
238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 2, FEBRUARY 1990

Analysis of Faults in an N-Version Software
Experiment

SUSAN S . BRILLIANT, MEMBER, IEEE, JOHN C. KNIGHT, AND NANCY G. LEVESON

Abstract-We have conducted a large-scale experiment in N-version
programming. A total of 27 versions of a program were prepared in-
dependently from the same specification at two universities. The re-
sults of executing the versions revealed that the versions were individ-
ually extremely reliable but that the number of input cases in which
more than one failed was substantially more than would be expected if
they were statistically independent.

After the versions had been executed, the failures of each version
were examined and the associated faults located. In this paper we pre-
sent an analysis of these faults. Our goal in undertaking this analysis
was to understand better the nature of the faults. We found that in
some cases the programmers made equivalent logical errors, indicating
that some parts of the problem were simply more difficult than others.
We also found cases in which apparently different logical errors yielded
faults that caused statistically correlated failures, indicating that there
a re special cases in the input space that present difficulty in various
parts of the solution. A formal model is presented to explain this phe-
nomenon. It appears that minor differences in the software develop-
ment environment, such as the use of different programming languages
for the different versions, would not have a major impact in reducing
the incidence of faults that cause correlated failures.

Index Terms-Design diversity, fault-tolerant software, multiver-
sion programming, N-version programming, software reliability.

I. INTRODUCTION
ESPITE extensive attempts to build software that is D sufficiently reliable for critical applications, faults

tend to remain in production software. Although fault
avoidance and fault removal [l] do improve software re-
liability, new applications for computers in safety-critical
systems, such as commercial aircraft and medical de-
vices, have very high reliability requirements. For ex-
ample, for certain applications in commercial aircraft, no
more than a chance of failure over a ten hour period
is permitted. This appears to be beyond the ability of stan-
dard software engineering techniques to ensure or even to
measure.

Manuscript received September 1, 1986; revised August 29, 1989. This
work was supported in part by NASA under Grants NAG-1.242, NAG-1-
605, and NAG-1-606, in part by the National Science Foundation under
Grant DCR 8406532, and in part by MICRO grants cofunded by the state
of California, Hughes Aircraft Company, and TRW.

S. S . Brilliant was with the Department of Computer Science, Univer-
sity of Virginia, Charlottesville, VA 22903. She is now with the Depart-
ment of Mathematical Sciences, Virginia Commonwealth University,
Richmond, VA 23284.

J . C. Knight is with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22903.

N. G. Leveson is with the Department of Computer Science, University
of California, Irvine, CA 92717.

IEEE Log Number 8932236.

Proposals have been made for building fault-tolerant
software [l] in an attempt to deal with the faults that re-
main in operational software. One approach, N-version
programming [4], requires separate, independent prepa-
ration of multiple versions of a piece of software for an
application. The versions are executed in parallel, and
majority voting selects the results to be used. The amount
of reliability improvement achieved is determined by the
degree of independence of the failures of the versions [6].
If two versions fail on the same input in a 3-version sys-
tem, for example, they will either outvote a third correct
version or no majority will exist.

Previously, we conducted a large-scale experiment [101
in N-version programming. Twenty-seven versions of a
program were prepared independently at two universities
and then executed one million times. The results of the
executions revealed that the individual programs were ex-
tremely reliable. However, the number of input cases in
which more than one program failed, that is, where fail-
ures were coincident, was substantially more than would
be expected if the various programs failed in a statistically
independent way. The faults responsible for each of the
observed failures in the programs written for the experi-
ment have been identified. In this paper, we present an
analysis of these faults paying particular attention to those
that caused more coincident failures than would occur by
chance.

Examination of the faults is important for several rea-
sons. First, it sheds light on the potential value of the
technique itself. By analyzing faults such as those de-
scribed here, methods might be developed to allow the
performance of N-version systems to be improved. Sec-
ond, a better understanding of the faults will allow eval-
uation of techniques that have been suggested for mini-
mizing coincident failures in N-version software, such as
the use of dissimilar programming languages or devel-
opment environments [7], [2], [9], [141. In addition, new
development techniques for N-version software may be
suggested. Finally, a study of the faults made by different
programmers on the same problem may provide important
information on how to improve the reliability of single-
version software.

In the next section we summarize the experiment that
yielded the twenty-seven programs studied here. A statis-
tical analysis, presented in Section 111, is used to deter-
mine which faults are responsible for failures that are sta-
tistically correlated, without regard to the details of the

0098-5589/90/0200-0238$01 .OO O 1990 IEEE

BRILLIANT et ul. : N-VERSION SOFTWARE EXPERIMENT 239

faults. The faults themselves are summarized in Section
IV, and the interrelationships between the faults are dis-
cussed in Section V. It was found that faults that produce
statistically correlated failures are not necessarily se-
mantically similar, and vice versa. Thus, faults that at
first sight seem unrelated sometimes cause coincident fail-
ures, and faults that seem very similar sometimes do not
cause coincident failures. A formal model to explain this
phenomenon is presented. Our conclusions are presented
in Section VI.

11. EXPERIMENT SUMMARY
Only the major features of the previous experiment are

described in this paper since the details have been pub-
lished elsewhere [lo]. The application used in the exper-
iment was a simple (but realistic) antimissile system that
came originally from an aerospace company [151, [5]. The
program reads data representing radar reflections. Using
a collection of conditions, it decides whether the reflec-
tions come from an object that is a threat and, if so, a
signal to launch an interceptor is generated.

Twenty-seven students in graduate and senior level
classes in computer science at the University of Virginia
(UVA) and the University of California, Irvine (UCI)
wrote programs from a single requirements specification.
The programs were all written in Pascal, and developed
on a Prime 750 system using the Primos operating system
and Hull V Pascal compiler at UVA and on a DEC VAX
11 /750 running 4.1 BSD Unix at UCI.

An attempt was made to obtain programmers with var-
ied experience but this was necessarily limited by the need
to use students as subjects. Fifteen of the programmers
were working on bachelor’s degrees and had no prior de-
gree, eight were working on master’s degrees, and four
were working on doctoral degrees. The graduate students
included four with degrees in mathematics, three with de-
grees in computer science, and one each with degrees in
astronomy, biology, environmental science, management
science, and physics. The programmers’ previous work
experience in the computer field ranged from none to more
than ten years. There appeared to be no correlation be-
tween the programmers’ experience levels and the quality
of their programs.

Once a program was completed and tested by the pro-
grammer, it was subjected to an acceptance procedure that
consisted of two hundred randomly-generated input cases.
A different set of two hundred inputs was generated for
each program in order to avoid a general “filtering” of
common faults by the use of a common acceptance pro-
cedure. The acceptance procedure was not part of the pro-
cess of testing the programs. It was a quality filter used
to ensure that only programs capable of a minimum level
of performance were used in the analysis.

Accepted programs were subjected to one million ran-
domly-generated input cases in order to observe opera-
tional behavior. The determination of the success of the
twenty-seven individual versions was made by comparing
their output with a separate version, referred to as the gold

program, that had been subjected to extensive previous
analysis.

As required by the specification, each program pro-
duces a 15 by 15 boolean array, a 15 element boolean
vector, and a single boolean launch decision (a total of
241 outputs) on each input case. Afuilure was recorded
for a particular version on a particular input case if there
was any discrepancy between the 241 results produced by
that version and those produced by the gold program, or
the version causes some form of fatal exception to be
raised during execution of that input case.

We define a fault formally in Section V and use it to
explain the results of the work described in this paper. We
define a fault here, informally, to be a defect in the al-
gorithm implemented by a program version that is re-
sponsible for at least one failure in the sense that changing
the program so as to correct the defect would allow the
program to obtain output agreeing with that of the gold
program for that input case. For each of the twenty-seven
versions, the faults were identified by examining the out-
put of the program for input cases in which failure oc-
curred and analyzing the source text.

Once a fault was located, a correction was devised. The
version containing the fault was modified so that either
the original faulty code or the corrected code could be
executed. The purpose of modifying each version in this
manner was to allow the identification of the fault or set
of faults responsible for each failure recorded for the ver-
sion. Each input case that caused the version to fail orig-
inally was regenerated. The version was then executed
with each individual fault corrected in turn.

For most failures, a version worked correctly when one
and only one of its faults was corrected. For these cases,
the fault corrected on the execution that gave correct re-
sults was assigned sole responsibility for the failure. In a
few instances, correcting either of two faults gave correct
results, so it was recorded that the failure was attributable
to either of the two faults. In some cases none of the ex-
ecutions with a single fault corrected yielded correct re-
sults. For these failures the version was executed with
each pair of faults corrected in turn, then with each set of
three faults corrected in turn, and so on, until correct re-
sults were obtained. The faults corrected on the execution
giving correct results were assigned collective responsi-
bility for the failure.

111. STATISTICAL ANALYSIS OF THE FAILURES

For the purposes of discussion in the remainder of this
paper, the individual faults are identified by the version
number in which the fault occurs concatenated with a se-
quence number for the faults associated with that version.
Thus, for example, fault 3.1 is the first fault associated
with version 3. The faults found in each of the twenty-
seven program versions and the number of failures attrib-
utable to each fault are shown in Table I. Failures asso-
ciated with more than one fault are counted in the number
of failures for each of the associated faults.

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2. FEBRUARY I Y Y O

TABLE I
FAULT OCCURRENCE COUNTS

:auh Number of Occurrences Faull Number of Occurrences
-

1.1
3.1
3.2
3.3
3.4
6.1
6.2
6.3
7.1
8.1
R.2
9.1
9.2
1 1 . 1
12.1
12.2
13.1
14.1
14.2
16.1
16.2
17.1
17.2
-

2
700

1061
531

1437
607
511

32
71

225
98
47

6
554
356
71
4

1297
71
28
34

201
76

-
18.1
19.1
20.1
20.2
21.1
21.2
22.1
22.2
22.3
23.1
23.2
24.1
25.1
25.2
25.3
26.1
26.2
26.3
26.4
26.5
26.6
26.7

-

8
264
323
697
85

7
6551
1735
1735

72
8

260
14
80
3

140
9
1
6
4

368
24 3

The manifestations of a few of the faults were imple-
mentation-dependent. When the fault-to-failure identifi-
cation analysis was performed, a version sometimes ex-
ecuted correctly for an input case on which it had failed
originally. This effect was caused by differences in the
hardware and compilers used, and it was observed for ver-
sions 6, 22, 23, and 26. Analysis of the input cases in-
volved allowed the original failures of versions 6 and 23
to be attributed to faults 6.1 and 23.1 respectively, so
these failures were included in the failure counts for the
associated faults in Table I. For versions 22 and 26, the
original failures could not be associated with specific
faults. These original failures are not included in any of
the failure counts shown in Table I.

In order to determine which faults caused statistically
correlated failures, a statistical test of independence was
performed between each pair of faults where the two ele-
ments in a pair come from different versions. A matrix C
of the coincident failures caused by each pair was con-
structed. Coincident failure here means that both versions
failed and includes failures with both identical and non-
identical outputs. This matrix is indexed in both dimen-
sions by the sequence of fault numbers. Thus, C,j repre-
sents the number of test cases in which the two program
versions containing faults i and j both failed because of
faults i and j . Clearly C is symmetric, and its diagonal
represents the failure rates for the individual faults.

For each pair of faults, an approximate x 2 test [8] was
used to test the null hypothesis that the corresponding two
faults cause failure independently. The observed value of
the x statistic for each pair i, j of faults causing common
failures was calculated, using the following expression for
the test statistic:

n w , - CIlC//Y
C;;c,(n - C;;)(n - C;;)

where
n = total number of input cases = 1,000,000.

Where the observed x2 statistic is greater than 7.88, the
null hypothesis of independence can be rejected with 99.5
percent certainty. The results of the 945 separate hypoth-
esis tests are shown in Table 11. An “R” in Table I1 in-
dicates that the null hypothesis was rejected for the cor-
responding pair of faults at the 99.5 percent level. In that
case, we define the two faults to be failure correlated.
The statistical test used here is valid only if the value of
C, is “sufficiently large,” and values greater than or equal
to five are generally considered to give satisfactory re-
sults. A “?” entry in Table I1 denotes a case in which the
value of the x 2 statistic was large enough to justify rejec-
tion of the null hypothesis, but for which the value of C,
is too small to justify reliance on the hypothesis test.
Dashes in the table denote entries for which the statistic
has no relevance because the faults are in the same pro-
gram.

The results of these hypothesis tests indicate that 93 of
the hypotheses should be rejected; that is, 93 fault pairs
found in the experiment are responsible for statistically
correlated failures. An additional 67 pairs appear corre-
lated but there is insufficient data to have confidence in
this conclusion. The use of a confidence level of 99.5 per-
cent means that the probability that the null hypothesis
will be rejected when in fact it is true is 0.5 percent. Thus,
if the null hypothesis is in fact true for each of the 945
hypothesis tests that were performed, the expected num-
ber of erroneous rejections is approximately five whereas
93 were rejected.

It is clear from the preliminary data that more coinci-
dent failures occurred than would be expected by chance
[IO]. The results ofthese statistical tests show which faults
were responsible for the coincident failures. In the rest of
this paper, we examine these faults more carefully.

I v . DESCRIPTIONS OF THE FAULTS
The faults in the programs were examined to determine

whether those that are failure-correlated have any unique
characteristics. Table I11 contains the details of the indi-
vidual faults including the part of the problem involved
(LIC number), the type of input that triggers the fault, and
a short description of the fault.

Several of the faults involve mistakes in the use of lim-
ited-precision arithmetic and require some further expla-
nation. The source text of a function called REALCOM-
PARE, containing only four executable statements, was
supplied to the programmers. They were instructed to use
REALCOMPARE for all comparisons of real numbers.
This function defines the relational operators for floating-
point numbers in the manner described by Knuth [131. As
Knuth points out, operators should be defined for floating-
point comparison that allow many of the normal axioms
of arithmetic to be assumed.

The REALCOMPARE function performs limited-pre-
cision floating-point comparison. It does so by comparing
its two floating-point arguments, returning EQ when the
difference between the two values is less than 0.000005
of the larger value. Otherwise the function returns LT

BRILLIANT el al . : N-VERSION SOFTWARE EXPERIMENT

TABLE I1
RESULTS OF HYPOTHESIS TESTS

24 I

Faults

1.1
3.1
3.2
3.3
3.4
6.1
6.2
6.3
7.1
8.1
8.2
9.1
9.2

11.1
12.1
12.2
13.1
14.1
14.2
16.1
16.2
17.1
17.2
18.1
19.1
20.1
20.2
21.1
21.2
22.1
22.2
22.3
23.1
23.2
24.1
25.1
25.2
25.3
26.1
26.2
26.3
26.4
26.5
26.6
26.7 -

- . ? . . .
_ _ _ _ R R . . R R R . . R R . . R . . R . . R R R .
_ _ _ _ . . . ? R R . . R . ? . R ? . . ? R ? . R R R ? . R R ? R _ _ _ _ .

. R R ? ? ? .

. - - _ ? ? ?
- _ _ _

R _ - _
?

. . ? .

. R R ? - - . . R . ? . . ? . . R ? . ? R R . . R . . R . . . R R R

. R R R . . . R . . . R ? . . R R . . R R R R R

. R

. ?

. R R . . ? . . ? R R . . - . ? . R ? R . R ? . . R R . . R . . R . . ? R R R

_ _ _

_ _
_ _ .

. . ? R ? . . . ? - - . . .
? ?

. . R R . . R . . . - - R R R . . ? ? R

. . ? R ?

. ? ? ?

. R

. R ? . R R R . . R ? ? R R . . R . . ? ? . ? R R .
? R R . R . . . ? ? ? . . ? . ? . . ? ? . R ? ? ? . . ? I ?
. . ? . ? ? ? - R
. ? ?
. R R ? R R . . R . ? . R ? . . R R . ? - - . . R . . R . . R R R R
. R R . . ? . . ? R R . . R . ? . R ? R . R ? . . - - . . R R R R . . ? R R R

_ _

.
. _ _ ? . . . R . .

. R R R . ? R R . R . . . R R ? . R ? R R R

.

. R

. R R R . . . R ? ? . . R R . . ? . . - - . . R ? R

. . ? . ? ? ? R _ _

. R ? ?

. R R R . . ? . . . R . . . ? . . . R ? . . ? - - - ? ?

. R R ? R R . . R . ? . . ? . . R ? . . R R . . R . . R . . - - - R R _ - -
- - - - - - - ? .

. ? ? . - - - - - - -
- - - - - - - .
- - - - - - - .
- - - - - - - .

. R ? . ? R R . . R ? . R ? . . R R . . R . . ? . ? ? R . - - - - - - -

. . R R R . . R . . . R . ? . . ? . ? R R . . R . . R . ? ? R . - - - - - - -

(GT) if the first argument is less than (greater than) the
second. Essentially what REALCOMPARE does is to es-
tablish a region around the larger operand in which the
operands are considered equal. The size of the region is
determined by the size of the larger operand.

Four of the programmers erroneously used limited-pre-
cision comparisons with zero to determine sign, i.e., they
attempted to use REALCOMPARE to determine if a
number was negative. It is clear that small negative num-
bers (i.e., close to zero) will be interpreted mistakenly as
nonnegative using this approach to determining sign. This
type of fault could have been a result of inexperience on
the part of the programmers although one of the partici-
pants making this mistake had many years of work ex-
perience in real-time, scientific programming. None of
these faults were failure-correlated with each other and so
do not contribute to our analysis of coincident failures.

Several faults arose from the comparison of the cosines
or sines of angles rather than the angles themselves. Al-

though mathematically the comparisons are equivalent,
difficulties arise due to the relatively flat shape of the co-
sine and sine curves near zero and one, respectively. On
the flat parts of these curves, angles that are quite different
have cosines or sines that are nearly equal, so compari-
sons using a tolerance find that the angles are different,
but their cosines or sines are equal within the tolerance.
The specification for the application stated that angles
were to be compared, not functions of angles.

An opportunity for multiple correct solutions also arose
from our attempt to encourage diversity. Launch condi-
tions 3 and 10 require the determination of whether the
angle formed by three points satisfies either of the con-
ditions:

angle < (T - E)

or

angle > (T + E)

242

LIC 3 .10

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 2 . FEBRUARY 1990

Three almost collinear points. Inaccurate algorithm to m i n e cdlinearity; points
head as collinear when iust nearlv collinear.

FAULT
1.1

3.1

LIC 4.11,15

3.2

3.3

3.4

which- length of longest side points f& an obtuse triangle.
exceeds perpendicular distance to
third vertex.
Three collinear or almost collinear
points.

Due to machine mundoff error. negative result ob-
tained when length of one side of triangle subtracted
fmm half ia nerimeter

6.1

6.2

LIC 2.9.14

LIC IO

LIC 3. IO

LIC 3.10

LIC 2.9.14
LIC 3

LIC IO

6.3

7.1

C o m p l i relationship among ComperisMl with zem using REALCOMPARE used
three points arising From algorithm to ensure that a quantity to be used as an argument D
used IO wmprte radius of circle sqr~isnonnegdtive.
containing the points.

Two of three points foincide. Apparent typographical error in array index handling
special c a x of second point coincident with either

Similar to fault 7. I .

Angle measurement of 180 rather than E used when
point 2 between points I and 3.

Similar in origin and effect to fault 13.1.

Cosines rather than angles compared.

Similar 10 fault 17.1.

fiRI M third.
lluee almost collinear points (sub
tended angle near zem).

‘Iluee collinear points (subtended
angle is x).

Seefault13.1.
Three almost collinear points (sub-
tended angle near zero).
Three almost collinear wints (sub-

8.1

8.2

9.1

LIC 3.10

9.2

1 1 . 1

12.1

12.2

13.1

14.1

14.2

16.1

gles.
Decides condition not satisfied by any set of three
points when one set involves a coincident vertex and
endmint.

Vertex coincides with an endpoint.

16.2
17.1

17.2

18.1

19.1

20.1

20.2

LIC 3, IO

LIC 3, IO

LIC 3, IO

LIC 2,9,14
LIC4

LIC 11

LIC 15

21.1

Three collinear points (subtended
angle zero).
Three collinear or almost collinear
points (subtended angle near zero).

Coincident points.

If tangent is zero. assumes angle is E; misses case in
which angle is zero.
In applying formula tan=sqn(l-sqr(cos))/cos, round-
off error causes negative argument U) sqrl.
Special case for coincident points in algorithm for
computing smallest circle containing three points
fails when first and second points coincide.

Similar in origin and effect to fault 13.1.
Similar to fault 9.2.

Similar to fault 9.2.

Similar to fault 9.2.

See fault 13.1.
Three collinear or almost collinear
points.
Three collinear or almost collinear
points.
Three collinear or almost collinear
mink<.

21.2
22.1

22.2

22.3

23.1

23.2
24.1

LIC 3, IO

LIC 3, IO
LIC 2,9,14

TABLE I11
FAULT DETAILS

Three collinear or almost collinear
points (subtended angle near zero).

Angle near x + E. E large.
Coincident points.

Uses REALCOMPARE to delermine if calculated
angle negative; misses some angles near zero.

Similar to fault 18.1.
Error in arguments to function that determines coin-
cidence (coincidence of points 1 and 2 checked rather
tban that of 1 and 3).

LIC# I INPUT CONDITION I FAULT DESCRIPTION
LIC3. I O I Anelesnearn+e.Elarae. I Calcuhles anaks between A and k ralher than

between o &-A. (F ~ ~ I S teause to lmce for com-
parisOn with A + E much gIeab3 lhan fW A ~ E.)

subtended angle- misses case in which angle is zem.
Similar to fault 3.1.

angle zero).

angle zero).

angle zero). (WO Mher points. calculeces distance to nearest point
(rather than mu) when mints are collinear and first

LIC 9. 14 A set of three points in which each
pair has a common coordinate.

In determining coincidence. “and“ and “or” con-
I d in predicate (results in points described in input
condition being mated as if two of Ihe points win-

angle zero).

. . . .
angle zero). I izonlal and verlical lines

LIC 2,9,14 I Three points form acute triangle for I Inconecl pah condition to detemine whaher three

LIC 3, IO Three collinear or almost collinear Machine round-oN m r c a w calculated cosine of I mints (subtended anele near zero). I anele famed bv three minu to be mater than 1.

LIC 5 I Point ~1 rieht si& of x-axis. I Predicate wine = instead of >= results in incorrect I a s s i g n m e n t t o ~ ~ t .
LIC 3, I O I ~ k e e almost collinear points (an- I Similar to fault 7.1.

I d e war7eml. I

. . I tended angle near zero).
LIC 3. IO I Angles near E + E. E large. I Similar to fault 1.1--occurs on a different set of an-

BRILLIANT EI al. : N-VERSION SOFTWARE EXPERIMENT

25.2

243

anglc zero). points whcn point 1 lies bctwccn points 2 and 3 nnd
is closcr IO point 2 than LO point 3.

LIC 3, IO Throe collincar poinu (subsnded Similar ~025.l.diffcrcntpsth.
anQk ZCIO).

TABLE I11 (Continued.)

FAULT I LIC# I INPUT CONDITION I FAULT DESCRIPTION
25.1 I LIC 3. IO 1 Thrcc collinear poinu (subtcndcd I Missing casc in computing anglc formed by three

t

L’

(b)

Fig. 1 . The angle formed by three points.

where E is a parameter supplied as input. The specification
indicates that the second of the three points is the vertex.
However, as is illustrated in Fig. l(a), there is still a
choice of angle to be measured. Either the angle marked
0 or the angle marked 2n - 0 could be considered. In
absolute terms it makes no difference which angle is mea-
sured. Fig. l(b) illustrates that the smaller of the two pos-
sible angles is less than (a - E) if and only if the larger
angle is greater than (n + E) . However, recall that the
tolerance used by REALCOMPARE depends on the size
of its arguments. Thus, occasionally the function returns
EQ for the larger pair when it returns LT for the smaller
pair. There is a dilemma here since revising the specifi-

cation to identify which of the two possible angles is to
be measured would reduce the choices available to the
programmer, thus reducing the potential diversity among
the versions.

V. DISCUSSION

Our goal in analyzing the individual faults in the ver-
sions was to attempt to understand the correlated failures
that were observed in the experiment. We wanted to de-
termine what other relationships, if any, exist among
faults that are failure-correlated.

We define faults to be logically related if, in our opin-
ion, they are either the same logical flaw, or they are sim-
ilar logical flaws and are located in regions of the pro-
grams that compute the same part of the application. These
assessments are based on our understanding of the appli-
cation and assumptions about the intentions of the various
programmers, and are therefore necessarily subjective.

Initially, we hypothesized that faults that are failure-
correlated would be logically related, and vice versa. It
seemed intuitively reasonable that there would be certain
parts of the problem that would prove to be just more dif-
ficult to handle or more “error prone” than others.

This hypothesis does explain some of the observed fail-
ure correlations. For example, faults 3.1 and 3.2 involve
the calculation of the angle formed by three points as re-
quired by launch conditions 3 and 10. In the case in which
the three points are collinear, the programmer apparently
failed to realize that the angle formed could be zero as
well as n. It is easy to explain the failure correlations
between these faults and faults 8.1, 8.2, 25.1, and 25.2.
The authors of versions 8 and 25 both realized that colli-
near points could form a zero angle, but failed to consider
all of the cases in which such an angle is formed. It is also
easy to understand the correlations between all of these
faults and fault 20.1. Version 20 takes a slightly different
approach, calculating the tangent of the angle formed and
mishandling the case in which the tangent is zero. Since
a zero tangent indicates that the points are collinear, the

244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 2. FEBRUARY 1990

same special case is responsible for the difficulty. Version
20, like version 3, calculates an angle of R for all sets of
collinear points, completely overlooking the cases in
which the angle formed is zero. Although no two of this
set of seven correlated faults are identical, the errors in
logic seem to us to be similar.

However, there are faults that we classify as logically
related which are not failure-correlated. For example,
faults 7.1 and 17.1 both result from comparing cosines of
angles rather than the angles themselves in the same part
of the application, yet they caused no observed coincident
failures. Fault 7.1 causes failure on input cases in which
launch condition 3 or 10 is not satisfied, but for which
there is some angle near zero that almost satisfies the con-
dition. Fault 17.1, on the other hand, causes failure when
launch condition 3 or 10 is satisfied, and the angle sub-
tended is near zero.

Of more concern, however, is the fact that the hypoth-
esis also fails to explain some of the observed failure cor-
relations. For example, faults 11.1, 20.2, 22.1, 26.6, and
26.7 are all failure-correlated with the faults in versions
3, 8, 20, and 25 that involve the incorrect handling of
cases in which collinear points subtend an angle of zero.
However, faults 11.1, 20.2, 22.1, 26.6, and 26.7 are of
a completely different nature. All of these cause fatal ex-
ecution errors on calls to the square root function with
negative arguments, and result from the failure of the pro-
grammers to consider that rounding errors may give an
inaccurate computed result. Faults 1 1.1 and 20.2 both oc-
cur when a correctly computed cosine has an absolute
value greater than one due to rounding error. The effects
of rounding error are quite small so the exact (but un-
known) cosine must have been close to one in these cases,
and hence the corresponding angle had to be close to zero
or R. Thus the failure correlation with other faults that
mishandle zero angles is understandable. Similarly, faults
22.1, 26.6, and 26.7 are triggered when the calculated
sum of two sides of a triangle is less than the length of
the third side due to roundoff errors. Once again, this can
only occur when the three points forming the triangle are
approximately collinear, and the failure correlation is ex-
plained.

More difficult to understand is the failure correlation
between fault 14.1 andeachoffaults3.2, 8.2, 11.1,20.1,
20.2, and 25.1. Fault 14.1 is the use of an incorrect sub-
script in a call to a function which determines whether the
first or third in a set of three points coincides with the
second. The coordinates of the three points are (x [i] ,
~ [i l) , (x t J l , y [J l > , and (x[kl , ~ [k l) , but an apparent
typographical error results in substituting (x [j 1, y [i I) for
the second point in considering the special coincident
point case. Although this fault apparently does not in-
volve the angle formed by collinear points, an investiga-
tion revealed the reason for the observed correlations. In-
put cases that include a set of three points that form a
vertical line and satisfy launch condition 10 trigger faults
3.2, 8.2, 11.1, 20.1, 20.2, and 25.1 due to the collinear-
ity of the points. Fault 14.1 is also triggered because the

faulty function call translates the second point such that
it coincides with the first. Version 14 finds that no angle
is formed, so it concludes that condition 10 is not satisfied
by the points.

Based on the examples discussed above, it is clear that
there are faults that produce correlated failures but that
are not logically related. Thus our initial hypothesis does
not explain all the observed failure correlations. They can
be explained, however, if we note that faults causing cor-
related failures involve a mishandling of all inputs having
some specific characteristic, i.e., both faults involve han-
dling the same set of input cases incorrectly. This may
appear tautological, but serves to emphasize that the sim-
ilarities are not in the errors in the code, but instead are
in the inputs. The following model is useful in determin-
ing why and when correlated failures occur. A program
computes a function P that maps elements in a domain I
to a range 0. That is:

P : I + 0

where

I = { i l , i2, - , in}

0 = {o l , 0 2 , * * , o n } .

and

This function P consists of a set of partial functions where
each partial function correspond to one of the paths in the
program:

P = { P I , pz , * * 9 Pm}
where for each P,, 1 5 J I m:

p] : z [P J l -+ O[']1

I [P ,] is the domain and O[P,] is the range of the partial
function P,. Clearly:

z = I [P ,] U I [P ,] U * . . I IPm]

and

0 = O I P l] U 0 [P 2] U * OIPm]

where f o r i # j :

There is a fault in a program when the function imple-
mented P' is not the function P that is desired, i.e., a
mistake exists in the program that implements the func-
tion. A fault means that one or more partial functions P,
that make up P' are incorrect. A partial function PI is in-
correct, i .e., faulty, when the computation or the path
condition that corresponds to PI is erroneous, i.e., faulty.

When looking at the relationship between the failures
of two programs, we are concerned with two cases:

1) The two programs both have faults but they lie on
paths with disjoint input domains. Therefore they will not
fail coincidentally since their input domains are disjoint.

BRILLIANT r’f rrl . : N-VERSION SOFTWARE EXPERIMENT 24s

2) The two programs each have a fault or faults on a
path or paths whose input domain(s) overlap either par-
tially or completely.

In the latter case, three possibilities exist:
I) The partial functions never produce the same wrong

2) The partial functions sometimes produce the same
wrong output.

3) The partial functions always produce the same
wrong output. Note that in this case the faults need not
be the same. For example, one may set an output variable
to 1 and the other divide the output variable by itself. The
faults need not even be logically related, just compute the
same erroneous partial function.

Our original hypothesis (and one that appears to be
common in the literature) was that faults causing coinci-
dent failures would be logically related. The above model
shows that this need not necessarily be the case, and it
explains the correlations that we found between faults that
were not logically related. Therefore, we propose a sec-
ond hypothesis that faults that result in correlated failures
are input-domain related, i .e . , two faults are triggered by
circumstances associated with a particular input whether
or not the underlying flaws in the partial functions asso-
ciated with the faults are related logically. Our second
hypothesis can be seen as an extension of the first, since
logically-related faults may also be input-domain related.
It does, however, explain why logically-related faults
sometimes did and sometimes did not cause correlated
failures. The extent of the correlation will depend on the
proportion of the inputs in the failure-domains of the com-
mon and identically wrong partial functions. The actual
performance of an N-version system will depend on how
often inputs from these common failure-domains are en-
countered in execution.

There are some important implications of this hypoth-
esis in terms of whether “forcing” diversity will be ef-
fective. The first hypothesis, that correlated failures are a
product of logically-related faults, implies only that sep-
arate development may not prevent different implemen-
tators from making the same mistake. The second hy-
pothesis, that input-domain related faults may cause
correlated failures, implies that correlated failures may
occur even if the implementors use entirely different al-
gorithms and make different mistakes.

VI. CONCLUSIONS
Our primary goal in this research was to understand

what types of faults lead to coincident failures. We con-
clude that this occurs when the faulty paths have common
input-domains. Correlated failures occur when the partial
functions computed by the paths are identically wrong.
The actual mistakes made, however, need not be similar
or logically-related. We did find that programmers often
make identical errors in logic. Any given algorithm for
solving a problem is likely to involve some computations
that are simply more difficult to handle correctly than oth-

output.

on difficult computations than easy ones. We also found,
however, that correlated failures arise from logically-un-
related faults in different algorithms or in different parts
of the same algorithm. It is interesting that the program-
mers in our experiment did not seem able to identify the
difficult parts of the problem or the difficult computations
in their algorithms; the faults are not located in the parts
of the programs where the programmers expected them to
be, as determined by a postexperiment questionnaire.

The Consistent Comparison Problem 131, and other
problems that we observed with real number compari-
sons, illustrate that an understanding of the detailed nu-
merical issues involved in performing such comparisons
is particularly important in N-version programming. Care
must be taken in specifying and implementing N-version
software to minimize difficulties in reaching a consensus
among the versions. However, as has been shown else-
where [3], these difficulties cannot be eliminated entirely.

Simple methods to reduce correlated failures arising
from logically-unrelated faults (i.e., input-domain related
faults) do not appear to exist. The faults that induced
coincident failures were not caused by the use of a specific
programming language or any other specific tool or
method, and even the use of diverse algorithms did not
eliminate input-domain related faults. In most cases, the
failures resulted from fundamental flaws in the algorithms
that the programmers designed. Thus we do not expect
that changing development tools or methods, or any other
simple technique, would reduce significantly the inci-
dence of correlated failures in N-version software,

APPENDIX
LAUNCH INTERCEPTOR CONDITIONS

The Launch Interceptor Conditions are defined as fol-
lows:

1) There exists at least one set of two consecutive data
points that are a distance greater than the length,
“LENGTHl”, apart.

(0 < = LENGTH1)

2) There exists at least one set of three consecutive
data points that cannot all be contained within or on a
circle of radius ‘‘RADIUS 1 ” .

(0 < = RADIUSI)

points which form an angle such that:
3) There exists at least one set of three consecutive data

angle < (“PI” - “EPSILON”)

or

angle > (“PI” + “EPSILON”).

The second of the three consecutive points is always the
vertex of the angle. If either the first point or the last point
(or both) coincides with the vertex, the angle is undefined
and the LIC is not satisfied by those three points.

ers, and programmers are more likely to make mistakes (0 < = EPSILON < PI)

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 2. FEBRUARY 1990

4) There exists at least one set of three consecutive
data points that are the vertices of a triangle with area
greater than “AREA 1 ” .

(0 < = AREA^)
5) There exists at least one set of “Q-PTS” consec-

utive data points that lie in more than “QUADS” quad-
rants. Where there is ambiguity as to which quadrant con-
tains a given point, priority of decision will be by quadrant
number, i.e., I, 11, 111, IV. For example, the data point
(0, 0) is in quadrant I, the point (- 1, 0) is in quadrant
11, the point (0, - 1) is in quadrant 111, the point (0, 1)
is in quadrant I and the point (1 , 0) is in quadrant I.

(2 < = Q-PTS < = NUMPOINTS),

(1 < = Q U A D S < = 3)
6) There exists at least one set of two consecutive data

points, (X[i], Y[i]) and (X[j], Y[j]), such that X[j] -
X[i] < O(wherei = j - 1).

7) There exists at least one set of “N-PTS” consec-
utive data points such that at least one of the points lies a
distance greater than “DIST” from the line joining the
first and last of these “N-PTS” points. If the first and
last points of these “N-PTS” are identical, then the cal-
culated distance to compare with “DIST” will be the dis-
tance from the coincident point to all other points of the
“N-PTS” consecutive points. The condition is not met
when “NUMPOINTS” < 3.

(3 < = N-PTS < = NUMPOINTS), (0 < = DIST)

8) There exists at least one set of two data points sep-
arated by exactly ‘ ‘K-PTS” consecutive intervening
points that are a distance greater than the length,
“LENGTHl”, apart. The condition is not met when
“NUMPOINTS” < 3.

1 < = K-PTS < = { NUMPOINTS - 2)

9) There exists at least one set of three data points
separated by exactly “A-PTS” and “B-PTS” consecu-
tive intervening points, respectively, that cannot be con-
tained within or on a circle of radius “RADIUSl”. The
condition is not met when “NUMPOINTS” < 5 .

1 < = A-PTS, 1 < = B-PTS

A-PTS + B-PTS < = NUMPOINTS - 3

10) There exists at least one set of three data points
separated by exactly ‘ ‘C-PTS” and ‘ ‘D-PTS” consecu-
tive intervening points, respectively, that form an angle
such that:

angle <(“PI” - “EPSILON”)

or

angle > (“PI” + “EPSILON”)

The second point of the set of three points is always the
vertex of the angle. If either the first point or the last point
(or both) coincide with the vertex, the angle is undefined

and the LIC is not satisfied by those three points. When
“NUMPOINTS” < 5 , the conditions is not met.

1 < = C-PTS, 1 < = D-PTS

C-PTS + D-PTS < = NUMPOINTS - 3

11) There exists at least one set of three data points
separated by exactly “E-PTS” and “F-PTS” consecu-
tive intervening points, respectively, that are the vertices
of a triangle with area greater than “AREA1”. The con-
dition is not met when “NUMPOINTS” < 5 .

1 < = E-PTS, 1 < = F-PTS

E-PTS + F-PTS < = NUMPOINTS - 3

12) There exists at least one set of two data points,
(X[i], Y[i]) and (Xu], Yb]), separated by exactly
“G-PTS” consecutive intervening points, such that X[j]
- X[i] < 0 (where i < j) . The condition is not met
when “NUMPOINTS” < 3.

1 < = G-PTS < = { NUMPOINTS - 2)

13) There exists at least one set of two data points, sep-
arated by exactly ‘ ‘K-PTS” consecutive intervening
points, which are a distance greater than the length,
“LENGTHl,” apart. In addition, there exists at least one
set of two data points (which can be the same or different
from the two data points just mentioned), separated by
exactly “K-PTS” consecutive intervening points, that are
a distance less than the length, “LENGTH2,” apart. Both
parts must be true for the LIC to be true. The condition
is not met when “NUMPOINTS” < 3.

(0 < = LENGTH2)

14) There exists at least one set of three data points,
separated by exactly “A-PTS” and “B-PTS” consecu-
tive intervening points, respectively, that cannot be con-
tained within or on a circle of radius “RADIUSl”. In
addition, there exists at least one set of three data points
(which can be the same or different from the three data
points just mentioned) separated by exactly ‘ ‘A-PTS” and
“B-PTS” consecutive intervening points, respectively,
that can be contained in or on a circle of radius
“RADIUS2”. Both parts must be true for the LIC to be
true. The condition is not met when “NUMPOINTS” <
5 .

(0 < = RADIUS2)

15) There exists at least one set of three data points,
separated by exactly “E-PTS” and “F-PTS” consecu-
tive intervening points, respectively, that are the vertices
of a triangle with area greater than “AREA1”. In addi-
tion, there exist three data points (which can be the same
or different from the three data points just mentioned) sep-
arated by exactly “E-PTS” and “F-PTS” consecutive
intervening points, respectively, that are the vertices of a
triangle with area less than “AREA2”. Both parts must

BRILLIANT er U / . : N-VERSION SOFTWARE EXPERIMENT 247

be true for the LIC to be true. The condition is not met
when “NUMPOINTS” < 5.

(0 < = AREA2)

ACKNOWLEDGMENT
Thanks go to L. St. Jean, who helped in revising the

problem specification and was responsible for much of the
early design in the N-version experiment. P. Ammann
contributed much time and effort in helping with the
mammoth job of running the one million tests. We are
indebted to J. Dunham and E. Migneault for allowing us
to learn from the experience gained in an earlier version
of this experiment. It is a pleasure to acknowledge the
students who developed the 27 versions: C. Finch, N.
Fitzgerald, M. Heiss, E. Irwin, L. Lauterbach, S. Sa-
manta, J. Watts, and P. Wilson from the University of
Virginia, and R. Bowles, D. Duong, P. Higgins, A.
Milne, S . Musgrave, T. Nguyen, J. Peck, P. Ritter, R.
Sargent, R. Schmaltz, A. Schoonhoven, T. Shimeall, G.
Stoermer, J. Stolzy, D. Taback, J . Thomas, C. Thomp-
son, and L. Wong from the University of California at
Irvine. The Academic Computer Center at the University

[1 I] -, “An empirical study of failure probabilities in multi-version
software.” in Dig. FTCS-16: Sixteenth Annu. hit. Symp. Fault-Tol-
erant Computing,” Vienna, Austria, July 1986, pp. 165- 170.

(121 J . C . Knight, N. G. Leveson. and L. D. St. Jean, “A large scale
experiment in N-version programming,” in Dig. FTCS-/5: Fifteenth
Annu. Int. Swnp. Fault-Tolerant Computing, Ann Arbor. MI, June

[I31 D. E. Knuth, The Art of Computer Progrumming, vol. 2 , Seminu-
merical Algorithms.

[141 D. J . Martin, “Dissimilar software in high integrity applications in
flight controls software for avionics,” in AGARD Con5 Proc.. Sept.
1982, pp. 36-1-36-13.

[IS] P. M. Nagel and J . A. Skrivan, “Software reliability: Repetitive run
experimentation and modeling,’’ Boeing Computer Services Co.. Se-
attle, WA, 1982 (prepared for National Aeronautics and Space
Administration).

1985, pp. 135-139.

Reading, MA: Addison-Wesley, 1969.

Susan S. Brilliant (S’87-M’88) received the B.S.
degree in mathematics from Wake Forest Univer-
sity, Winston-Salem, NC, in 1972. the M.S. de-
gree in accounting from Virginia Commonwealth
University, Richmond, in 1977, and the M.S. and
Ph.D. degrees from the University of Virginia,
Charlottesville, in 1985 and 1988, respectively.

From 1986 to 1989 she was a member of the
faculty at the University of Richmond and is pres-
ently an Assistant Professor of Mathematical Sci-
ences at Virginia Commonwealth University.

of Virginia, the AIRLAB facility and the Centra] Corn- Dr. Brilliant is a member of the Association for Computing Machinery

puter Complex at NASA Langley Research Center pro-
vided generous amounts of computer time to allow the
programs to be tested.

and the IEEE Computer Society.

[31

r41

REFERENCES
T. Anderson and P. A. Lee, Fault Tolerance, Principles and Prac-
rice.
A. Avizienis and J. P. J. Kelly, “Fault-tolerant multi-version soft-
ware: Experimental studies of a design diversity approach.” Dep.
Comput. Sci., Univ. California, Los Angeles, 1982.
S. S . Brilliant, J . C. Knight, and N. G. Leveson, “The consistent
comparison problem in N-version software, ” IEEE Trans. Sofware
Eng., vol. 15, pp. 1481-1485, Nov. 1989.
L. Chen and A. Avizienis, “N-version programming: A fault-toler-
ance approach to reliability of software operation,” in Dig. FTCS-8:
Eighth Annu. Int. Symp. Fault-Tolerant Computing, Tolouse, France,
June 1978. pp. 3-9.

Englewood Cliffs, NJ: Prentice-Hall, 1981.

[SI J . R. Dunham, J . L. Pierce, and J . W. Dunn, “Evaluating the relia-
bility of N-version software subsystems-Some results from an on-
going research proiect.” Research Triangle Inst., Research Triangle,

[71

. I
NC,-1983.
D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis
of multiversion software subject to coincident errors,” IEEE Trans.
SofwureEng., vol. SE-11, pp. 1511-1517, Dec. 1985.
L. Gmeiner and U. Voges, “Software diversity in reactor protection
systems: An experiment,” in Safety of Computer Control Systems, R.
Lauber, Ed. New York: Pergamon, 1980. pp. 75-79.
W. C. Guenther, Concepts of Statistical Inference. New York:
McGraw-Hill, 1965.
J. P. J . Kelly, “Specification of fault-tolerant multi-version software:
Experimental studies of a design diversity approach,” Ph.D. disser-
tation, Univ. California, Los Angles, 1982.
J . C. Knight and N. G. Leveson, “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEb
Trans. Sojiwure Eng., vol. SE-12, pp. 96-109, Jan. 1986.

John C. Knight received the B.Sc. degree in
mathematics from the Imperial College of Science
and Technology, London, England, and the Ph.D.
degree in computer science from the University
of Newcastle-upon-Tyne, Newcastle-upon-Tyne,
England, in 1969 and 1973, respectively.

From 1974 to 1981 he was with NASA’s Lang-
ley Research Center and he joined the Department
of Computer Science at the University of Vir-
ginia, Charlottesville, in 1981. He spent the pe-
riod from August 1987 to August 1989 on leave

Dr. Knight is a member of the Association for Computing Machinery
at the Software Productivity Consortium in Herndon, VA.

and the IEEE Computer Society.

Nancy G . Leveson received the B.A. degree in
mathematics, the M.S. degree in management, and
the Ph.D. degree in computer science from the
University of California, Los Angeles.

She has worked for IBM and is currently an
Associate Professor of Computer Science at the
University of California, Irvine. Her current in-
terests are in software reliability, software safety,
and software fault tolerance. She heads the Soft-
ware Safety Project at UCI which is exploring a
range of software engineering topics involved in

specifying, designing, verifying, and assessing reliable and safe real-time
software.

Dr. Leveson is a member of the Association for Computing Machinery,
the IEEE Computer Society, and the System Safety Society.

