
Investigating the Readability of State-Based Formal
Requirements Specification Languages

Marc K. Zimmerman, Kristina Lundqvist, Nancy Leveson
Massachusetts Institute of Technology

Cambridge, MA 02139
+1 617 258 0505

leveson@mit.edu

ABSTRACT
The readability of formal requirements specification languages is
hypothesized as a limiting factor in the acceptance of formal
methods by the industrial community. An empirical study was
conducted to determine how various factors of state-based
requirements specification language design affect readability
using aerospace applications. Six factors were tested in all,
including the representation of the overall state machine structure,
the expression of triggering conditions, the use of macros, the use
of internal broadcast events, the use of hierarchies, and transition
perspective (going-to or coming-from). Subjects included
computer scientists as well as aerospace engineers in an effort to
determine whether background affects notational
preferences. Because so little previous experimentation on this
topic exists on which to build hypotheses, the study was designed
as a preliminary exploration of what factors are most important
with respect to readability. It can serve as a starting point for
more thorough and carefully controlled experimentation in
specification language readability.

1. INTRODUCTION
Formal requirements specifications and formal analysis
theoretically present a way out of the dilemma posed by our
inability to test even a small part of the enormous state space
involved in most digital systems. The past 30 years have
advanced the state of knowledge about formal methods to the
point where many important problems can be solved. While
formal methods are being applied to hardware in industry, the
results of formal methods research for software has only rarely
reached beyond the research lab and been used in industrial
practice for day-to-day software development.
Several reasons may be hypothesized for this lack of widespread
adoption. First, most formal languages are based on discrete
mathematics and logic. However, engineers are typically not
trained in these fields of mathematics. Furthermore, the notations
used in these languages are often not as concise or as
parsimonious as their continuous math counterparts. So while a
control law can be represented as a differential equation, the
discrete mode logic for a flight management system might require

hundreds of pages of formal logic to specify. The review of such
specifications by domain experts is a daunting task. The scope
and scalability of formal methods are additional concerns.
In our experience, one of the biggest stumbling blocks to the use
of formal specification languages in industry relates to
readability. Readability is arguably one of the most important
properties of any specification. Requirements specifications in
industrial projects must be readable by a large variety of people
with diverse backgrounds and expertise including system
designers and developers, customers, users, certifiers, etc.
Having a common model that is readable by a general audience
will enhance communication among all involved parties, which is
widely recognized as the source of the most important outstanding
problems in industrial practice.
In addition, our experience in analyzing formal specifications for
complex systems suggests that the most significant errors and
omissions will be found by human experts rather than automated
tools [5]. This observation does not mean that automated tools
are not useful and important in finding some types of errors,
particularly those involving mathematical properties and those
requiring tedious checks. But humans are required to determine
whether a specification conforms with engineering expectations
and requirements (e.g., whether all necessary conditions have
been included under which an aircraft’s elevator must be moved
to maintain aerodynamic stability). Furthermore, specification
flaws found by formal analysis tools will need to be evaluated by
human experts. Therefore, readability of requirements
specifications is necessary not only for human review of complex
models but also for human processing of analysis results. Our
experience in working with engineers is that they do not accept
and put their confidence in analysis results from a model that they
cannot personally validate matches the system they intended to
design.
Readability may also lead to reduced learning time. Certainly any
specification language is going to require some training in order
to understand and use it. However, particularly with respect to
review, this time cannot be too long before it becomes impractical
to coordinate the considerable amount of reviewing that leads to
high-quality specifications and software. It can require as much
as 3-6 months training before an engineer can use some formal
languages effectively. This amount of required training not only
reduces the number of people who can participate in reviewing

the formal specification, but it also puts constraints on the
addition of engineers to the specification and design teams1.
In an effort to increase the practicality of formal methods, this
work deals specifically with the problem of readability. Designing
a requirements specification language that is readable by a
general audience is a difficult problem and little empirical or
experimental evidence exists to guide those designing formal
specification languages to support readability. This paper reports
on preliminary results of such an investigation to help us
understand the notational features that are most conducive to
readability. We specifically included subjects with both computer
science and engineering backgrounds, as these are two fields that
can directly benefit from the use of formal
methods. Understanding which notations are more readable, and
to which audiences, could help us create requirements
specification languages that are more expressive and effective,
allowing formal methods to become a more attractive alternative
for the industrial community.
The next section describes related research and the problems in
designing useful experiments on this topic. We then describe the
experimental design and the results we obtained.

2. BACKGROUND
Formal requirements specifications all have an underlying
mathematical model that can take many different forms. In this
work, we will focus specifically on specification languages that
use an underlying state-machine model; we have found through
20 years of empirical work that such models are the most easily
understood and adopted by engineers working on control systems
(our area of interest), and therefore they seem like a reasonable
place to start. Our goal is to determine those features of state-
based requirements specification languages that can increase the
readability and comprehensibility for an appropriate audience.
The experimental design in this paper draws heavily on previous
experimentation, particularly with respect to measuring
readability. However, while there has been a significant amount
of research in experimental methodology within a computer
science context (for example, see [2]) and some experimentation
on programming language design (summarized in [3]), our
specific goal of determining which factors affect the readability of
state-based specification languages has not been addressed with
one exception. Previous research sought to determine factors that
affect the readability of Z specifications, but the number of
factors considered (two) is much smaller in scope than those
considered here [2]. In addition, previous work with Z focuses on
one specification language, rather than a class of specification
languages as is considered in this paper.
Because of the lack of previous experimentation on which to
build, our goal became to build an experimental design that
allowed us to examine a large number of features and to identify
which ones appear to play an important enough role in
readability. Identification of these features will warrant follow up
and more carefully controlled and focused experimentation.

1 While it also takes time to learn specification languages based

on continuous mathematics, engineers do not need to be taught
the mathematical foundations and only need to learn the syntax
of the language.

Our first problem was in determining which language design
features should be investigated. We started by surveying several
state-based specification languages that have been used on real
aerospace systems to determine the distinguishing features of
each. The languages chosen were Statecharts [4], SCR [6], RSML
[5], SpecTRM-RL [7], and OpProc Tables [8]. Because each is
based on the same underlying state-machine model, what
distinguishes each of these languages are the ways each describes
the various parts of that model. After selecting these languages,
we then established some hypotheses about which of the
distinguishing features might affect readability2.
State machines are an abstract model whose overall structure can
be represented using a graphical, textual, or tabular
format. Similarly, the conditions that trigger state transitions can
be expressed in a variety of ways, e.g., using propositional logic,
graphics, tables, etc., as can the internal events that are used to
order or synchronize the transitions. Each method of representing
the structure and components of a state machine offers different
potential benefits. What differentiates one state-based
specification language from another is simply the choices for
these representation formats.

2.1 Overall State Machine Structure
The structure of the state machine may be depicted in a variety of
ways including graphically, in a tabular form, textually, or using a
mixture of these. OpProc Tables and SCR represent the structure
of the underlying state machine in a table, whereas Statecharts
and RSML represent the model graphically, using circles or boxes
and arrows. SpecTRM-RL shows the states graphically but the
transitions (arrows) are defined separately in order to simplify the
graphical view. We hypothesize that the way the state machine
structure is represented has an effect on readability.

Green Yellow

Red

Walk

Don't
Walk

OFF

Power
On

Power
Off

ON

Figure 1. State machine model using a superstate.

A second aspect of representing structure is the use of hierarchies.
Due to the inherent complexity of modern software systems, most
of the newer state-based requirements specification languages use
superstates, or hierarchies, to provide logical modularizations in
the model. For example, the states and transitions of a traffic light
state machine can be grouped together to form the superstate
"On," as shown in Figure 1. In the example, if the event "Power-
Off" occurs while in the state On, the state machine will transition

2 Although two of the languages chosen were designed by

members of our research group, we want to stress that the goal
was not to show that our languages were better than the others
but to assist in establishing future research directions for our
group and others with respect to the relationship between
readability and improved specification language designs of the
future.

to Off and vice versa. This example shows a two-level hierarchy.
At the highest level, there is the On-Off state machine. However,
within the On state, there is another modular state machine
description of the traffic light, which is active only when the
system is in the On state. In the specification languages surveyed,
all except SCR employ hierarchies.
The use of hierarchies simplifies specifications and removes the
need to explicitly specify some transitions. For this reason, it
could be argued that allowing hierarchical specifications is
essential if formal methods are to be scalable. It might also help
the reader to develop a better mental model of the system’s
behavior than would otherwise be achieved in a flat state
machine. However, by not explicitly specifying all the transitions
of a state machine, superstates can also lead to confusion
regarding execution of the state machine. We wanted to
determine if this confusion was indeed significant.

2.2 Internal Events
Statecharts, SCR, and RSML rely on internal broadcast events to
order execution of the state machine. However, our experience in
using RSML in the specification of TCAS II [8] was that internal
broadcast events were the single source of most of the errors
found in the specification and, in addition, caused great difficulty
for the reviewers in reading the specification, particularly in
consistent interpretation of the semantics of state changes among
reviewers. As a result of these negative experiences, internal
broadcast events were not included in SpecTRM-RL. Instead,
ordering of transitions is based on explicitly specified data
dependencies. In this experiment, we hoped to provide empirical
evidence to test our anecdotal experience about the readability of
languages using internal events to order state changes.

2.3 Transitions
The third general issue investigated was the specification of
transitions. Several different design features appear to be related
to readability. The first of these is perspective. When specifying
a state machine, transitions can be organized in one of two ways:
(1) by source state, where all the transitions out of a certain state
are grouped together (“If I am in state X, where can I transition to
from here?”) or (2) by destination state, where all the transition to
a certain state are grouped together. The first might be referred to
as the going-to perspective while the second as a coming-from
perspective. While both express equivalent information, we were
interested in determining whether one of these perspectives was a
more intuitive way for reviewers to think about state machine
behavior. Completely graphical representations like Statecharts
provide both perspectives, which may or may not be an ideal
property. Others, like SpecTRM-RL and OpProc tables, use a
coming from perspective. RSML and SCR do not restrict the
designer to either; in fact, there is no enforced organization of the
transitions.
The second distinguishing feature of transitions is the use of
macros. Macros in a state-based specification language function
basically as they do in any programming language. They allow
the modularizing of a piece of logic that can then be referred to
solely by name in the specification. This modularization allows
the user to specify logic in smaller blocks and to use appropriate
naming conventions, both of which potentially enhance
readability. Previous experimentation using SpecTRM-RL on a
very large industrial application prompted us to conclude that

macros are a necessity if formal requirements specification
languages are ever to scale to realistic systems [5].
However, macros also possess a drawback in that they may
require the reader to navigate through several parts of the
specification to identify specific logic conditions that may affect
the state machine. The use of nested macros also may confuse the
reader when trying to understand how the system behaves. This
problem is not unique to specification languages, of course, but
can arise in programming languages as well. Previous
experiments with Z concluded that the effectiveness of macros is
related to the number and type of modularizations used [2]. For
example, using a few, non-nested macros can aid comprehension,
whereas using several nested macros may not. Whether or not
these conclusions apply to state-machine specifications is
something we decided to investigate in this work. All the state-
based specification languages we surveyed employ some form of
macros (although they are called terms in SCR), with the
exception of Statecharts.
The final feature selected was the format of the triggering
conditions associated with a transition. SCR and Statecharts use
propositional logic to specify triggers. This representation is
relatively concise, but may be difficult to read when used to
express complex conditions. Both RSML and SpecTRM-RL use
a tabular logic table notation (called AND/OR tables) to express
conditions. The designers of these two latter languages claim that
engineers found using AND/OR tables to be not only readable,
but also easy to learn. OpProc tables also use a tabular logic table
notation to represent conditions.
In this experiment, we investigated not only the use of
propositional logic and tables to express conditions, but also
textual and graphical representations. Textual descriptions are
used in most industrial specifications to date, so they served as a
good baseline for comparison in this experiment. We also
included standard engineering logic gates as a means of
graphically specifying logical conditions to determine if these
might be easier for engineers to read.
With these features selected, we designed an experiment to
determine how each affected a specification's readability.

3. GENERAL EXPERIMENTAL DESIGN
The experiment itself consisted of six (6) parts, one part for each
feature tested: state-machine representation, conditions, macros,
events, hierarchies, and perspective. Each part of the experiment
was run the same. Subjects were presented with two to four
equivalent specifications, depending on the feature being tested.
They were then asked a series of objective questions about the
state machine behavior described by the specifications.
Initially, subjects were given access to any or all of the
specifications when answering the first few questions. They were
instructed to indicate which specification(s) they used to answer
each. We were interested to see whether subjects had any
intuitive biases about which notation or specification they would
find to be the most effective or readable.
After this preliminary section, subjects were restricted to a
particular specification when answering questions until every
specification was tested. For example, in the macros experiment,
subjects were asked two questions for which they were given
access to both the Macro and Flat specifications, then four
questions for which they were restricted to the Macro

specification, then four more questions for which they were
restricted to the Flat specification. Following the objective
questions, subjects were asked to give a subjective evaluation of
each specification used in that particular part of the experiment.
We were as interested in subjective evaluations as objective
measurements, as discussed below.
Subjects were all graduate students in either aeronautics or
computer science. Prior to each experiment, the subject's
background and familiarity with both fields were ascertained. As
mentioned before, there may perhaps be a correlation between a
subject's academic background and notation preferences. Twelve
subjects were tested in total, including six computer scientists and
six engineers. Statistically, we would like to have had a larger
subject base, but as this is a preliminary study, we believe that the
number of subjects was adequate. The number was limited by the
amount of time it took to give and to complete the survey
instrument, which was, in turn affected by the necessarily large
scope of this preliminary study. Our primary goal was to use the
large scope as a means of identifying the most important factors
on which further experiments could be focused.
As far as training, subjects were given an introduction to state
machines the week before they participated. The training
document familiarized them with basic state-machine terminology
such as “states,” “triggers,” and “transitions.” This introduction
provided subjects who had no prior experience with state
machines enough information to answer the
questions. Furthermore, a practitioner was present throughout
each experiment to explain the directions for each part of the
experiment and to answer questions. From the few questions
asked, it appeared the training was adequate. Also, previous
experience with state machines was not determined to be a
significant factor in the results.

3.1 Question Design
To measure readability, we were looking for indications that the
subject was able to read and understand material in the
specifications. Several approaches to measuring readability have
been proposed in previous work, some relying on specific
technical questions, others on general questions about a system's
functionality. In this work, we followed the approach taken by
Finney et al. [2] and Brooks [1], which is outlined below.
As no single measurement can capture all aspects of readability,
we considered both objective and subjective evaluations.
Objective questions were designed to test for four different
aspects of readability. In order of increasing difficulty, these are:

1. Finding a relevant part of the specification, e.g.,
“Where in the specification is the trigger specified for
a transition from the Cruise to Descent state?”

2. Understanding the notation, e.g., “What does line 6 of
the specification say?”

3. Relating the specification to the model, e.g., “What
will the output of the system be if the Altitude input is
1000 ft.?”

4. Modifying the specification, e.g., “What changes need
to be made to the specification if the transition
‘Reorient mode to Spinup Mode when condition C
occurs’ is added to the state machine?”

The number of questions of each type that were asked was
relatively balanced. We did not consider one type of question to
be more important than another.
A lot of time was devoted to designing the objective questions for
the various parts of the experiment. Our biggest concern was that
the questions asked involve realistic tasks, i.e. tasks that would be
encountered during the review and modification of real system
specifications. For example, answering the question “How many
binary state machines are described in the specification?”
certainly involves reading and understanding the notation used in
the specification, but the task is not a realistic one. We were also
concerned that asking too many questions could result in the
subject getting tired or bored and impact the results.
A third factor was the potential diversity in our subjects’
backgroundsthose that had never seen a state machine before
might require more time than estimated. This concern was
validated during pretesting, and an agonizing process of
eliminating questions was required. In the end, subjects were
asked between four and five questions about each specification,
which allowed us to test the desired aspects of readability, without
requiring an inordinate amount of time for most subjects to
complete.
Another issue was consistency throughout the various parts of the
experiment. For example, when subjects are given three different
specifications testing the readability of a certain feature, we
wanted the types of questions asked about the three specifications
to be as similar as possible in terms of format and skills involved
to answer. Obviously, if more difficult questions were asked
about one specification, that would not only affect objective
performance in the experiment, but would likely affect subjective
evaluation of the specification's readability as well.
No time measurements were made during the experiment. There
are several (often overlooked) difficulties and inadequacies
involved with using time as a recorded variable. Furthermore, we
did not want stress to play any part in a subject’s performance.
We wanted subjects to be able to work through every question in
the experiment, so that their subjective evaluations would be as
complete as possible (subjective evaluations will be discussed
shortly). If subjects were given a time limit, they may not have
been able to attempt every question. In addition, they may have
made errors in responding to questions that they would not have
otherwise made. Each part of the experiment contained an
average of 12 objective questions and was designed to take
between 20-25 minutes, bringing the total length of an experiment
with 6 parts to roughly 2.5 hours. Subjects were also encouraged
(but not forced) to skip questions that required more than 90
seconds to answer. The skipping of difficult questions provides
useful information as well. For example, taking longer than 90
seconds to answer a certain type of question using a certain
specification is an indicator of limited readability.
After each part of the experiment, subjects were asked a set of
subjective questions regarding their experience using the
specifications. In some respects, this measure is more important
than objective performance. Readability is a complex property,
which is difficult if not impossible to measure objectively.
Subjects were asked to rank the specifications used for each part
of the experiment in terms of readability and then in terms of ease
of editing. They were also asked to identify advantages and
disadvantages they found in using each specification. Subjective

responses were given verbally, which we feel is important for
two reasons. First, subjects tend to be more expressive when
communicating orally, rather than in writing. We hoped that this
would lead to more insightful responses. Second, asking the
experiment practitioner to record subjective responses lessened
the workload on the subjects and helped reduce the total duration.

3.2 Materials Used
A specific type of system was carefully selected for each feature
to be tested, and we developed several specifications for each
system used in the experiment. The specifications for a particular
system were entirely equivalent, and differed only with respect to
the particular feature being tested. There are several issues that
were considered in designing material for each part of the
experiment.
First, we wanted the systems specified to be taken from several
aerospace applications3. Most important was our requirement that
the systems selected be real systems: We did not want to use
specifications that were contrived, pathological, or
unrealistic. Size and scalability are, of course, also important
issues: Language features may become much more influential
when dealing with large systems. However, we restricted the size
of the systems used for a couple of reasons. First, we wanted to
minimize the duration of the experiment; as noted, duration may
affect performance. Using large system specifications can require
a significant amount of familiarization time to be able to read and
answer questions about them. We also decided to limit size in
order to minimize potential sources of experimental error. Related
experiments have found that several factors of a system
specification can affect its readability, including the way a
specification is modularized, fonts used, and naming
conventions. As the size of the system is increased, there is a
greater potential for such factors to affect a specification’s
readability, in addition to the specific feature being tested. By
restricting the size of the specifications used, we hoped to
minimize any potential effect that external factors may have on
the subject’s performance.
Another concern in designing the experiment material is that the
notations used be generic, so that the effect of prior experience
with particular state-based languages was reduced and so that we
were not evaluating specific specification languages but generic
features. We also felt it important to vary the notations used, so
that a subject’s preferences would not be affected over the
duration of the experiment. For example, if we always described
triggers using propositional logic, the subject might become
biased against other notations, which could affect performance on
other parts of the experiment.
Because of the large scope of the experiment, a detailed
description is not possible in the space allowed. Instead, section
3.3 describes the experiment looking at the readability of
conditions to provide the reader with a better understanding of the
experimental design. More information about the other
experiments can be found in [9]. The results of the complete
experiment can be found in section 4.

3 Although the experiment was designed for an aerospace

environment, the results should be applicable to other
engineering applications.

3.3 Evaluating Readability of Conditions
The system chosen for this part of the experiment is a simple
Speed Mode indicator, which operates as part of a flight
management system (FMS). The Climb FMS Speed Mode
describes the mode to which the FMS should transition depending
on the state of the system and its environment. It can be modeled
as a single state machine with four states: Default, Economy, Max
Climb, and Edit. These states and the conditions that trigger
transitions between them are described in each specification. The
Speed Mode indicator was suitable for this part of the experiment
because it has a small number of states and transitions, but the
conditions themselves are quite complex.
Four different notations for the expression of conditions were
tested, all of which are shown in detail belowtextual, graphical,
logical, and tabular. The triggering conditions are broken down
into a disjunction of conjunctions, so that they can be expressed in
a similar format, regardless of the notation used. This approach
may mask some benefits obtained by using certain notations, but
should also minimize the effect of structure on the readability of
the specifications.

3.3.1 Textual notation
The textual expression reads as straightforward English text. The
four parts of the textual state machine reads:
The Climb FMS Speed Mode shall be the Default if any of the
following scenarios are true:

1. the Flight Phase transitions to Done
2. the Flight Phase transitions from Takeoff to Descent
3. the Flight Phase transitions from Climb to Cruise
4. the Flight Phase transitions from Climb to Descent
5. the Climb FMS Speed Mode is Max Climb

AND
at least one of the following is true:
a. FCC Engaged Mode is Altitude Hold Speed
b. FCC Engaged Mode is Altitude Hold Idle Thrust
c. FCC Engaged Mode is Altitude Hold Maximum
Thrust

6. Engine Out transitions from Not Engaged to Engaged
7. FMS Mode is Lateral Only

The Climb FMS Speed Mode shall be Economy if any of the
following scenarios are true:

1. Economy is requested for the FCC Speed Mode
AND
one of the following is true:
a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

2. AFS Speed is requested for the FCC Speed Mode
AND
one of the following is true:
a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

3. Economy is requested for the Climb Speed Mode
AND
one of the following is true:
a. Flight Phase is Takeoff
b. Flight Phase is Climb

The Climb FMS Speed Mode shall be Max Climb if any of the
following scenarios is true:

1. Max Climb is requested for the Climb FMS Speed
Mode

The Climb FMS Speed Mode shall be Edit if any of the following
scenarios is true:

1. Edit CAS is requested for the FCC Speed Mode
AND
one of the following is true:
a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

2. Edit Mach is requested for the FCC Speed Mode
AND
one of the following is true:
a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

3. Edit is requested for Climb Speed Mode
4. Flight Phase transitions from Cruise to Climb

AND
Climb FMS Speed Mode previously in Economy Mode
AND
Cruise FMS Speed Mode previously in Edit Mode

5. Climb FMS Speed Mode previously in Economy Mode
AND
Descent FMS Speed Mode previously in Edit Mode
AND
one of the following is true:
a. Flight Phase transitions from Descent to Takeoff
b. Flight Phase transitions from Descent to Climb
c. Flight Phase transitions from Approach to Takeoff
d. Flight Phase transitions from Approach to Climb

3.3.2 Logical notation
The logical notation for the speed mode specification is shown in
Figure 2. The notation uses simple propositional logic to express
conditions. One problem common to parenthetical notations is
that they are difficult to decompose, i.e., to see how the
parentheses line up. For this reason, a standard size font (courier)
was used, and the lines of the specification were indented and
aligned to make the structure of the logic more readable. The
logical specification was nonetheless the most concise of the four
tested.
Default =
(PREV(Flight Phase≠Done) ∧ (Flight Phase=Done)) ∨
(PREV(Flight Phase=Takeoff) ∧ (Flight Phase=Descent)) ∨
(PREV(Flight Phase=Climb) ∧ (Flight Phase=Cruise)) ∨
(PREV(Flight Phase=Climb) ∧ (Flight Phase=Descent)) ∨
((Climb FMS Speed Mode=Max Climb) ∧
 ((FCC Engaged Mode=Altitude Hold Speed) ∨
 (FCC Engaged Mode=Altitude Hold Idle Thrust) ∨
 (FCC Engaged Mode=Altitude Hold Maximum Thrust))) ∨
(PREV(Engine Out=Not Engaged) ∧ (Engine Out=Engaged)) ∨
(FMS Mode = Lateral Only)

Economy =
((Requested FCC Speed Mode=Economy) ∧
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨
 (Flight Phase is Climb))) ∨
((Requested FCC Speed Mode=AFS Speed) ∧
 ((Flight Phase is Preflight) ∨
 (Flight Phase is Takeoff) ∨ (Flight Phase is Climb))) ∨
((Requested Climb Speed Mode = Economy) ∧
 ((Flight Phase is Takeoff) ∨ (Flight Phase is Climb)))

Max Climb =
(Requested Climb FMS Speed Mode=Max Climb)

Edit =
((Requested FCC Speed Mode=Edit CAS) ∧
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨
 (Flight Phase is Climb))) ∨
((Requested FCC Speed Mode=Edit Mach) ∧
 ((Flight Phase is Preflight)∨(Flight Phase is Takeoff) ∨
 (Flight Phase is Climb))) ∨
(Requested Climb Speed Mode=Edit) ∨
((PREV(Flight Phase=Cruise) ∧ (Flight Phase=Climb)) ∧
 PREV(Climb FMS Speed Mode=Economy Mode) ∧
 PREV(Cruise FMS Speed Mode=Edit Mode)) ∨
(PREV(Climb FMS Speed Mode=Economy Mode) ∧
 PREV(Descent FMS Speed Mode=Edit Mode) ∧
 ((PREV(Flight Phase=Descent) ∧ (Flight Phase=Takeoff)) ∨
 (PREV(Flight Phase=Descent) ∧ (Flight Phase=Climb)) ∨
 (PREV(Flight Phase=Approach)∧(Flight Phase=Takeoff)) ∨
 (PREV(Flight Phase=Approach) ∧ (Flight Phase=Climb))))

Figure 2. Logical specification for trigger conditions.

3.3.3 Graphical notation
The graphical notation makes use of logic gates to express
conditions. There are several different ways to express conditions
graphically. However, the logic gate is a notation with which
most engineers are familiar. Figure 3 shows the graphical speed
mode specification. One of the final gates (reading from left to
right) in the gate specification evaluates to true depending on
whether the speed mode is Default, Economy, Max Climb or Edit.
The graphical specification was the lengthiest, due to the spatial
layout required by the logic gate notation.

3.3.4 Tabular notation
The tabular specification uses AND/OR tables (developed for
RSML) to express trigger conditions. The tables are used
differently than tables in other state-machine specification
languages such as SCR, where tables are used to describe the
actual transitions between states, rather than the details of the
triggering conditions. The AND/OR tables simply represent one
predicate logic statement about the conditions on one transition
arrow between states. The far-left column of the AND/OR table
lists the logical phrases of the predicate. Each of the other
columns is a conjunction of those phrases and constrains the
logical values of the expressions. If one of the columns evaluates
to true, then the entire table evaluates to true. A column evaluates
to true if all of its elements match the truth-values of the
associated predicates. A dot denotes “don’t care.” Figures 4 and 5
show the tabular speed mode specification. For example, the state
variable “Climb FMS Speed Mode” will be in Economy mode if
its AND/OR table in Figure 4 evaluates to true. This will happen
if, for example, both “Requested FCC Speed Mode = Economy”
is true and “Flight Phase = Preflight” is true, OR if both
“Requested FCC Speed Mode = Economy” and “Flight Phase =
Takeoff” are true, OR if any of the other columns in that table
evaluate to true.

PREV(Flight Phase) = Done

Flight Phase = Done

PREV(Flight Phase) = Takeoff

Flight Phase = Descent

PREV(Flight Phase) = Climb

Flight Phase = Descent

Flight Phase = Cruise

FCC Engaged Mode is
Altitude Hold Speed

FCC Engaged Mode is
Altitude Hold Idle Thrust

FCC Engaged Mode is
Altitude Hold Maximum Thrust

Climb FMS Speed Mode
is Max Climb

PREV(Engine Out) = Not Engaged

Engine Out = Engaged

FMS Mode is Lateral Only

Default

Flight Phase is Preflight

Flight Phase is Takeoff

Flight Phase is Climb

Requested FCC Speed Mode is
Edit CAS

Requested FCC Speed Mode
is Mach

Requested Climb Speed Mode
is Edit

Climb FMS Speed Mode
previously in Economy Mode

Cruise FMS Speed Mode
previously in Edit Mode

PREV(Flight Phase) =
Cruise

Descent FMS Speed Mode
previously in Edit Mode

Flight Phase
previously in Descent

Flight Phase
previously in Approach

Edit

Flight Phase is Preflight

Flight Phase is Takeoff

Flight Phase is Climb

Requested FCC Speed Mode
is Economy

Requested FCC Speed Mode
is AFS Speed

Requested Climb Speed Mode
is Economy

Economy Requested Climb FMS Speed Mode
is Max Climb

Max Climb

.

Requested Climb F

= Max Climb IF

Requested FCC Sp

Flight Phase = Pre

Flight Phase = Tak

Flight Phase = Clim

Requested FCC Sp

= Edit IF

Requested Climb F

PREV(Flight Phase

PREV(Climb FMS

PREV(Cruise FMS

PREV(Descent FM

PREV(Flight Phase

PREV(Flight Phase
Figure 3. Graphical specification for trigger conditions
MS Speed Mode = Max Climb T

eed Mode = Edit CAS

flight

eoff

b

T

T

*

*

T

*

T

*

eed Mode = Edit Mach * *

* *

T

*

*

T

*

*MS Speed Mode = Edit

) = Cruise * *

* *

*

*Speed Mode) = Economy Mode

 Speed Mode) = Edit Mode

S Speed Mode) = Edit Mode

) = Descent

) = Approach

*

*

*

*

*

*

*

*

*

*

* *

*

T

*

*

*

*

T

*

T T

* *

*

*

*

T

T

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

T

* *

T *

*

*

T

*

*

*

* T

* T

*

T

*

*

*

*

T

*

*

*

T

T

* *

*

*

*

T

*

*

*

T

*

T

T

*

*

*

T

*

*

*

*

T

*

T

*

T

*

*

*

T

*

*

*

T

*

T

*

T
Figure 4. Tabular specification for trigger conditions.

PREV(Flight Phase) = Done

Flight Phase = Done

PREV(Flight Phase) = Takeoff

Flight Phase = Descent

F

T

*

*

*

*

T

T

PREV(Flight Phase) = Climb * *

* *

= Default IF

*

*

*

*

T

TFlight Phase = Cruise

Climb FMS Speed Mode = Max Climb * *

* *

*

*FCC Engaged Mode = Altitude Hold Speed

FCC Engaged Mode = Altitude Hold Idle Thrust

FCC Engaged Mode = Altitude Hold Maximum Thrust

PREV(Engine Out) = Not Engaged

Engine Out = Engaged

FMS Mode = Lateral Only

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

T

*

*

*

*

T *

* *

*

*

*

*

*

*

* T

* T

T

*

*

*

*

*

*

*

*

*

T

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

T *

* *

*

*

*

T

*

*

*

*

*

T

*

*

*

T

*

*

T

Requested FCC Speed Mode = Economy

Flight Phase = Preflight

Flight Phase = Takeoff

Flight Phase = Climb

T

T

*

*

T

*

T

*

Requested FCC Speed Mode = AFS Speed * *

* *

= Economy IF

T

*

*

T

*

*Requested Climb Speed Mode

*

T

*

*

*

*

T

*

T T

* *

*

*

*

T

T

*

*

*

T

*

*

*

*

T

* *

T T

Figure 5. Tabular specification for trigger conditions

3.3.5 Condition experiment: Questions
The part of the experiment designed to test how the representation
of trigger conditions affects readability consisted of 18 objective
questions and 4 subjective questions, all shown here below. For
the first two objective questions the subject was allowed to use
any of the four specifications, thereafter four questions were
designated for each specification. Finally, an evaluation was
collected with four subjective questions.

(Any specification)
1. Describe two scenarios that would cause the Climb FMS Speed
Mode to be Edit.
2. Could the Climb FMS Speed Mode be Max Climb under the
following conditions?
 Engine Out is Engaged
 Requested Climb FMS Speed Mode = Economy
 Flight Phase transitions from Takeoff to Climb

 (Tabular specification only)
3. Which part of the specification specifies that the Climb FMS
Speed Mode will be the Default when the flight phase transitions
from Climb to Descent (label rows and columns in table)?
4. If the FCC Engaged Mode is Altitude Hold Speed, what
additional conditions are necessary in order for the Climb FMS
Speed Mode to be Default?
5. Could the Climb FMS Speed Mode be Default under the
following conditions?
 FMS Mode is Lateral Only
 Engine Out is Not Engaged
 Flight Phase is Cruise
 Economy is requested for the FCC Speed Mode

6. Suppose that in order for the Climb FMS Speed Mode to be
Edit, the FMS Mode must be Lateral-Vertical (this is in addition
to the existing requirements). What changes should be made to
the specification to reflect this behavior?

(Textual specification only)
7. Which part of the specification specifies that the Climb FMS
Speed Mode will be the Max Climb when the Max Climb is
requested (label lines in the specification)?
8. If the flight phase is Preflight, under what conditions will the
Climb FMS Speed Mode be Economy?
9. Under the following conditions,
 FMS Mode is Lateral-Vertical
 Engine Out transitions from Not Engaged to Engaged
 Flight Phase is Cruise
 Economy is requested for the Climb Speed Mode
 could the Climb FMS Speed Mode be Default? Economy?
10. Suppose we want to add a new mode for the Climb FMS
Speed Mode, called Flex. The Climb FMS Speed Mode will be
Flex if the FMS Mode is Lateral-Vertical, and the flight phase is
either Takeoff, Climb, or Cruise. What additions should be made
to the specification to reflect this behavior?

(AND/OR gate specification only)
11. Which part of the specification specifies that the Climb FMS
Speed Mode will be Default when the FMS Mode is Lateral Only
(label inputs/gates in the specification)?

12. If the flight phase transitions from Approach to Done, what
additional conditions are necessary in order for the Climb FMS
Speed Mode to be Default?
13. Could the Climb FMS Speed Mode be Edit under the
following conditions?
 there is no requested Climb FMS Speed mode
 Flight Phase is Preflight
 Economy is requested for the FCC Speed Mode
14. Suppose that in order for the Climb FMS Speed Mode to be
Edit, the FMS Mode must be Lateral-Vertical (this is in addition
to the existing requirements). What additions should be made to
the specification to reflect this behavior?

(Propositional logic specification only)
15. Which part of the specification specifies that the Climb FMS
Speed Mode will be Economy when the Requested FCC Speed
Mode is Economy and the Flight Phase is Preflight (label lines in
the specification)?
16. If Edit CAS is requested for the FCC Speed Mode, what must
the flight phase be in order for the Climb FMS Speed Mode to be
Edit?
17. Could the Climb FMS Speed Mode be Economy under the
following conditions?
 Requested for the FCC Speed Mode is AFS Speed
 FCC Engaged Mode is Altitude Hold Economy Thrust
 Flight Phase transitions from Descent to Cruise
18. Suppose we want to add a new mode for the Climb FMS
Speed Mode, called Endurance. The Climb FMS Speed Mode
will be Endurance if the FMS Mode is Lateral-Vertical, there is
no requested FCC Speed Mode, and the flight phase is either
Takeoff, Climb, or Cruise. What additions should be made to the
specification to reflect this behavior?

Conditional Evaluation
1. Rank the textual, tabular, graphical, and logical specification in
terms of readability.
2. Do your preferences change with respect to ease of editing?
3. Did you find that certain forms were good for certain tasks, or
were there specifications that you consistently found to be easy to
use in the experiment?
4. Do you consider it worthwhile to have several representations
available? If so, which ones?

The results of the conditions experiment can be found in the next
section.

4. RESULTS
There are two parts of the results analysisobjective and
subjective. The objective questions for all subjects were graded
by the same person to ensure consistency in the analysis.
Questions were graded as either correct, partially correct, or
incorrect. We did not refine the grading process any more than
this, as it did not seem likely that it would affect our conclusions.
This grading system is by no means ideal, however. A subject

may answer a question incorrectly, but the grader will not be able
to distinguish between the subject making a careless error versus
not understanding the specification. The only way to clear up this
ambiguity would be to talk with each subject about the thought
process involved in answering each question, which was not
feasible in this experiment
Another problem with this grading system is that although
subjects were encouraged to skip questions that required more
than ~90 seconds to answer, subjects often worked on a question
for several minutes due to the fact that there was no enforced time
limit. This situation is not reflected in our grading system. If a
subject worked on a problem for 5 minutes, but answered it
correctly, it would be recorded just as any correct answer.
The only major unanticipated problem we experienced with the
experiment was its duration. As discussed earlier, we took great
care to control the duration of the experiment and anticipated,
based on pretesting, that each subject would complete it in
roughly 2.5 hours. However, in practice subjects took between
2.75 and 4 hours. Subjects were offered short breaks (~10
minutes) after each of the 6 parts was completed to lessen
duration side effects.
Though performance time was not officially measured, it was
interesting to note that, in general, those with a computer science
background performed much faster than those with an aeronautics
background, but with comparable accuracy. Computer science
students finished in approximately 3 hours, and aeronautics
students in almost 4 hours. This observation was contrary to our
expectations. We expected that although aerospace engineers
were not likely to be familiar with state machines, they would be
familiar with the types of aerospace systems used. However, it
appears that familiarity with state machines is a much more
influential factor than is familiarity with the systems themselves.
This observation may help explain the lack of widespread
adoption of formal methods among aerospace industries
aerospace engineers are not accustomed to using such notations.
One of the computer scientist subjects later offered another
explanation for the difference in performance times. He said that
he enjoyed answering the questions because many reminded him
of computer science exams, where he was often asked to trace
through a system specification or to answer questions about a
system’s behavior given a specification. Aerospace engineering
students are rarely required to answer questions about system
specifications.
Representation of State Machines: We tested tabular, graphical,
and textual specifications. Subjects consistently performed well
on the objective questions. Most of the mistakes made by those
with a computer science background occurred when dealing with
the tabular specifications, whereas every aerospace student
answered these questions correctly. Using a two-tail t-test, we
were able to show a statistically significant difference between
the two groups in this respect. When given a choice of using any
of the specifications for two questions, every subject chose to use
the table for the first question and all but two chose to use the
table on the second (as an aside, only one subject answered the
second question incorrectly and this was one of the two who did
not use the table).
Subjects evaluated the graphical specification as useful for
obtaining a high-level understanding of the system, but said it
became cumbersome when asked to answer questions about the

triggers for transitions. Though easy to read, subjects (with two
exceptions) found the textual specifications very difficult to use.
According to subjective rankings, eleven of the 12 subjects found
either the graphical or the tabular representation to be the most
readable (with more preferring the tabular) in terms of usability in
answering questions about the specification, with only 1 subject
preferring to use the textual specification. This observation is
interesting given that most specifications used today are textual.
Conditions: We tested textual, graphical, tabular, and logical
expressions of trigger conditions. Subjects generally performed
very well on the objective portion of the conditions experiment,
with no discernable pattern existing among the types of questions
answered incorrectly. However, four subjects answered question
18 incorrectly, which asked them to edit the propositional logic
specification. These errors were mainly due to mismatched
parentheses and brackets, which of course is a difficulty
encountered when expressing complex triggers using
propositional logic.
As far as subjective rankings, nine of the 12 subjects found the
tabular specification (AND/OR Tables) to be the most readable,
followed by the textual, then graphical, and finally logical. Seven
of the twelve ranked the propositional logic specification as the
least readable. These rankings were consistent among computer
science and aerospace students. The rankings were slightly
different, however, with respect to ease of editing: Subjects on
average found the tabular specification to be the easiest to edit,
followed by the graphical, textual, and logical. We found it
surprising that every computer science student commented on the
difficulty of using the graphical specification, while feelings
about it were mixed for the aerospace students.
Based on both objective and subjective evaluations, the tabular
representation of transition conditions appears to be the most
readable of those tested, while the propositional logic notation
was the least readable when used to express complex behavior.
Macros: Results at first seemed to imply that macros were not
conducive to readability. Subjects were given their choice of
specifications to answer two questions, and 11 of the 12 subjects
chose to use the flat specification. Furthermore, only 5 of the 12
subjects ranked the macros specification as the more readable.
However, 11 subjects ranked the macros specification as the
easier of the two to edit.
In the subjective feedback, subjects consistently felt that macros
were beneficial when specifying complex systems, leading to less
cluttered and more compact logical expressions. They also noted
that macros assist in reuse and that with proper naming
conventions, they could make logical expressions easy to read.
However, subjects also commented that macros often made it
difficult to navigate complex specifications, requiring lots of
page flipping to understand how a particular input affects system
behavior. This effort lead to a loss of continuity when reading the
specification.
Based on these results, subject interviews, and our experiences
with much larger specifications than used in this experiment, it
appears that macros are useful when writing a specification, but
that they can become difficult to navigate when reading a large
specification. Prohibiting nested macros may be a compromise for
this situation. However, using macros in an automated
environment may alleviate much of the difficulty encountered

using macros in this experiment. Navigation could be simplified
using automated hyperlinks or even made unnecessary by the
automatic expansion of a macro in place.
Internally Broadcast Events: Results regarding the readability
of internal events were inconclusive. Seven of the twelve subjects
ranked the events specification as more readable. However,
difficulty in editing the specifications with events was clear: ten
of the twelve found it easier to modify the eventless specification
and eleven of the twelve subjects were unable to edit the events
specification correctly. This latter result supports our experience
with TCAS II and the errors we and our reviewers made. Size
and complexity of the specification may be a critical factor here.
We note also that although in general the subjects asked few
questions during the experiment, a few needed additional
explanation regarding the use of internal events, again validating
our experiences with TCAS of the difficulty new users may have
with internal events.
Hierarchies: All 12 subjects agreed that a hierarchical
specification is easier to read than a flat specification and that
hierarchical abstractions are absolutely necessary to specify
complex systems. However, it is extremely interesting that half
of the subjects unknowingly made errors reading the hierarchical
specifications, errors that were not made when reading the
equivalent flat specification. These results also coincide with our
experience and point to the need for careful language design to
reduce errors in reading hierarchical specifications.
Perspective: Seven subjects felt that the going-to and coming-
from perspectives were interchangeable, and nine subjects
responded that it is better to become accustomed to one
perspective rather than be provided with both, despite the fact that
certain questions were clearly easier to answer using one
perspective over the other. However, our results suggest that
subjects may actually prefer access to both perspectives in an
automated environment.

5. CONCLUSIONS
As an assessment of formal specification readability, these results
are preliminary. We would ultimately like to run more extensive
experiments focusing on two or three of these features. Based on
our results, we will likely focus on conditions, macros and
internal events. Complex conditions seem to be more readable
when expressed in a table, but we would like to test this with a
statistically significant number of subjects before claiming it as a
conclusion.
The macros portion of our experiment was inconclusive regarding
their effect on readability. Though they seem to be extremely
useful when writing and editing specifications, there seems to be
difficulty reading specifications with macros, which we would
like to address in future work. Specifically, we would like to
investigate how various levels of modularization (i.e. nested
macros) affect a specification's readability. Macros also are one
feature whose utility is dependent on the size of the specification.
We would like to investigate how macros can affect the
readability of large-scale system specifications.
Future work will also likely address the use of internal events.
Again, while most subjects found it easier to edit an eventless
specification, feelings were mixed regarding whether it is easier
to read an eventless specification. The TCAS experience found
that reading large specifications was impeded by internal events.

We would like to empirically evaluate this claim by extensively
testing the readability of large specifications with internal events.
We are not planning to investigate the readability of hierarchies or
perspective in future work. Our results, as well as previous
experience, show that hierarchical abstractions are essential if
formal methods are to scale, so we do not feel that any insight
would come from further experimentation. We have learned,
however, that the semantics of the notations describing these
hierarchies need to be carefully defined. Perspective does not
appear to be a significant factor affecting readability, and so it
does not seem worthwhile to investigate further.
The most important issue that will be addressed in future work is
readability of large-scale system specifications. Scalability is one
of the largest obstacles facing the adoption of formal methods and
was not adequately addressed in this experiment. For example,
we tested the readability of a flat specification. While some
subjects found a flat specification easy to read when describing a
state machine with ten states, it is clearly inappropriate when
describing a state machine with 1030 states.
If through experimentation we can determine which notations and
features are conducive to making large system specifications
readable, we should be able to use this information to design more
readable and reviewable state-based requirements specification
languages.

6. REFERENCES
[1] Brooks, R. Studying Programmer Behavior

Experimentally: The Problems of Proper
Methodology. Communications of the ACM. vol 23,
no. 4, April 1980. pp. 207-14.

[2] Finney, K., Fenton, N., and Fedorec, A. Effects of
Structure on the Comprehensibility of Formal
Specifications. IEE Proceedings - Software. vol 146,
no. 4, August 1999. pp. 193-202.

[3] Fitter, M. and Green, T.R. When Do Diagrams Make
Good Computer Languages? International Journal of
Man-Machine Studies. vol. 11, 1979. pp. 235-261.

[4] Harel, D, et.al. Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Programming
8. Elsevier Science Publishers B. V., North Holland.
1987. pp. 231-274.

[5] Heimdahl, M., Leveson, N., and Reese, J. Experiences
From Specifying the TCASII Requirements Using
RSML. Proceedings of the 17th Digital Avionics
Systems Conference, November 1998.

[6] Heitmeyer, C., Jeffords, R., and Labaw, B. Automated
Consistency Checking of Requirements Specifications.
ACM Transactions on Software Engineering and
Methodology, vol 5, no 3, July, 1996. pp. 231-261.

[7] Leveson, N. Completeness in Formal Specification
Language Design for Process Control Systems.
Proceedings of Formal Methods in Software Practice
Conference, August 2000.

[8] Sherry, L., Youssefi, D., and Hynes, C. A Formalism
for the Specification of Operationally Embedded
Reactive Avionic Systems. HSR FD G&C Task 4 -
VMS Structure Development. Honeywell, October
1995.

[9] Zimmerman, Marc. Investigation the Readability of
Formal Specification Languages. M.Sc. thesis,
Massachusetts Institute of Technology, May, 2001.

[10] Zimmerman, M., Rodriguez, M., Ingram, B., Katahira,
M., de Villepin, M., and Leveson, N. Making Formal
Methods Practical. Proceedings of the 19th Digitial
Avionics Systems Conference. October 2000.

	INTRODUCTION
	BACKGROUND
	Overall State Machine Structure
	Internal Events
	Transitions

	GENERAL EXPERIMENTAL DESIGN
	Question Design
	Materials Used
	Evaluating Readability of Conditions
	Textual notation
	Logical notation
	Graphical notation
	Tabular notation
	Condition experiment: Questions

	RESULTS
	CONCLUSIONS
	REFERENCES

