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Abstract 
A limiting factor in the industrial acceptance of formal 
specifications is their readability, particularly for large, 
complex engineering systems. We hypothesize that 
multiple visualizations generated from a common model 
will improve the requirements creation, reviewing and 
understanding process.  Visual representations, when 
effective, provide cognitive support by highlighting the 
most relevant interactions and aspects of a specification 
for a particular use.  In this paper, we propose a 
taxonomy and some preliminary principles for designing 
visual representations of formal  specifications.  The 
taxonomy and principles are illustrated by sample 
visualizations we created while trying to understand a 
formal specification of the MD-11 Flight Management 
System. 
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1. Introduction 
 
Formal specification languages have not been widely used 
in industry.  One limiting factor is their readability,  
particularly for large, complex software systems.  
Requirements act as a communication medium between 
customers, users, and implementers.  Promoting a 
common understanding of the required functionality of 
the system is key to domain experts finding errors and 
validating that the specifications describe a system that 
will be useful and safe in operation.   

Reviewability is especially important in real-time 
software used to control some physical system where the 
requirements must reflect externally derived properties of 
the system being controlled.  Validating software 
behavioral requirements in such systems is a necessarily 
multidisciplinary problem involving a large number of 
engineering disciplines.  While automated analysis tools 
can find some types of errors, detecting many of the most 
serious semantic errors  (e.g., will the software advance 
the throttle under unsafe conditions or will the software 
behavior lead to human errors in controlling the aircraft) 
requires human expertise. 

Size is a critical factor in reviewability.  The discrete 
mode logic for an aircraft flight management system may 
require hundreds (sometimes thousands) of pages of 
formal logic to specify in adequate detail.  The review of 
such specifications by domain experts or even by those 
who are expert in the formal notation itself is a daunting 
task. 

Our experience in trying to build and read very large 
specifications for systems such as flight management, 
collision avoidance, and air traffic control has shown that 
even with a formal notation designed with readability in 
mind, the complexity of the behavior being described 
overwhelms the reader.  Not only is it difficult to provide 
notations that can be reviewed by people with different 
backgrounds and expertise, but for complex systems, 
most users (even the authors of the specification) need 
help in navigating and understanding them. 

Visualization is often seen as a way to help people gain 
insight from large and complex data sets.  Indeed, people 
have used external aids for centuries to amplify cognition 
(e.g. paper, slide rule, diagrams, charts) [CM00].  We 
believe that the use of computer supported, interactive, 
visual representations of requirements specifications will 
help engineers create, review and understand formal 
specifications.  Although graphical notations are often 
used for presenting formal specifications, we describe 
how more sophisticated interactive techniques can help 
users navigate and comprehend the specifications.    

Unfortunately, there are few principles to follow when 
designing interactive or even non-interactive graphical 
and symbolic notations for formal software requirements 
specifications or for visualizations of these specifications.  
This paper provides some foundational ideas upon which 
further research could be based.  The principles were 
derived by considering principles developed for other 
types of software visualization (such as visual 
programming and program comprehension tools) as well 
as from our own experiences in creating specification 
languages, in building large complex requirements 
specifications, and in conducting experiments on 
specification language design [ZLL02] and on 
visualization [SWF96]. The resulting set of design 
principles can be used to guide the design of new 



 

languages and visualization tools and to assist in critically 
evaluating them. 

We illustrate the taxonomy and  principles using an 
example specification of the annunciation process of the 
vertical guidance module of the MD-11 Flight 
Management System.  Vertical guidance is usually the 
most complex function in a FMS, and our complete 
formal SpecTRM-RL [Lev00b] specification of the FMS 
logic is over 500 pages long. The principles and examples 
presented in this paper derive from the attempts to 
understand this system by graduate students who had not 
written it (and even by those who had).    

2. Background and related research 

Research into the impact of visualizations (diagrams) on 
cognition was pioneered by Larkin and Simon [LS87].  
Their work has become the foundation of most of today's 
research efforts on this topic.  Although there is a large 
literature on visualization, the majority of it involves 
visualization of data, usually scientific data, and not 
visualization of systems or processes. 

The way that information is displayed can facilitate or 
distract from learning and understanding.  Effective 
visualizations will help convey meaning and explain 
concepts or designs.  Visualizations of complex 
requirements specifications can potentially reduce 
cognitive load by highlighting the relevant interactions 
and behavior of the specified system. 

There are many ways that representations can affect and 
alter task performance. They can draw attention to certain 
aspects of the information that support problem solving. 
Good representations can also shift the cognitive load – 
balancing the use of mental resources, shifting attention, 
and creating perceptual cues.  Likewise, poor 
representations create additional tasks or make the tasks 
more difficult to perform.  Casner and Larkin [CL89] 
have suggested that good representations reduce the 
amount of cognitive processing in two ways:  (1) they 
allow users to substitute less demanding visual operators 
for more complex logical operators, and (2) they reduce 
the search time for the information required to perform a 
task. 

There has been a lot of research in visual programming 
languages and on visualizations to support program 
comprehension.  Fitter and Green [FG79] elucidated five 
principles for effective visualization design that are 
potentially applicable to formal specifications.  For 
example, the most usable notations contain both symbolic 
and perceptual elements.  In some cases they are 
independent and in others they are logically redundant.  
An example is the use of indenting and other special cues 
to make programs more legible or the use of layout 

conventions by mathematicians to make algebra and 
predicate calculus more readable.  These perceptual cues 
have been called secondary notation, i.e., they  convey 
additional meaning above and beyond the “official 
semantics”  of the specification language or they 
disambiguate syntactic structure in order to assist in 
interpreting semantics. 

Another useful principle from programming language 
design research is that of using redundant recoding 
[FG79]. An example is specifying the same information 
in two different ways, each of which simplifies different 
cognitive tasks. Redundant recoding may also be used to 
emphasize certain information.  For example, when a 
piece of information is especially important to a user's 
task, or if it is highly critical to the overall structure of the 
information, it is helpful to present a high level view in a 
perceptual form, while simultaneously presenting the 
intricate details in symbolic notation.   

Blackwell et al. [BWG99] and Petre [Pet95] have 
proposed some cognitive dimensions for visual language 
design.  Example dimensions are closeness of mapping, 
consistency, and visibility.   Storey et al. developed a 
cognitive framework of design elements to be considered 
during the design of a software visualization tool 
[SFM99].  This framework contains two sets of factors to 
support the variety of comprehension strategies used by 
programmers during software exploration and to reduce 
cognitive overhead as they explore and try to understand 
the software.   

Some of the research on human-computer interaction is 
also applicable to our problem.  Designers of interfaces, 
like those of requirements specifications, need to select 
the appropriate level of abstraction, determine how to 
show relationships, provide context for the individual bits 
of information, and build conceptual spaces using frames 
of reference [RW95]. 

In this paper we create a taxonomy for visualizations of 
formal requirements specifications and propose a 
preliminary set of principles for creating effective 
visualizations of formal requirements specifications.  The 
principles are adapted from what has been learned in 
visual programming language and human-machine 
interface design, but we have found that effective 
visualizations to assist in designing a solution to a 
problem (e.g., programming or manipulating a computer 
interface to command a desired behavior) are very 
different than those useful for specifying the problem.  In 
other words, describing “how”  differs significantly from 
describing “what” .  As a result, we cannot simply apply 
the same principles and research results.  Instead, our first 
goal is to create an initial framework and some potential 
hypotheses upon which research in requirements 



 

visualization can be based. The hypotheses will then need 
to be validated using experimentation with human 
subjects. 

The next section presents a set of dimensions upon which 
requirements visualizations can be evaluated and sample 
visualizations created using the MD-11 Flight 
Management System (FMS) specification.  Drawing both 
on principles for visualizations in other fields and on what 
we learned in our MD-11 case study, Section 4 presents 
some principles for evaluating visualizations for formal 
requirements specifications.  Section 5 concludes the 
paper and outlines future work. 

3. A taxonomy of visualizations for  formal 
requirements specifications 
 
We start by presenting a taxonomy or set of six 
dimensions upon which visualizations can be classified: 
 
1. Scope 

The visualization may focus on the structure of the 
model or the goal may be to visualize the behavior 
of the specified system. 

2. Content 
 The visualization may include the entire model, 

perhaps using a different notation (e.g., symbolic, 
tabular, or graphical), or information may be elided. 
Elision is the ability to temporarily hide parts of the 
specification that are not of immediate interest.  
When information is elided, it may still be useful to 
retain some of the omitted information as context, 
but it is grayed out or somehow denoted as 
background rather than foreground.  Alternatively, 
the visualization may not provide context beyond 
the information provided in the visualization itself. 

3. Selection Strategy 
The visualization may be created through slicing the 
basic formal model, i.e., a selection based on 
dependences between the parts of the model or by 
filtering, i.e., eliding parts of the model based on a 
common property or attribute. 

4. Annotation Support 
The visualization may include only information 
provided in the original specification or the user 
may be able to add extra domain knowledge through 
annotation. 

5. Support for Alternative Search Strategies (Flexibility) 
A visualization may be provided that supports a 
particular search or problem-solving strategy 
without any options for the user.  Alternatively, the 
user may be able to specify the search strategy to be 
supported by the visualization.  A third option is to 
provide interactive visualizations where the user can 

change the search strategy while navigating through 
the model. 

6. Static/Dynamic 
A static visualization is a snapshot of the specified 
behavior of the system at a particular time or a static 
description of all possible behavior.  Dynamic 
visualizations or animations show the specified 
behavior of the system as it changes over time. 
 

Any specific visualization can be categorized with respect 
to each of these dimensions.  For example, an animation 
or dynamic visualization may highlight particular aspects 
of the behavior, which is a form of elision that retains 
context (i.e., separates the visualization into 
foreground/background in order to draw the reviewers 
attention to particular parts of the behavior) or it may 
completely omit parts of the specified “machine” .   

 
Figures 1 through 6 show some example visualizations 
created for a formal specification of the MD-11 FMS. 
Two of us (Dulac and Viguier) inherited this SpecTRM-
RL specification written by former students of Leveson.  
Dulac and Viguier created several visualizations to help in 
understanding this large and complex system.    
 
A state machine model is used in these examples because 
we have found this type of formal model easiest for 
engineers to use for these types of control systems.  
Different underlying models may be more appropriate for 
other applications, e.g., models based on set theory may 
well be the best for representing information systems. The 
same types of visualization dimensions (and the principles 
presented in the next section) should apply to these other 
types of formal specification languages, but the form of 
appropriate visualizations may differ. 
 
Figure 1 shows a visualization created to help understand 
the many dependencies between the parts of the 
specification. In terms of scope, this visualization 
represents only a small part of the functionality of the 
FMS (the mode annunciation of the vertical guidance 
module) but it depicts all the dependencies for that 
subfunction.  In this representation, the arrows represent 
dependency relationships; an arrow pointing from A to B, 
for example, means that the value of element B depends 
directly on the value of element A.  As can be seen in 
Figure 1, there is a high degree of coupling between the 
elements of the system.  Although the details are hard to 
see (the user would have to zoom in to read them), this 
picture provides a “gestalt”  overview of the size and 
complexity of the specification structure.  The 
visualization also supports different ways to navigate 
through the specification by following dependencies and 
viewing detail if desired. 
 



 

With respect to the classification presented above, the 
visualization in Figure 1 shows a static snapshot of the 
structure (rather than the behavior) of a subfunction.  The 
entire dependency structure is shown, but it represents 
only a small part of the specification.  It has not been 
annotated with additional information, and the user can 
search by following dependencies and zoom in to view 
further details.   
 
Figure 2 shows an example of a further slicing on the 
dependency relationships that were shown in Figure 1.  In 
this case, the slice is constructed by displaying only the 
input-to-output paths going through a selected element.  
The element chosen for Figure 2 is the state variable FMA 
Speed Magenta-White discrete.  All the elements that 
have no effect on the value or that are not affected by the 
value of the selected element are hidden.  The fact that 
details have been elided is indicated by the light gray 
input-output-mappings shown on the right hand side of 
the visualization.  This perceptual cue serves to remind 
the user that details have been hidden from the view and 
also provides some context for the visible parts. 
 
Figure 3 provides a different type of overview: all the 
state variables and the modes in the specification.  This 
overview spans the entire specification, but provides no 
information about dependencies.  In this visualization, all 
details about transition conditions are elided based on 
filtering rather than slicing.   The filtering here is done by 
type but other kinds of filtering are possible. 
 
Figure 4 is an example of a visualization in which the 
information in the original specification language is 
redundantly recoded to assist in answering different types 
of questions.  Like many of the modern specification 
languages utilizing state machines, SpecTRM-RL uses a 
metalanguage to describe the states and transitions---
writing down the entire state machine would be infeasible 
for complex systems (our model of an aircraft collision 
avoidance system has 1040 states).  Users of such 
specifications, however, find it very helpful if they can 
see at least part of the flattened state machine (diagram of 
states and transitions using the traditional circles and 
arrows).  Figure 4a shows an example for the state 
variable Vertical Cruise Sequence.  Clicking on one of the 
arrows displays the corresponding transition condition 
(which for the most part are too large to write on the 
arrows themselves).   
 
The information in this visualization is the same as that in 
the original notation, but recoded to make it easier for the 
user to process.  Note, however, the difference in scope 
from Figure 1, which focuses on the structure of the 
model.  Figure 4 instead provides information about the 
behavior described by the specification. 

 
Figure 4b shows a recoding of the same information in a 
form more suitable to answer a different type of question. 
This visualization is essentially the inverse of 4a, i.e., the 
impossible transitions.  For many real systems, every state 
is connected to almost every other state, and providing 
information about the transitions that do not exist is more 
relevant.  In addition, this visualization is useful in 
checking whether undesired transitions have been 
correctly omitted from the specified behavior. 
 
The final two visualization examples were created to help 
us understand the logic behind the most complex 
transitions in the part of the MD-11 specification being 
considered.  We found that it was easier to answer 
particular questions if the set of conditions in the 
transitions (which can be very large) are shown in 
sequence rather than in parallel.  A decision tree for each 
state variable seemed most natural for us to accomplish 
this goal.  Each node of the decision tree is a question and 
each branch is a decision (see Figure 5). 
 
From left to right in Figure 5, each column represents one 
of the decisions that must be made to determine whether 
the transition will be taken, based on the state or value of 
the component of the model shown at the top of the 
column.  The final states to which transitions can be made 
appear at the right end of each path.   
 
Although this basic recoding does not by itself bring 
much insight compared to the original AND/OR tables 
from which it was generated, we found that adding 
annotations or informal questions at the top of each 
column was very useful.  The annotations helped the users 
of the visualization to understand the reasoning involved 
in the decisions underlying the contents of the transition 
conditions.  This tree is equivalent to five pages of text 
and six AND/OR tables.  Showing the information 
together in one concise notation helped us to see 
similarities and differences (that is, to make comparisons) 
and to detect omissions.   
 
Another important issue is the ordering of the questions 
(nodes in the tree).  Although algorithms exist to 
minimize the size of the tree, the resulting ordering may 
interfere with the cognitive processing of the information 
in the tree.  For example, it may be important to answer 
one question before another because it is the most 
important for a certain task or for answering specific 
questions about the specification of the state transitions.  
Thus, the user should be able to specify the ordering or to 
change it dynamically.  The latter is an example of 
dimension 5 above labeled Supporting Alternative 
Problem Solving Strategies. 
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Decelerate or to
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Descent/Approach
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Speed an Airspeed
or a Mach?
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(A hysteresis effect is taken into
account for transitioning back to
"None".)

Operational
Procedure
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Segment Speed Type
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Segment Thrust Type
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(INPUT) (INPUT)
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Descent Path
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Descent Path
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Will Violate

Will Not Violate

(INPUT)

Next Downpath
Altitude Constraint

Violation Status

(INPUT)

Descent

IRS Flight Path
Acceleration

(INPUT) (INPUT) (INPUT)

ADC CAS ADC Mach
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Decel
(Decelerate)
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any other value
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Descent
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(no)
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"Remove
Drag"
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Remove Drag

Idle

Remove Drag
Remove Drag
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Descent
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any other value
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> delta + 0.015
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> -0.01 g
(no)

< -0.01 g
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(yes)
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(no)
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(no)
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Idle

Idle

Idle
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Idle
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This visualization becomes particularly interesting when 
combined with Heimdahl and Whalen’s behavioral 
specification slicing [HW97].  In many cases, applying a 
selection strategy dramatically reduces the size of the tree. 
Figure 6 shows an example of this recoding into a 
decision tree using annotation and slicing. 
 
The visualization might also maintain context information 
by providing perceptual cues where some of the 
information is foreground while the rest is context.  
Figure 6 shows a slice on the question of what happens 
when the aircraft is above its normal trajectory.  The 
column involved is darkened and the many branches of 
the tree that are now inaccessible are grayed out and 
compressed.  Questions that become irrelevant are also 
moved to the background shading.  Thus the context is 
preserved while the focus is put on the paths that are still 
possible under the given scenario.  
 
4. Pr inciples for  evaluating requirements 
visualizations 
 
Not all visualizations are useful – sometimes they may 
even be misleading.  We need criteria for evaluating 
potential visualizations and for creating effective ones. 
We adapted principles from visual programming and 
human-computer interaction research, and added some 
others based on our experiences and previous 
experiments.  Of course, these principles will have to be 
evaluated formally, but they can serve as a starting place. 
 
1)  Minimize semantic distance  
 
Semantic distance is a concept devised for human-
computer interface design to describe the distance 
between the user’s model of how the system works and 
the model of the system presented by the user interface 
[HHN86]. In the context of visualizing formal 
specifications, semantic distance is the distance between 
the model in the system specification and the mental 
model of the system in the mind of the users of the 
specification.  We hypothesize that readability, 
reviewability, and writeability will be enhanced if 
visualizations are provided that minimize semantic 
distance.  Leveson has found informally that reducing the 
semantic distance between standard engineering models 
of complex systems and formal specification notations 
can increase acceptability and usability of formal 
specification languages among people in industry who 
previously rejected out of hand the use of such 
specification languages. As an example, the formal model 
of TCAS II (a collision avoidance system for commercial 
aircraft), written with Leveson’s modeling language, has 
become the official specification of this system [Lev00a]. 
 

In our experiment on readability of various notational 
features, we compared the specification of the conditions 
on state transitions using text, tables, graphical logic 
gates, and propositional logic.  Every computer science 
student in the experiment commented on the difficulty of 
using the logic gate notation while the engineering 
students were mixed [ZLL02].  But similarity to standard 
notations is not the only relevant criterion, as every 
participant in the experiment preferred the tables and 
made the fewest errors in using them.  The propositional 
logic notation ranked at the bottom for both of these 
criteria.  These results confirm our industrial experiences. 
 
2)  Match the task being performed   
 
Gilmore and Green's basic match/mismatch hypothesis 
states that problem-solving performance depends on 
whether the structure of a problem is matched by the 
structure of a notation [Gre77].  Applying this hypothesis 
to visualization implies that the most effective 
visualizations of requirements specifications will be those 
that most closely match the problem being solved or task 
of the specification user. The goal is to match the task to 
be performed with a visualization that minimizes the 
amount of cognitive processing required to perform the 
task. 
 
3)  Support the most difficult mental tasks [FG79] 
 
Some tasks that use formal specifications will be more 
difficult than others in terms of the number and difficulty 
of the cognitive processing necessary to perform those 
tasks.  The most useful visualizations in this context will 
obviously support the hardest tasks and not simply those 
that are easiest to create or are appealing to the 
visualization tool builder. This principle implies that the 
first step in creating useful visualizations is to determine 
who the users will be, to perform a task analysis of their 
potential uses of the visualization, and to analyze the 
difficulty of performing the task without a special 
visualization of the formal model.  
 
4)  Highlight hidden dependencies and provide context 
when needed [GB98] 
 
Any notation makes some dependencies clear while 
obscuring others.  These hidden dependencies may or 
may not be important in performing a particular task.  If 
the dependencies are relevant to a user, then 
visualizations should be provided that perceptually 
highlight those dependencies.  For example, some formal 
specification languages based on state machines organize 
the specification in such a way that it is easy to determine 
the previous states but not the potential states that follow 
the current state and vice versa.  A good representation 



 

will in general point out dependencies or show causal 
relationships between different automation behaviors. In 
addition, if only one small part of a specification is being 
displayed, then context for the rest of the specification 
may have to be provided (if the context is required for the 
task at hand). 
   
5) Support top-down review  

 
Graphical overviews of the entire specification can be 
very powerful.  During the periodic reviews by domain 
experts of a formal specification of a collision avoidance 
system Leveson provided for the FAA,  the reviewers 
would spend hours reviewing and discussing the graphical 
overview of the state variables and state values used in the 
specification without referring to any information about 
the conditions under which the state values were selected 
(the conditions on the transitions between the states), 
which were not visible in the graphical overview.  They 
preferred starting the review using that overview before 
delving down into the details of the transitions even 
though all the information in the overview could be 
deduced from the structure and content of the rest of the 
specification.  This is an example of the gestalt effect in 
cognitive psychology in which providing an overview 
makes overall structure or relationships visible or clearer 
[Pet95].   
 
6)  Support alternative problem-solving strategies 
 
A principle of cognitive psychology is that the reasoning 
paradigm is distinct from the representation paradigm.  
"The cost of reasoning about a particular representation 
may vary, depending on how the programmer's reasoning 
shifts" [BWG99]. Therefore, the representation may need 
to change as the user’s reasoning process shifts. In 
addition, different people will employ different problem-
solving strategies for the same problem.  Experts are more 
likely than novices to change strategies while problem 
solving and to exhibit flexibility in their strategies [Pet95, 
SWF96]. Supporting expert use of formal requirements 
specifications with visualization will require supporting 
flexible search strategies and the ability to navigate 
between abstract and detailed views, as well as within 
detailed views. This principle emphasizes the fact that 
there will not be a fixed set of visualizations that are best 
for all people solving the same problem or performing the 
same tasks. 
 
7)  Show roles being played 
 
Visualizations should provide insight into the role being 
played by a specific part of the specification.  As an 
example, consider the use of modes in control system 
requirements specifications such as those used in 
SpecTRM-RL [Lev00b]. 

 
Modes are a common way of abstracting and grouping 
important subsets of behaviors of the overall system 
behavior in control systems1. That is, modes divide the 
overall system behavior into a set of disjoint behaviors, 
e.g., the behavior of the flight management system during 
landing mode or cruise mode.  Modes are useful in 
simplifying (reducing) the amount of specified behavior 
that must be considered at any time.  If there are multiple 
independent mode classes, the system behavior may be 
described in terms of the cross product of the individual 
mode values.  Basically modes allow us to divide the 
behavior of the system into non-overlapping chunks that 
are easier to process cognitively.  Multiple modes allow 
chunking on different dimensions.  Visualizations for 
control system requirements specifications should allow 
identifying and highlighting the role of each mode in the 
overall system behavior being described and the role 
played by each of the components of the specification in a 
particular mode.  Similar advantages accrue to expressing 
other important roles in requirements specifications. 
 
8) Provide redundant encoding 
 
Any representation makes some questions easier to 
answer while making others harder [FG79].  For example, 
a list or table showing classes taught, time, and professor 
that is ordered by class number will make it easy to 
answer questions about who is teaching a particular class, 
but much more difficult to answer a question about which 
classes a particular professor is teaching.  A different 
ordering will make the latter question easier to answer 
than the former.  By providing redundant but different 
encoding of the same information about the required 
behavior of the software, support can be provided for a 
variety of user tasks.  
 
9) Show side effects of changes 
 
Visualizations should allow investigating the impact of a 
change in one part of a specification on other parts 
(showing the indirect effects of changes).   
 
5.  Discussion and future work 
 
The principles above have been adapted from other fields 
or introduced on the basis of our specification experience. 
They should not be considered as a rigid and exhaustive 
set of rules but as a starting point.  They will need to be 
refined and evaluated against a variety of visualizations. 

                                                           
1 Some designers of state-based software specification languages have 
used the term “mode”  as a synonym for state; therefore all states are 
modes.  We instead use the term mode in the engineering sense and as 
originally defined by Ashby in systems theory [Ash56] 
 



 

Although the visualizations described in the previous 
section were useful in understanding the MD-11 
specification, this anecdotal evidence does not prove their 
usefulness to a broad class of users and specifications. We 
are designing experiments with human subjects to 
validate the application of the principles to formal        
specifications.   

 
Four of the visualizations presented in this paper have 
already been partially evaluated through a limited pilot 
user study. Although this evaluation was not specifically 
focused on the principles of the previous section, the 
purpose was to assess the hypotheses upon which the 
design of the visualizations was based.  This pilot study 
will serve as a starting point for a more formal evaluation 
of the principles. 
 
A longer term research goal is to investigate how the use 
of visualizations can assist in the synthesis of formal 
specifications, not just understanding those that have 
already been created.  A third goal involves the use of 
specifications in training those about a system design 
(such as training air traffic controllers or pilots to interact 
with and use advanced automation effectively).  In 
training,  the goal is to provide visualizations that help 
users create accurate and useful mental models of the 
designed system behavior.  Research will be required to 
effectively achieve these goals. 
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