
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996 363

Completeness and Consistency in
Hierarchical State-Based Requirements

Mats P.E. Heimdahl and Nancy G. Leveson

Abstract-This paper describes methods for automatically analyzing formal, state-based requirements specifications for some
aspects of completeness and consistency. The approach uses a low-level functional formalism, simplifying the analysis process.
State-space explosion problems are eliminated by applying the analysis at a high level of abstraction; i.e., instead of generating a
reachability graph for analysis, the analysis is performed directly on the model. The method scales up to large systems by
decomposing the specification into smaller, analyzable parts and then using functional composition rules to ensure that verified
properties hold for the entire specification. The analysis algorithms and tools have been validated on TCAS 1 1 , a complex, airborne,
collision-avoidance system required on all commercial aircraft with more than 30 passengers that fly in U.S. airspace.

Index Terms-Completeness, consistency, static analysis, reactive systems, slate-based requirements, formal semantics, formal
methods.

+ -
1 INTRODUCTION

software requirements specification should be a com- A prehensive statement of a software system's intended
behavior. Unfortunately, requirements specifications are
often incomplete, inconsistent, and ambiguous. We know
that many serious conceptual errors are introduced in this
first stage of software development-errors introduced
during the requirements stage have been shown to be more
difficult and more expensive to correct than errors intro-
duced later in the lifecycle, and they are more likely than
implementation errors to be safety critical [24], [25]. There-
fore, it is important to provide methods and techniques to
eliminate requirements-related errors as early as possible.

To provide analysis procedures to find errors in specifica-
tions, it is first necessary to determine the desirable proper-
ties of a Specification. Previously, we defined formal criteria
for requirements completeness, consistency and safety. Jaffe,
in his dissertation, defined a rigorous basis for ascertaining
whether or not a given set of software requirements is inter-
nally complete, i.e., closed with respect to statements and
inferences that can be made on the basis of information in-
cluded in the specification 1211. Emphasis is placed on as-
pects of requirements specification that are usually not ade-
quately handled, including timing and robustness, and on
aspects that are particularly related to safety and accidents.

The definition of specification completeness provided by
Jaffe was subsequently formalized using a simple Mealy-
machine model called RSM (Requirements State Machine)
[ZO]. The RSM notation was developed solely as a means for
formally defining our criteria and lacks most desirable

M.P.E. Heimdahl is with the Department of Computer Science, University
of Minnesota, 4-192 EEjCS Building, 200 Union Street S.E., Minneapolis,
Minnesota 55455-0159. E-mail: heimdahl@cs.umn.edu.

ing, Box 352350, University of Washington, Seattle, WA 98195.
E-mail: leveson@cs.washington.edu.

N.G. Leveson is with the Department of Computer Science and Engineer-

Manuscript received June 1995; revised January 1996.
Recommended for acceptance by D. Notkin and D.R. Jeffery.
For information on obtaining reprints of this article, please send e-mail to'
transse@computer.org, and reference IEEECS Log Number 596048.

properties of a true requirements specification language. To
be useful in practical applications, these criteria need to be
translated. into criteria applicable to a real specification lan-
guage. Although the criteria could be applied to many lan-
guages, we chose to work with a formal, state-based speci-
fication language called RSMI, (Requirements State Ma-
chine Language). RSML was developed by the Irvine Safety
Research Group using a real aircraft collision-avoidance
system called TCAS I1 (Traffic alert and Collision Avoid-
ance System 11) as a testbed [23].

This paper defines the form.al semantics of RSML and
describes an automated approach to analyzing an RSML
specification for two qualities: 1) completeness with respect
to a set of criteria related to robustness (a response is speci-
fied for every possible input and input sequence) and 2)
consistency (the specification js free from conflicting re-
quirements and undesired nondeterminism). The need for
consistency is obvious, but the robustness criteria require
further explanation.

Embedded software is part of a larger system and usu-
ally provides at least partial control over the system in
which it is embedded. This type of software is often reactive
in that it must react or respond to environmental conditions
as reflected in the inputs arriving at the software boundary
[ll]. A rolmst system will detect and respond appropriately
to violations of assumptions about the system environment
(such as unexpected inputs). Robustness with respect to a
state-mac hine description implies the following:

1) Every state must have a behavior (transition) defined
for every possible input.

2) The logical OR of the conditions on every transition
out of any state must form a tautology.

3) Every state must have a software behavior (transition)
defined in case there is no' input for a given period of
time (a timeout).

Thus, the software must be prepared to respond in real
time to all possible inputs and input sequences. That is, the

0098-5589/96$05.00 01996 IEEIE

mailto:heimdahl@cs.umn.edu
mailto:leveson@cs.washington.edu
mailto:transse@computer.org

364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

software must be complete with respect to its input do-
main. In the rest of this paper, we use the term d-complete
to represent this aspect of requirements completeness.

Manually verifying compliance with our set of criteria is
a time-consuming and error-prone process. Thus, tools that
support automated verification would be highly desirable.
This analysis, unfortunately, is computationally expensive
and infeasible in most specification languages. To overcome
this problem, the semantics of RSML was defined with
analyzability as one of the main goals.

In order to accomplish our goal of analyzability, we view
a specification expressed in RSML as a mathematical rela-
tion composed from simple, analyzable parts. The compo-
sitionality is achieved through the definition of the next-
state relation and by enforcing some simple restrictions on
the way in which a system can be modeled. The composi-
tional approach allows us to partition a large problem into
small manageable pieces, perform the analysis on each
separate piece, and then combine the individual analysis
results into a statement about the entire system. Analysis
procedures that are too costly to apply to the monolithic
problem can then be applied to manageable subsets of the
problem and the individual results combined to make a
statement about the original problem.

Related approaches to requirements analysis include
methods based on formal proof systems and different static
analysis techniques such as reachability analysis and model
checking.

Formal Proof Systems. Formal proof systems can be pow-
erful tools in the verification of critical properties of algo-
rithms [29]. Attempts have been made to extend the use of
formal proofs and apply them to requirements specifications,
for example, the ProCoS (Provably Correct Systems) project
[27], [28]. Unfortunately, the languages used in the theorem
proving approach, such as process algebras and higher order
logics, are not understandable by the non-software profes-
sionals involved in most requirements specification efforts
and thus are not (in our opinion) suitable as high-level re-
quirements languages. Also, formal proofs are notoriously
difficult to derive, and these approaches may not be practical
for complex systems.

Reachability Analysis. Modeling a system as a finite-state
machine and then performing reachability analysis of the
global state space has been successfully used in the analysis
of communication protocol specifications [8], [19], [18]. The
main problem with reachability analysis is that it relies on the
generation of a global reachability graph and, therefore,
quickly runs into a state-space explosion problem.

Model Checking. Model checking is conceptually simple
and is applicable in a wide variety of languages and applica-
tion areas [l], [6], [7]. Early work in model checking also re-
lied on a global reachability graph. Consequently, the ap-
proach suffered from state-space explosion problems. Newer
approaches relying on a symbolic representation of the state
space can significantly improve the performance of the
model checking approach [5]. Symbolic model checking has
been applied to large models [51, [41, but only for systems
with simple, repetitive elements-such as those commonly
found in hardware applications. The time and space com-

plexity of the symbolic approach is affected not only by the
size of the specification but also by the regularity of specifi-
cation. Software requirements specifications lack this neces-
sary regular structure, and it is unclear how well the sym-
bolic approach will perform on these specifications.

Our approach differs from these techniques in that it
performs the analysis directly on a high-level requirements
model without generating a global reachability graph.
Thus, the analysis is both conceptually simple and elimi-
nates the problem with state-space explosion.

Recently, Heitmeyer, Labow, and Kiskis have published
a paper [15] discussing some aspects of consistency and
completeness in the context of SCR-style (Software Cost
Reduction [16], [17]) requirements specifications. SCR is a
state-based approach using an assortment of tabular nota-
tions to define state transitions (or mode transitions as they
are called in SCR) and output variables. The consistency
checks described in [15] are concerned with language prop-
erties such as proper syntax of the specification and type
correctness, as well as a notion of local consistency and
completeness of individual tables. The latter notion of con-
sistency of tables is similar to the completeness and consis-
tency properties we are investigating in this paper. How-
ever, their approach investigates if one table is internally
consistent and does not provide a statement about the sys-
tem as a whole.

To ensure that the formal RSML specification language
and the associated analysis algorithms and tools are appro-
priate for large and realistic systems, a testbed specification
was developed for TCAS TI [22]. The testbed is currently
being used to develop and validate various types of analy-
sis algorithms and tools on the underlying formal model.
TCAS I1 has been described by the head of the TCAS pro-
gram at the FAA as the most complex system to be incorpo-
rated into the avionics of commercial aircraft. It therefore
provides a challenging experimental application of formal
methods to a real system.

This paper documents our approach to static analysis of
RSML and gives examples of the types of problems that d-
completeness and consistency analysis are capable of de-
tecting. Section 2 gives a short introduction to the features
of RSML necessary to understand this paper. Section 3 pro-
vides a formal definition of these RSML features. The defi-
nition is based on the notion that a transition in a simple
state machine can be viewed as a function mapping the
current state to the next state and the behavior of a hierar-
chical state machine can be viewed as a composition of
simple functions. Automated analysis procedures for d-
completeness and consistency are outlined in Section 4. An
evaluation of the algorithms and examples of the types of
problems this analysis is capable of detecting is described in
Section 5. Section 6 presents conclusions.

2 OVERVIEW OF THE RSML NOTATION
RSML is a state-based requirements specification language
suitable for the specification of reactive systems. RSML in-
cludes several features developed by Hare1 for Statecharts
[9], [101: superstates, AND decomposition, broadcast com-
munication, and conditional connectives. In addition,

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATII-BASED REQUIREMENTS 365

RSML has some unique syntactic and semantic features that
were developed to enhance readability, reviewability, and
analyzability and our ability to handle complex systems.

A complete description of RSML is provided in [23]. This
section contains only a description of the RSML features
necessary to understand this paper.

A simple finite-state machine is composed of states con-
nected by transitions (see Fig. 1). Default or start states are
signified by states whose connecting transition has no
source. In Fig. 1, state A is the start state. Transitions define
how to get from one state to another. In Fig. 1, states B and
C are directly reachable from A. State D is only indirectly
reachable from A via state C.

Fig 1. A basic state machine.

Superstates. In RSML (and Statecharts), states may be
grouped into superstates (see Fig. 2). Such groupings reduce
the number of transitions by allowing transitions to and
from the superstate rather than requiring explicit transi-
tions to and from all of the grouped states (substates). Su-
perstates can be entered in two ways. First, the transition to
the superstate may end at the superstate’s border
(transition A in Fig. 2). In this case, a default state must be
specified within the superstate. In the example, state S is
entered upon taking transition A. Alternatively, the transi-
tion may be made to a particular state inside the superstate
(transition B in Fig. 2) . The same superstate may have tran-
sitions ending at the border and at any number of the inner
states. The superstate may be exited in two ways
(transitions C and D in Fig. 2). Analogous to transitions into
the superstate, transitions out of the superstate may origi-
nate from the border or from an inner state. The same su-
perstate may contain both types of exiting transitions. Note
that all transitions to and from the superstate boundary can
be redrawn to cross the boundary and enter the substates
explicitly (Fig. 3).

AND Decomposition. One of the most important innova-
tions in Statecharts is what Hare1 calls an orthogonal product,’
which contains two or more parallel state machines. In RSML
these states will be referred to as paralleI states and are indi-
cated by a gray background (Fig. 4). When the parallel state S
is entered, each of the state machines A, B, C, and D within it
is entered. All state machines are exited when any transition
is taken out of the parallel state. The use of parallel states
greatly reduces the size of the specification. For example, we
estimate that TCAS (i.e., the complete reachability graph)

1. Orthogonal products are also known as ”parallel states,” ”product
states,” and ”AND states.”

contains at least lo4’ states, whereas the hierarchical state
diagram in our RSML specification of TCAS has approxi-
mately 14Q states and fits on five pages.

Fig. 2. A superstate example.

‘I

/ A

Fig. 3. Transitions redrawn to bypass the superstate

Fig. 4. The parallel state

Transition Definitions. Transition definitions in RSML
contain five parts: 1) the identification (the source and des-
tination of the transition), 2) the location (the state machine
in which the transition is located), 3) the triggering event, 4)
the guarding condition, and 5) the output action. The iden-
tification, location, and triggering event are the only re-
quired parts. Fig. 5 shows the syntax of a transition defini-
tion in RSML.

Transitions are taken upon the occurrence of the trigger
event, provided that the guarding condition is true. The
guarding condition defines preconditions on the transition
and is specified using AND/OR tables, described below.
Output actions identify events that are generated when the
transition is taken. These newly generated events may now
trigger transitions elsewhere in the state machine.

366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

Although specification languages such as Statecharts
and RSML can be used for many purposes, RSML was ex-
plicitly designed to be used for pure black-box require-
ments specifications. Such specifications describe only the
externally visible behavior of the system component being
defined in terms of a model of the relationship
(mathematical relation) between the inputs and outputs. In
addition, RSML specifications describe this behavior
(relation) only in terms of variables and conditions of ob-
jects external to the computer (the sensors, actuators, and
system components controlled by the software).

Therefore, internal events in RSML specifications are
used only for one very specific purpose: to order the
evaluation of the mathematical (input/output) relation to
be computed by the software. Basically, they serve the same
purpose as parentheses in algebraic equations. Viewing an
RSML specification as a mathematical relation is the basis
for our formalization of the language and will be described
in detail in Section 3.

nansition(s): ESL-.1/ --t IESL-81
Location: Own-Aircraft D Effectiv&L,~3"

Trigger Event: Auto-SL-Evaluatcd-Evente.z7g
Condition:

Output Action: EffectiveSL-Evaluated-Evente.z7g

Fig. 5. A transition definition from TCAS 1 1 .

AND/OR Tables. Statecharts use predicate calculus to de-
scribe the guarding conditions on the transitions [21, [91. Our
TCAS external reviewers (including avionics engineers, com-
ponent engineers, airline representatives, and pilots), how-
ever, did not find this notation natural or reviewable. Instead,
we decided to use a tabular representation of disjunctive
normal form (DNF) that we call AND/OR tables (see Fig. 5 for
an example from the TCAS I1 requirements).

The far-left column of the AND/OR table lists the logical
phrases. Each of the other columns is a conjunction of those
phrases and contains the logical values of the expressions.
If one of the columns is true, then the table evaluates to
true. A column evaluates to true if all of its elements are
true. A dot denotes "don't care."

The next section formally defines the structure of these
basic syntactic features and gives a formal definition of the
semantics of RSML based on the composition of mathe-
matical functions.

3 A FUNCTIONAL FRAMEWORK
The behavior of a finite-state machine can be formally de-
fined using a next-state relation. In RSML, this relation is
modeled by transitions and the sequencing of events. Thus,
one can view a graphical RSML specification as the definition
of the mathematical next-state velation F. If, however, the re-
lation F behaved as a mathematical function, and it was de-
fined over all possible system states, some highly desirable
properties of requirements specifications would be satisfied:

The model M would have a response specified for
every possible input (i.e., it would be d-complete),
The model would have no conflicting requirements
(i.e., it would be consistent), and
The model would be deterministic.

Thus, by forcing the behavior of an RSML specification to
be a mathematical function, we can guarantee the d-
completeness, consistency, and determinism of a require-
ments specification. This is really the essence of the differ-
ence between our approach and others. Instead of allowing
the next-state relation to be defined in a way that makes the
analysis procedures difficult and then working hard to find
analysis procedures that will work on the resulting model,
we limit F (the next-state relation) in the language semantic
definition in a way that makes the analysis relatively easy.
Our resulting analysis algorithms are simple and can be
performed directly on the model without needing to gener-
ate any part of the reachability graph.

As a side benefit, during the TCAS specification devel-
opment we found that this next-state relation was easier for
the reviewers to interpret correctly than the alternatives we
tried (it seemed to satisfy their intuitive understanding of
state machines better). In fact, we decided on this semantic
definition before we discovered that it simplified the analy-
sis. Perhaps this just confirms the hypothesis that has been
occasionally raised that languages for which the formal
semantic definitions are simple also seem to be the easiest
for users to understand and use correctly.

It may seem overly restrictive to require that the behavior
of the software be limited to a mathematical function. How-
ever, safety-critical software should not be incompletely
specified. In [20], we define requirements completeness as the
specification being sufficient to distinguish the behavior of
the desired software from that of any other, undesired pro-
gram that might be designed. Nondeterministic specifica-
tions often hide dangerous incompleteness in this sense. In
this paper, we show a nondeterminism in the TCAS specifi-
cation we found that was unplanned, had serious safety im-
plications, and was not obvious to us when developing the
Specification. If one of several possible alternatives is prefer-
able with respect to some desired system quality, then this
decision needs to be made by application experts, not by the
programmers or software engineers, and it should be made
during the requirements analysis process rather than later.
Identifying nondeterminism in the specification will help
with this decision-making. If two behaviors are identical with
respect to all desired system qualities (which is highly un-
likely), there is still the problem of determining this equiva-
lence. In most cases, it is easier to evaluate a single determi-
nistic behavior for all desired qualities than to evaluate mul-
tiple behaviors for all required qualities. In addition, nonde-
terministic behavior is usually undesirable with respect to the
human-machine interface.

This section provides a formal definition of the semantics
of the basic features of RSML. Section 3.1 defines the static
structure of the state hierarchies. Section 3.2 describes how
the dynamic behavior defined by the transitions and events
in RSML can be viewed as compositions of functions. Those
readers primarily interested in the use of the analysis tools
and not in the formal foundation mizht skiD to Section 4. "

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE!-BASED REQUIREMENTS 367

3.1 Hierarchical State-Machines
An RSML state machine M can be described by a six-tuple:
M = (S, <, -, V, co, F) where:
S is a finite set of states. These states are used to model the

global system states. It is important to note the difference
between the elements of S (states) and the global state.
Certain subsets of S, called configurations, represent
consistent combinations of states, and the global state of
the system contains a configuration as one of its compo-
nents. Config, the set of all configurations, is defined in
Appendix A.

2 is a tree-like partial ordering with a topmost point (called
the root). This relation defines the hierarchy relation (or
parent/child relation) on the states in S (x I< y meaning
that x is a descendant of y, or x and y are equal). Tree-
like means that < has the following property:

l (a 5 b v b < a) 3 4 x : (xi a A X < h)
In the graphical notation, this relation is visualized as
containment (states are contained within superstates). In
Fig. 6, for example, B 2 A, G < A, I < E, etc.

If the state x is a descendant of y (x < y), and there is no
z such that x < z < y, we say that the state x is a child of
y (x child y). For example, in Fig. 6, the state B is a child
of A and H is a child of E.

Fig. 6. A sample state hierarchy.

Furthermore, we define dy) as the set of all children of
the state y, that is,

d y) = {x I x child yl
is an equivalence relation on the states in S -{root] that
satisfies one additional property: whenever x- y, then x
and y have the same parent.

x-y*3z : x , y E dz)
The equivalence classes in - are called parallel compo-
nents. If a state z has two (or more) inequivalent children,
then z is said to be a parallel state and the parallel compo-
nents of z are the equivalence classes of its children.

The equivalence relation - is used to partition the chil-
dren of a state into disjoint sets. In Fig. 6, for example,

the children of A are partitioned into two equivalence
classes (B, Cl and {D, E}.

V is a set containing the input and output histories of the
model (the complete variable traces). The set C of global
states is a subset of (Config x V).

co is the initial global state of the machine, co E (Config x V) .
A global state is an ordered pair consisting of a set of
states, called the Configuration of the machine, and a trace
from V . The initial global state in Fig. 6 is defined by the
pair ({A, B, D}, 0). The properties of a configuration are
formally defined in Appendix A.

F is a relation defining the global state changes in the ma-
chine M (and the possible changes in the output vari-
ables). F is a mapping C H C, where C L (Config x V) .
The relation F is also referred to as the behavior of M.
In the definitions above, there are few restrictions on the

nature of a global state. All that is required is that a global
state ci is iin element of C. From the discussion in Section 2,
it is clear that there are certain combinations of states that
are not allowed when describing the global state. In Fig. 6,
for example, the states B and C cannot both be part of the
global state, that is, the machine cannot be in state B and
state C simultaneously. The restrictions governing the
structure of a global state have been formally defined for
Statecharts by Hare1 et al. [12]. These definitions are also
applicable to RSML. Although the definitions are not es-
sential for understanding the remainder of the paper, for
completeness they have been included in Appendix A.

The remainder of this section is devoted to the next-state
relation F . We will show how the transitions in RSML can
be viewed as mathematical functions and how these func-
tions can 'be composed to form the complex behavior of the
global next-state relation F .

3.2 Next-State Mapping
The hierarchies and parallelism (defined by the functions
< and -1, together with the definitions in Appendix A, en-
force a rigorous structure on the possible global states (the set
C). The dynamic behavior (the possible global state changes)
is defined by the next-state relation F (C H C). In a model of a
system with nontrivial functionality, this mapping will be
complex. However, the mapping can be viewed as a compo-
sition of smaller, less complex mappings. Specifically, F can
be viewed as composed of simple functions.

In the graphical notation, these simple functions are de-
fined by transitions. The domain of a function is defined by
the source, i.e., the state that the tail of the transition is leav-
ing, and the guarding condition on the transition. The image
of a function is defined by the destination of a transition, i.e.,
the state the transition enters, and possible output. The func-
tions represented by the transitions are then composed de-
pending on the structure of the particular state machine be-
ing consid.ered and the events defined on the transition.

The semantics of RSML are defined using three basic
functional compositions:

Union. The union composition of two functions (g U k)
merges the domains of the functions.

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

DEFINITION 1. The fuizctional properties are maintained under

Vx E (Dom(g) U Dom(h)) : g(x) = k(x)
Union composition of tw7o functions is allowed if the do-
mains of the functions do not overlap, or the domains
overlap but the functions are equivalent for all elements in
the intersection.

Serial. Serial composition g(k(c)) (or g 0 h) corresponds to

DEFINITION 2. Serial composition (g 0 hi is allowed iff.

union (U) iff.

normal functional composition.

Dom(gI1 I m (h)
Informally, serial composition is allowed if the image of the
first function applied is a subset of the domain of the sec-
ond function, i.e., the second function is defined for all pos-
sible results of the first function.
Parallel. Parallel application is denoted (h, g) (x). Parallel-

ism is modeled as interleaving, i.e., an arbitrary ordering
of functional applications.

DEFINITION 3. Parallel composition is a l ~ a w e d iff.

Dom(g) 2 Im(k) A

DomW 3 Im(g)
Parallel composition is allowed if both possible serial com-
positions are allowed. If 8 0 h(x) # k 0 g(x) , i.e., the ordering
of the functional application is important, parallel compo-
sition will lead to nondeterminism and the properties of a
function are lost. The notation (X), where X is a set of func-
tions, will be used to denote the parallel composition of the
functions in X.

In RSML, union composition occurs between nonparallel
transitions triggered by the same event. For example, the
functions representing the transitions t,, t,, and t, in Fig. 7
(assuming all are triggered by the same event) are com-
posed in union.

Fig. 7. A sample state machine.

Transitions triggered by the same event, but in parallel
state components, are composed in parallel. In Fig. 7, tran-
sitions t , and t , are composed in parallel (assuming they are
triggered by the same event).

Finally, serial application is caused by the event propa-
gation mechanism. Assume the transition t, is triggered by
some external event and generates event e as an action. This
event is picked up by transition t,-that is, t, is triggered by

e. Thus, transition t, is taken first and transition t, second.
This sequencing is modeled as applying the functions rep-
resenting t j and t, in series: f,, o f f5 (c) .

In this way the complete behavior of any model can be
hierarchically defined as a composition of the behaviors of
its parts.

Before we can define the complete behavior of an RSML
specification, we have to investigate the nature of the func-
tions defined by the transitions. A function f can be textu-
ally defined by

f (c , U) = ((c - Q,) U Qd, v? if (x E c) A p k v)
where Q, and Qd are sets of states, v'is an updated variable
trace, x is a state, and p is an arbitrary predicate over the
global state c. In the graphical representation, this function
represents a transition with the tail in the state x and the
guarding condition p . If the transition is taken, the structure
of the state machine may cause more states than x to be
exited-for example, if x is a superstate. The set of states
that is exited when the transition is taken is denoted by Q,
and the set that is entered by Qd. In the definition above, the
set {(c, a) I (x E c) A p(c, U)) defines the domain of the func-
tion (Dom(fl), and (2, and Qd are the source (Source(fl) and
destination (Dest(f)) of f, respectively. Note that the domain
is defined over the set of global states, that is, Config x V,
and the source and destination are sets of states.

The functional definition of a complete RSML specifica-
tion is recursively built from (composed of) the functional
definitions of its components. To define this recursion we
need to introduce some auxiliary concepts.

Let E be the set of all events in a model M. A transition is
defined by a tuple ((C H C) x E x Z E) . The components of
the tuple are denoted by map, trigger, and actions respec-
tively. The map function is defined as outlined earlier in this
section. Let T be the set of all transitions. Furthermore, let
Stages = S U n, where rI is the set of equivalence classes of
-. Also, for any s t S, let 4 s) be the set of equivalence
classes of children of s:

d s) = {x E n I x c ds)}

For each t T we will define a function

g [t] : Stages- (C-C)

that defines the behavior of states and parallel components
given a set of trigger events. The function g is defined by
induction on Stages over the relation 4 defined as follows:

For all s E S, p E n, and st E Stages

s st iff st E p and s E st (1)

p st iff st E Sand p E ds t) (2)
Induction over 4 is valid because it is well-founded:

Whenever s1 4 p 4 s,, it follows that s1 < s2. Therefore,
4 does not contain an infinite descending chain.

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE-BASED REQUIREMENTS

__

369

The behavior of a composed state (a superstate) is defined
as the parallel composition of its parallel state components. In
Fig. 7, for example, the behavior of the state A is defined as
the parallel composition of its four parallel state components.

DEFINITION 4. For any p E II and f T , the behavior (g) of a
states E S :

g[tI, = ({ g [f l , I p e SJ)

Informally, one can view the components of a composed
state as processes, and the behavior of the composed state
as the parallel execution of these processes.

The behavior of a set of states grouped in a parallel
state component is defined as the union of I) the behav-
iors of the states included in the component and 2) the
behaviors introduced by the transitions between states at
this level of abstraction. The notation trip denotes a
transition t r E T introduced in the parallel state compo-
nent p. In Fig. 7, the transition labeled with f 4 belongs to
the parallel component (B , C).
DEFINITION 5. A transition tv belongs to the parallel component p

ofa states , that is, p E ds) , (denoted by tv 2 p) iff:

3x E Source(tr.map) : x E p

DEFINITION 6. For any s E S and t c T , the behavzor of a parallel
state component p E n:

g[tl, = (r r l < < p U gIt1, 1 (. rE t : r1pfT .m~7~]

Informally, a parallel state component behaves either as one
of its states, i.e., the state it is currently in, or according to the
transitions between the states contained in the component.

Finally, the behavior of a model M under a specific event
e can be defined. Let T, be the set of all transitions, with the
trigger e E E, that is,

T, = { t r E T I t rh igger = e)

DEFINITION 7. The behavior of M under event e E E is defined as

The rules defined above govern the behavior of M under
one specific event, i.e., all transitions in the model triggered
by this one event are composed according to these rules. The
behavior for all individual events in the model can now be
modeled the same way. If an event e is generated, the func-
tion defined by the behavior under e, i.e., the behavior gener-
ated by composing all transitions triggered by e, is applied,
and a new system state is calculated. The only remaining part
to model is the event propagation mechanism. After a func-
tion ha5 been applied and a new system state calculated, a
new function is applied based on the output actions on the
transitions used to construct the first function. We call the set
of events generated as a result of output actions the yield of a
next state calculation. The following definitions describe how
yield is calculated and how the sequence of next state calcu-
lations is determined.

First, for any f c_ E , let

T - U T e
f e t f

To calculate the yield, define the functions

Yield1 : T x C x ZE IJ ZE

Yield2 : S f a g e s x C x 2E H ZE

yield3 : z E x c H 2E

as follows.
DEFINITICIN 8. Fov t E T and x E C, and f c E:

Yieldl(t , x,f) = if t E Ti A x E Dom(f .map) then t.acfions
else 0

Yield2 is defined by induction over the relation 4 defined
previously.

DEFINITION 9. For any x E C and f c_ E:
I f s € S t h e n

Yield2(s, x, f) = U Yield2(p, x, f)
p<<5

I fp E n then

s<<p

Given a global state x and a set of events f , the yield of a
next state calculation initiated by the events in f is defined
as Yield3.
DEFINITION 10. For x E C and f c E :

Yield3(f, x) = Yie/d2(root, x, fl
A next state calculation is always started by the arrival of
an input. A sequence of function applications will follow.
The next function is always determined by the yield of the
previous function. This sequence ultimately will be termi-
nated by the application of a function with no yield. Given
any global state x E C and any e E E , define two sequences
xi E C and yieldi c E for all i 2 0 as follows:

xo = x
yield, = {el

x,+~ = ({F” d t yield,))(x,)
yield,,, = Yield3 (xL, yieldi)

The sequence of next state calculations is terminated when
yieldi + 0, and the new global state is x,. If yield, # 0 for all
i, the model is ill-formed and the next state calculation will
not terminate.
Note that in order for the compositions defined in this sec-
tion to maintain the properties of a function, all rules for
serial and parallel composition defined in the beginning of
Section 3.2 have to be followed.

4 ANALYSIS APPROACH
If the rehtion F defining the dynamic behavior of the model
is a function, then d-completeness, consistency, and deter-

~

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

requirements are d-complet

dependently of the global state and the
rived at the model boundary. The rules

completeness and consist
gle state are not compro

the satisfaction of functional properties.

functions require that the entire domai
there must be a satisfiable transition out
pendent of what input

The guarding cond

on all transitions out of the state tri
event does not form a tautology, then

and requiring costly logical AND an
transitions (satisfiability of Boolean

rations on the
s is known to

in the worst case the size of the

is conservative and spurious error reports may be gener-
ated. This issue will be covered in more detail in Section
5.1.1.

Serial Composition. Serial application of functions
arises out of the event propagation mechanisms provided
in RSML (and Statecharts). A transition triggered by event
e, may generate event e2 as an action, i.e., if el occurs, the
transition is taken and e2 is generated. The event e2 may
now trigger another transition somewhere else in the
model. If an event is generated but does not trigger any
transition, it is likely that this event was generated in error
or that transitions triggered by this event are missing from
the requirements. Serial composition of functions requires
that the image of the first function is a subset of the domain
of the second function. In the graphical model, this re-
quirement implies that if an event is generated, there must
always be a transition elsewhere in the model ready to be
triggered by this event. All states have a set of transitions
enabled (or ready) that can be taken when the model is in a
specific state. Using one bottom-up pass over the state hier-
archy, all states can be annotated with the transitions en-
abled in them.

It is also possible to annotate each state with the states
that can coexist in the global state description. With this
annotation, assuring that all events generated as actions
will be used is straight forward.

Parallel Composition. Parallel composition occurs when
two (or more) transitions in parallel state machines are trig-
gered by the same event (or events generated simultane-
ously). If the truth value of the guarding condition of one
transition can be affected by a state change caused by a
parallel transition, then there exists a possibility of nonde-
terminism, and the transitions are said to conflict with each
other.

TABLE 1
DATA STRUCTURES USED TO REPRESENT THE STATE SPACE

struct State{
String name :
State parent;
StateList children ;
TransitionArray all-trans-out;

1

struct Transition{
State source;
State dest;
Condition cond; / / The guarding condition on

Event trigger :
EventArray actions;
InfoSet uses; / / All elements in M this

InfoSet effects; / / All elements in M this

the transirion

transition depends on

transition effects
I

TABLE 2
DATA STRUCTURE FOR CONFLICTING TRANSITIONS

struct Conflict{
Transition transl;
Transition trans2;
Condition cond;

1

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE-BASED REQUIREMENTS 371

TABLE 3
D-COMPLETENESS AND CONSISTENCY IN STATE S UNDER EVENT e

void Complete-Consistent-Under-e(State state, Event e) {
Condition defined-for;
defined-for = FALSE;
for (int i = 0; i < size-of(state.all-trans_out); i++)I

if (state.ali-trans-out[il.trigger == e){
defined-for = defined-for 1 1 state.al1-trans-out [il .cond;

I

1
for (j = i; j < size_of(state.all_trans_out); j++){

if (state.all_trans-out[jl.trigger == e) {
conflict-condition = state.ai1-trans_out[il .cond &&

if (conflict-condition ! = FALSE){
state.al1-trans_out[jl.cond;

create a new conflict;
conflict.trans1 = state.al1-trans_out[il;
conflict.trans2 = state.al1-trans-out[jl;
conflict.cond = conflict-condition;
Append(conf1ict-array, conflict);

i
1

1
if(!defined-for) / * If there are missing conditions * /

output (“No transition out of the state” state ‘is satisfied”) ;
output (“under the event” e ‘if” ! def ined-f or) ;

output(”There are conflicts between the following transitions:”);
output (conflict-array) ;

I

TABLE 4
DATA STRUCTURE FOR NONDETERMINISTIC IPAlRS OF TRANSITION

Struct Event{
String name ;
TransitionArray transitions; / / All transitions triggered by this event

1
struct Nondeterministic{

Trans transl;
Trans trans2;

TABLE 5
DETERMINISM UNDER EVENT e

NondeterministicArray Nondeterminis t icTrans i t ions jEvent e)
I
NondeterministicArray resultArray;

for(i = 0 ; i < size-of(e.transitions); i++){
for(j = i+l; j < size-of(e.transitions); j++){
if (parallel((e.transition[il),

(e. transition [j I)) &&
(conflicts(e.transitions[il .uses,

conflicts(e.transitions[j] .uses,
e.transitions[j] .effects) 1 1

e.transitions[il.effects))){
AppendPair(resu1t-array, e.transition[i],

e.transition[jl);
)

i
)
return resultArray;

}

A pairwise comparison of all parallel transitions can as-
sure determinism: If no two transitions conflict, then the
model is deterministic. Tables 4 and 5 outline the data
structures and algorithm used for this analysis.

The pairwise comparison of all transitions existing in
parallel and triggered by simultaneous events is potentially
costly; in the worst case (all transitions are parallel), the
algorithm requires O(n) comparisons (where n is the num-
ber of transitions in the model). Fortunately, the number of

2

parallel transitions in real systems seems to be fairly lim-
ited, and this straight forward approach has been shown to
be adequate to analyze a major part of a large real life sys-
tem (TCRS 11) for determinism 1131.

In summary, the algorithms described in this paper are all
quite simple. This simplicity results from, and is an advan-
tage of, our functional definition of the semantics of RSML.
Unfortunately, the algorithms outlined above all have high
worst-case complexity. For example, checking the union

372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

compositions is exponential with respect to the size of the
guarding conditions, and checking determinism is O(n) with
respect to the number of parallel transitions. However, by
using our functional composition approach, all algorithms
work on fairly small problems, i.e., individual compositions,
and this complexity is acceptable. The compositional ap-
proach allows us to determine if these properties are main-
tained when hierarchies, parallelism, and event propagation
are introduced and avoids the problems of combinatorial
explosion of the problem size and exponential growth in
analysis effort. Experiments (described in the next section)
have shown that our approach to analysis can be effectively
applied to large systems.

2

5 AUTOMATED ANALYSIS TOOLS AND THEIR
EVALUATION OF THE TCAS I! SYSTEM
REQUIREMENTS SPECIFICATION

Manually assuring d-completeness and consistency is an
extremely tedious, time-consuming, and error-prone task.
Tool support for the analysis algorithms have been imple-
mented as an integral part of a simulator for RSML. The
simulator accepts a textual representation of RSML and
allows execution of a requirements specification.

A prototype graphical interface allows browsing the
specification and animating executions. The analysis tools
outlined in the previous section are integrated into this
simulator. In addition to the results from the analysis algo-
rithms (reporting inconsistency, incompleteness, and non-
determinism), the tools generate other useful information,
such as uses hierarchies and event propagation tables.

Although the TCAS specification effort was originally
planned to be experimental only, the government/industry
groups responsible for TCAS I1 liked RSML so much that
the specification was adopted as the official FAA TCAS I1
System Requirements Specification [22]. As a result, our
initial baseline specification was subjected to an extensive
(and expensive) independent verification and validation
(IV&V) effort.

We have applied the analysis techniques described in
this paper to major parts of our baseline TCAS I1 specifica-
tion. Initial comparison of the errors found during lV&V
and by our automated analysis indicates that inconsistency
problems found during IV&V were also found by our
automated analysis tools. Some subtle inconsistency prob-
lems not found during the official IV&V process were also
found.

The analysis procedures also found many instances of
incompleteness. Unfortunately, we have not been able to
correlate these results with the IV&V effort since the IV&V
process did not include inspection for incompleteness.
During IV&V, only the conditions under which state
changes take place were reviewed; the conditions under
which the state is not changed were not addressed.

The rest of this section provides some examples of the
types of problems the analysis exposes. Drawbacks with the
current implementation of the analysis procedures are also
discussed.

5.1 D-Completeness
Because d-completeness was not a priority in our initial
TCAS requirements development (highest priority was
placed on simply getting what was specified correct), we
found abundant incompleteness during the later analysis
process. In retrospect, we believe that if we had had our
completeness analysis tools to alert us to incompleteness as
we were developing the specification, the resulting docu-
ment would have been much more complete. An example
from the baseline document suffices to illustrate both the
complexity of developing d-complete requirements and
some problems with the current implementation of the
analysis tools.

In TCAS, the concept of sensitivity level is used to de-
termine how close an intruder is allowed to get before an
advisory is presented to the pilot. A higher sensitivity level
indicates a more sensitive setting of TCAS 11, i.e., an advi-
sory will be generated earlier (while the planes are farther
apart). This example is taken from Auto-SL, a concept of
sensitivity level based mainly on the aircraft altitude. Con-
sider the transition in Fig. 8. This transition defines when
the model stays in Auto-SL state ASL-1. The automated
analysis techniques detected an incompleteness-no transi-
tion out of the state is satisfied under a given condition
(when a descend-inhibit-evaluated-event has occurred)
shown in Fig. 9. The analysis result reflects all conditions
under which no transition out of this state can be taken. The
abundance of predicates results from the diversity of the
guarding conditions on the other transitions out of this
state. This diversity makes it extremely difficult to deter-
mine manually (without the assistance of our analysis tools)
the conditions for which no behavior has been specified.

Transition(s): IASL-114 IASL-1/
Location: Own-Aircraft D Auto-SL,.sn

Trigger Event: Descend-Inhibit-Evaluated-Evente.279
Condition: OR

Output Action: Autc-SL-Evaluated-Eventez79

Fig. 8. The identity transition for Auto-SL state ASL-I

Given the output shown in Fig. 9, the analyst can deter-
mine what response the model should have for all condi-
tions identified by the tool and modify the guarding condi-
tions on the transitions to make the model d-complete (Fig.
10). In this case the desired behavior was to stay in ASL-1
under all conditions identified by the analysis. In the gen-
eral case, it is likely that more than one transition will need
to be modified in order to cover these "forgotten" condi-
tions. With this modification, the set of transitions out of
state ASL-1 is d-complete, and the tool will report that there
are no conditions where the behavior is unspecified (Fig.
11).

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE-BASED REQUIREMENTS

Own-Air-StatusV.36 = On-Ground
ThEic-Display-Permittedv.~~
Mode-Selector,.sr = Standby
Climb-Desc-Inhibit ()
0wn-Air-Statusv.36 = Airborne
Radar-Bad-For-RADARLOST-Cycles()
Radarout-EQ-O()
Effective-SL in one of ESL-l,ESL-2,ESL-3
EffectiveSL in state ESL-4
Effective-SL in state ESL-5

Effective-SL in state ESL-7
Own-Alt-BarometricV.33 2 ZSL4T05
Own-Alt-BarometricV.33 2 ZSL5T06
Own-Alt-BarometricV.33 2 ZSL6T07
Own-Alt-BarometricV.33 5 ZSL6T05

D Effective-SL in state ESL-6

Own-Alt-Bazometricy.33 5 ZSL7T06
Own-Alt-RadioV.3t 5 ZSL4T02
Own-Alt-Radio,.sl I ZSL5T04
Own-Alt-Radio,.sl 2 ZSL4T05

373

__
- F
-
__
F
T

_
__

__
-

-
__
_
T -
-
__
_
F
F
-
_-
_-
-
__
_

No transition out of ASL-1

is satisfied under Descend_Inhibit-Evaluated_Event if :

0wn.Air-Status == OnGround : F F F F F F F F F F F
OwrAir-Status == Airborne : T T T T T T T T T T T
Traffic-Display-Permitted == cTrue : F F F F T T T T T T F

Effective-SL In State ESL4 : T ' F F F T T T F F F T
Effective-SL In One Of {ESLl,ESL2,ESL3) : F F F F F F F F F I? F

Effective-SL In State ESL5 : F T F F F F F T F F F
Effective-SL In State ESL6 : F F T F F F F F T F F
Effective-SL In State ESL7 : F F F T F F F F F T F
Own-Alt-Barometric >= ZSL4T05
Own-A1 t-Barometric >= ZSL5T06 : . F F . . .
Own-Alt-Barometric >= ZSL6T07 : . . F F . .
Own-Alt-Barometric <= ZSL6T05 : . . F F . .
OwnAl t-Barome tr i c < = Z SL7T06 : . . . F I T .

Own-Alt-Radio <= ZSL4T02 : F . . . T F F . . . T
Own-Alt-Radio >= ZSL4T05 : F
Own-Alt-Radio > ZSL5T04 : . T T . . .

Own-Alt-Radio <= ZSL5T04 : . F F . . .

Fig. 9. D-completeness analysis result for Auto-SL state ASL-1

Fig. 10. Transition modified for d-completeness

No transition out of ASL-1
is satisfied under Descend-Inhibit-Evaluated-Event if :

FALSE

Fig. 11. Analysis result for the modified specification.

5.1.1 Spurious Error Reports
During initial experiments with our first prototype tool,
spurious error reports were not a serious problem 1141. All
spurious reports could be traced either to 1) a lack of type
checking capability or 2) the inability of the tool to ade-

Ground} (appearing in the first two rows of Fig. 9). Without
information about the all inclusive and mutually exclusive
nature of enumerated types, the tool would generate ad&-
tional error reports and indicate that additional transitions
out of ASL-1 are needed for the case

quately include information about the structure of the state A
machine in the analysis. For example, consider the input
variable Air-Status of the enumerated type {Airborne, On-

374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

A

This is a clearly erroneous report because the input Air-
Status must have one of these values; we do not need to
specify what to do under this unsatisfiable condition. Simi-
lar problems relating to the structure of the state machine
also led to spurious error reports. These drawbacks were
trivial to address, and an updated version of the tool elimi-
nates our previous problems with spurious errors.

Unfortunately, these changes do not eliminate all spurious

AuteSL, 30 in s ta te ASL-5
Aut&Lsgo in one of (ASL-5,ASL-G,ASL-7)
Lowest-Groundf.24, = one of (5,6,7,None}
Lowest-Groundf.zg~ = 2
Lowest-Groundf.z41 = 5
Mode-Selector = one of (TA/RA,5,6,7}
Mode-Selector".%L = TA-Onlv

consistency (as reported from the analysis tool) can be seen
in Fig. 14: Column 3 of both transitions are satisfied by the
condition. Since sensitivity level ESL-5 represents a sensi-
tive setting and ESL-2 represents that advisories are shut off
(no warnings are given to the pilot), a potentially hazard-
ous inconsistency is present. After an evaluation of the in-
consistency, it was determined that the guarding condition
on the transition to ESL-2 was too weak and needed -

error reports. Two features of the predicates in RSML com-
plicates the analysis: 1) the use of simple arithmetic and 2) the
use of mathematical functions. Contradictory predicates in-
volving these features cannot be detected by the symbolic
BDD approach. The number of spurious error reports in-
creases dramatically when the number of predicates includ-
ing these features increases. For example, the analysis tool
may generate an error report including the condition in Table
6 (indicating that no transition has been specified for this
condition). Any error report containing this condition is spu-
rious because the predicates in Table 6 cannot be satisfied
simultaneously. The current implementation of our tool is
unable to eliminate this type of spurious error report. The
problem is amplified when predicates use references to

strengthening (Fig. 15).

Effective-Sensitivity-level

Fig. 12. Effective sensitivity level. mathematical functions insteadbf constant values.

TABLE 6
A SPURIOUS REPORT OF AN OMITTED CONDITION Transition(s): IESL-.1J i /ESL-5/

Location: Own-Aircraft b Effective-SL,.sa
A Iother-Tracked-Ranee-~~te~ 7 A c . > 10
N

D
Other-Tracked-Rangef.245 > 0.55

lother-Tracked-Range-Ratef.245 . Other-Tracked Rangef.2451

The problem with simple arithmetic expressions in the
predicates can be addressed by using a theorem prover.
Currently, however, the conflicts must be detected and
eliminated by manual inspection. An ongoing project is
attempting to augment our tool with theorem proving ca-
pability, and we hope to eliminate the problems with
arithmetic expressions shortly.

The use of references to named mathematical functions
in the definition of guarding conditions is a more serious
challenge. We are investigating how assertions or invari-
ants associated with the functions can be used to further
increase accuracy. Unfortunately, completely eliminating
spurious errors while still maintaining reasonable efficiency
is an unrealistic goal. Thus, tool support to help the human
analyst to interpret the analysis results and detect such
problems manually is also being developed.

5.2 Consistency
A consistency problem exists when the guarding condition
on more than one transition can be satisfied simultaneously.

The state machine modeling Effective-SL (which is re-
lated to Auto-SL) is shown in Fig. 12. The bar on the side is
a transition bus. Many state machines in the model were
found to be fully interconnected, i.e., there are transitions
between all the states in the machine; the transition bus was
introduced to make the graphical representation cleaner.

An inconsistency can be detected between the transitions
ESL-4+ESL-2 (Fig. 5) and ESL-4+ESL-5 (Fig. 13). The in-

Trigger Event: AutrrSL-Evaluated-Event.+z7g
Condition:

. ".
Mode-Selector = one of {TA/RA,TA-only,3,4,5,6,7}
Mode-Selector,.3a = 5

n n

Output Action: Effective-SL-Evaluated-Event,.279

Fig. 13. The transition from Effective-SL ESL-4 to ESL-5

ESL-4 --> ESL-2 conflicts with ESL-4 --> ESL-5 if

Auto-SL In State ASL-2 : F
Auto-SE In One Of IASL-2,ASL-4,ASL-5,AsE_G,ASL-7) : T
Lowest-Ground0 == 2 : T
Mode-Selector Equals One Of ITA-RA,TA_Only,3,4,5.6,7) : T
Auto-SL In State ASL-5 : T

Fig. 14. Consistency analysis results for Effective-SL state ESL-4,

Transition(s): 1- + /ESL-2J
Location: Own-Aircraft D Effective-SLs.so

Trigger Event: Auto-SL-Evaluated-Evente.z7g
Condition:

A N AutO-SLs.30 in s t a t e ASL-2
D 1 Mode-Selectorv.s4 = Standby I 1

Output Action: Effective-SL-Evaluated-Event,.z~~

Fig. 15. The modified transition from Effective-SL ESL-4 to ESL-2.

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE-BASED REQUIREMENTS 375

Unfortunately, correcting an inconsistency is often not as
simple as strengthening the guarding condition on one of
the transitions involved in the inconsistency. Inconsisten-
cies sometimes arose from logical errors in the require-
ments and an extensive redesign of that part of the re-
quirements document was needed.

Other approaches to requirements specification analysis
are not concerned with this kind of inconsistency-it is sim-
ply viewed as nondeterminism and accepted as a part of the
requirements. As was mentioned in Section 3, we view non-
determinism as an inconsistency that should, in most cases,
be eliminated. At the least, each case needs to be carefully
examined because nondeterminism can have a negative ef-
fect on safety (as shown by the example in this section).

6 CONCLUSIONS
This paper outlines a functional framework enabling com-
positional static analysis of state-based requirements and
shows how the analysis for two fundamental qualities of
requirements specifications-d-completeness and consis-
tency-can be automated. The feasibility of the analysis has
been demonstrated by analyzing major parts of a real life
avionics system (TCAS 11). The approach outlined in this
paper has several advantages:

The analysis does not require generation of any part
of the global reachability graph (either a complete
representation or a symbolic representation).
It enables incremental analysis of the requirements.
The pieces of the requirements document can be ana-
lyzed as they are being developed and the individual
results combined at a later stage.
It helps identify the parts of the requirements needing
reanalysis after changes to the document have been
made.
It is a conservative approach, i.e., it is guaranteed that
no d-incompleteness, inconsistency, or nondetermin-
ism will go undetected.

We get these advantages by limiting the semantics of the
specification language to those that can be described by
functional composition. In doing this, we give up some
freedom both in defining the semantics of the language and
in the models that we allow users to build. We believe,
however, that the increased power of the analysis that we
can perform on complex models in comparison to other
current approaches makes the tradeoff worthwhile. We
found that eliminating the nondeterminism from the lan-
guage made it easier for the TCAS reviewers to understand
the model and find errors in it. So our restrictions have ad-
vantages in reviewability, correctness, and analysis, but
they do cause some loss of flexibility in language design.

Because the BDDs we use to represent our AND/OR tables
manipulate predicates symbolically, the analysis is conser-
vative and may generate spurious error reports. The main
source of spurious reports is the use of arithmetic and
function references in the predicate definitions. Our tool is
currently being refined to correct this problem. We are in-
vestigating the tradeoffs between efficiency and accuracy,
and we are integrating the symbolic BDD approach with a

theorem prover to achieve the level of accuracy required to
easily interpret analysis results from the most complex
parts of the TCAS requirements.

Our long term goal is to provide a suite of analysis tools
to help find a wide variety of flaws in software require-
ments early during software development. Many desirable
properties of requirements specification have been defined
by Jaffe et al. [20], for example, nonreachability of hazard-
ous states and path robustness properties. Additional prop-
erties are being defined for the human-computer interface
(see Leveson [24] for some of the new criteria). Our goal is
to formally define these properties in the RSML framework
(and develop new ones suitable to this new framework)
and provide efficient automated analysis procedures for
these properties.

APPENDIX A - AUXILIARY DEFINITIONS
The definitions in this appendix describe the hierarchical and
parallel structure of the state machine used in both RSML
and Statecharts. The definitions are adopted from 1121, [26].
DEFINITION 11. The least common parent (lcp) of the states in the

set X E 2', lcp(X) = y , is defined as the supyemum of the
elements in X.

The equivalence relation - divides the descendants of any
given state into parallel components.

DEFINITION 12. States a and b are pavallel substates of x (a i b) i f f:

3 U , v E: d x) : 7 (U - v) A (a < U) A (b 4 v)
Informally, the states a and b are parallel iff they are de-
scendants (according to <) of inequivalent (under -) chil-
dren of x. In Fig. 6, for example, H and B, B and D, and F
and H are all pairwise parallel. Examples of nonparallel
states include 1) B and C and 2) D and H.
DEFINITION 13. A set X E 2' is said to be parallel i f :

v x , y E X : (x = y) v (x Iy)
That is, all elements of X are pairwise parallel. The set
{ B , G, I) is an example of a parallel set.
DEFINITION 14. A set X E 2' is consistent i f :

vx, y E x : (x < y) v (y 5 x) v (x I y)
Informally, a set of states x is consistent iff all states in X are
either ancestrally related or parallel. As an example, for the
states in Fig. 6, the sets {F , HI and { E , H) are both consistent,
but {D, H } is not.

DEFINITION 15. A set X E 2' is said to be maximally consistent iff:

V x E S - X : 7consistent(X U {x))
The concept of maximally consistent is best explained with
an example. Consider Fig. 6 and assume the machine is in
state H. Given the structure of the state hierarchy, it is clear
that if you are in H, you also are in E and A. The concept of
maximalIy consistent "fiIls in the blanks" in a consistent set:
If you are in H, you also have to be in E and A. A maximally
consistent set of states is known as a configuration of M and
Config is defined as the set of all configurations. The set (A,
B, E, F , HI is maximally consistent. This set defines one pos-
sible configuration of M .

376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 6, JUNE 1996

We can now formally define the set of globul stntes of M:
DEFINITION 16. The set of globul stutes C is defined as:

S C = {c I e c 2 A max-comistent(c)} x V

This concludes the formal definition of the structure of
the states making up the graphical notation used in RSML
(and Statecharts). Note again that these definitions are es-
sentially identical to the definition of the hierarchical
structure of Statecharts [12], [26].

ACKNOWLEDGMENTS
This work has been partially supported by the National
Science Foundation Grant CCR-9006279, NASA Grant
NAG-1-668, and the National Science Foundation CER
Grant DCR-8521398.

We would like to thank David Guaspari from Odyssey
Research Associates for his feedback on earlier drafts of this
paper and his invaluable help with the formal definition of
the RSML semantics. David Guaspari was partially sup-
ported by the Office of Naval Research, contract number
NO01 4-95-5-0349.

REFERENCES
J. Atlee and J. Gannon, “State-Based Model Checking of Event-
Driven System Requirements,” Proc. A C M SIGSOFT ’91 Conf.
Software for Critical Systems. Softzuiire Engineering Notes, vol. 16, No.
5,1991.
G.R. Bruns, S.L. Gerhart, 1. Forman, and M. Graf, ”Design Tecl-i-
nology Assessment: The Statecharts Approach,’’ Technical Report
STP-107-86, MCC, Mar. 1986.
R E . Bryant, ”Graph-Based Algorithms for Boolean Function Ma-
nipulation,” I E E E Trans. Computers, vol. 35, no. 8, pp. 677-691,
Aug. 1986.
J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill,
”Symbolic Model Checking for Sequential Circuit Verification,”
Technical Report CMU-(393-211, Carnegie Mellon Univ., July
1993.
J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang,

“Symbolic Model Checking: 10’” States and Beyond,” Proc. Fifth
A n n . Synzp. on Logic in Computer Science, June 1990.
E.M. Clarke, M.C. Browne, E A . Emerson, and A.P. Sistla, ”Using
Temporal Logic for Automatic Verification of Finite State Sys-
tems,” K.R. Apt, ed., Logics and Models of Concurrent S y s t e m ,
pp. 3-26. Berlin: Springer-Verlag, 1985.
E.M. Clarke, E.A. Emerson, and A.P. Sistla, ”Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal Logic,”
A C M Trans. Progranzming Languages and Systems, vol. 8, no. 2,
pp. 244-263, Apr. 1986.
P. Godefroid, G.1. Holzmann, and D. Pirottin, ”State Space Cach-
ing Revisited,” Proc. Fourth Workshop Coinputer-Aided Vcrifiwtzorr,
pp. 1755186,1992.
D. Harel, ”Statecharts: A Visual Formalism for Complex Sys-
tems,” Science of Comptiter Programming, vol. 8, pp. 231-274, 1987.
D. Harel and A. Naamad, ”The STATEMATE Semantics of State-
Charts,” Technical Report CS95-31, The Weizmann Institute of
Science, Oct. 1995.
D. Harel and A. Pnueli, ”On the Development of Reactive Sys-
tems,” K.R. Apt, ed., Logics and Models of Concurrent Systems,
pp. 477-498. Springer-Verlag, 1985.
D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman, “On the Formal
Semantics of Statecharts (extended abstract),” Proc. Second Symp.
Logic in Computer Science, pp. 54-64, Ithaca, N.Y., 1987.
M.P.E. Heimdahl, ”Static Analysis of State-Based Requirements:
Analysis for Completeness and Consistency,” PhD thesis, Univ. of
California, Irvine, 1994.

M.P.E. Heimdahl and N.G. Leveson, ”Completeness and Consis-
tency Analysis of State-Based Requirements, Proc. 17th Int’l Conf.
Softzuare Engiiieering, Apr. 1995.
C.L. Heitmeyer, B.L. Labaw, and D. Kiskis, ”Consistency Check-
ing of SCR-style Requirements Specifications,” Proc. Int’l Symp.
Requirements Engineering, Mar. 1995.
K.L. Heninger, “Specifying Software for Complex Systems: New
Techniques and their Application,” I E E E Trans. Softzuare Engi-
neering, vol. 6, no. 1, pp. 2-13, Jan. 1980.
K.L. Heninger, J.W. Kallander, J.E. Shore, and D.L. Parnas, Soft-
ware Requirements for the A-7e Aircraft. Technical Report 3876,
Naval Research Laboratory, Washington, D.C., Nov. 1978.
G.J. Holzmann. ”Automated Protocol Validation in Argos: Asser-
tion Proving and Scatter Searching,” I E E E Trans. Softzuare Engi-
neering, vol. 13, no. 6, pp. 683-696, June 1987.
G.J. Holzmann, ”Tracing Protocols,” AT&T Technical J., vol. 64,
no. 10, Dec. 1985.
M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B. Melhart,
”Software Requirements Analysis for Real-Time Process-Control
Systems,” I E E E Trans. Software Engineering, vol. 17, no. 3, pp. 241-
258, Mar. 1991.
M.S. Jaffe, “Completeness, Robustness, and Safety in Real-Time
Software Requirements and Specifications,” PhD thesis, Univ. of
California, Irvine, 1988.
N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J. Reese, ”TCAS
I1 Requirements Specification,”
N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese.
Requirements Specification for Process-Control Systems. IEEE
Transactions on Softzuare Engineering, vol. 20, no. 9, Sept. 1994.
N.G. Leveson, Safeware: System Safety and Computevs. Addison-
Wesley, 1995.
R. Lutz, ”Targeting Safety-Related Errors During Software Re-
quirements Analysis,” Proc. First A C M SIGSOFT Symp.The Foun-
daiioizs of Software Engineering, 1993.
A. Pnueli and M. Shalev, ”What is in a Step?” J. Klop, J. Meijer,
and J. Rutten, eds., J.W. De Baker, Liber Amicorunz, pp. 373-400.
CWI Amsterdam, 1989.
A.P. Ravn and H. Richel, “Requirements Capture for Embedded
Real-Time Systems,” IMACS Symp. MCTS, 1991.
H. Richel and A.P. Ravn, “Requirements Capture for Computer
Based Systems,” Technical Report ID/DTH HR 2/2, Technical
Univ. of Denmark, Oct. 1990.
J. Rushby and F. von Henke, “Formal Verification of Algorithms
for Critical Systems,” I E E E Trans. Softzuare Engineering, vol. 19,
no. 1, pp. 13-23, Jan. 1993.

HEIMDAHL AND LEVESON: COMPLETENESS AND CONSISTENCY IN HIERARCHICAL STATE-BASED REQUIREMENTS

Mats P.E. Heimdahl received the MS degree in
computer science and engineering from the Royal
Institute of Technology, Stockholm, Sweden in
1988, and the PhD degree in information and
computer science from the University of California
at lrvine in 1994. He is currently an assistant pro-
fessor in the computer science department at the
University of Minnesota, Twin Cities. Currently, his
research interests are in requirements specifica-
tion, static analysis of state-based models, soft-
ware development for critical systems, executable
specification, and formal methods.

Nancy G. Leveson is Boeing professor of com-
puter science and engineering at the University
of Washington. She received a bachelor's de-
gree in Math, an MS degree in management
(operations research), and a PhD degree in
computer science from UCLA. Her research
interests are in software safety and reliability.
She is the author of the book Safeware: Sysfem
Safefy and Computers. Dr. Leveson is an
elected member of the board of directors of both
the Computing Research Association and the

International Council on System Engineering. She is member of the
National Research Council (National Academy of Science) Commis-
sion on Engineering and Technical Systems, a liaison to the NRC
Aeronautics and Space Engineering Board, and a member of the ACM
Committee on Computers and Public Policy. She was named a fellow
of the ACM and is the 1995 recipient of the AlAA Information Systems
Award for "developing the field of software safety and for promoting
responsible software and system engineering practices where life and
property are at stake." Dr. Leveson chaired the National Academy of
Science's study committee for Review of Oversight Mechanisms for
Space Shuttle Flight Software Processes, was the U.S. representative
to the International Atomic Energy Agency Committee on Software in
Nuclear Power Plants, and is currently a member of an NRC study
committee on Digital Instrumentation and Control in Nuclear Power
Plants. Dr. Leveson consults widely on safety-critical systems for both
government and industry.

377

