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Abstract: Modern, complex control systems for a specific application domain often display com-
mon system design architectures with similar subsystem functionality and interactions, making
them suitable for representation by a reusable specification architecture. For example, every space-
craft requires attitude determination and control, power, thermal, communications, and propulsion
subsystems. The similarities between these subsystems in most spacecraft can be exploited to cre-
ate a model-driven system development environment in which generic reusable specifications and
models can be tailored for the specific spacecraft design, executed and validated in a simulation
environment, and then either manually or automatically transformed into software or hardware.
Modifications to software and hardware during operations can be similarly made in the same con-
trolled way, that is, starting from a model, validating the change, and finally implementing the
change. The approach is illustrated using a spacecraft attitude determination and control subsys-
tem.

1 Component-Based System Engineering

Reuse is clearly a partial solution to the long and costly development problems we are experiencing
with complex control systems. The reuse of application software components, however, has had
surprisingly limited success in many domains and has, at times, resulted in spectacular losses.
In spacecraft, for example, NASA and the European Space Agency have lost billions of dollars
and important scientific missions due to software reuse and poorly designed changes to operating
software. The question is how to get the benefits of reuse without the drawbacks [12]. The answer
may rest in the development level at which reuse is applied. The most problematic reuse has been
attempted at the code level, but reuse may be more effective and safe by going back to an earlier
development phase in a model-driven development environment.

Component-based system engineering (as opposed to component-based software engineering)
employs reuse at the requirements and specifications level, where required changes to the reused
components are made and validated and the code is then regenerated either manually or automat-
ically. Changes at that level can be made (or at least reviewed) by system engineers and domain
experts who are more likely to understand the application’s engineering requirements in depth and
less likely to make changes that violate the basic engineering assumptions underlying the system.

A basic requirement for successful use of this approach is having specifications and models
that include thoroughly documented design rationale and assumptions. For example, although
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Figure 1: A Sample Intent Specification

not included in the official accident report, the Mars Climate Orbiter (MCO) loss involved minor
changes to software that was being reused from the Mars Global Surveyor (MGS) spacecraft [2].
According to the developers, the original software included a conversion from imperial to metric
units, but that conversion was not documented and was inadvertently omitted when a new thruster
equation had to be used because MCO had a different size Reaction Control System (RCS) thruster.
“... the 4.5 conversion factor, although correctly included in the MGS equation by the previous
development team, was not immediately identifiable by inspection (being buried in the equation) or
commented in the code in an obvious way that the MCO team recognized it” [2] This is the type of
problem that we believe can be avoided by the use of component-based, model-driven development
and reuse.

The key to successful reuse of component specifications lies in incorporating all the information
needed for safe reuse in the specification itself or documented in a way that it can easily be found
when needed. We use an approach called intent specifications [3] to satisfy this requirement.

2 Intent Specifications

Intent specifications are based on research on how experts solve problems and on basic principles
of systems theory. An intent specification differs from a standard specification primarily in its
structure, not its content: the specification is structured as a hierarchy of models designed to
describe the system from different viewpoints, with complete traceability between the models. The
structure is designed (1) to facilitate the tracing of system-level requirements and design constraints
down into detailed design and implementation (and vice versa), (2) to assist in the assurance of
various system properties (such as safety), and (3) to reduce the costs of implementing changes and
of revalidating correctness and safety when the system is changed, as it inevitably will be.

There are seven levels in an intent specification, as shown in Figure 1. Levels do not represent
refinement, as in other more common hierarchical structures, but instead each level of an intent
specification represents a different model of the same system from a different perspective and
supports a different type of reasoning about it. Refinement and decomposition occurs within each
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level of the specification, rather than between levels.
The top level (Level 0) provides a project management view and insight into the relationship

between the plans and the project development status.
Level 1 is the customer view and assists system engineers and customers in agreeing on what

should be built and whether that has been accomplished. Level 1 includes goals, high-level re-
quirements, design constraints, hazards and preliminary hazard analyses, assumptions about the
operating environment, and documentation of system limitations.

Level 2 is the system engineering view and allows engineers to reason about the system in terms
of the physical principles and laws upon which the system design is based.

The blackbox model level (Level 3) includes models designed for specifying and reasoning about
the logical design of the system as a whole and the interactions between its components as well as
its functional state without being distracted or overwhelmed by implementation issues. This level
acts as an unambiguous interface between system engineering and subsystem engineering. This
interface assists in communication and review of component blackbox behavioral requirements and
in reasoning about the system or subsystem behavior using formal reviews, formal analysis, and
simulation. The language used at this level, SpecTRM-RL, has a formal foundation so it can be
executed and subjected to formal analysis while still being readable with minimal training and
expertise in discrete math. It is at this level that we believe reuse is most effective and safest.

The next two levels provide the information necessary to reason about individual component
design and implementation issues. Some parts of Level 4 may not be needed if physical code is
generated automatically from the Level 3 blackbox software behavioral requirements models.

The final level, operations, provides a view of the operational system and is useful in mapping
between the designed system and its underlying assumptions about the operating environment and
real operating experience.

Each level also contains interface specifications and specification of human-automation interface
design as well as a specification of the requirements for and results of verification and validation
activities of the information at that specification level.

The information at each level is mapped to the levels above and below it (as illustrated later).
These mappings provide the relational information that allows reasoning across the hierarchical
levels and tracing from high-level requirements down to implementation and vice versa. Note that
the structure of the specification does not imply that the development must proceed from the top
levels down to the bottom levels in that order, only that at the end of the development process,
all levels are complete. An environment that involves extensive reuse, for example, might follow a
very different development process from one that involves a lot of first-time development.

Information about design rationale is critical to the success of model-driven development and
component reuse. Intent information represents the design rationale upon which the specification
is based. The required design rationale information necessary for successful reuse, including the
underlying assumptions upon which the design and validation is based, is integrated directly into
the intent specification and its structure, rather than relying on it somehow being captured in
special documentation.

To avoid accidents and losses, reused components must be analyzed to determine whether they
violate the design rationale and assumptions of the system within which they are to be used. This
process is usually impractical, if not impossible, for reuse at the code level but not for reuse at the
model or specification level (Level 3 or above).

During operations, if changes are made to any component or if conditions change such that the
assumptions underlying the system design might be violated, new analyses should be triggered.
Not only must the engineers know when assumptions change, but they must be able to figure out
which parts of the design rely on those assumptions. Intent specifications are designed to make
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that process feasible.
We illustrate the use of a component-based specification architecture to support model-driven

development and reuse with a domain-specific architecture for autonomous spacecraft. Although
the development of such an architecture requires an investment, the payoff in terms of long-term
development costs and time, risk reduction, and knowledge capture are potentially enormous.

We use a specification and modeling environment called SpecTRM (Specification Tools and
Requirements Methodology) to illustrate the approach, but the same goals could potentially be
achieved using other tools that provide the same facilities and satisfy the same fundamental re-
quirements.

3 An Architecture for Model-Based Development of Autonomous
Spacecraft

The first step in developing a reusable component-based specification architecture is the top-down
decomposition of the system. For example, although spacecraft technology is continually advancing,
most spacecraft require virtually the same generic functions. At the top-most level, a spacecraft
control system consists of the Command and Data Handling Computer (CDHC). This software
handles all of the resource allocation and subsystem commanding of the spacecraft as a whole. The
CDHC can be decomposed into a set of subsystems: attitude determination and control, power,
thermal, communications, guidance and navigation, propulsion, etc. [10].

The subsystems can then be further functionally decomposed into components. Most spacecraft
attitude determination and control subsystems (ADCSs), for example, can be divided into a few
types: inertial-based (gyros), celestial vector referenced (sun sensors, star trackers, earth sensors),
magnetic-field referenced (magnetometers), or GPS-based. Attitude control devices are of two
types: reaction control systems and reaction wheels. When designing a specific spacecraft, a set of
attitude determination and control devices will be selected from these types.

In this paper we use the ADCS subsystem as an example, but a similar approach can be used
for the power, thermal, and other spacecraft subsystems. Weiss is currently building a complete
generic architecture for a small spacecraft [9].

After the functional decomposition, the next step in constructing a model-based, reusable space-
craft architecture is the construction of specifications for each of the generic components. For our
spacecraft architecture, we used generic intent specifications we call SpecTRM-GCs (SpecTRM
Generic Components). SpecTRM-GCs have four characteristics that are critical to the success of
the architecture: each component is fully encapsulated, it has well-defined interfaces, it is generic,
and it contains component-level fault protection.

Fully-Encapsulated Components. Each SpecTRM-GC component is fully encapsulated, mean-
ing that all the functionality of that component is contained within it. In our example, it is im-
portant to note that traditionally many of the control functions for each ADCS component and
much of the software to implement them was distributed among the CDHC, the ADCS, and the
component itself. By fully encapsulating the operation of each device, the modularity of the design
process and ease with which components are reused increases.

Well-Defined Interfaces. In order to create plug-and-play component models, a strict interface
naming convention needs to be followed and an interface specification created. This requirement is
no different than for any type of reusable component.

4



Generic Specifications and Models. To enhance reusability, specific information is either left
out of the specification (but identified as required to be added when the generic specification is used
for a particular spacecraft), or included but identified as potentially needing to be changed. The
use of bold face and underlining highlights such information in SpecTRM-GC specifications. For
example, one of our ADCS generic components is a digital sun sensor. When, say, an Adcole Digital
Sun Sensor Model 18960 is being used, the SpecTRM-GCs require that specific information, such
as the fact that the Adcole 18960 uses 15 bits of input from its sensor heads, be added. Any changes
required in other parts of the specification and models implied by that decision are identified by
links to other locations.

Component-Level Fault Protection. Fault protection is particularly important in spacecraft
architectural design. Because spacecraft engineers usually only get one chance to get it right,
spacecraft design is traditionally very conservative. Control actions usually follow a programmed
sequence in which specific activities are performed at fixed and predetermined times. These pro-
programmed timelines assume all the participating components are operating nominally. If there
is a faulty component, the control system immediately switches into a safe mode and radios back
to earth for assistance. This approach has two important limitations. The first is the potential
communication delay as the spacecraft gets farther from Earth. For nominal flight phases, the delay
causes no problem. But if the fault occurs during a critical maneuver, for example, the inertial
measuring unit fails during an insertion into a Martian orbit, the spacecraft could potentially be
destroyed before ground control has a chance to intervene.

The second limitation is the large number of ground controllers currently required to support
each phase of flight for a deep space mission. At any point during the Cassini mission, for example,
there are 300 people manning ground control. If there are to be more and cheaper deep space
missions, spacecraft will need to have more autonomy and be able to solve problems on their own.

Our example autonomous spacecraft architecture employs three levels of fault protection: intra-
component fault protection, inter-component fault protection, and inter-subsystem fault protection.
These three levels ensure that fault protection covers the entire system: not only must individual
component failures be accounted for and handled, but also failures resulting from the interactions
between components and subsystems. At the intra-component level, the fault protection logic
assures that if the component is working in an off-nominal mode, it will alert its subsystem. Then,
at the inter-component level, the subsystem determines how to handle that fault. The use of a
model-driven development process means that fault protection can be designed and thoroughly
validated before any code is generated [7].

4 An Example Model for a Generic Spacecraft Architecture

Consider the ADCS subsystem and one of its components, the Reaction Wheel Assembly (RWA).
A RWA controls the spacecraft attitude using control moment gyros [11]. Each reaction wheel
contains a motor connected to a mass, a motor speed sensor, and associated input and output
electronics. In space, a rotating mass creates a torque, which is perpendicular to its spin axis. This
torque is used to change the angular momentum of the spacecraft, thereby rotating the spacecraft
in the opposite direction to the torque axis of the motor. To provide attitude control of all three
spacecraft axes, at least three reaction wheels must be operational in any RWA, although to allow
for failures, four reaction wheels are used in a typical spacecraft.

Our generic specifications include a complete intent specification: reuse of formal models alone
will not provide the information necessary to create a safe and correct spacecraft implemention.
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We include here only a small and very incomplete part of the specification.
An example Level 1 requirement on the RWA is:

FR.1: The RWA shall receive commands from the ADCS once per second and
transform them into torque commands on the individual reaction wheels. [DP.1]

Assumption: The ADCS commands will be in the form of torque values
to be applied on each of the spacecraft’s three axes.

Note the need to provide relevant operational environment assumptions that the RWA design
makes about any potential spacecraft that uses this RWA specification. The phrase once per second
is underlined and bold face to alert the system engineer that this part of the specification may need
to be changed for a particular spacecraft ADCS design. The link at the end of the requirement
([DP.1]) points to the system design features at Level 2 created to implement the requirement.1

For the example requirement FR.1, Level 2 includes a definition of how the torque commands
provided from the ADCS are transformed into torque commands to the individual wheels (much of
the detail has been omitted from this example) :

DP.1: The speed commands for each individual reaction wheel are derived from the
torque commands provided by the ADCS. [FR.1]

DP.1.1: Commands from the ADCS are in the form of three torque values,
Tx, Ty and Tz. These commands are first transformed into the wheel reference
frame and then converted into torque commands for each individual wheel
using the following transformation [Torque-Command]:




T̂cx

T̂cy

T̂cz


 =




Tcx/ cosβ
Tcy/ cosβ
Tcz/ sinβ


 =



1 0 −1 0
0 1 0 −1
1 1 1 1







T1

T2

T3

T4




. . .

DP.1.2: The RWA sends each wheel a torque command once per second.
This command is in the form of the torque value calculated from [DP.2.1].
The reaction wheel’s electronics uses this value to compute the speed necessary
to achieve the commanded torque and provides the motor with the current
needed to reach the desired speed [Torque-Command].

Level 2 includes links to the corresponding functional requirement(s) in Level 1, links to other
related information within Level 2 (such as the corresponding validation requirements and results),
and links to the formal models at Level 3 containing the detailed logic needed to implement the
system design. In the example, [Torque-Command] is a link to the detailed logic (the equivalent
of a software requirements specification in SpecTRM) required for issuing a torque command to a

1In the SpecTRM tool, these links are implemented as hyperlinks and can be easily created and changed.
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Figure 2: The Graphical Blackbox Model of the RWA in SpecTRM-RL

reaction wheel. We model this detailed logic at Level 3 of the intent specification using a blackbox
modeling language called SpecTRM-RL. SpecTRM-RL has an underlying state machine model [6],
making the models executable and formally analyzable.

For successful model-driven development, domain experts must be able to review and ideally to
create the models. The translation from system requirements and design to component requirements
is critical—many recent software-related aerospace system losses have stemmed from problems
arising in the translation from system requirements to software requirements or in changes to
existing software made by software engineers who did not understand all the basic engineering
assumptions underlying the functionality provided [4].

It is unreasonable to expect engineers and other domain experts (for example, ground controllers
and astronauts) to read and find errors in most of the widely used modeling and specification
languages such as UML or, worse, to review code. SpecTRM-RL was designed with the primary
goals of readability and ease of learning and to be a requirements specification and modeling
language that is usable by everyone involved in the creation of a spacecraft and its components.

The SpecTRM-RL language design has evolved over the past ten years through what we have
learned from using it on real projects as well as careful laboratory experimentation [13] about
the modeling language design features that enhance readability, reduce error-proneness [6], and
encourage complete specification of important information that is often omitted [5]. Most engineers
can learn to read SpecTRM-RL models (and they can find errors in the modeled behavior) with
about ten to fifteen minutes training.

Figure 2 shows the graphical part of the SpecTRM-RL model of the RWA and the immediate
control loops within which it is embedded in our spacecraft architecture. The RWA is controlled by
the ADCS and in turn controls the reaction wheels. On the left is its controller (the ADCS). The
right side shows the hardware the RWA is in turn controlling and from which the RWA receives
feedback (the individual reaction wheels). The shaded part of the model describes the required
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Figure 3: AND/OR Tables Showing Control Mode Transition Logic

blackbox behavior of the reaction wheel controller—internal design information is not included. The
ADCS would have an equivalent model as well as one for each of the generic ADCS components.
When designing a specific spacecraft, the designer would select the SpecTRM-GC models for the
components being used.

There are three parts to the blackbox behavior description. Using the SpecTRM-RL RWA
model in Figure 2 as an example, the supervisory mode (in the upper left-hand corner) shows
the components that can provide control commands to the RWA controller. In this case, there is
only one (the ADCS). In general, any controller may in turn be controlled by multiple supervisory
controllers and it may be necessary to limit the behaviors allowed under different supervisory modes.

The possible subsystem or component control modes are shown below the supervisory mode.
For the RWA controller these are Startup, Four Wheel Nominal, Three Wheel Nominal, and Off
Nominal).

The component’s model of relevant parts of the current system state is shown to the right of the
solid line. At any time, a controller has only a model, inferred from inputs, previous outputs, and
other information about the real state of the controlled components (the plant in control theory
terminology). The required behavior of the component is defined with respect to the current state
of this inferred system state model. In the RWA controller, the inferred state model has eight state
variables, representing information about the current state of the four reaction wheels that make
up the assembly. The graphical notation also shows the possible values for these state variables;
for example, the Wheel 1 Status state variable can have the values operational, fault detected, or
unknown. When executing SpecTRM-RL models, the current values of the inputs, outputs, control
modes, and state variables light up or are otherwise depicted on the screen. Outputs can also be
directed to other animation and analysis tools.

The behavior of the RWA controller, i.e., the logic for sending commands to the wheels and
updating the inferred system state, is specified using a tabular notation called and/or tables
although we are working on additional ways to visualize this information [1]. The rows of the
tables represent and relationships while the columns represent or. For example, Figure 3 shows
the conditions under which the RWA control mode becomes Three Wheel Nominal and Off Nominal.
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The transition to the particular control mode is taken if any of the columns evaluate to true. A
column evaluates to true if all of the rows have the value specified for that row in the column. An
asterisk indicates that the value for the row is irrelevant. For the example, Three Wheel Nominal
control mode is entered if one and only one of the reaction wheels has entered a Fault Detected
State while Off Nominal mode results if a fault is detected in two or more of the wheels. Code can
easily be generated automatically from these tables and other parts of SpecTRM-RL.

5 Using the Generic Models in a Model-Driven Development En-
vironment

Once a reusable component-based architecture for a particular application domain has been cre-
ated, system designers can select components, tailor them to the particular design, and put them
together in a plug and play environment. If the models are executable, then they can be executed
individually, interacting with each other, or within a more extensive simulation environment to
validate the spacecraft design and to evaluate alternative design options. If the models are also
formal, various types of analysis are possible. For example, SpecTRM has automated tools to
check for non-determinism and robustness of SpecTRM-RL models, thus assisting the engineer in
eliminating logical inconsistencies and important types of incompleteness.

Expert review is a critical part of any development process, and any models must be easily
reviewed and understood by domain experts. Visualization tools can assist in this process, but to
be acceptable in an industrial environment, the basic modeling language must be carefully designed
to avoid ambiguous or complex semantics and obscure notations.

Once the design is validated, the implementation of the components can be generated either
automatically or manually from the component models. If the models are formal, then test data
can be generated from the model to ensure various types of coverage and correctness of the imple-
mentation.

The same process can be used if a new design is not being created, but a change is being made
to an existing spacecraft design or implementation. Instead of making the change directly to the
code, the change would be made to the model, validated, and then new code generated. In fact, we
know this process can work—our model of TCAS II (an airborne collision avoidance system) that
we created for the FAA a decade ago using a predecessor of SpecTRM-RL is still being used today
to evaluate potential changes and fixes to the system before they are implemented.
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