ANALYSIS OF FAULT S IN A MULTI-VERSION SOFTWARE EXPERIMENT

Susan S. Brilliant

John C. Knight

Nancy G. Leveson

Affiliation Of Authors

Susan S. Brilliant John C. Knight

Department of Computer Science
University of Virginia
Charlottesville

Virginia, 22903

Nang/ G. Leveson

Department of Computer Science
University of California
Irvine

California, 12345

Financial A&knowledgment

This work was supported, in part by the National Aeronautics and Space Administration under grant number

NAG-1-242, and in part by some UCI grant.

Index Terms

Design dversity, fault tolerant softare, multi-ersion programmingy-version programming, softae reliability

Address Br Correspondence

John C. Knight
Department of Computer Science
University of Virginia
Charlottesville

Virginia, 22903

Abstact

The softvare fault tolerance methodology kwa as “N-version’ programming depends for its reliability
improvement on the assumption that programs thaehren deeloped independently willdil independently We
have conducted a lge-scale gperiment in which this fundamental axiom is testef.total of twenty-seen
versions of a program were prepared independently from the same specificationuaivensities. Theresults of
testing the ersions reealed that the ersions were indidually extremely reliable bt that the number of tests in

which more than onafled was substantially more tharpected.

After the \ersions had been tested, th@lures of each ersion were xamined and the associateaults
located. Inthis paper we present an analysis of thesdtd. Ourgoal in this analysis &s to understand better the
nature of &ults that lead to coinciderdifures, and perhaps to determine from this analysis methodseidglment
for multi-version softvare that wuld help aoid correlated dults. W found that there are small and quite subtle
parts of the problem for which more than one correct soluti@tsedue to the manner in which real numbers are
compared. W dso found that in some cases the programmers madeaksilogical errors, indicating that some
parts of the problem were simply morefidifilt to get right than othersMore surprisingly there were cases in
which apparently diérent logical errors yieldedaiilts that caused statistically correlatadures, indicating that
there are some inputs that present moricdlfy than others.We b not think that minor changes in programming

languages or similar parametersuld hare a najor impact in reducing the incidence of correlaatt.

DRAFT July 5, 19101

| INTRODUCTION

Despite &tensve atempts to hild software that is sticiently reliable for critical applicationsaélts tend to
remain in production softare. Althoughfault avoidanceandault remaval [] do improve oftware reliability new
applications for computers in safety-critical systems, such as commercial aircraft and medsd, dese
increased the basic reliability requiremeni&x example, for certain applications in commercial air transports, no
more than a 1’8 chance of dilure oser a ten hour period is permittedThis appears to be yend the ability of

standard softare engineering techniques to ensure yené measure).

Proposals hae keen made for dilding fault-tolerant software [1] in an attempt to deal with thaufts that
remain despite the use of all possible methodsaolt faroidance and rem@l. One suggested approach, multi-
version orN-version programming [2], requires separate, independent preparation of mdtgitens of a piece of
software for an applicationThe \ersions are>acuted in parallel and majorityoting is used to determine which
results will be usedIf N is at least three, thepter is reliable, and a majority of thergions do perform correctly
then the system will beafilt tolerant and the correct output will be producEda majority of the ersions praide

an incorrect answeor there is no majoritythe softvare will not perform correctly

A very lage impravement in reliability for N-version programming requires that thersions &il
independently That is, if two versions &il on the same input in Z&xversion system, tlyewill either outwte a third
correct \ersion or no majority will @st. Thus,if several versions that are separatelgry reliable &il on the same
inputs, their &ults may not be tolerated and reliability may not be ivgato We have conducted a lge-scale
experiment [5] to determine whether programs that aveldeed independentlyafl independently Twenty-seen
versions of a program were prepared independently @uhiversities and then subjected to one million teSthe
results of the testsvealed that the programs were ividiually extremely reliable. However, the number of tests in
which more than one prograrailed, that is whereaflures were coincident, ag substantially more thamowld be

expected if the &rious programsailed independently

DRAFT July 5, 19101

The question that arises immediately from these resultsyisdarko mary coincident &ilures occur?This is
an important question for e&al reasons.n general, if the cause could be identified, perhaps tlaedts tould be
avaded or remwed. A better understanding of thauits will allov evaluation of techniques that & been
suggested for minimizing coincidengilures in multi-ersion softvare; for e&le, the use of dédrent
programming languages orw@ppment erironments [Udo et al].In addition, nev devdopment techniques for
multi-version softvre may be suggested fromaenining the coincidentaflures. Finallyif after detailed analysis
and &perimentation multi-ersion softvare does not turn out to be a cogeetive way of imprwving reliability, a
study of the &ults made by diérent programmers on the same problem couldigeamportant information on ko

to improve the reliability ofsingleversion softvare.

In an attempt to answer the question ofyvebincident &ilures occurthe faults responsible for each of the
obsened failures in the programs written for th&periment hae been identified.In this paper we present an
analysis of theseafilts. Ourgoal in locating and analyzing thauits is to try to understand the underlying reasons

for the dependenaifiures.

Our analysis of theallts is oganized as follars. Inthe net section we summarize theqeeriment that
yielded the twenty-aen programs studied herelwo significant lut unexpected problems that were encountered in
the course of thexperiment and subsequemtuft analysis are discussed in Section These problems are quite

general and associated wittvaal of the aults. Thg are suficiently important that theare dealt with separately

The discussion of theafillts themseks bgins with a statistical analysis of the beioa of the filures that
they induced. Thisanalysis is presented in Section 1Vhe goal of the statistical analysis is to determine which
faults are responsible foaifures that are statistically correlated, withoward to the details of theatilts. The
results of this analysis identify thosaufts that are causing more coincideaituires than wuld occur by chance,

and it is this behaor that needs to be understood.

In Section V we describe thaults themseks, and we discuss their interrelationships in Section\Wg.

shav that faults which produce statistically correlateadldres arenot necessarily semantically simijaand vice

-2

DRAFT July 5, 19101

versa Thus, hults that at first sight seem unrelated actually cause coincaikne$, and dults that seemery

similar sometimes do not cause coincidaiitifes. Ouiconclusions are presented in Section VII.

I EXPERIMENT SUMMARY

Only the major features of the pieus eperiment are described in this paper since the detaits been
published elsghere [.KLS85.]. The application used in theqgeriment vas a simple (lt realistic) anti-missile
system that came originally from an aerospace coynparf.]. The program reads data representing radar
reflections. Usin@ mllection of conditions, it decides whether the reflections come from an object that is a threat

and, if so, a signal to launch an interceptor is generated.

Twenty-s&en gudents in graduate and seniovdeclasses in computer science at thevdrsity of Virginia
(UVA) and the Uniersity of California, Irvine (UCI) wrote programs from a single requirements specificaftos.
programs were all written inaBcal, and desloped on a Prime 750 system using the Primos operating system and

Hull V Pascal compiler at U¥ and on a DEC XX 11/750 running 4.1 BSD Unix at UCI.

Once a program as delbigged using fifteen supplied test cases arydotiver data that the studentveédped,
it was subjected to an acceptance test that consistea diutwdred randomly-generated test caskglifferent set
of two hundred tests &as generated for each program in ordewtwdaa generalfiltering”” of common &ults by the
use of a common acceptance teé3hce all the grsions had passed their acceptance testwtbee subjected to one
million randomly-generated test cases in order to detect agfianalts as possibleThe determination of the success
of the twenty-seen individual versions vas made by comparing their output witheasion (referred to as ttgold
program) that had been subjectedsteensive previous testing.A program vas considered to fe failed on a gien

test case if its results éfed from the results generated by the gold program.

An attempt vas made to obtain programmers witirigd e&perience bt this was necessarily limited by the

need to use students as subjeé&ifteen of the programmers wererking on Bachelos degees and had no prior

DRAFT July 5, 19101

degree, eight wrking on Mastes degees held at least a Bachetodegee, and four wrking on Doctoral dgrees
held at least a Mastertegee. Theprogrammers’ pngous work experience in the computer field ranged from none
to more than ten yearslhere appeared to be no correlation between the programrpenseace leels and the

quality of their programs.

Each program produces a 15 by 15 Boolean aardy dement Boolean ector and a single Boolean launch
decision (a total of 241 outputs) on each test cadehough the launch condition is the only true output in this
application, afailure was recorded for a particularevsion on a particular test case if thereamy discrepang
between the 241 results produced by theasion and those produced by the gold program, or éhgion causes
some form of &tal exception to be raised duringeeution of that test casel he intermediate results were compared
because, in a practical multession system,ates would be takn on intermediate resultdt is more likely that a
majority of versions will agree on the correct result of a smaller intermediate computation thanytheitl thgree

on the correct result of the entire computation.

We cefine afault to be the piece of the sourcettavithin a program &rsion that is responsible for at least one
failure in the sense that changing that piece of sourdeitesome vay would allov the program to obtain the
correct output for that tesiNote that nothing is said here about uniquenéssiay be possible to makany one of
several different changes to the program that will el to work correctly on a gen test. for each of the twenty-
seven versions the dults were identified byxamining the output of the program for test cases in whadhré

occurred and analyzing the sourcette

Once the dult was located, a correctionas deised. Theversion containing thealult was modified so that
either the originaldulty code or the corrected code could kecated. Thepurpose of modifying eachevsion in
this manner \as to allev the identification of thealult or set of dults responsible for eachilure recorded for the
version. Eachtest case that caused thersion to &il originally was r@enerated. Theersion was then xecuted

with each indridual fault corrected in turn.

DRAFT July 5, 19101

In most test cases where arsion haddiled, it worked correctly when one and only one of asilfs was
corrected. Br these cases, thauit corrected on thexecution that @ve correct results as assigned sole
responsibility for thedilure. Ina few @ases, correctingither of two faults gvecorrect results, so it as recorded
that the &ilure was attrilutable to either of the wvfaults. Insome cases none of theeeutions with a singleafult
correction yielded correct result&or these &ilures the ersion vas eecuted with each pair ofafilts corrected in
turn, then with each set of threaufts corrected in turn, and so on, until correct results were obtaliedfaults

corrected on thexecution gving correct results were assigned colleetesponsibility for thedilure.

For the purposes of discussion in the remainder of this pygemdiidual faults are identified by theexsion
number in which thealult occurs concatenated a sequence number foatlts ssociated with thagmsion. Thus,

for example, Fult 3.1 is the firstult associated withérsion 3.

I GENERAL PROBLEMS

Two problems that were responsible for more than an# &rose while performing themeriment. Thdirst
arose because thrent computers were used for the acceptance testing and for the lifetime simulation, and the

second was a consequence of trying teia difficulties with round-dferrors in floating point computation.

It was discuered that the &sal compiler praded with the 4.1 BSDersion of Unix for a DEC XX 11/750
has a hilt-in square root functions@rf) that doesnot necessarily gie a fital execution error when it is gen a
negdive agument. Wth checking turned &fit returns the ngative d the square root of the absolut@uwe of the
amgument. Becausef this, some of the programessions decloped at UCI that appeared tovieapassed the
acceptance procedure had néithough the produced correct outputs, thesersions generated calls to the square
root function with small rgative aguments in doing soThis was discuered after the programmers had been told

that their programs were accepted before lifetime testing lgen.

DRAFT July 5, 19101

Acceptance testing & repeated on a Prime 750 atAU\We replaced calls to the square root function that
caused xecution failures during acceptance testing by calls to a function tbatdwreturn zero as theale of the
square root for small getive aguments. Thushe lifetime-simulationdilures that wuld hare resulted from these
calls if the \ersion had been used as originally submitted wetecounted in thedilure data.Falures that later
resulted from calls that did not cause trouble during acceptance testing were includedilnrthddta (seedtlts
11.1, 20.2, 22.1, 22.2, 22.3, 26.6, and 26.7 described in Section V) although it is possible that the programmers

would have mrrected these calls as well if fhiead been presented with the results of the acceptance testing.

This is an importantvent in the performance of thixgeriment. ltillustrates the problem thaailts in the
ervironment in which a program is w#oped may maskalults that wuld otherwise be diswered during the
development processThis is a situation that might well arise inydiorm of softvare deelopment. Itis especially
serious in the delopment of multi-ersion softvare because undisgwed faults in the ewironment may be
responsible fordults that cause coincidergtilires. Thisexperience supportsevy strongly the approach of using

different deelopment emironments for the diérent program ersions.

The second general problenvatved real number comparisonilost of the launch conditions (see Appendix
A) require the computation of a real numb@&his number is then compared with aefixparameteralue, and the
result is a Booleanalue based on the comparisoRor example, launch condition 2 requires that the program
determine whether thereists a set of three consemagtichta points that can be contained within or on a circle of
radius ‘RADIUS1". In determining whether the condition is satisfied, the radius of the smallest circle containing a

set of three points can be calculated and then compar&hDIUS1".

Since finite precision arithmetic is being used and computations are sequence dependexistthtuat@ons
in which two computed real numbers are acceptably close to xhetealue, lut do not hge the same order
relationship with the parameteFor example, one ersion might compute for the radius of the circle containing
three points aalue that is slightlyessthan ‘RADIUS1"” and anotherusing adifferentalgorithm, might compute a

value that is slightlygreaterthan ‘RADIUS1”. This implies that either Boolearaiue for launch condition 2 is an

DRAFT July 5, 19101

acceptable output for this test case.

It is knavn that multiple-ersion softvare is inappropriate for applications in which multiple correct solutions
exist [.Anderson.]. The \ersions may awe & different correct solutions and be unable to agree on a solwgon e
though a majority compute correct resulEr an goplication with Boolean results, thgistence of multiple correct

solutions implies that either Boolean result is correct since there are anpps$gible solutions.

For the multi-version &periment described here itag important to kne whether indvidual wersions had
computed an incorrect result so thatdres could be recorded accuratefyfunction called REALCOMRRE was
supplied to the programmers in arfoef to eliminate spuriousaflures caused by roundfadrrors. We ught to
eliminate situations in which twersions, arkiing at essentially the same real number reswdtlevoutputopposite
Boolean results.The function performs limited-precision real compariséindoes so by comparing its eweal
armguments, returning EQ when thefdience between the owalues is less than 0.000005 of thegéar\alue.
Otherwise the function returng I(GT) if the first agument is less than (greater than) the secdim@ programmers

were instructed to use REALCOMRE for all comparisons of real numbers.

In retrospect, it is clear that REALCOMRE couldnever have sicceeded in eliminating the problem iasv
designed to sobk. Theeffect of the function w&s merely to change slightly the boundary between tien® of the
input space for which the twBoolean results are to be returndebr example, for launch condition 2 thalue
“true” i s to be returned when the computed radius is less than or equBADIUS1"” Howeve, REALCOMPARE
will return LT or EQ whenerer the computed radius is less thalRADIUS1” + 0.000005 * ‘RADIUS1”). The
boundary between the giens for which the launch condition is satisfied has beemesndwy (0.000005 *
“ RADIUS1"), but the same multiple solution problestill exists It is possible that tw programs computing nearly

identical \alues for the radius will still output opposite Boolean results for the launch condition.

No alternatre implementation of REALCOMARE could sole the multiple correct output problem without
restructuring the applicationf it is important to determine whether the realues produced by twersions are

acceptably close to each othtien it is necessary to apply a REALCOMEE functiondirectly to the eal values

-7-

DRAFT July 5, 19101

It is not possibldo compare each of the twalues independently to a third, producing Boolean results, and then to

determine whether the original tawalues are approximately equal based on the Boolean results.

Not only did the function REALCOMARE fail to accomplish its intended purposei lits use led to the
introduction of somexremely subtle ambiguities in the program specification that were not recognized until the
analysis of &ults was undertaén. An example occurs in launch conditions 3 and Hoth of these launch
conditions require the determination of whether the angle formed by three points satisfies either of the conditions

angle < - ¢

or

angle > g+ ¢
wheregis a parameter supplied as inplihe specification indicates that the second of the three points isrtbe v
However, &s is illustrated in Figure 1(a), there is still an ambiguity as to the angle to be meaRKithent.the angle
marked 6 or the angle maed 2z - 6 could be consideredn absolute terms it mak no diference which angle is
measured. Figur&(b) illustrates that the smaller of theotwossible angles is less tham-(¢) if and only if the
larger angle is greater tham{). However, recall that the tolerance used by REALCOMRE depends on thaze
of its aguments Thus, occasionallyit returns EQ for the lger pair when it returnsiLfor the smaller pa}n Since
the problem only occurs on borderline situatiagigherresult is acceptable to the applicatidrhus a single ersion
program veuld hare ro difficulty. Also, algebraiclythere isno ambiguity Howeve, on real computers, there are

multiple correctsolutions and this leads to filiulties for multi-\ersion systems.

Other more subtle ambiguities in the requirement also resulted frorailine fto specify xactly the vay in
which REALCOMRRE was to be applie?d The requirement that the REALCOMRE function be applied in all

real number comparisons led to its inappropriate application in somvecdintrol situations, with sometimes

1 This ambiguity in launch conditions 3 and 18swresponsible fordults 1.1, 18.1, and 23.2.

2 Faults 7.1, 12.2, 14.2, 17.1, 17.2, and 26.3 all arose fromathed of the requirement toxglain that for launch conditions 3 and 10 it is
necessary to apply REALCOMRE to the angles themsels rather than to thetosinesor sines Fault 3.4 arose when the use of REALCOM-
PARE in a test of collinearity resulted in inBaient accurag.

DRAFT July 5, 19101

A

@)

(b)

Figure 1 The Angle Formed by Three Pints

disastrous resul%s

3 Faults 13.1, 16.2, 21.2, and 23.1 all resulted from inappropriate applications of the REAIXREMENction.

DRAFT July 5, 19101

This problem with real number comparison is unique to meltsien software. Itwas “obvious’ to the
authors that approximate comparisomsweeded for this applicationtlwe filed to percefe the subtlety of its use.
The problem is unusual in that, although it is an implementation issue, it has a fiegjoorethe \ay in which the

requirements specification should be written for mugtision softvare.

IV STATISTICAL AN ALYSIS OF THE FAILURES

The preliminary results of thisxperiment rgealed that the indidual versions were highly reliableubthat
the number of test cases on which multigléufes occurred as relatiely high. Table 1 shavs the obserd failure
rates of the twenty-sen versions. @ble 2 shars the number of test cases in which more than erson &iled on

the same input.

The faults found in each of the twentyvsa program \ersions and the number @filures attrilntable to each

fault are shwn in Table 3. Falures associated with more than om@lf are counted in the number aflfires for

Table 1. \ersion Failur e Data

Table 2. Occurrences of Multiple Railures

Table 3. Fault Occurr ence Rates

-10 -

DRAFT July 5, 19101

each of the associatealits.

The manifestations of a vie of the faults were implementation-dependentvhen the #ult-to-failure
identification testing w&s performed, aersion sometimes passed a test case that itdiled fwhen the test ag
executed originally This efect was caused by dérences in the hardwe and compilers used, andswbsered for
versions 6, 22, 23, and 2&\nalysis of the test cases/olved allaved the originaldilures of ersions 6 and 23 to be
attributed to &ults 6.1 and 23.1 respedly, o these &ilures were included in thaifure counts for the associated
faults in Table 3. For versions 22 and 26, the originailfires were caused by calls to the square root function; it
was ot considered warthwhile to identify the particular call thatas responsibleThese original dilures are not

counted in the anof failure rates shen in Table 3.

In order to determine whichadilts caused statistically relategilfires, a statistical test of independenasw
performed between each pair afufts. Amatrix, C, of the coincidentaflures caused by each pair aufts was
constructed. Thisnatrix is indeed in both dimensions by the sequence aifilf numbers.Thus, element i, j of C
represents the number of test cases in which theptegram \ersions containingalults i and j bothdiled. Clearly

C is ymmetric, and @ble 3 is just its diagonal.

For each non-zero éfdiagonal entry in C, an approximate chi-square test [GUE6Gis]wsed to test the null
hypothesis that the correspondingotdaults causedilure independently The obsered \alue of the chi-square
statistic for each pair i, j oblilts causing commoumifures vas calculated, using the formula: (* Sue fix this in terms

of C*)

22122 (x; = NPy Prj)?

=11 NP P

where

n = total numberof testcases= 1, 000, 000

-11 -

DRAFT July 5, 19101

and wherex,; represents the number of test cases for which bartions éiled; x;, represents the number of test
cases on whichersion i filed when ersion j did not;x,; represents the number of test cases on whachian j

failed when ersion i did not; anc,, represents the number of test cases for which neidsion filed.

Where the obseed chi-square statistic is greater than 7.88, the nudbthesis of independence can be
rejected with 99.5 percent certainfjhe results of the 990 separat@bthesis tests are shio in Table 4. An ‘R’ in
Table 4 indicates that the nulypothesis as rejected for the corresponding pair ailfs at the 99.5 percenvé,
and the tw faults are considered to btatistically corelated The statistical test used here d@id only if the \alue
of xq4 is “sufficiently laige’, and \alues greater than or equal toefime generally considered tovegi satisfactory
results. A'?’" entry in Table 4 denotes a case in which tladue of the chi-square statisticasvlage enough to
justify rejection of the null ypothesis, bt for which the alue of x;; is too small to justify reliance on the

hypothesis test.

The results of theseyhothesis tests indicate that 101 of tiypdtheses should be rejected; that is 101 pairs of
the faults found in the>gperiment are statistically correlate@he use of a confidencevi of 99.5 percent means
that the probability that the nullypothesis will be rejected when iact it is true is 0.5 percenThus, if the null
hypothesis is indct true for each of the 99@tothesis tests that were performed, tkgeeted number of erroneous

rejections idess than fivewhereas 101 were rejected.

It is clear from the preliminary data that more coincidailtifes occurred thanauld be &pected by chance.
The results of these statistical testsvstiwat mary faults were imolved in the coincidentilures, and suggest which

faults were responsible.

-12 -

DRAFT July 5, 19101

Table 4.a. Results of Hypothesisé&sts

-13-

DRAFT July 5, 19101

Table 4.h Results of Hypothesis &sts

-14 -

DRAFT July 5, 19101

Table 4.c. Results of Hypothesisésts

-15-

DRAFT July 5, 19101

Table 4.d. Results of Hypothesis 8sts

V DESCRIPTION OF FAULT S

Once the dults causing statistically correlategilfires were identified, it & possible toxamine them to

determine if thg had aly unique characteristicsThis section gies a $iort description of eaclaéilt.

Fault 1.1 occurs in the luation of launch condition 10The gold ersion alvays computes an angle
between 0 and but this version sometimes computes an angle betwesamd 2. As explained in Section lll, the

gold version may conclude that the launch condition is satisfied wheretision does not.

Fault 3.1 occurs in thealuation of launch condition 3, which requires the calculation of the angle formed by
three points.The specification states that point 2 is tleetex of the angle.Version 3 treats a set of three collinear
points as a special case and assumes thatah® an angle ofr radians een though the angle ig only if point 2

lies betweerpoints 1 and 3; otherwise the angle is 0.

Fault 3.2 is the same error in logic as thault 3.1. It occurs in determining whether or not condition 10 is

satisfied.

Fault 3.3 occurs in the determination of the distance of a point from the line formeddwgther points,
needed inaluating launch condition 7Version 3 treats the situation in which all three points are collinear as a
special caseThe distance of interest in that case is zero, since the point lies on théltwever, Version 3%
algorithm gies a dstance of zero only if the first point lidsetweenthe other tw on the line. Otherwise the

distance to the nearest of the othen pwints is calculated instead.

Fault 3.4 arises in the determination of the angle formed by three points (launch conditions 3 aAd 10).

discussed in &ult 3.1, \érsion 3 treats collinear points as a special cddse algorithm used to determine

-16 -

DRAFT July 5, 19101

collinearity is firly inaccurate. The lengths of the sides of the trianglevihg the three points asestices are
calculated. Ifthe sum of the shorter twddes is equal to the longest side, within the tolerancevatoby
REALCOMPMARE, then the three points are considered to be collinBaerefore an angle that is only closento

may be calculated to baactly 7 using \ersion 35 dgorithm.

This fault has an interesting relationship witauts 3.1 and 3.2If a more precise algorithm is used to
determine whether three points are collinéar fever angles are calculated using thelfy algorithm along this
path. Insteadhe angle is calculated according to the correct algorithm on the alternateTpatlkfore there are a
large number of cases in whicailtire can bewided by correctingeitherthe path condition or the algorithm used

on the path.

Fault 6.1 occurs in a programmalefined function calledad_circum This function is called inwvaluating
launch conditions 9 and 14 to find the radius of the smallest circle containing three phafaulty code is shen

in Figure 2. The condition is intended to handle as a special case those instances in whieb ahthe three

if (REALCOMPARE(x1-x2,0.0) = EQ) or
(REALCOMPARE(y1-y2,0.0) = EQ)) and
((REALCOMPARE(x1-x3,0.0) = EQ) or
(REALCOMPARE(y1-y3,0.0) = EQ)) and
((REALCOMPARE(x2-x3,0.0) = EQ) or
(REALCOMPARE(y2-y3,0.0) = EQ)) then
begin (*coincident points*)
if (REALCOMPARE(x1-x2,0.0) = EQ) and (REALCOMIRE(y1-y2,0.0) = EQ) then
rad_circum := 0.5*distance(x1,y1,x3,y3);
if (REALCOMPARE(x1-x3,0.0) = EQ) and (REALCOMIRE(y1-y3,0.0) = EQ) then
rad_circum := 0.5*distance(x1,y1,x2,y2);
if (REALCOMPARE(x2-x3,0.0) = EQ) and (REALCOMIRE(y2-y3,0.0) = EQ) then
rad_circum := 0.5*distance(x1,y1,x2,y2);
end (*coincident points*)

Figure 2 Code Responsibledr Fault 6.1

-17 -

DRAFT July 5, 19101

points coincide.However, the occurrences ar in the condition should be replaced dyd and theand's replaced

by or’s. This fault is particularly interesting because the test cases on wdilarefoccurs are partially compiler
dependent. Notehat, on the path that the programmer intended to handle coincident points, each possible
combination of points that might be coincident is considered separitelyeve, the cases that are supposed to
follow this path are not the ones that actually do, so inymmases no alue is assigned for the functiced_circum
Whether &ilure results depends onvindhe particular implementation ofaBcal handles this situatioin mary

cases, a randonalue contained in the stack location designated for the result will be returned.

Fault 6.2 occurs in the wluation of launch condition 2 which requires the determination of the size of the
smallest circle containing three pointRather than calling hisad_circumfunction, \éersion 65 author includes in-
line code to perform the calculatiohis code calculates the radius of the circle as half the longest side of the
triangle formed by the three pointslowever, a drcle with this radius does not contain all three points if the triangle

is acute.No separate path is included to handle acute triangles.

Fault 6.3 occurs in the waluation of the special case of launch condition 7 in which the first and last of
‘N_PTS’ consecutie data points coincide.ln Version 6 the coincident points are (X[i], y[i]) and (x[j], YD,
hereafter referred to as poirdnd poing. The inde k is used to count through the points between pand point
j- The distance to be calculated should be from gotnteither point or pointj; instead the distance from polat

to pointk+1 is calculated.

Fault 7.1 occurs in a function called in theauation of launch conditions 3 and 10 to calculate the angle
formed by three pointsThe function bgins by calculating the cosine of the angREALCOMPARE is used to
compare the calculated cosine to -1, 1, antf REALCOMPARE returns EQ, the angle is determined torp@ or
2 respectiely. This fault is responsible foaflure on test cases in which launch condition 3 or 10 is not satisfied,
but for which there is some angle near zero that almost satisfies the conBifaaxample, gven the three points
(2.0, 1.9), (-1.5, -4.3), and (2.2, 2.3), both the g@iion and thisersion agree that the cosine of the angle formed

is about 0.9999956Using limited precison, REALCOMYRE determines that thisalue is equal to 1, soevsion

-18 -

DRAFT July 5, 19101

7's dgorithm computes an angle of zerdhe gold ersion computes the angle to be 0.00297®ihce (&) for this
case is 0.0027317, the goldrsion does not consider the launch condition to be satidferdion 7, havever, found
the angle to be zero, which is Sciently different from the &lue of @-¢) value to allev REALCOMPARE to return

LT. Version 7 concludes that the launch condition is satisfied.

Fault 8.1 is similar to Fults 3.1 and 3.2In calculating the angle needed fmaleating launch conditions 3
and 10, this &rsion, like Veersion 3, handles collinear points as a special ceamsion 8 compares the slopes of the
rays that form the angle to establish collinearityhen the points are determined to be collints version checks
to see whether points 1 and 3 coincidiethey do, the \ersion correctly gies the \alue of the angle as zerén all
other cases, &fsion 8 computes an anglemfadians, gen though the angle is zero unless point 2 is between points

1and 3.

Fault 8.2 is the same error in logic as thauk 8.1, lnt occurs on a path that handles sets of three points that

form either a horizontal orertical line.

Fault 9.1 is found in the programmerfunctionRADIUS which is called in ealuating launch conditions 2, 9,
and 14. In calculating the radius of the smallest circle containing three points @¢tgfom correctly handles on
separate paths the cases in which the three points form an obtuse triangle and those cases in which an acute triangle
is formed. However, the path condition that determines whether a triangle is obtuse is incoveston 9
calculatesD, the length of the longest side of the triangle, &hdhe perpendicular distance to the thimtex.

According to \érsion 9, ifD > (2 * H) then the triangle formed is obtuseéhis is not alvays the case.

Fault 9.2 occurs in the programmsrfunction AREA which calculates the area of a triangle formed by three
points (launch conditions 4, 11, and 19)he \ariablesa, b, and c hold the lengths of the sides of the triangle;
holds half of their sumlt is geometrically impossible that yamf the quantitiess, (s - 8, (- b, or (s - 9 are
negdive. Neveatheless dtal execution errors occasionally occur in computing the quantity:

sqrt(s*(s-a)*(s-h)*(s-c))

despite the mgrammers atempt to pevent the poblem by handling sepately cases in whitthe absolute value of

-19 -

DRAFT July 5, 19101

the agument is less that 10E-8.

Fault 11.1, like Fault 9.2, is due to machine round-efror. The program xperiencesdtal eecution errors
in the programmes’ function angle which computes the angle formed by three points as required by launch
conditions 3 and 10The \ariablecosinecontains the correctly computed cosine of the anblewever, a all to
sgrt with the agument(1 / sgr(cosine) - 1yesults in &ilures when round-bkerror has gren a @lculated cosine

having an absolutealue greater than 1.

Fault 12.1 occurs in the programmsrivhichquadfunction, which is called in determining whether launch
condition 5 is satisfiedBecause of an error in a relational operattr’(is wsed instead of>=""), the version

assigns points on the right side of the x-axis to the second quadrant rather than the first.

Fault 12.2 is essentially the same asauit 7.1. In a function that waluates the angle needed for launch
conditions 3 and 10, the programmer compares the absaluie of the calculated cosine of the angle to 1 using
REALCOMPMARE. If this test returns EQ then the angle is calculated as eithierero, depending on the sign of

the cosine.

Fault 13.1 occurs in the code shm in Figure 3. The programmer calls REALCOMIRE to ensure that the

guantity:

else if REALCOMRRE(baselength, 2*testradius) = GT then
pntcirclerltn := GT

else bgin
basebisect := sqrt(sgr(testradius) - sqr(0.5*baselength));

Figure 3 Code Responsibledr Fault 13.1

-20 -

DRAFT July 5, 19101

(sqr (testradius) - sqgr (0.5 * baselength))
is non-negatve before the quantity is given as an argument to the huilt-in sqrt function. Due to the tolerance
allowed by REALCOMPARE not all negative vdues of this quantity are detected, so fatal execution ears

sometimes esult.

Fault 14.1 occurs in galuating the special case of launch condition 10 in which the second in a set of three
points coincides with either the first or thirtlersion 14 calls the programmeefined functiorsam3ptsn order to
check for this special casélowever, the programmer made an apparent typographical error in the call:
if sam3pts(x[il,y[il,x[1,y[i].x[K],y[k])<>1 then

since the second occerice of'y[i]’ ’ in the call should bey[j]’ .

Fault 14.2is the same asalt 7.1.

Fault 16.1 occurs in handling the special case of the calculation of the angle formed by three points (launch
conditions 3 and 10) in which the rays from point 2 through points 1 and 3 areebtithlyv If points 1 and 3 are on
the same side of point 2 then the angle is correctly determined to beHzm®vever, if point 2 lies between points 1

and 3 then the function\gis an angle of 180 rather tham

Fault 16.2 similar in origin and déct to Fault 13.1. The path condition:
if REALCOMPARE(dist(cpointl,cpoint2), (2*radius)) = gt
is used in an effrt to prevent a negatve agument to thesqrtfunction in the sequence:
halfchorddist := dist(cpointl, cpoint2)/ 2 ;
distmidpointtocenter :=
sqrt(radius * radius - halfchorddist * halfchorddist);

The use of REALCOMIRE allows cases in wihidist(cpointl,cpoint2) is only slightly gater than (2 * adius) to

follow the else path to the sqrt function call, causing a fatatetion eror.

Fault 17.1 occurs in the calculation of the angle needed for launch conditidfer8ion 17 neer calculates

the angle itself; instead its cosine is calculated and compared using REALARBMP the cosine of the reference

-21 -

DRAFT July 5, 19101

angle (Pl - EPSILON).This results in dilure in cases in which the angle that satisfies condition 3 is near zero.
There are tw reasons this occursThe first is that the size of an angle is much smaller than the corresponding
cosine for angles in this range, so that angles must be closealie than their cosines in order for
REALCOMPARE to return EQ.Secondly the cosine cwvs relatively flat near zero, so there is adarrange of

angles with nearly equal cosines.

Fault 17.2is the same error in logic as thauit 17.1. It occurs in the calculation of launch condition 10.

Fault 18.1 occurs in the programmerangle function, which computes the angle formed by three points as
needed for launch conditions 3 and Tthis \ersion, like Version 1, sometimes computes the angle betwesrd
2z rather than the angle between 0 arahd fils for the same reasonghe different algorithm used by thigxsion

causesdilure to occur on diérent test cases.

Fault 19.1 occurs in handling the special case of launch conditions 3 and 10 in which point 2 coincides with
either point 1 or point 3According to the specification, in this situation the angle is undefined and the condition is
not satisfiedy those thee points Wheneer such a set of points is found this program decides that the condition is

not satisfied byanyset of three points.

Fault 20.1 occurs in calculating the angle formed by three points as required by launch conditions 3 and 10.
This wersion bgins by calculating the tangent of the anglethe angles tangent is found to be zero, then the
version alvays gives an angle of z. Howevae, the tangent is also zero if the angle is zaiMhere the correct angle is

zero, the incorrectalueris returned.

Fault 20.2, like Faults 9.2 and 11.1, results from the programséailure to anticipate the fefcts of
imprecision in machine arithmeti¢aal execution errors sometimes occur on the line:

tn := sqrt(1.0 - sqr(cs)) / cs;

in which the variable cs contains the corectly computed cosine of the angle needed in theaation of

-22-

DRAFT July 5, 19101

launch conditions 3 and 10.The case in whichcsis zem has been separately consided, so dvision by zeo
does not occur In theory the value (1.0 -sgr(c9)) should always be non-negatk, since the cosine always lies
between 1 and -1.However, round-off error sometimes esults in a calculated cosine outside of that range,

and the program aborts on the call to thesqgrt function.

Fault 21.1 occurs in the programmerfunctionincircle, which is called in thewaluation of launch conditions
2,9, and 14.In determining the smallest circle containing a set of three points eftsi®n treats separately cases in
which the first or third point coincides with the secofr these cases the distances between points 1 and 3 and
between points 2 and 3 are calculat@these distances are added to determine the diameter of the desired circle.

This procedure does nobowk for the case in which points 1 and 2 coincide.

Fault 21.2 also occurs in the functiancircle. This fault is due to a misapplication of the REALCOMEE
function similar to those causingiits 13.1 and 16.2The condition:
if is(length,[gt],2*radius) then
is designed to enseithat the agument to the sqrt function in:
cdist:=sqrt(sqr(adius)-sqr(length/2));
is non-ngative The call to the pspgrammerdefined is function willaturn true wheneer REALCOMRRE eturns
GT. If the pogrammer had used strict comparison, this line would guotee that the else path to the call to sqrt is

not followed for cases in whidhe agument is ngative

Fault 22.1 occurs in calculating the area of the triangleimg three points as itevtices for the eluation of
launch condition 4.The \ariablesdl, d2, and d3 hold the lengths of the sides of the trianghtyalueholds half of
their sum. It is therefore impossible for grof the quantitiesntvalue (intvalue - d}, (intvalue - d2, or (ntvalue -
d3) to be regdive, but occasionally round-berror gives a regdive walue for one of them, resulting in agagve
argument to thesqgrt function on the sequence:

radical := intalue * (intwalue - d1) * (intalue - d2) * (intalue - d3);
triarea := sqrt(radical);

-23-

DRAFT July 5, 19101

Fault 22.2is the same error in logic aslt 22.1. It occurs in theeluation of launch condition 11.

Fault 22.3 is the same error in logic asuts 22.1 and 22.2lt occurs in the eduation of launch condition

15.

Fault 23.1is an eample of a programmer’misuse of the REALCOMARE function. Launch conditions 3
and 10 specify that if the second point in a set of three coincides with either of the othay amgle is formed and
the points do not satisfy the launch conditidn.Version 23 the programmer checks for this condition inside the
function angle which usually returns thealue of the angle formedn this case the dummy anglalve of -1 is
returned. ® ensure that a rgative value is neer returned when an angle is formed, the line of code

if REALCOMPARE(theta,0.0) =T then theta := theta + 2*PlI;

is used.The use of REALCOMIRE allows some gative angle values to beturned. Theode following the call

to angle teats these m@tive values as if no angle is formed.

Fault 23.2 also occurs in the programmem@ngle function. Like Versions 1 and 18, thisexsion often
computes an angle betweeand Zrrather than an angle between 0 andor these casesgifure sometimes results

because of the greater tolerancevadld by REALCOMRRE in comparing the lger angles.

Fault 24.1 occurs in this calling sequence:
if not issame(x1,y1,x2,y2) and not issame(x3,y3,x2,y2) then
findcircle :=
REALCOMPARE(findangle(x1,y1,x3,y3,x2,y2), PI / 2) L
A call to the function findanglewill r esult in a fatal division by zeilo whenever t he point whose coordinates a
the third and fourth arguments coincides with either the point haing coordinates equal to the first pair or the
last pair of arguments. For all except one of the calls tdindanglethe programmer checks corectly for the
coincidence of these points befe alling findangle The functionissamds used to checkdr point coincidence.

The first call to issameshown above is gven the wrong arguments to prevent failur e on the succeeding call to

findangle The coincidence of points 1 and 3 should be chexkrather than the coincidence of points 1 and 2.

-24 -

DRAFT July 5, 19101

Fault 25.1 occurs in the functiorangle called in ealuating launch conditions 3 and 10 to find the angle
formed by three pointsThe faulty code is shan in Figure 4.The functionlengthlinereturns the distance between
the two points whose coordinates are/gi to it as aguments. Theode follaving the calls tdengthlinehandles the
case in which the three pointifon a \ertical line. In this case the angle formed is either zere,aepending on
the order of the points on the lin&he condition that determines whether the angle formed is zero doesvaot co

the case in which point 1 lies between points 2 and 3, and is closer to point 2 than to point 3.

Fault 25.2is the same error in logic as thauit 25.1. It occurs on the path on which the general case of three

collinear points is handled.

Fault 25.3 occurs in the programmerfunction tricirr ad, which is called in determining whether launch
conditions 2, 9, and 14 are satisfidthe function determines the radius of the smallest circle containing three points
whose coordinates arevgn as aguments. Thdaulty code, which occurs in handling the special case in which the
area of the triangle formed by the three points (contained irattebleared) is zero, is shan in Figure 5.1f area

is zero then the three points are collinsarthe radius of the circle containing the triangle is half the length of its

alen := lengthline(x1, y1, x2, y2);
blen := lengthline(x2, y2, x3, y3);
clen := lengthline(x3, y3, x1, y1);

if (REALCOMPARE (x1, x2) = EQ) and (REALCOMRRE (x2, x3) = EQ)) then
if REALCOMPARE(clen, alen) =T then (*catch angle that
doubles back *)

angle := 0.0
else
angle := Pl

Figure 4 Code Responsibledr Fault 25.1

-25-

DRAFT July 5, 19101

alen := lengthline(x1, y1, x2, y2);
blen := lengthline(x2, y2, x3, y3);
clen := lengthline(x3, y3, x1, y1);

if (area = 0) then
if REALCOMPARE(clen, alen) =T then (*catch angle that
doubles back *)
if REALCOMPARE (alen, blen) = GT then
tricirrad := alen/2
else
tricirrad := blen/2
else
tricirrad := (alen + blen) /2

Figure 5 Code Responsibledr Fault 25.3

longest side.The case in whichb{en= clen= alen) is not correctly handledThe code shen will return (@len +

blen) / 2) for these cases, which is correct only wakanhappens to be zero.

Fault 26.1 occurs in the calculation of launch condition\ersion 26 treats separately the case in which the
line joining the first and last of 'N_PTS’ consewetichta points is ertical. Inthis case the distance is calculated to
be the x-coordinate of the point currently under considerafidre true distance is the fiifence between the x-
coordinate of the point under consideration and the x-coordinate of the points ertitad kne joining the first and

last points.

Fault 26.2 also occurs in the calculation of launch conditionl7.stepping through the sets of points that
might satisfy the condition, the programmer initially sets tagablestartto 1 and the ariableendptto N_PTS.
These wariables are incremented as each set of points is considered until either the condition is determined to be

satisfied or all the possible sets of pointeehlleen consideredwithin each set of points, the programmer treats as a

-26 -

DRAFT July 5, 19101

special case instances in which the first and last points coincide; for these cases the specification states that the
distance to the coincident point is to be measuiadtepping through the inddual points between the endpoints
in the set, an indeis darted atstart and incremented until it reaches N_PTBhis will work properly only for the

first set of points.The inde should run fromstartto endpt as it does on all of the other branches.

Fault 26.3 occurs in theeluation of launch condition 10Rather than computing the angle formed by three
points, this ersion calculates only th&ne of the angle.The sine is then compared to the sine of the reference
angle, (Pl - EPSILON).Comparison of the sines of the angles using REALCARIP gives aroneous results for

points on the flat part of the sine cepat angles nearf2 (sines near 1).

Fault 26.4 occurs in theeluation of launch condition 3The programmer compares the sines of thevapte
angles rather than the angles themsghas discussed al@ This requires a case analysis because the slope of the
sine cure changes sign at/2. \ersion 26 bgins by determining whether the angle formed by the three points is a
right angle, an obtuse angle, or an acute anghe fault occurs in the code that handles cases in which an acute
angle is formed.There is a path to handle acute angles when the parameter EPSILON is greater than PI/2 (as
determined by REALCOMARE) and another to handle acute angles when EPSILON is less tharHBW2ver,
cases in which REALCOMKRE (EPSILON,PI1/2) returns EQ are not considered gnbteanch. Inthese cases the
launch condition is satisfied (an acute angle is less than (Pl - PU2)hib \ersion neer considers the case and

assumes by defilt that the condition igot satisfied.

Fault 26.5is the same error in logic aslt 26.4. It occurs in the eluation of launch condition 10.

Fault 26.6 occurs in thewuation of launch condition 3The \ariablesdl, d2, and d3 contain the lengths of
the sides of the triangle Wiag the three points asestices, andp contains half of their sumlt is geometrically
impossible for ay of sp (sp - d3, (sp - d3, or (sp - dJ to be regdive, but due to imprecisions in machine
arithmetic the ayjument to thesgrtfunction in the call:

sqrt(sp*(sp-d1)*(sp-d2)*(sp-d3))

is sometimes igative so fatal execution erors result.

-27 -

DRAFT July 5, 19101

Fault 26.7 is the same error in logic aslt 26.6. It occurs in the ealuation of launch condition 10.

VI DISCUSSION

One goal in analyzing the inddual faults in the ersions vas to attempt to understand theganumber of
coincident &ilures that were obsezd in the gperiment. V& wanted to determine what logical relationships, if,an

exist among &ults that are statistically correlated.

We cefine faults to bdogically equivalenif, in our opinion they are either the same logical Waor they are
similar logical flavs and are located ing®ns of the programs that compute the same part of the applicatiese
assessments are based on our understanding of the application and the intentionarisiuth@regrammers, and

are necessarily subjeot

Initially, we hypothesized thatallts that are statistically correlatedwld be logically eqwilent, and vice
versa. Indeedthis hypothesis does seem taptain some of the obsexd statistical correlationsFor example,
faults 3.1, 3.2, 8.1, 8.2, 20.1, 25.1, and 25.2 alblire the calculation of the angle formed by three points as
required by launch conditions 3 and Ihe faults all irvolve mishandling of the case in which the three points are

collinear and the angle formed is zero.

However, there aredults that we classify as logically egaent kut whichdo not cause coelated failues
For example, Faults 7.1 and 17.1 both result from the application of the REALCAREPfunction to the cosines of
angles rather than to the angles thenesein the same computation, yetytliaused no coincidenaifures. Rult
7.1 causesdilure on cases in which launch condition 3 or 10atsatisfied, bt for which there is some angle near
zero that almost satisfies the conditidfeult 17.1, on the other hand, causadufe when the angle satisfying

launch condition 3 or 10 is near zero.

The lypothesis alsodils to explain some statistical correlations amomgures. Br example, &ult 14.1 is

statistically correlated withafults 3.2, 8.2, 20.1, and 25.As explained in Section Mault 14.1 is the use of an

-28 -

DRAFT July 5, 19101

incorrect subscript in a call to a functioithe function determines whether a point coincides with either of tw
others, and this has nowbus similarity with fwults 3.2, 8.2, 20.1, and 25.1 which are the incorrect treatment of the
angle subtended by collinear poinSollinear points are assumed to subtend an angteradians when themay

also subtend an angle of zero.

Clearly this initial typothesis does notxplain all of the obseed statistical correlationsWe popose,
therefore, a secondypothesis to xplain these additional fefcts. W define two faults to beinput-relatedif they
cause the incorrect handling of the same inputa though the dults are not logically relatedVe hypothesize that

some statistical correlations are caused by input-relatéts f

As an &le, we note that on batest casesgightof the twenty-seen versions &iled. Onone of these test
cases thedilures were caused bguflts 3.1, 8.1, 11.1, 20.1, 22.1, 23.1, 25.2, and ZBhése &ults are not logically
equialent, hut were all triggered by a single set of collinear poirthe other test case on which eighildres
occurred included a set of collinear points that satisfy launch condition 10; this set of points triggkse?iZ, 8.1,
17.2, 20.1, and 25.2But on the same test case, dalint set of nearly collinear points triggeredlts 7.1, 12.2,

and 14.2.

Examination of the correlations among thelfs reveals that thg are explained by these twhypotheses. The
first hypothesis is perhaps wbus and not ungected. Itis the problem that is of most concern to thosiding
multi-version softwre. Thehypothesis reflects thadt that separate widopment does not necessarily ymet the
different implementors from making the same mistakhesecond fipothesis is not allous and is indct of fr
greater concernThe interpretation is that apparently unrelaalté may still cause coincidemtilures because the

faults happen to manifest themsedwon the same inputs.

-29 -

DRAFT July 5, 19101

VIl CONCLUSION

Our primary goal in this researchas/ to understand what types aeillts lead to coincidengilures. Vé

conclude that there are at leasbtmajor causes of this type addlt.

First, programmers often makdentical errors in logicAt least in this application, some parts of the problem
are simply more difcult for programmers to sadvoorrectly than othersWe rote, havever, that the &ults are not
located in the parts of the programs where the programmected them to be, as determined by a post-

experiment questionnaire [].

The second cause is that some points in the input space are particuddylyolicigger apparently unrelated
faults. Thesdaults often ivolve the handling of special cases, such as, for this application, sets of coincident or

collinear points.Data sets that include a set of such points are particulagly ki result in multipledilures.

The dificulties that we eperienced with real number comparisons lead us to the conclusion that it is not
possible to vte on the Boolean results of such comparisons iN-garsion system.If it is important to knav
whether tvo real results agree, then it is necessary to compare the real numbers. dinegtlmpting to deal with
the anticipated problem of slightly tfent results being produced byfdient \ersions we praded a function to
do approximate real comparison¥he result vas to introduce situations in which there were multiple correct

answers to subparts of the problem.

We were surprised that something as simple as a square root funciidd e implemented incorrectly in

one of the evironments that we usedt illustrates clearly the ditulties that emironments can produce.

Our findings indicate that the correlategults found in this x@eriment result from the nature of the
application, from similarities in the difulties experienced by indidual programmers, and by special cases in the
input space.Simple methods to reduce these correlated errors do not appeaattolée/ were not caused by the

use of a specific programming language or @ther specific tool or methodl'hus we do not>@ect that changing

-30-

DRAFT July 5, 19101

development tools or methods, oryaother simple technique, auld reduce the incidence of correlatedlfs in

multi-version softvare.

-31-

