An Approach to Designing Safe Embedded
Software*

Nancy G. Leveson

Massachusetts Institute of Technology, Room 33-313, Cambridge MA 02139, USA
leveson@mit.edu,
http://sunnyday.mit.edu

Abstract. The complexity of most embedded software limits our ability
to assure safety after the fact, e.g., by testing or formal verification of
code. Instead, to achieve high confidence in safety requires considering
it from the start of system development and designing the software to
reduce the potential for hazardous behavior. An approach to building
safety into embedded software will be described that integrates system
hazard analysis, user task analysis, traceability, and informal specifica-
tions combined with executable and analyzable models. The approach
has been shown to be feasible and practical by applying it to complex
systems experimentally and by its use on real projects.

1 Introduction

Embedded systems often involve control over processes that are potentially dan-
gerous or could involve large losses (including loss of the system itself). Safety
and human factors are often considered at too late a stage in embedded system
development to have adequate impact on system design: It has been estimated
that 70-90% of the decisions relevant to safety are made in the early conceptual
design stages of a project [Joh80]. Relying on after-the-fact safety assessment
emphasizes creating an assessment model that proves the completed design is
safe rather than constructing a design that eliminates or mitigates hazards. Too
often, after-the-fact safety assessment leads to adjusting the model until it pro-
vides the desired answer rather than to improving the design.

In the same way, when the human role in the system is considered after
the basic automation is designed, the choices to ensure usability and safety in
human—computer interaction are limited to interface design, training, and hu-
man adaptation to the newly constructed automation. This approach has been
labeled technology-centered design and has been accused of leading to “clumsy”
automation [WCK91] and to new types of accidents in high-tech systems, such
as new fly-by-wire aircraft [SW95]. Most of these accidents have been blamed on
pilot error but more accurately can be described as flaws in the overall system
and software design. Automation has the potential to overcome human percep-
tual and cognitive limits and to reduce or eliminate specific common human

* This work was partially supported by NSF ITR Grant xxx

errors. At the same time, it also has the potential for leading to accidents if not
designed correctly.

This paper describes an integrated safety and human-centered approach to
developing software-intensive systems along with some specification, modeling
and analysis tools for implementing it. SpecTRM (Specification Tools and Re-
quirements Methodology) is both a methodology and supporting toolset for
building embedded, software-intensive, safety-critical systems that focuses on
the system engineering aspects of software and the development of safe and cor-
rect requirements. Most of the focus in computer science research has been on the
implementation of requirements with much less work on the system-level aspects
of embedded software development, i.e., how the software will interact with the
other components in the system. Perhaps this lack of emphasis in research and
tools is why so many problems seem to arise at this interface. To reduce commu-
nication problems, industry has developed Integrated Product Teams, where the
software developers work closely with the system engineers. Simply putting peo-
ple together on a team, however, is not adequate to solve the problem—common
models and ways to communicate about system design issues are necessary for
effective communication to take place.

SpecTRM is based on the principle that critical properties must be designed
into a system from the start. As a result, it integrates safety analysis, func-
tional decomposition and allocation, and human factors from the beginning of
the system development process. Because neither formal or informal specifica-
tions alone are adequate to develop embedded software, SpecTRM uses both to
accumulate the information needed to make tradeoff and design decisions and
to ensure that desired system qualities are satisfied early in the design process
when changes are easier and less costly. Because almost all accidents related to
software have involved requirements errors and not coding or implementation
errors, requirements specification and validation is emphasized.

The methodology is supported by a new specification structuring approach,
called Intent Specifications, that supports traceability and documentation of
design rationale as the development process proceeds. While most of the infor-
mation specified is not written in a formal language (and does not need to be),
some parts of the development process can benefit greatly from having formal,
analyzable models. At the same time, most errors in requirements specifica-
tions will be found by application experts who understand the engineering and
other requirements on the system. The formal modeling language, SpecTRM-RL
(SpecTRM Requirements Language), was designed with readability as a primary
criterion and therefore we believe the models that result can be used as an un-
ambiguous communication medium among the system developers and software
implementers.

The next section outlines the overall methodology and describes the general
goals behind intent specifications. Then the types of information specified at
each level of an intent specification is described along with associated analyses.

2 The SpecTRM Approach to Designing Embedded
Systems

The steps of the basic system engineering approach underlying SpecTRM are
shown in Figure 1. The middle column represents the general engineering tasks.
The right column shows special safety engineering activities and those in the
left column represent human factors engineering. The separation is only shown
to emphasize the safety and human factors activities; in any real project, they
should be tightly integrated with the general engineering tasks but they are
often separated—with unfortunate results. The process also involves more iter-
ation and feedback than shown. While it may look like the process implies a
pure waterfall model, the steps could be embedded in other lifecycle processes.
Performing the later steps before the earlier ones, however, may result in a lot
of backtracking and wasted effort or result in unsafe and difficult to use sys-
tems. The life cycle appropriate for embedded systems is very different than one
appropriate for developing office software.

The steps of the process are supported by a new specification approach called
Intent Specifications [Lev00a] and automated tools to assist with model construc-
tion, recording of design rationale, and traceability. The models are important
in evaluating designs while design rationale and traceability are critical for cer-
tifiability and maintainability.

Embedded software will evolve and change continually throughout its life.
Maintaining safety in such a changing environment requires high-quality speci-
fications that include detailed descriptions of the externally visible behavior of
the existing components as well as the rationale for the system design choices.
The integration of new components must be based on the design and constraints
of existing components and the surrounding environment, and any changes to
the current system must be analyzed for their effect on system requirements,
operator tasks and responsibilities, safety constraints, and human factors.

Determining whether a requirements, design, or implementation change has a
potential effect on system safety also requires a level of traceability not normally
found in specifications. Although such traceability implies more planning and
specification effort at the beginning of a project, the effort will allow changes
to be made much more quickly and easily. It could be prohibitively expensive,
for example, to generate a new hazard and safety assessment for each system
change that is proposed. Being able to trace a particular design feature or im-
plementation item to the original hazard analysis will allows decisions to be
made about whether and how that feature or code can be changed. The same
is true for changes that affect operator activities and basic task allocation and
usability principles. In some regulated industries, traceability is required by the
certification authorities.

Intent Specifications organize system specifications not only in terms of the
usual what and how (using refinement and part-whole abstractions), but also
in terms of why (using intent abstraction) and integrate traceability and de-
sign rationale into the basic specification structure. They include both natural
language and formal executable models. The design of Intent Specifications is

Human Factors

Preliminary Task Analysis

Operator Goals and
Responsibilities

Task Allocation Principles

Operator Task and
Training Requirements

Operator Task Analysis
Simulation/Experiments
Usability Analysis
Other Human Factors

Evaluation

(workload, situation
awareness, etc.)

Operational Analysis

Performance Monitoring o,

Periodic audits

Change Analysis

System
Engineering

Identify system goals and

l

Generate system and
operational requirements
and design constraints

'

System Safety

. . Preliminary Hazard Analysis
/ environmental assumptlons\

Hazard List

Fault Tree Analysis

l« Safety Requirements and

Constraints

System Hazard Analysis

Design and allocate tasks
and specify information flow

Completeness/Consistency
Analysis

Simulation and Animation

l

State Machine Hazard

Model and evaluate operator
tasks and component
blackbox behavior

(systems analysis)

Analysis
le_» Deviation Analysis (FMECA)

Mode Confusion Analysis

'

Human Error Analysis

Design and construct
components, controls and
displays, training materials,

and operator manuals

Timing and other analyses

'

Verification

l

Field testing, installation,
and training

l

Operations

Safety Verification

— Safety Testing

Operational Analysis

Change Analysis

Incident and accident analysis
Periodic Audits

Performance Monitoring

Fig. 1. A Safety and Human-Centered Approach to Building Embedded Systems

based on fundamental research on human problem-solving, systems theory, and
basic system engineering. For a description of the systems theory and cognitive
psychology research underlying Intent Specifications, see [Lev00a].

There are seven levels in an Intent Specification, each supporting a different
type of reasoning about the system. A level does not represent refinement of
the information at the level above, but instead contains a different view of the
system. At the same time, the levels do not contain redundant information,
but (as in basic system theory) instead higher levels represent constraints on
the levels below. Each level also includes information about the verification and
validation of the system model at that level. By organizing the specification in
this way and linking the information at each level to the relevant information at
the next higher and lower level, higher-level purpose or intent, i.e., the rationale
for design decisoins, can be determined. In addition, by integrating and linking
the system, software, human task, and interface design and development into
one specification framework, intent specifications support an integrated rather
than stovepiped approach to system design.

Curtis et.al. [CKI88] did a field study of the software requirements and de-
sign process for 17 large systems. One of the characteristics they found that
appeared to set exceptional designers apart from their colleagues was the ability
to map between the behavior required of the application system and the compu-
tational structures that implement this behavior. The most successful designers
understood the application domain and were adept at identifying unstated re-
quirements, constraints, or exception conditions and mapping between these and
the computational structures. A goal of Intent Specifications is to support and
foster this understanding.

The seven levels of an intent specifiation are shown in Figure 2. The top level
represents the management view of the project and the second the customer view.
The third level is the system engineering view while the fourth level represents
the interaction between system and software engineers. The fifth and sixth levels
contain the usual information developed and used during software development.
The lowest level supports an operational view of the system. Note that the
ordering of the levels does not imply an ordering of the activities. Most projects
involve both top-down and bottom-up development, and the pieces of the Intent
Specifications will be filled in as the related activities are performed. The only
requirement is that at the end of the development phase, the intent specification
is complete enough to support system maintenance and evolution.

In the following description of the information at each level, parts of an exam-
ple specification we produced for an Air Traffic Control Conflict Detection Tool
(called Mid Term Conflict Detection or MTCD) are used. MTCD is currently
being evaluated by Eurocontrol for possible use in the European airspace.

Level 0: Management Perspective

The top level of an intent specification contains management plans, system safety
plans, and other planning documents. Links to lower levels allow management
to maintain a view of the status and results of the process.

Environment Operator System and components V&V
Level 0 Project management plans, status information, safety plan, etc.
Level1 | Assumptions R ibiliti i Preliminary
esponsibilities System goals, high-level :
gystem Constraints Recﬁ)uirements yrequirtgments, gesign Hazard Analysis
urpose I/F requirements constraints, limitations Reviews
Level 2 External Task analyses Logic principles, Validation plan
System interfaces Task allocation control laws, and results,
Principles Controls, displays functional decomposition System Hazard
and allocation Analysis
Level 3 i Operator Task Blackbox functional Analysis plans
Blackbox En\r/r:g)dngsent P models models and results,
Models HCI models Interface specifications Subsystem
Hazard Analysis
Level 4 T
- i ftware and hardware est plans
Design HCI design Software and results
Rep. design specs
Level 5 GUI design, Software code, hardware Test plans
Physical physical controls assembly instructions and results
Rep. design
Level 6 Audit Operator manuals Error reports, change Performance
Operations || procedures Maintenance requests, efc. monitoring
Training materials and audits

Fig. 2. The Structure of an Intent Specification

Level 1: Conceptual Design

One of the first steps in embedded software development is to identify high-level
functional goals and the assumptions and constraints on the software design
arising from the environment in which it will be used. For example, two high-
level goals for MTCD are:

G1: To provide a conflict detection capability to air traffic controllers for all
flights in the area of operation.

G2: To help keep the workload of the controllers within acceptable and safe
limits despite an expected increase in traffic.

The success of any embedded software will rest on how well it fits within the
larger system. For example, the ATC system within which MTCD fits consists of
the conflict detection function itself, planning and tactical air traffic controllers
for the sector, and the human—machine interface. MTCD interacts directly with
the real-time flight data processing system, the environment data processing sys-
tem, and a recording function, and indirectly with various automated decision
aids, such as an arrival sequencing manager and monitoring aids. Two exam-
ple assumptions about the interaction of MTCD with the real-time flight data
processing system (FDPS) are:

Env-As-FDPS-01: FDPS will provide MTCD with system trajectories for
all eligible flights.

Env-AS-FCPS-03: FDPS will inform MTCD when a flight leaves the area
of operation.

Because we believe system design must consider human factors and system
safety from the very beginning in order to achieve high levels of usability and
safety, the first steps in the methodology involve a preliminary hazard analy-
sis (PHA) and a preliminary controller task analysis (PTA). The PHA starts
from agreed upon system hazards, such as violation of minimum separation be-
tween aircraft or entry of an aircraft into a restricted area, and identifies system
behavior that could lead to those hazards.

Controlled aircraft violate
minimum separation

standards
OR
1.0 2.0 | 3.0
The pilot does not PC does not detect conflict
follow ATC advisories :
AND
2.1 \ 22|
li| PC does not mentally detect PC does not detect
and predict the conflict based MTCD-X conflict info
on the HMI traffic display on HMI display
\
OR
221 ‘ 2.2.2 ‘
PC does not pay attention to HMI does not display
MTCD-X conflict information MTCD-X conflict information
T I
OR
2211 \ 2212 ?R 2213 \ 2221
PC is busy dealing with PC loses PC is distracted by other Conflict severity
another conflict concentration displays on HMI classification indicators
I ! set too low
AND ‘
22111 22112 |I|
Traffic is congested in Workload imbalance
the area of operation between PC and TC

Fig. 3. A Piece of a Fault Tree for Violating Minimum Separation

Figure 3 shows a piece of the fault tree for the violation of minimum separa-
tion between controlled aircraft. The fault tree is used to derive requirements and
design constraints related to safety. Each leaf node in the fault tree must either
be traced to an operational or training requirement for the controller tasks or
to an MTCD requirement or design constraint (and thence to the design feature
used to eliminate or mitigate it). If a leaf node cannot be eliminated or miti-
gated, it must be accepted (and documented) as a necessary limitation of the

system. Such limitations may in turn require changes in the operation or design
of the overall air traffic management system. Information derived from the fault
tree may also be used in the Preliminary Task Analysis (and vice versa).

The hazard analysis and system engineering processes are iterative and mu-
tually reinforcing. In the beginning, when few system design decisions have been
made, the hazard analysis may be very general. As the system design emerges,
the hazard analysis will become more detailed and will impact additional design
decisions. For example, the need for conflict severity categorization for MTCD
was identified in the PHA and leads to a requirement:

MTCD-08: MTCD shall support conflict severity categorization.

The box labelled 2.2.2.1 (Conflict severity classification indicators are set too
low) leads to requirements and design constraints related to conflict severity
classification indicators, how they are set and how they can be changed, the
conditions under which conflicts are displayed, and the need for feedback to the
controller about the current value of the conflict severity categorization indica-
tors. For example, the conflict detection function might include a requirement
to allow the operators to change the conflict severity thresholds. At the same
time, there may be a constraint on the controller tasks and interface design that
requires permission before the conflict categorization indicators can be changed
by the controller.

A Preliminary Task Analysis (PTA) is also performed at this early concept
development stage and interacts closely with the concurrent PHA process. The
PTA consists of cognitive engineers, human factors experts, and operators to-
gether specifying the goals and responsibilities of the users of a new tool or
technology, the task allocation principles to be used, and operator task and
training requirements.

For MTCD, we started by specifying all of the tactical controller (TC) and
planning controller (PC) responsibilities, not just those directly affected by
MTCD. All responsibilities were included because any safety or usability anal-
ysis will require showing that MTCD-X does not negatively impact any of the
controller activities. For instance, the PC (Planning Controller) is responsible
for detecting sector entry or exit conflicts and formulating resolution plans with
the PC of the adjacent sector and the TC (Tactical Controller) of the current
sector. The TC, on the other hand, is responsible for in-sector tactical conflict
detection and for implementing the plans formulated by the PC for entry or exit
conflicts.

The second step in the PTA is to define the task allocation principles to be
used in allocating tasks between the human controllers and the automation. This
process uses the results of the Preliminary Hazard Analysis, previous accidents
and incidents, human factors considerations, controller preferences and inputs,
etc. For example, some task allocation principles for conflict resolution might
be:

The human controller will have final authority as far as the use of the
prediction tool, the need for intervention, and the criticality of the sit-

uation. The controller will be responsible for devising solutions to the
conflict.

These principles, together with the PHA and high-level system goals, are
used to write requirements for the controller tasks, the automated function, and
the human-machine interface. For MTCD, the PHA, the controller responsi-
bilities, and the task allocation principles may lead to the following operator
requirements (among others):

MIT-OP-R02: The PC shall plan traffic using MTCD output, and where
a problem persists shall notify its existence and nature to the TC.
MIT-OP-R03: If incorrect or inconvenient behavior (e.g. high rate of false
alarms) is observed, the controller shall not use the MTCD function.
MIT-OP-RO7: The controller shall address conflicts detected by MTCD in
a criticality-based rather than time-based order.

The final step of the PTA is the generation of operator task and training
requirements and constraints.

The system goals and environmental assumptions and constraints along with
the results from the PHA and PTA are then used to generate a complete set
of system requirements (including functionality, maintenance, management, and
interface requirements), operational requirements, and design constraints.

Level 2: System Design

Using the system requirements and design constraints as well as the other in-
formation that has been generated to this point, a system design (or alternative
system designs) is created and tasks are allocated to the system components
(including the operators) to satisfy the requirements, task allocation principles,
and operational goals. The specification at this level contains system design, not
software design. Note that this process will involve much iteration as the re-
sults of analysis, experimentation, review, etc. become available. We have found
that natural language is the most appropriate specification language at this level
combined with standard engineering and mathematical notations, for example,
differential equations or control block diagrams for documenting control laws.

Level 3: Allocating and Validating Requirements

The next step involves validating the system design and requirements and per-
forming any tradeoff and evaluation studies that may be required to select from
among a set of design alternatives. Various types of operator task analyses and
system hazard analyses play a part in this process.

The methodology includes using formal models in SpecRLM-RL to assist
in this evaluation and validation process. Designers construct formal, blackbox
models of the required component behavior and operator tasks. The SpecTRM-
RL modeling language was designed with readability and reviewability of the

models by various domain experts as a major goal. The models act as a commu-
nication medium among everyone involved and therefore must be easily under-
standable and unambiguous.

An earlier version of the current modeling language (called RSML) was used
to specify the official requirements for TCAS II [LHH94]. One requirement of
that project was to provide a specification language that could be read and
reviewed by any interested parties with minimal training (less than an hour).
Our latest version of the formal modeling/specification language attempts to
enhance readability and reviewability by reducing even further the semantic
distance between the reviewer’s mental model and the specification. We also
elminated the features we found to be very error-prone, such as internal events.
Our current research is focused on visualization techniques for complex, formal
specifications and the use of domain-specific notations.

The blackbox component behavior models are built on an underlying state
machine model [JLHM91]. SpecRLM-RL blackbox models combine a graphical
notation with tabular descriptions of the legal state changes. Figures 4 and 5
show pieces of our SpecTRM-RL model for MTCD. The MTCD model could be
combined with a model of the airspace and models of the other system compo-
nents and executed or analyzed together in a system simulation environment.

The graphical part of the model (as shown in Figure 4), is drawn in the form
of a control loop showing the direct interactions of MTCD with other system
components (the environment data processing system, the flight data processing
system, and the controller working position). A future planned interface with a
new arrival manager tool (AMAN) is shown.

A SpecTRM-RL model of a component itself (in this case MTCD) usually
has four parts:

— Display modes: the display mode will affect the information to be provided
to the controller. A display mode specification is not needed for MTCD

— Supervisory modes: the supervisory mode specifies who is using the com-
ponent at any time, which affects which operations are legal. In this case the
supervisor may be the PC, the operations manager, or AMAN.

— Component control modes: the mode the automation is in. In the case of
MTCD, these include unconfigured, configured, active, stopped, and failed.

— Inferred system state: a model of the inferred state of the controlled
system, in this case, the airspace in the area of operation.

The controlled system (airspace) state at any time is inferred from the inputs
received and may be incorrect if those inputs are incorrect or not timely. The
airspace model within MTCD consists of a model of the assumed state of each
of the aircraft being evaluated for conflicts. The model of MTCD shown has, for
each aircraft, state variables representing the status of the flight data from that
aircraft, the conflict detection status, the flight phase (needed because separa-
tion criteria will vary with flight phase), and the status of the current position
information. Note that accidents occur when this inferred airspace state differs
from the real state. The validation phase involves assuring that the model is

MTCD

SUPERVISORY

PC
e)
@ Manager 3 Flight Data
AMAN ; Known
AMAN ‘ [
| } Unknown
| 3 Conflict Detection Status
" @ ””””””””””} Unknown
ntr - E— !
CONTROL MODE ! Included
Manager = 4 Excluded
@ Unconfigured i
3 Configured 3 Current Position
| i »
! Active ; Unknown
! Stopped ! Known
| Failed i Obsolete

Flight Data
Processing

System

INFERRED AIRSPACE STATE

AIRCRAFT (ID) [1...Max-aircraft]

Flight Phase -
— Unknown

— Departure

— Outbound

— Enroute

— Inbound

— Holding

— Sequenced

- Landing

CFMU/
Radars/
Data Link

Aircraft
in
Area of

@ FDPD— MTCD-X
For each aircraft:

Flight_ID
Aircraft_Type
Nav_Capabilities
Class_of_Flight
Current_Position (X,Y, Level)
Trajectory

@ AMAN — MTCD-X
MTCD-X — AMAN
Undefined at this time

EDPD— MTCD-X

For each airspace:
Airspace_ID
Upper_Level
Lower_Level
Boundary
Start_Time_of_Restriction
End_Time_of_Restriction
Type_of Airspace
Separation_Parameters
Uncertainty_Parameters

For each parallel route:

Route_ID
Separation_Parameters

Area _of_Operation

@ HMI — MTCD-X

Stop_MTCD-X

Start MTCD-X
Configuration_Params
Include_Aircraft (ID)
Exclude_Aircraft (ID)

@ MTCD-X —= HMI
For each conflict:
Conflict_ID
Conflict_Type
Severity
Conflict_Data

Fig. 4. Part of a SpecTRM-RL Model of MTCD

correct and that the overall system is robust against errors in the information
received about the current airspace state.

A complete model also needs to specify the conditions under which each
of the MTCD control modes is used, the conditions under which the outputs
are generated and their content, and how each of the inferred state variables
is assigned a value. Figure 5 shows the logic for selecting the MTCD operating
mode. The conditions under which each of the four values for operating mode
become enabled are described using AND/OR tables. The operating mode takes
a particular value when the table associated with that value evaluates to TRUE,
which in turn happens when any column of the table evaluates to TRUE. A column
is TRUE when each row satisfies the truth value shown (with a dot denoting
“don’t care”). In the example, the MTCD status becomes ACTIVE if either (1)
the previous mode was CONFIGURED and an area of operation is received by
MTCD or (2) the previous mode was STOPPED and a start command is received.

DEFINITION
= Unconfigured
Powerup ‘
CONTROL MODES
= Configured
> 9
Unconfigured AND In-mode Unconfigured
Received Start_MTCD-X
Configured
Active = Active
Stopped In-mode Configured

Received Area_of_Operation

AND
In-mode Stopped

Received Start MTCD-X

= Stopped

In-mode Active T
AND -]
Received Stop_MTCD-X | T]

Fig. 5. The Logic for Selecting the Current Operating Mode

An executable human task modeling language has also been defined. In pre-
vious experimentation, we found that a different notation was more useful for
modeling human tasks than that used for describing the automation behavior.
Both generate the same type of underlying formal model, which should allow
integrated execution and analysis of the system as a whole, both the automation
and the user tasks. An important aspect is the specification of the communica-

tion between the various controllers as well as between the controllers and the
automation. We have shown how these task models can be used to find features
of the combined automation and task design that can lead to mode confusion
and other human errors [RZKO00].

In addition to being reviewable by aviation and air traffic management ex-
perts, the formal models are executable and can be executed alone or integrated
into an ATC simulation environment. Animation and visualization of the exe-
cuting models assist in understanding and evaluating the proposed design of the
automation and controller tasks. The executable specifications can also be used
in experiments involving controllers to evaluate human factors. An advantage of
executable specifications over prototypes or special simulation languages is that
the specification can be changed as the evaluation proceeds. At the end of the
evaluation stage, a final specification is ready for implementation without having
to reverse engineer a specification from a prototype.

Because the modeling language is based on a formal mathematical model,
various types of automated mathematical analysis can also be applied. We have
developed techniques for analysis of consistency and completeness, robust oper-
ation in an imperfect environment, reachability of hazardous states, and poten-
tial mode confusion. A new hybrid (continuous and discrete) version of the basic
modeling language (SpecTRM-H) allows safety analysis of the conflict detection
algorithms themselves [Neo01].

Requirements errors and incompleteness account for most of the accidents in
which digital automation has been involved. It is, therefore, particularly impor-
tant that the requirements specification distinguish the desired behavior from
that of any other, undesired behavior, that is, the specification must be precise
(unambiguous), complete, and correct (consistent) with respect to the encom-
passing system requirements. We have built prototype tools to check our specifi-
cations for consistency and some aspects of mathematical completeness [HL96).
Other important completeness aspects are enforced by the design of SpecTRM-
RL itself [Lev0Ob] or can be checked using inspection or simple tools.

Robustness can be evaluated using an automated technique called Software
Deviation Analysis [RL87]. SDA determines how the software will operate in an
imperfect environment by examining the effects of deviations of system parame-
ters (inputs). The input to the SDA tool is an input deviation, for example, “the
altitude reported by the radar data processing function is lower than the actual
altitude.” The output is a list of scenarios, where a scenario is defined as a set
of deviations in the software inputs plus constraints on the software execution
states that are sufficient to lead to a deviation in an identified safety-critical out-
put. The deviation analysis procedure can optionally add further deviations as it
constrains the software state, allowing for the analysis of the effects of multiple,
independent failures.

Other tools can be used to assist in system and subsystem hazard analysis
[LS87]. Information from these analyses is useful in eliminating hazards from
the design or in designing controls and hazard mitigation. For example, one tool
assists the designer in tracing back through the model from hazardous states to

determine if and how they are reachable. Backward search can also reveal how
the system can end up in a hazardous state if a failure occurs. Our backward
reachability analysis on discrete state models has recently been augmented to
include continuous states (a hybrid model) [Neo01], using some basic techniques
from control theory. Neogi has experimentally applied this approach to evaluate
the safety of the conflict detection algorithm used in MTCD.

Finally, the specification/model of the blackbox automation behavior can be
evaluated for its potential to lead to mode confusion [LRK97]. We have identified
six automation design categories have been identified as leading to mode confu-
sion, based on accidents and simulator studies: (1) ambiguous interface modes,
(2) inconsistent automation behavior, (3) indirect mode changes, (4) operator
authority limits, (5) unintended side effects, and (6) lack of appropriate feedback.
Analysis procedures are being developed to detect these features in SpecTRM-
RL models. We have experimentally tested these ideas on real helicopter and
aircraft flight management system software.

Once the engineers are happy with the operator task and logical system
design, detailed design and construction of the system components, controls and
displays, training materials, and operator manuals can begin.

Level 4 and 5: Component Design and Implementation

For some applications, the code can be automatically generated from the SpecTRM-
RL models. For others, the real-time requirements require hand crafting of
the code. In general, many of the software specification and design techniques
currently popular do not afford the level of traceability and safety assurance
necessary in safety-critical systems. We assume that reuse will start from the
SpecTRM-RL specification because analysis at the system level will be nec-
essary. Therefore, some of the design methodologies focused on reusing code
components will be less important in this type of system. We are currently de-
veloping SpecTRM-RL macro components for spacecraft design, as well as a
spacecraft-specific modeling language built on top of SpecTRM-RL, to evaluate
the practicality and feasibility of this approach to reuse.

This level will contain most of the information about system and middleware
design and hardware decisions. Many or most of the proposals for specifying
and designing such computer system components will fit into the SpecTRM
approach.

Level 6: Operations

Ensuring safety does not stop with development. Operations need to be mon-
itored and periodically audited to ensure that the assumptions underlying the
original hazard analysis and the safety-related design features hold in the cur-
rent system. Operators change their behavior and the environment is very likely
to change. The traceability and documentation of design rationale included in

Intent Specifications should be useful in deriving auditing and performance mon-
itoring procedures and metrics and in making any necessary changes to the soft-
ware.

3 Status and Future Extensions

A methodology for building safety into embedded software has been described.
The approach integrates system hazard analysis, operator task analysis, trace-
ability, and documentation of design rationale as well as executable and ana-
lyzable models into the development process. A commercial toolset to support
SpecTRM is in development and is currently being used to support industrial
projects.

References

[CKI88] B. Curtis, H. Krasner and N. Iscoe. A field study of the software design pro-
cess for large systems. Communications of the ACM, 31(2): 1268-1287, 1988.

[JLHM91] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.Melhart. Software re-
quirements analysis for real-time process-control systems . IEEE Trans. on Soft.
Eng., SE-17(3), Mar 1991.

[HL96] Heimdahl, M.P.E. and Leveson, N.G. Completeness and Consistency in Hier-
archical State-Based Requirements. IEEE Trans. on Soft. Eng., SE-22, No. 6, June
1996.

[Joh80] Johnson, W.G. MORT Safety Assurance Systems, Marcel Dekker, Inc., 1980.

[Lev00a] Leveson, N.G. Intent Specifications. IEEE Trans. on Soft. Eng., Jan. 2000.

[Lev0Ob] Leveson, N.G. Completeness in Formal Specification Language Design for
Process-Control Systems. ACM Formal Methods in Software Practice, Aug 2000

[LHH94] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., and Reese, J.D. Require-
ments Specification for Process-Control Systems. IEEE Trans. on Soft. Eng., SE-20,
No. 9, Sept. 1994.

[LRK97] Leveson, N.G., Reese, J.D., Koga, S., Pinnel, L.D., and Sandys, S.D. An-
alyzing Requirements Specifications for Mode Confusion Errors. Int. Workshop on
Human Error, Safety, and System Development, Glasgow, March 1997.

[LS87] Leveson, N.G. and Stolzy, J.L. Safety Analysis Using Petri Nets. IEEE Trans.
on Soft. Eng., Vol. SE-13, No. 3, March 1987, pp. 386-397.

[Neo01] Neogi, N. Hazard Elimination Using Backward Reachability and Hybrid Mod-
eling Techniques. Ph.D. Dissertation, Aeronautics and Astronautics, MIT, May 2002.

[RL87] Reese, J.D. and Leveson, N.G. Software Deviation Analysis. International
Conference on Software Engineering, Boston, May 1997.

[RZK00] Rodriguez, M., Zimmerman, M., Katahira, M., de Villepin, M., Ingram, B.,
and Leveson, N.G. Identifying Mode Confusion Potential in Software Design. Digital
Aviation Systems Conference, Philadelphia, October 2000 .

[SW95] Sarter, N.D. and Woods, D. “How in the World did I Ever Get into That
Mode?” Human Factors 87, 5-19.

[WCK91] Wiener, E.L., Chidester, T.R., Kanki, B.G., Palmer E.A., Curry, R.E.; and
Gregorich, S.E. The Impact of Cockpit Automation on Crew Coordination and
Communications. NASA Ames Research Center, 1991.

This article was processed using the I#TEX macro package with LLNCS style

