariants associated with the functions can be used to further increase accuracy.
Unfortunately, completely eliminating spurious errors while still maintaining reasonable ef-
ficiency is an unrealistic goal. Thus, tool support to help the human analyst to interpret
the analysis results and detect such problems manually is also being developed.

5.2 Consistency

A consistency problem exists when the guarding condition on more than one transition
can be satisfied simultaneously.

The state machine modeling Effective-SL (which is related to Auto-SL) is shown in
Figure 12. The bar on the side is a transition bus. Many state machines in the model were
found to be fully interconnected, i.e., there are transitions between all the states in the
machine; the transition bus was introduced to make the graphical representation cleaner.

An inconsistency can be detected between the transitions ESL-4—ESL-2 (Figure 5) and
ESL-4—ESL-5 (Figure 13). The inconsistency (as reported from the analysis tool) can be
seen in Figure 14: Column 3 of both transitions are satisfied by the condition. Since
sensitivity level ESL-5 represents a sensitive setting and ESL-2 represents that advisories
are shut off (no warnings are given to the pilot), a potentially hazardous inconsistency
is present. After an evaluation of the inconsistency, it was determined that the guarding
condition on the transition to ESL-2 was too weak and needed strengthening (Figure 15).

23

\

~(ESL-4)
<

/EffectiveSensitivity—Level

ESL-1 \—=
ESL-2 \—=

S
ESL-3 \—

ESL-5

ESL-6 \—

ESL-7 \—=
<

T

%

Figure 12: Effective Sensitivity Level

Transition(s): |ESL-4|— [ESL-5]

Location: Own-Aircraft > Effective-SLg 3

Trigger Event: Auto-SL-Evaluated-Event, o279
Condition:

s

Auto-SLg 39 In state ASL-5

Auto-SLg 39 in one of {ASL-5,ASL-6,ASL-7}

Lowest-Groundyf.o4; = one of {5,6,7,None}

Lowest-Groundg.o4; = 2

Lowest-Groundg g4 = 5

Mode-Selector = one of {TA/RA,5.,6,7}

Mode-Selectory.z4 = TA-Only

Mode-Selector = one of {TA/RA,TA-Only,3,4,5,6,7}

Mode-Selectory.34 = 5

Output Action: Effective-SL-Evaluated-Event._o7g

HENERRERE

BEE

HEBERCE

Figure 13: The transition from Effective-SL ESL-4 to ESL-5

24

HEBEERRER

EHERRREER

ESL_4 --> ESL_2 conflicts with ESL_4 --> ESL_5 if

Auto_SL In State ASL_2

Auto_SL In One Of {ASL_2,ASL_4,ASL_5,ASL_6,ASL_7}
Lowest_Ground() == 2 :
Mode_Selector Equals One Of {TA_RA,TA_Only,3,4,5,6,7}
Auto_SL In State ASL_5 :

HHAa AT

Figure 14: Consistency analysis results for Effective-SL state ESL-4

Transition(s): |[ESL-4] — [ESL-2|

Location: Own-Aircraft > Effective-SLg 30

Trigger Event: Auto-SL-Evaluated-Evente o7g
Condition:
A

N Auto-SLg 39 in state ASL-2
D | Mode-Selectory.34 = Standby

Output Action: Effective-SL-Evaluated-Evente_o7g

Figure 15: The modified transition from Effective-SL ESL-4 to ESL-2

Unfortunately, correcting an inconsistency is often not as simple as strengthening the
guarding condition on one of the transitions involved in the inconsistency. Inconsistencies
sometimes arose from logical errors in the requirements and an extensive redesign of that
part of the requirements document was needed.

Other approaches to requirements specification analysis are not concerned with this
kind of inconsistency—it is simply viewed as nondeterminism and accepted as a part of the
requirements. As was mentioned in Section 3, we view nondeterminism as an inconsistency
that should, in most cases, be eliminated. At the least, each case needs to be carefully
examined because nondeterminism can have a negative effect on safety (as shown by the
example in this section).

6 Conclusions

This paper outlines a functional framework enabling compositional static analysis of state-
based requirements and shows how the analysis for two fundamental qualities of require-
ments specifications—d-completeness and consistency—can be automated. The feasibility
of the analysis has been demonstrated by analyzing major parts of a real life avionics
system (TCAS II). The approach outlined in this paper has several advantages:

e The analysis does not require generation of any part of the global reachability graph
(either a complete representation or a symbolic representation)

e It enables incremental analysis of the requirements. The pieces of the requirements
document can be analyzed as they are being developed and the individual results
combined at a later stage.

o It helps identify the parts of the requirements needing re-analysis after changes to
the document have been made.

e [t is a conservative approach, i.e., it is guaranteed that no d-incompleteness, incon-
sistency, or nondeterminism will go undetected.

We get these advantages by limiting the semantics of the specification language to
those that can be described by functional composition. In doing this, we give up some
freedom both in defining the semantics of the language and in the models that we allow
users to build. We believe, however, that the increased power of the analysis that we can
perform on complex models in comparison to other current approaches makes the tradeoff
worthwhile. We found that eliminating the nondeterminism from the language made it
easier for the TCAS reviewers to understand the model and find errors in it. So our
restrictions have advantages in reviewability, correctness, and analysis, but they do cause
some loss of flexibility in language design.

Because the BDDs we use to represent our AND/OR tables manipulate predicates sym-
bolically, the analysis is conservative and may generate spurious error reports. The main
source of spurious reports is the use of arithmetic and function references in the predicate
definitions. QOur tool is currently being refined to correct this problem. We are investi-
gating the tradeoffs between efficiency and accuracy, and we are integrating the symbolic

26

BDD approach with a theorem prover to achieve the level of accuracy required to easily
interpret analysis results from the most complex parts of the TCAS requirements.

Our long term goal is to provide a suite of analysis tools to help find a wide vari-
ety of flaws in software requirements early during software development. Many desirable
properties of requirements specification have been defined by Jaffe et al. [16], for example,
non-reachability of hazardous states and path robustness properties. Additional properties
are being defined for the human—computer interface (see Leveson [20] for some of the new
criteria). Our goal is to formally define these properties in the RSML framework (and
develop new ones suitable to this new framework) and provide efficient automated analysis
procedures for these properties.

27

References

[1]

[10]

[11]

[12]

[13]

J. Atlee and J. Gannon. State-based model checking of event-driven system require-
ments. In Proceedings of the ACM SIGSOFT 91 Conference on Software for Critical
Systems. Software Engineering Notes. Volume 16 Number 5, 1991.

G. R. Bruns, S. L. Gerhart, I. Forman, and M. Graf. Design technology assessment:
The statecharts approach. Technical Report STP-107-86, MCC, March 1986.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEFE
Transactions on Computers, C-35(8):677-691, August 1986.

J.R. Burch, E.M. Clarke, D.E. Long, K.L.. McMillan, and D.L. Dill. Symbolic
model chacking for sequential circuit verification. Technical Report CMU-CS-93-211,
Carnegie Mellon University, July 1993.

J.R. Burch, E.M. Clarke, K.L.. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 10%° states and beyond. In Proceedings of the Fifth Annual Symposium on
Logic in Computer Science, June 1990.

E. M. Clarke, M. C. Browne, E. A. Emerson, and A. P. Sistla. Using temporal logic for
automatic verification of finite state systems. In K.R. Apt, editor, Logics and Models
of Concurrent Systems, pages 3-26. Springer-Verlag, Berlin, 1985.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, April 1986.

Patrice Godefroid, Gerhard J. Holzmann, and Dieder Pirottin. State space caching
revisited. In Proceedings of the Fourth Workshop on Computer-Aided Verification,
pages 175-186, 1992.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programmaing, 8:231-274, 1987.

D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt, editor,
Logics and Models of Concurrent Systems, pages 477-498. Springer-Verlag, 1985.

D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of
statecharts (extended abstract). In 2nd Symposium on Logic in Computer Science,

pages b4-64, Ithaca, NY, 1987.

Mats P.E. Heimdahl. Static Analysis of State-Based Requirements: Analysis for Com-
pleteness and Consistency. PhD thesis, University of California, Irvine, 1994.

Mats P.E. Heimdahl and Nancy G. Leveson. Completeness and Consistency Analysis
of State-Based Requirements. In Proceedings of the 17th International Conference on
Software Engineering, April 1995.

28

[14]

[15]

[20]

[21]

[22]

23]

[24]

[25]

A

Gerhard J. Holzmann. Tracing protocols. AT& T Technical Journal, 64(10), December
1985.

Gerhard J. Holzmann. Automated protocol validation in Argos: Assertion proving
and scatter searching. [EEE Transactions on Software Engineering, 13(6):683-696,
June 1987.

M. S. Jaffe, N. G. Leveson, M. P.E. Heimdahl, and B. Melhart. Software require-
ments analysis for real-time process-control systems. [EEE Transactions on Software

Engineering, 17(3):241-258, March 1991.

M.S. Jafte. Completeness, Robustness, and Safety in Real-Time Software Requirements
and Specifications. PhD thesis, University of California, Irvine, 1988.

N. G. Leveson, M. Heimdahl, H. Hildreth, and J. Reese. TCAS II Requirements
Specification.

N. G. Leveson, M. P.E. Heimdahl, H. Hildreth, and J. D. Reese. Requirements spec-
ification for process-control systems. [IEEFE Transactions on Software FEngineering,

20(9), September 1994.
Nancy G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 1995.

R. Lutz. Targeting safety-related errors during software requirements analysis. In
Proceedings of the First ACM SOGSOFT Symposium on the Foundations of Software
Engineering, 1993.

A. Pnueli and M. Shalev. What is in a step? In J. Klop, J. Meijer, and J. Rutten,
editors, J.W. De Baker, Liber Amicorum, pages 373-400. CWI Amsterdam, 19809.

A. P. Ravn and H. Richel. Requirements capture for embedded real-time systems. In

IMACS Symposium MCTS, 1991.

H. Richel and A. P. Ravn. Requirements capture for computer based systems. Tech-
nical Report ID/DTH HR 2/2, Technical University of Denmark, October 1990.

J. Rushby and F. von Henke. Formal verification of algorithms for critical systems.
IEEE Transactions on Software Engineering, 19(1):13-23, January 1993.

Auxiliary Definitions

The definitions in this appendix describe the hierarchical and parallel structure of the state
machine used in both RSML and Statecharts. The definitions are adopted from [11, 22].

Definition 12 The least common parent (Icp) of the states in the set X € 27,
lep(X) =y, is defined as:

[X Co*(y) [A[VseS : (X Co*(s)) = (y€oc(s))]

29

Informally, X has to be a subset of the descendants of lep(X) and o*(lep(X)) has to be
the smallest set containing both X and lep(X) where lep(X) is the smallest superstate
containing all states in X.

The graphical notation used in Statecharts and RSML requires that the hierarchy of states
must be organized in a tree structure.

Definition 13 There must exist a state @ € S, known as the root, satisfying:
Az e S : x=lep(S)
For example, in Figure 6 lep({G,H}) = E, lep({B,1}) = A, and the root is A.

The partitioning function = divides the descendants of any given state into parallel com-
ponents. If two descendants of a state are members of different parallel components, they
are said to be in parallel.

Definition 14 States x and y are parallel (z L y) iff:

=3 ((we U TG)Awe U o(9)

s€mi(lep({z,y})) s€mi(lep({z,y}))

Informally, the states @ and y are parallel iff they are (or are contained under) states from
different parallel components of their least common parent. In Figure 6, for example, H
and B, B and D, and F and H are all pairwise parallel. Examples of non-parallel states
include (1) B and C and (2) D and H.

Definition 15 A set X € 2% is said to be parallel iff:
Ve,ye X @ (x=y)V(z Ly)

That is, all elements of X are pairwise parallel. The set {B,G, I} is an example of a
parallel set.

Definition 16 A set X € 2F is consistent iff:
Ve,ye X @ [(07(y) Co™(x)) V(o™ (x) Co™(y))]V(z Ly)

Informally, a set of states x is consistent iff all states in X are either ancestrally related or
parallel. As an example, for the states in Figure 6, the sets {F, H} and {F, H} are both
consistent, but {D, H} is not.

Definition 17 A set X € 2% is said to be mazimally consistent iff:

Ve e S — X : —consistent(X U {z})

30

The concept of maximally consistent is best explained with an example. Consider Figure 6
and assume the machine is in state H. Given the structure of the state hierarchy, it is
clear that if you are in H, you also are in £ and A. The concept of maximally consistent
“fills in the blanks” in a consistent set: If you are in H, you also have to be in £ and A. A
maximally consistent set of states is known as a configuration of M. The set {A, B, £, F, H}
is maximally consistent. This set defines one possible configuration of M.

We can now formally define the set of global states of M:
Definition 18 The set of global states C is defined as:
C = {c| ¢ C 2° A max-consistent(c)} x V

This concludes the formal definition of the structure of the states making up the graph-
ical notation used in RSML (and Statecharts). Note again that these definitions are essen-
tially identical to the definition of the hierarchical structure of Statecharts [11, 22].

31

