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ABSTRACT 
The readability of formal requirements specification languages is 
hypothesized as a limiting factor in the acceptance of formal 
methods by the industrial community.  An empirical study was 
conducted to determine how various factors of state-based 
requirements specification language design affect readability 
using aerospace applications.  Six factors were tested in all, 
including the representation of the overall state machine structure, 
the expression of triggering conditions, the use of macros, the use 
of internal broadcast events, the use of hierarchies, and transition 
perspective (going-to or coming-from).  Subjects included 
computer scientists as well as aerospace engineers in an effort to 
determine whether background affects notational 
preferences. Because so little previous experimentation on this 
topic exists on which to build hypotheses, the study was designed 
as a preliminary exploration of what factors are most important 
with respect to readability.   It can serve as a starting point for 
more thorough and carefully controlled experimentation in 
specification language readability. 

1. INTRODUCTION 
Formal requirements specifications and formal analysis 
theoretically present a way out of the dilemma posed by our 
inability to test even a small part of the enormous state space 
involved in most digital systems.  The past 30 years have 
advanced the state of knowledge about formal methods to the 
point where many important problems can be solved. While 
formal methods are being applied to hardware in industry, the 
results of formal methods research for software has only rarely 
reached beyond the research lab and been used in industrial 
practice for day-to-day software development. 
Several reasons may be hypothesized for this lack of widespread 
adoption. First, most formal languages are based on discrete 
mathematics and logic. However, engineers are typically not 
trained in these fields of mathematics. Furthermore, the notations 
used in these languages are often not as concise or as 
parsimonious as their continuous math counterparts. So while a 
control law can be represented as a differential equation, the 
discrete mode logic for a flight management system might require 

hundreds of pages of formal logic to specify. The review of such 
specifications by domain experts is a daunting task. The scope 
and scalability of formal methods are additional concerns.  
In our experience, one of the biggest stumbling blocks to the use 
of formal specification languages in industry relates to 
readability. Readability is arguably one of the most important 
properties of any specification.  Requirements specifications in 
industrial projects must be readable by a large variety of people 
with diverse backgrounds and expertise including system 
designers and developers, customers, users, certifiers, etc.   
Having a common model that is readable by a general audience 
will enhance communication among all involved parties, which is 
widely recognized as the source of the most important outstanding 
problems in industrial practice. 
In addition, our experience in analyzing formal specifications for 
complex systems suggests that the most significant errors and 
omissions will be found by human experts rather than automated 
tools [5].  This observation does not mean that automated tools 
are not useful and important in finding some types of errors, 
particularly those involving mathematical properties and those 
requiring tedious checks.  But humans are required to determine 
whether a specification conforms with engineering expectations 
and requirements (e.g., whether all necessary conditions have 
been included under which an aircraft’s elevator must be moved 
to maintain aerodynamic stability).  Furthermore, specification 
flaws found by formal analysis tools will need to be evaluated by 
human experts. Therefore, readability of requirements 
specifications is necessary not only for human review of complex 
models but also for human processing of analysis results.  Our 
experience in working with engineers is that they do not accept 
and put their confidence in analysis results from a model that they 
cannot personally validate matches the system they intended to 
design. 
Readability may also lead to reduced learning time.  Certainly any 
specification language is going to require some training in order 
to understand and use it.  However, particularly with respect to 
review, this time cannot be too long before it becomes impractical 
to coordinate the considerable amount of reviewing that leads to 
high-quality specifications and software.  It can require as much 
as 3-6 months training before an engineer can use some formal 
languages effectively. This amount of required training not only 
reduces the number of people who can participate in reviewing 

 

 
 



the formal specification, but it also puts constraints on the 
addition of engineers to the specification and design teams1. 
In an effort to increase the practicality of formal methods, this 
work deals specifically with the problem of readability. Designing 
a requirements specification language that is readable by a 
general audience is a difficult problem and little empirical or 
experimental evidence exists to guide those designing formal 
specification languages to support readability.  This paper reports 
on preliminary results of such an investigation to help us 
understand the notational features that are most conducive to 
readability.  We specifically included subjects with both computer 
science and engineering backgrounds, as these are two fields that 
can directly benefit from the use of formal 
methods. Understanding which notations are more readable, and 
to which audiences, could help us create requirements 
specification languages that are more expressive and effective, 
allowing formal methods to become a more attractive alternative 
for the industrial community. 
The next section describes related research and the problems in 
designing useful experiments on this topic.   We then describe the 
experimental design and the results we obtained. 

2. BACKGROUND 
Formal requirements specifications all have an underlying 
mathematical model that can take many different forms.  In this 
work, we will focus specifically on specification languages that 
use an underlying state-machine model; we have found through 
20 years of empirical work that such models are the most easily 
understood and adopted by engineers working on control systems 
(our area of interest), and therefore they seem like a reasonable 
place to start.  Our goal is to determine those features of state-
based requirements specification languages that can increase the 
readability and comprehensibility for an appropriate audience. 
The experimental design in this paper draws heavily on previous 
experimentation, particularly with respect to measuring 
readability. However, while there has been a significant amount 
of research in experimental methodology within a computer 
science context (for example, see [2]) and some experimentation 
on programming language design (summarized in [3]), our 
specific goal of determining which factors affect the readability of 
state-based specification languages has not been addressed with 
one exception.  Previous research sought to determine factors that 
affect the readability of Z specifications, but the number of 
factors considered (two) is much smaller in scope than those 
considered here [2]. In addition, previous work with Z focuses on 
one specification language, rather than a class of specification 
languages as is considered in this paper. 
Because of the lack of previous experimentation on which to 
build, our goal became to build an experimental design that 
allowed us to examine a large number of features and to identify 
which ones appear to play an important enough role in 
readability. Identification of these features will warrant follow up 
and more carefully controlled and focused experimentation. 

                                                                 
1 While it also takes time to learn specification languages based 

on continuous mathematics, engineers do not need to be taught 
the mathematical foundations and only need to learn the syntax 
of the language. 

Our first problem was in determining which language design 
features should be investigated.  We started by surveying several 
state-based specification languages that have been used on real 
aerospace systems to determine the distinguishing features of 
each. The languages chosen were Statecharts [4], SCR [6], RSML 
[5], SpecTRM-RL [7], and OpProc Tables [8]. Because each is 
based on the same underlying state-machine model, what 
distinguishes each of these languages are the ways each describes 
the various parts of that model. After selecting these languages, 
we then established some hypotheses about which of the 
distinguishing features might affect readability2. 
State machines are an abstract model whose overall structure can 
be represented using a graphical, textual, or tabular 
format. Similarly, the conditions that trigger state transitions can 
be expressed in a variety of ways, e.g., using propositional logic, 
graphics, tables, etc., as can the internal events that are used to 
order or synchronize the transitions.  Each method of representing 
the structure and components of a state machine offers different 
potential benefits.  What differentiates one state-based 
specification language from another is simply the choices for 
these representation formats. 

2.1 Overall State Machine Structure 
The structure of the state machine may be depicted in a variety of 
ways including graphically, in a tabular form, textually, or using a 
mixture of these.  OpProc Tables and SCR represent the structure 
of the underlying state machine in a table, whereas Statecharts 
and RSML represent the model graphically, using circles or boxes 
and arrows.  SpecTRM-RL shows the states graphically but the 
transitions (arrows) are defined separately in order to simplify the 
graphical view.  We hypothesize that the way the state machine 
structure is represented has an effect on readability. 

Green Yellow

Red

Walk

Don't
Walk

OFF

Power
On

Power
Off

ON

 
Figure 1. State machine model using a superstate.  

A second aspect of representing structure is the use of hierarchies. 
Due to the inherent complexity of modern software systems, most 
of the newer state-based requirements specification languages use 
superstates, or hierarchies, to provide logical modularizations in 
the model. For example, the states and transitions of a traffic light 
state machine can be grouped together to form the superstate 
"On," as shown in Figure 1.  In the example, if the event "Power-
Off" occurs while in the state On, the state machine will transition 

                                                                 
2 Although two of the languages chosen were designed by 

members of our research group, we want to stress that the goal 
was not to show that our languages were better than the others 
but to assist in establishing future research directions for our 
group and others with respect to the relationship between 
readability and improved specification language designs of the 
future. 



to Off and vice versa. This example shows a two-level hierarchy.  
At the highest level, there is the On-Off state machine.  However, 
within the On state, there is another modular state machine 
description of the traffic light, which is active only when the 
system is in the On state. In the specification languages surveyed, 
all except SCR employ hierarchies. 
The use of hierarchies simplifies specifications and removes the 
need to explicitly specify some transitions.  For this reason, it 
could be argued that allowing hierarchical specifications is 
essential if formal methods are to be scalable.  It might also help 
the reader to develop a better mental model of the system’s 
behavior than would otherwise be achieved in a flat state 
machine. However, by not explicitly specifying all the transitions 
of a state machine, superstates can also lead to confusion 
regarding execution of the state machine.  We wanted to 
determine if this confusion was indeed significant. 

2.2 Internal Events 
Statecharts, SCR, and RSML rely on internal broadcast events to 
order execution of the state machine.  However, our experience in 
using RSML in the specification of TCAS II [8] was that internal 
broadcast events were the single source of most of the errors 
found in the specification and, in addition, caused great difficulty 
for the reviewers in reading the specification, particularly in 
consistent interpretation of the semantics of state changes among 
reviewers. As a result of these negative experiences, internal 
broadcast events were not included in SpecTRM-RL.  Instead, 
ordering of transitions is based on explicitly specified data 
dependencies.  In this experiment, we hoped to provide empirical 
evidence to test our anecdotal experience about the readability of 
languages using internal events to order state changes. 

2.3 Transitions 
The third general issue investigated was the specification of 
transitions. Several different design features appear to be related 
to readability. The first of these is perspective.  When specifying 
a state machine, transitions can be organized in one of two ways:  
(1) by source state, where all the transitions out of a certain state 
are grouped together (“If I am in state X, where can I transition to 
from here?”) or (2) by destination state, where all the transition to 
a certain state are grouped together.  The first might be referred to 
as the going-to perspective while the second as a coming-from 
perspective.  While both express equivalent information, we were 
interested in determining whether one of these perspectives was a 
more intuitive way for reviewers to think about state machine 
behavior.  Completely graphical representations like Statecharts 
provide both perspectives, which may or may not be an ideal 
property.  Others, like SpecTRM-RL and OpProc tables, use a 
coming from perspective.  RSML and SCR do not restrict the 
designer to either; in fact, there is no enforced organization of the 
transitions. 
The second distinguishing feature of transitions is the use of 
macros.  Macros in a state-based specification language function 
basically as they do in any programming language.  They allow 
the modularizing of a piece of logic that can then be referred to 
solely by name in the specification.  This modularization allows 
the user to specify logic in smaller blocks and to use appropriate 
naming conventions, both of which potentially enhance 
readability. Previous experimentation using SpecTRM-RL on a 
very large industrial application prompted us to conclude that 

macros are a necessity if formal requirements specification 
languages are ever to scale to realistic systems [5].   
However, macros also possess a drawback in that they may 
require the reader to navigate through several parts of the 
specification to identify specific logic conditions that may affect 
the state machine. The use of nested macros also may confuse the 
reader when trying to understand how the system behaves.  This 
problem is not unique to specification languages, of course, but 
can arise in programming languages as well.  Previous 
experiments with Z concluded that the effectiveness of macros is 
related to the number and type of modularizations used [2].  For 
example, using a few, non-nested macros can aid comprehension, 
whereas using several nested macros may not.  Whether or not 
these conclusions apply to state-machine specifications is 
something we decided to investigate in this work.  All the state-
based specification languages we surveyed employ some form of 
macros (although they are called terms in SCR), with the 
exception of Statecharts. 
The final feature selected was the format of the triggering 
conditions associated with a transition.  SCR and Statecharts use 
propositional logic to specify triggers.  This representation is 
relatively concise, but may be difficult to read when used to 
express complex conditions.  Both RSML and SpecTRM-RL use 
a tabular logic table notation (called AND/OR tables) to express 
conditions. The designers of these two latter languages claim that 
engineers found using AND/OR tables to be not only readable, 
but also easy to learn. OpProc tables also use a tabular logic table 
notation to represent conditions. 
In this experiment, we investigated not only the use of 
propositional logic and tables to express conditions, but also 
textual and graphical representations.  Textual descriptions are 
used in most industrial specifications to date, so they served as a 
good baseline for comparison in this experiment.  We also 
included standard engineering logic gates as a means of 
graphically specifying logical conditions to determine if these 
might be easier for engineers to read. 
With these features selected, we designed an experiment to 
determine how each affected a specification's readability.  

3. GENERAL EXPERIMENTAL DESIGN 
The experiment itself consisted of six (6) parts, one part for each 
feature tested:  state-machine representation, conditions, macros, 
events, hierarchies, and perspective.  Each part of the experiment 
was run the same. Subjects were presented with two to four 
equivalent specifications, depending on the feature being tested. 
They were then asked a series of objective questions about the 
state machine behavior described by the specifications.   
Initially, subjects were given access to any or all of the 
specifications when answering the first few questions.  They were 
instructed to indicate which specification(s) they used to answer 
each.  We were interested to see whether subjects had any 
intuitive biases about which notation or specification they would 
find to be the most effective or readable.  
After this preliminary section, subjects were restricted to a 
particular specification when answering questions until every 
specification was tested.  For example, in the macros experiment, 
subjects were asked two questions for which they were given 
access to both the Macro and Flat specifications, then four 
questions for which they were restricted to the Macro 



specification, then four more questions for which they were 
restricted to the Flat specification.  Following the objective 
questions, subjects were asked to give a subjective evaluation of 
each specification used in that particular part of the experiment. 
We were as interested in subjective evaluations as objective 
measurements, as discussed below. 
Subjects were all graduate students in either aeronautics or 
computer science.  Prior to each experiment, the subject's 
background and familiarity with both fields were ascertained.  As 
mentioned before, there may perhaps be a correlation between a 
subject's academic background and notation preferences. Twelve 
subjects were tested in total, including six computer scientists and 
six engineers.  Statistically, we would like to have had a larger 
subject base, but as this is a preliminary study, we believe that the 
number of subjects was adequate. The number was limited by the 
amount of time it took to give and to complete the survey 
instrument, which was, in turn affected by the necessarily large 
scope of this preliminary study.  Our primary goal was to use the 
large scope as a means of identifying the most important factors 
on which further experiments could be focused. 
As far as training, subjects were given an introduction to state 
machines the week before they participated.  The training 
document familiarized them with basic state-machine terminology 
such as “states,” “triggers,” and “transitions.”  This introduction 
provided subjects who had no prior experience with state 
machines enough information to answer the 
questions. Furthermore, a practitioner was present throughout 
each experiment to explain the directions for each part of the 
experiment and to answer questions.  From the few questions 
asked, it appeared the training was adequate.  Also, previous 
experience with state machines was not determined to be a 
significant factor in the results. 

3.1 Question Design 
To measure readability, we were looking for indications that the 
subject was able to read and understand material in the 
specifications.  Several approaches to measuring readability have 
been proposed in previous work, some relying on specific 
technical questions, others on general questions about a system's 
functionality.  In this work, we followed the approach taken by 
Finney et al. [2] and Brooks [1], which is outlined below. 
As no single measurement can capture all aspects of readability, 
we considered both objective and subjective evaluations.  
Objective questions were designed to test for four different 
aspects of readability.  In order of increasing difficulty, these are: 

1. Finding a relevant part of the specification, e.g., 
“Where in the specification is the trigger specified for 
a transition from the Cruise to Descent state?” 

2. Understanding the notation, e.g., “What does line 6 of 
the specification say?” 

3. Relating the specification to the model, e.g., “What 
will the output of the system be if the Altitude input is 
1000 ft.?” 

4. Modifying the specification, e.g., “What changes need 
to be made to the specification if the transition 
‘Reorient mode to Spinup Mode when condition C 
occurs’ is added to the state machine?” 

The number of questions of each type that were asked was 
relatively balanced.  We did not consider one type of question to 
be more important than another. 
A lot of time was devoted to designing the objective questions for 
the various parts of the experiment.  Our biggest concern was that 
the questions asked involve realistic tasks, i.e. tasks that would be 
encountered during the review and modification of real system 
specifications.  For example, answering the question “How many 
binary state machines are described in the specification?”  
certainly involves reading and understanding the notation used in 
the specification, but the task is not a realistic one. We were also 
concerned that asking too many questions could result in the 
subject getting tired or bored and impact the results.  
A third factor was the potential diversity in our subjects’ 
backgroundsthose that had never seen a state machine before 
might require more time than estimated.  This concern was 
validated during pretesting, and an agonizing process of 
eliminating questions was required. In the end, subjects were 
asked between four and five questions about each specification, 
which allowed us to test the desired aspects of readability, without 
requiring an inordinate amount of time for most subjects to 
complete. 
Another issue was consistency throughout the various parts of the 
experiment.  For example, when subjects are given three different 
specifications testing the readability of a certain feature, we 
wanted the types of questions asked about the three specifications 
to be as similar as possible in terms of format and skills involved 
to answer.  Obviously, if more difficult questions were asked 
about one specification, that would not only affect objective 
performance in the experiment, but would likely affect subjective 
evaluation of the specification's readability as well. 
No time measurements were made during the experiment.  There 
are several (often overlooked) difficulties and inadequacies 
involved with using time as a recorded variable.  Furthermore, we 
did not want stress to play any part in a subject’s performance. 
We wanted subjects to be able to work through every question in 
the experiment, so that their subjective evaluations would be as 
complete as possible (subjective evaluations will be discussed 
shortly).  If subjects were given a time limit, they may not have 
been able to attempt every question.  In addition, they may have 
made errors in responding to questions that they would not have 
otherwise made.  Each part of the experiment contained an 
average of 12 objective questions and was designed to take 
between 20-25 minutes, bringing the total length of an experiment 
with 6 parts to roughly 2.5 hours.  Subjects were also encouraged 
(but not forced) to skip questions that required more than 90 
seconds to answer. The skipping of difficult questions provides 
useful information as well.  For example, taking longer than 90 
seconds to answer a certain type of question using a certain 
specification is an indicator of limited readability. 
After each part of the experiment, subjects were asked a set of 
subjective questions regarding their experience using the 
specifications.  In some respects, this measure is more important 
than objective performance.  Readability is a complex property, 
which is difficult if not impossible to measure objectively. 
Subjects were asked to rank the specifications used for each part 
of the experiment in terms of readability and then in terms of ease 
of editing.  They were also asked to identify advantages and 
disadvantages they found in using each specification. Subjective 



responses were given verbally, which we feel is important for  
two   reasons.  First, subjects tend to be more expressive when 
communicating orally, rather than in writing. We hoped that this 
would lead to more insightful responses. Second, asking the 
experiment practitioner to record subjective responses lessened 
the workload on the subjects and helped reduce the total duration. 

3.2 Materials Used 
A specific type of system was carefully selected for each feature 
to be tested, and we developed several specifications for each 
system used in the experiment.  The specifications for a particular 
system were entirely equivalent, and differed only with respect to 
the particular feature being tested. There are several issues that 
were considered in designing material for each part of the 
experiment.  
First, we wanted the systems specified to be taken from several 
aerospace applications3. Most important was our requirement that 
the systems selected be real systems: We did not want to use 
specifications that were contrived, pathological, or 
unrealistic. Size and scalability are, of course, also important 
issues:  Language features may become much more influential 
when dealing with large systems.  However, we restricted the size 
of the systems used for a couple of reasons.  First, we wanted to 
minimize the duration of the experiment; as noted, duration may 
affect performance.  Using large system specifications can require 
a significant amount of familiarization time to be able to read and 
answer questions about them.  We also decided to limit size in 
order to minimize potential sources of experimental error. Related 
experiments have found that several factors of a system 
specification can affect its readability, including the way a 
specification is modularized, fonts used, and naming 
conventions.  As the size of the system is increased, there is a 
greater potential for such factors to affect a specification’s 
readability, in addition to the specific feature being tested.  By 
restricting the size of the specifications used, we hoped to 
minimize any potential effect that external factors may have on 
the subject’s performance. 
Another concern in designing the experiment material is that the 
notations used be generic, so that the effect of prior experience 
with particular state-based languages was reduced and so that we 
were not evaluating specific specification languages but generic 
features.  We also felt it important to vary the notations used, so 
that a subject’s preferences would not be affected over the 
duration of the experiment.  For example, if we always described 
triggers using propositional logic, the subject might become 
biased against other notations, which could affect performance on 
other parts of the experiment.  
Because of the large scope of the experiment, a detailed 
description is not possible in the space allowed.  Instead, section 
3.3 describes the experiment looking at the readability of 
conditions to provide the reader with a better understanding of the 
experimental design.  More information about the other 
experiments can be found in [9]. The results of the complete 
experiment can be found in section 4. 

                                                                 
3 Although the experiment was designed for an aerospace 

environment, the results should be applicable to other 
engineering applications. 

3.3 Evaluating Readability of Conditions 
The system chosen for this part of the experiment is a simple 
Speed Mode indicator, which operates as part of a flight 
management system (FMS).  The Climb FMS Speed Mode 
describes the mode to which the FMS should transition depending 
on the state of the system and its environment.  It can be modeled 
as a single state machine with four states: Default, Economy, Max 
Climb, and Edit. These states and the conditions that trigger 
transitions between them are described in each specification.  The 
Speed Mode indicator was suitable for this part of the experiment 
because it has a small number of states and transitions, but the 
conditions themselves are quite complex. 
Four different notations for the expression of conditions were 
tested, all of which are shown in detail belowtextual, graphical, 
logical, and tabular.  The triggering conditions are broken down 
into a disjunction of conjunctions, so that they can be expressed in 
a similar format, regardless of the notation used.  This approach 
may mask some benefits obtained by using certain notations, but 
should also minimize the effect of structure on the readability of 
the specifications. 

3.3.1 Textual notation 
The textual expression reads as straightforward English text. The 
four parts of the textual state machine reads:  
The Climb FMS Speed Mode shall be the Default if any of the 
following scenarios are true: 

1. the Flight Phase transitions to Done 
2. the Flight Phase transitions from Takeoff to Descent 
3. the Flight Phase transitions from Climb to Cruise 
4. the Flight Phase transitions from Climb to Descent 
5. the Climb FMS Speed Mode is Max Climb  

AND 
at least one of the following is true: 
a. FCC Engaged Mode is Altitude Hold Speed 
b. FCC Engaged Mode is Altitude Hold Idle Thrust  
c. FCC Engaged Mode is Altitude Hold Maximum 
Thrust 

6. Engine Out transitions from Not Engaged to Engaged 
7. FMS Mode is Lateral Only 

The Climb FMS Speed Mode shall be Economy if any of the 
following scenarios are true: 

1. Economy is requested for the FCC Speed Mode 
AND 
one of the following is true: 
a.  Flight Phase is Preflight 
b.  Flight Phase is Takeoff 
c.  Flight Phase is Climb 

2. AFS Speed is requested for the FCC Speed Mode 
AND 
one of the following is true: 
a.  Flight Phase is Preflight 
b.  Flight Phase is Takeoff 
c.  Flight Phase is Climb 



3. Economy is requested for the Climb Speed Mode 
AND 
one of the following is true: 
a.  Flight Phase is Takeoff 
b.  Flight Phase is Climb 

The Climb FMS Speed Mode shall be Max Climb if any of the 
following scenarios is true: 

1. Max Climb is requested for the Climb FMS Speed 
Mode  

The Climb FMS Speed Mode shall be Edit if any of the following 
scenarios is true: 

1. Edit CAS is requested for the FCC Speed Mode 
AND 
one of the following is true: 
a.  Flight Phase is Preflight 
b.  Flight Phase is Takeoff 
c.  Flight Phase is Climb 

2. Edit Mach is requested for the FCC Speed Mode 
AND 
one of the following is true: 
a.  Flight Phase is Preflight 
b.  Flight Phase is Takeoff 
c.  Flight Phase is Climb 

3. Edit is requested for Climb Speed Mode 
4. Flight Phase transitions from Cruise to Climb 

AND 
Climb FMS Speed Mode previously in Economy Mode 
AND 
Cruise FMS Speed Mode previously in Edit Mode 

5. Climb FMS Speed Mode previously in Economy Mode 
AND 
Descent FMS Speed Mode previously in Edit Mode 
AND 
one of the following is true: 
a.  Flight Phase transitions from Descent to Takeoff 
b.  Flight Phase transitions from Descent to Climb 
c.  Flight Phase transitions from Approach to Takeoff 
d.  Flight Phase transitions from Approach to Climb 

3.3.2 Logical notation 
The logical notation for the speed mode specification is shown in 
Figure 2. The notation uses simple propositional logic to express 
conditions.  One problem common to parenthetical notations is 
that they are difficult to decompose, i.e., to see how the 
parentheses line up.  For this reason, a standard size font (courier) 
was used, and the lines of the specification were indented and 
aligned to make the structure of the logic more readable.  The 
logical specification was nonetheless the most concise of the four 
tested.  
Default =  
(PREV(Flight Phase≠Done) ∧ (Flight Phase=Done)) ∨  
(PREV(Flight Phase=Takeoff) ∧ (Flight Phase=Descent)) ∨  
(PREV(Flight Phase=Climb) ∧ (Flight Phase=Cruise)) ∨  
(PREV(Flight Phase=Climb) ∧ (Flight Phase=Descent)) ∨  
((Climb FMS Speed Mode=Max Climb) ∧  
 ((FCC Engaged Mode=Altitude Hold Speed) ∨  
  (FCC Engaged Mode=Altitude Hold Idle Thrust) ∨  
  (FCC Engaged Mode=Altitude Hold Maximum Thrust))) ∨  
(PREV(Engine Out=Not Engaged) ∧ (Engine Out=Engaged)) ∨  
(FMS Mode = Lateral Only) 

Economy =  
((Requested FCC Speed Mode=Economy) ∧ 
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨ 
  (Flight Phase is Climb))) ∨  
((Requested FCC Speed Mode=AFS Speed) ∧  
 ((Flight Phase is Preflight) ∨  
  (Flight Phase is Takeoff) ∨ (Flight Phase is Climb))) ∨  
((Requested Climb Speed Mode = Economy) ∧  
 ((Flight Phase is Takeoff) ∨ (Flight Phase is Climb))) 

Max Climb =  
(Requested Climb FMS Speed Mode=Max Climb)  

Edit =  
((Requested FCC Speed Mode=Edit CAS) ∧  
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨  
  (Flight Phase is Climb))) ∨  
((Requested FCC Speed Mode=Edit Mach) ∧  
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨  
  (Flight Phase is Climb))) ∨  
(Requested Climb Speed Mode=Edit) ∨  
((PREV(Flight Phase=Cruise) ∧ (Flight Phase=Climb)) ∧  
 PREV(Climb FMS Speed Mode=Economy Mode) ∧  
 PREV(Cruise FMS Speed Mode=Edit Mode)) ∨  
(PREV(Climb FMS Speed Mode=Economy Mode) ∧  
 PREV(Descent FMS Speed Mode=Edit Mode) ∧  
 ((PREV(Flight Phase=Descent) ∧ (Flight Phase=Takeoff)) ∨  
  (PREV(Flight Phase=Descent) ∧ (Flight Phase=Climb)) ∨  
  (PREV(Flight Phase=Approach)∧(Flight Phase=Takeoff)) ∨    
  (PREV(Flight Phase=Approach) ∧ (Flight Phase=Climb)))) 

Figure 2. Logical specification for trigger conditions. 

3.3.3 Graphical notation 
The graphical notation makes use of logic gates to express 
conditions. There are several different ways to express conditions 
graphically.  However, the logic gate is a notation with which 
most engineers are familiar.  Figure 3 shows the graphical speed 
mode specification.  One of the final gates (reading from left to 
right) in the gate specification evaluates to true depending on 
whether the speed mode is Default, Economy, Max Climb or Edit.  
The graphical specification was the lengthiest, due to the spatial 
layout required by the logic gate notation. 

3.3.4 Tabular notation 
The tabular specification uses AND/OR tables (developed for 
RSML) to express trigger conditions. The tables are used 
differently than tables in other state-machine specification 
languages such as SCR, where tables are used to describe the 
actual transitions between states, rather than the details of the 
triggering conditions. The AND/OR tables simply represent one 
predicate logic statement about the conditions on one transition 
arrow between states. The far-left column of the AND/OR table 
lists the logical phrases of the predicate. Each of the other 
columns is a conjunction of those phrases and constrains the 
logical values of the expressions. If one of the columns evaluates 
to true, then the entire table evaluates to true. A column evaluates 
to true if all of its elements match the truth-values of the 
associated predicates. A dot denotes “don’t care.”  Figures 4 and 5 
show the tabular speed mode specification. For example, the state 
variable “Climb FMS Speed Mode” will be in Economy mode if 
its AND/OR table in Figure 4 evaluates to true. This will happen 
if, for example, both “Requested FCC Speed Mode = Economy” 
is true and “Flight Phase = Preflight” is true, OR if both 
“Requested FCC Speed Mode = Economy” and “Flight Phase = 
Takeoff” are true, OR if any of the other columns in that table 
evaluate to true. 
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Figure 4. Tabular specification for trigger conditions. 
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Figure 5. Tabular specification for trigger conditions 

3.3.5 Condition experiment: Questions 
The part of the experiment designed to test how the representation 
of trigger conditions affects readability consisted of 18 objective 
questions and 4 subjective questions, all shown here below. For 
the first two objective questions the subject was allowed to use 
any of the four specifications, thereafter four questions were 
designated for each specification. Finally, an evaluation was 
collected with four subjective questions.  

(Any specification) 
1. Describe two scenarios that would cause the Climb FMS Speed 
Mode to be Edit. 
2. Could the Climb FMS Speed Mode be Max Climb under the 
following conditions? 
 Engine Out is Engaged 
 Requested Climb FMS Speed Mode = Economy 
 Flight Phase transitions from Takeoff to Climb 
 

 (Tabular specification only) 
3. Which part of the specification specifies that the Climb FMS 
Speed Mode will be the Default when the flight phase transitions 
from Climb to Descent (label rows and columns in table)? 
4. If the FCC Engaged Mode is Altitude Hold Speed, what 
additional conditions are necessary in order for the Climb FMS 
Speed Mode to be Default? 
5. Could the Climb FMS Speed Mode be Default under the 
following conditions? 
 FMS Mode is Lateral Only 
 Engine Out is Not Engaged 
 Flight Phase is Cruise 
 Economy is requested for the FCC Speed Mode 

6. Suppose that in order for the Climb FMS Speed Mode to be 
Edit, the FMS Mode must be Lateral-Vertical (this is in addition 
to the existing requirements).  What changes should be made to 
the specification to reflect this behavior? 
 

(Textual specification only) 
7. Which part of the specification specifies that the Climb FMS 
Speed Mode will be the Max Climb when the Max Climb is 
requested (label lines in the specification)? 
8. If the flight phase is Preflight, under what conditions will the 
Climb FMS Speed Mode be Economy? 
9. Under the following conditions, 
 FMS Mode is Lateral-Vertical 
 Engine Out transitions from Not Engaged to Engaged
 Flight Phase is Cruise 
 Economy is requested for the Climb Speed Mode 
      could the Climb FMS Speed Mode be Default?  Economy? 
10. Suppose we want to add a new mode for the Climb FMS 
Speed Mode, called Flex.  The Climb FMS Speed Mode will be 
Flex if the FMS Mode is Lateral-Vertical, and the flight phase is 
either Takeoff, Climb, or Cruise.  What additions should be made 
to the specification to reflect this behavior?  
 

(AND/OR gate specification only) 
11. Which part of the specification specifies that the Climb FMS 
Speed Mode will be Default when the FMS Mode is Lateral Only 
(label inputs/gates in the specification)?  



12. If the flight phase transitions from Approach to Done, what 
additional conditions are necessary in order for the Climb FMS 
Speed Mode to be Default? 
13. Could the Climb FMS Speed Mode be Edit under the 
following conditions?  
 there is no requested Climb FMS Speed mode 
 Flight Phase is Preflight 
 Economy is requested for the FCC Speed Mode 
14. Suppose that in order for the Climb FMS Speed Mode to be 
Edit, the FMS Mode must be Lateral-Vertical (this is in addition 
to the existing requirements).  What additions should be made to 
the specification to reflect this behavior?  
 

(Propositional logic specification only) 
15. Which part of the specification specifies that the Climb FMS 
Speed Mode will be Economy when the Requested FCC Speed 
Mode is Economy and the Flight Phase is Preflight (label lines in 
the specification)? 
16. If Edit CAS is requested for the FCC Speed Mode, what must 
the flight phase be in order for the Climb FMS Speed Mode to be 
Edit? 
17. Could the Climb FMS Speed Mode be Economy under the 
following conditions? 
 Requested for the FCC Speed Mode is AFS Speed 
 FCC Engaged Mode is Altitude Hold Economy Thrust
 Flight Phase transitions from Descent to Cruise 
18. Suppose we want to add a new mode for the Climb FMS 
Speed Mode, called Endurance.  The Climb FMS Speed Mode 
will be Endurance if the FMS Mode is Lateral-Vertical, there is 
no requested FCC Speed Mode, and the flight phase is either 
Takeoff, Climb, or Cruise.  What additions should be made to the 
specification to reflect this behavior? 
 

Conditional Evaluation  
1. Rank the textual, tabular, graphical, and logical specification in 
terms of readability. 
2. Do your preferences change with respect to ease of editing? 
3. Did you find that certain forms were good for certain tasks, or 
were there specifications that you consistently found to be easy to 
use in the experiment? 
4. Do you consider it worthwhile to have several representations 
available? If so, which ones? 
 

The results of the conditions experiment can be found in the next 
section. 

4. RESULTS 
There are two parts of the results analysisobjective and 
subjective.  The objective questions for all subjects were graded 
by the same person to ensure consistency in the analysis.  
Questions were graded as either correct, partially correct, or 
incorrect.  We did not refine the grading process any more than 
this, as it did not seem likely that it would affect our conclusions. 
This grading system is by no means ideal, however.  A subject 

may answer a question incorrectly, but the grader will not be able 
to distinguish between the subject making a careless error versus 
not understanding the specification.  The only way to clear up this 
ambiguity would be to talk with each subject about the thought 
process involved in answering each question, which was not 
feasible in this experiment 
Another problem with this grading system is that although 
subjects were encouraged to skip questions that required more 
than ~90 seconds to answer, subjects often worked on a question 
for several minutes due to the fact that there was no enforced time 
limit.  This situation is not reflected in our grading system.  If a 
subject worked on a problem for 5 minutes, but answered it 
correctly, it would be recorded just as any correct answer.  
The only major unanticipated problem we experienced with the 
experiment was its duration.  As discussed earlier, we took great 
care to control the duration of the experiment and anticipated, 
based on pretesting, that each subject would complete it in 
roughly 2.5 hours.  However, in practice subjects took between 
2.75 and 4 hours.  Subjects were offered short breaks (~10 
minutes) after each of the 6 parts was completed to lessen 
duration side effects.   
Though performance time was not officially measured, it was 
interesting to note that, in general, those with a computer science 
background performed much faster than those with an aeronautics 
background, but with comparable accuracy.  Computer science 
students finished in approximately 3 hours, and aeronautics 
students in almost 4 hours.  This observation was contrary to our 
expectations.  We expected that although aerospace engineers 
were not likely to be familiar with state machines, they would be 
familiar with the types of aerospace systems used.  However, it 
appears that familiarity with state machines is a much more 
influential factor than is familiarity with the systems themselves.  
This observation may help explain the lack of widespread 
adoption of formal methods among aerospace industries 
aerospace engineers are not accustomed to using such notations. 
One of the computer scientist subjects later offered another 
explanation for the difference in performance times.  He said that 
he enjoyed answering the questions because many reminded him 
of computer science exams, where he was often asked to trace 
through a system specification or to answer questions about a 
system’s behavior given a specification. Aerospace engineering 
students are rarely required to answer questions about system 
specifications.   
Representation of State Machines: We tested tabular, graphical, 
and textual specifications.  Subjects consistently performed well 
on the objective questions. Most of the mistakes made by those 
with a computer science background occurred when dealing with 
the tabular specifications, whereas every aerospace student 
answered these questions correctly.  Using a two-tail t-test, we 
were able to show a statistically significant difference between 
the two groups in this respect.  When given a choice of using any 
of the specifications for two questions, every subject chose to use 
the table for the first question and all but two chose to use the 
table on the second (as an aside, only one subject answered the 
second question incorrectly and this was one of the two who did 
not use the table). 
Subjects evaluated the graphical specification as useful for 
obtaining a high-level understanding of the system, but said it 
became cumbersome when asked to answer questions about the 



triggers for transitions. Though easy to read, subjects (with two 
exceptions) found the textual specifications very difficult to use. 
According to subjective rankings, eleven of the 12 subjects found 
either the graphical or the tabular representation to be the most 
readable (with more preferring the tabular) in terms of usability in 
answering questions about the specification, with only 1 subject 
preferring to use the textual specification.  This observation is 
interesting given that most specifications used today are textual.  
Conditions: We tested textual, graphical, tabular, and logical 
expressions of trigger conditions.  Subjects generally performed 
very well on the objective portion of the conditions experiment, 
with no discernable pattern existing among the types of questions 
answered incorrectly. However, four subjects answered question 
18 incorrectly, which asked them to edit the propositional logic 
specification.  These errors were mainly due to mismatched 
parentheses and brackets, which of course is a difficulty 
encountered when expressing complex triggers using 
propositional logic. 
As far as subjective rankings, nine of the 12 subjects found the 
tabular specification (AND/OR Tables) to be the most readable, 
followed by the textual, then graphical, and finally logical.  Seven 
of the twelve ranked the propositional logic specification as the 
least readable.  These rankings were consistent among computer 
science and aerospace students. The rankings were slightly 
different, however, with respect to ease of editing:  Subjects on 
average found the tabular specification to be the easiest to edit, 
followed by the graphical, textual, and logical.  We found it 
surprising that every computer science student commented on the 
difficulty of using the graphical specification, while feelings 
about it were mixed for the aerospace students. 
Based on both objective and subjective evaluations, the tabular 
representation of transition conditions appears to be the most 
readable of those tested, while the propositional logic notation 
was the least readable when used to express complex behavior. 
Macros: Results at first seemed to imply that macros were not 
conducive to readability.  Subjects were given their choice of 
specifications to answer two questions, and 11 of the 12 subjects 
chose to use the flat specification.  Furthermore, only 5 of the 12 
subjects ranked the macros specification as the more readable. 
However, 11 subjects ranked the macros specification as the 
easier of the two to edit.   
In the subjective feedback, subjects consistently felt that macros 
were beneficial when specifying complex systems, leading to less 
cluttered and more compact logical expressions.  They also noted 
that macros assist in reuse and that with proper naming 
conventions, they could make logical expressions easy to read. 
However, subjects also commented that macros often made it 
difficult to navigate complex specifications,  requiring lots of 
page flipping to understand how a particular input affects system 
behavior.  This effort lead to a loss of continuity when reading the 
specification.   
Based on these results,  subject interviews,  and our experiences 
with much larger specifications than used in this experiment, it 
appears that macros are useful when writing a specification, but 
that they can become difficult to navigate when reading a large 
specification. Prohibiting nested macros may be a compromise for 
this situation.  However, using macros in an automated 
environment may alleviate much of the difficulty encountered 

using macros in this experiment.  Navigation could be simplified 
using automated hyperlinks or even made unnecessary by the 
automatic expansion of a macro in place. 
Internally Broadcast Events: Results regarding the readability 
of internal events were inconclusive.  Seven of the twelve subjects 
ranked the events specification as more readable.  However, 
difficulty in editing the specifications with events was clear: ten 
of the twelve found it easier to modify the eventless specification 
and eleven of the twelve subjects were unable to edit the events 
specification correctly. This latter result supports our experience 
with TCAS II and the errors we and our reviewers made.  Size 
and complexity of the specification may be a critical factor here.  
We note also that although in general the subjects asked few 
questions during the experiment, a few needed additional 
explanation regarding the use of internal events, again validating 
our experiences with TCAS of the difficulty new users may have 
with internal events. 
Hierarchies: All 12 subjects agreed that a hierarchical 
specification is easier to read than a flat specification and that 
hierarchical abstractions are absolutely necessary to specify 
complex systems.  However, it is extremely interesting that half 
of the subjects unknowingly made errors reading the hierarchical 
specifications, errors that were not made when reading the 
equivalent flat specification.  These results also coincide with our 
experience and point to the need for careful language design to 
reduce errors in reading hierarchical specifications. 
Perspective: Seven subjects felt that the going-to and coming-
from perspectives were interchangeable, and nine subjects 
responded that it is better to become accustomed to one 
perspective rather than be provided with both, despite the fact that 
certain questions were clearly easier to answer using one 
perspective over the other.  However, our results suggest that 
subjects may actually prefer access to both perspectives in an 
automated environment. 

5. CONCLUSIONS 
As an assessment of formal specification readability, these results 
are preliminary.  We would ultimately like to run more extensive 
experiments focusing on two or three of these features.   Based on 
our results, we will likely focus on conditions, macros and 
internal events.  Complex conditions seem to be more readable 
when expressed in a table, but we would like to test this with a 
statistically significant number of subjects before claiming it as a 
conclusion.  
The macros portion of our experiment was inconclusive regarding 
their effect on readability.  Though they seem to be extremely 
useful when writing and editing specifications, there seems to be 
difficulty reading specifications with macros, which we would 
like to address in future work. Specifically, we would like to 
investigate how various levels of modularization (i.e. nested 
macros) affect a specification's readability.  Macros also are one 
feature whose utility is dependent on the size of the specification. 
We would like to investigate how macros can affect the 
readability of large-scale system specifications.  
Future work will also likely address the use of internal events. 
Again, while most subjects found it easier to edit an eventless 
specification, feelings were mixed regarding whether it is easier 
to read an eventless specification.  The TCAS experience found 
that reading large specifications was impeded by internal events.  



We would like to empirically evaluate this claim by extensively 
testing the readability of large specifications with internal events. 
We are not planning to investigate the readability of hierarchies or 
perspective in future work.  Our results, as well as previous 
experience, show that hierarchical abstractions are essential if 
formal methods are to scale, so we do not feel that any insight 
would come from further experimentation.  We have learned, 
however, that the semantics of the notations describing these 
hierarchies need to be carefully defined. Perspective does not 
appear to be a significant factor affecting readability, and so it 
does not seem worthwhile to investigate further.  
The most important issue that will be addressed in future work is 
readability of large-scale system specifications. Scalability is one 
of the largest obstacles facing the adoption of formal methods and 
was not adequately addressed in this experiment.  For example, 
we tested the readability of a flat specification.  While some 
subjects found a flat specification easy to read when describing a 
state machine with ten states, it is clearly inappropriate when 
describing a state machine with 1030 states. 
If through experimentation we can determine which notations and 
features are conducive to making large system specifications 
readable, we should be able to use this information to design more 
readable and reviewable state-based requirements specification 
languages.  
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