Final Report:

A DEMONSTRATION SAFETY ANALYSIS
OF

AIR TRAFFIC CONTROL SOFTWARE

Project Manager:
Prof. Nancy Leveson

Participants:
Prof. Earl Hunt (Psych), UW Liliana Alfaro (IE), UW
Prof. Matt Jaffe (CS), ERAU Christine Alvarado (CS), Dartmouth
Dr. Susan Joslyn (Psych), UW Molly Brown (CS), UW
Prof. Nancy Leveson (CS), UW Denise Pinnel (CS), UW
Dr. Jon Reese (CS), UW Jeffrey Samarziya (CS), UW
Prof. Alan Shaw (CS), UW Sean Sandys (CS), UW

Prof. Zelda Zabinsky (IE), UW Michael Shafer (CS), UW

© Copyright by the authors (Leveson, Sandys, Pinnel, Brown, Joslyn, Alfaro, Zabinsky
and Shaw), September 1997. All rights reserved. Copying without fee is permitted pro-
vided that the copies are not made or distributed for direct commercial advantage and
provided that credit to the source is given. Abstracting with credit is permitted.

Preface and Acknowledgments

This report describes the results of a NASA contract to demonstrate our approach
to safety analysis on a research version of the Center-TRACON Automation System at
Dallas/Ft. Worth. A project of this magnitude and scope requires a multidisciplinary
group contributing in varied ways. This is particularly true considering the short time
frame of the project: The contract lasted six months although much of the detailed infor-
mation about CTAS (for example, the system specification) was available only in the last
six weeks. Because of the lack of detailed information about CTAS, this report should not
be construed as saying anything about the safety of the current CTAS software.

We would like to acknowledge the following contributors to this project: Nancy Leveson
was project manager and put the final report together. Sean Sandys built the SpecTRM-
RL model with help from Michael Shafer and Jon Reese. Molly Brown created the task
modeling language and the example handoff procedure with inputs from Nancy Leveson,
Jon Reese, and members of the Flight Human Factors Research Group (led by Dr. Everett
Palmer) at NASA Ames. The animations and visualizations were the product of Denise
Pinnel and Christine Alvarado using a tool designed and implemented by Denise Pinnel.
Alan Shaw examined the CTAS specification for timing issues. The preliminary hazard
analysis and fault tree were done by Nancy Leveson with assistance from Matt Jaffe and
Jeffrey Samarziya. The automated analyses were run by a team including Sean Sandys, Jon
Reese, and Denise Pinnel. Nancy Leveson wrote the sections on mode-confusion analysis
and intent specifications. Susan Joslyn conducted the human factors analyses with the
assistance of Earl Hunt and input from Prof. Judy Ramey and Shuichi Koga. Liliana
Alfaro and Zelda Zabinsky performed the operations research modeling and analyses. In
addition, everyone provided input during project review meetings. We would also like to
thank Prof. Earll Murman from the MIT Aero/Astro Dept. who attended the project
meetings while on sabbatical at the University of Washington and provided useful advice.

This work was partially supported by grants from NASA Langley and NASA Ames.

Contents

1

2

Problem and Approach

Standard Safety Analyses

Preliminary Hazard Analysis
Fault Tree Analysis
Safety-Related ATC Requirements and Design Constraints
Hazard Analysis Techniques
System and Subsystem Hazard Analysis

2.1
2.2
2.3
24

24.1
2.4.2

Models . . .

2.4.3 Search Techniques

Formal Model
3.1 The SpecTRM-RL Modeling Language
3.2 The DFW TRACON Model
Overview of CTAS
What We Modeled oL
The FAST Model,
Models of the Other System Components
Putting the Models Together
Handling Adaptation Data, STARS, etc.
Ease of Incorporating and Analyzing Additional Upgrades and Sys-

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

tem Changes

Controller Task Analysis
Controller Task Modeling Language
4.2 Modeling Tasks Using SpecTRM-RL

4.1

Completeness and Consistency Analysis

5.1 General Completeness Criteria
5.2 Timing Constraints
General Function and M&C Requirements
5.2.2 FAST Functions

2.2.1

5.2.3

TMC-GUT .

Simulation and Animation

6.1 Visualizations and SpecTRM-RL
6.2 Pseudo PVD. . ..
6.3 State Machine Modelo
6.4 Transition Tables .

State Machine Hazard Analysis

ii

11
14
15
17
18
19

22
22
30
30
31
32
37
37
37

37

40
40
44

49
49
52
52
95
95

56
o7
o7
99
60

63

8 Deviation Analysis and FMECA

9 Mode Confusion Analysis

9.1
9.2
9.3
9.4
9.5
9.6

Mode Confusiono
Interface Interpretation Errors
Inconsistent Behavior
Indirect Mode Changes o
Operator Authority Limits
Unintended Side Effects,

9.7 Lack of Appropriate Feedback

10 Human Factors Safety Analysis
10.1 Human Error in the Current ATC System

10.1.1 Communication e e e
10.1.2 Situation Awareness e e e e e
10.1.3 Workload
10.1.4 Vigilance. Lo

10.2 Comparative Analysis of Present and FAST augmented ATC procedures

10.2.1 Before the Aircraft Enters the TRACON
10.2.2 Handoff from the Enroute Center
10.2.3 Sequencing and Spacing oL
10.2.4 Controlling Aircraft o o
10.2.5 Passive FAST
10.2.6 Summary of the Comparative Analysis

10.3 Outstanding Safety Questions

10.3.1 Decreased Situational Awareness?
10.3.2 Increased Vigilance Requirements?
10.3.3 Skills Degradation? oL

10.4 Experiments to Answer These Questions

11 Operations Research Modeling and Analyses
11.1 Model e e
11.2 Scheduling Algorithms
11.3 Simulation Details
11.4 Results e e

12 Intent Specifications
12.1 Goals for Intent Specifications
12.2 Intent or “Why” Abstraction.
12.3 SpecTRM-RL Intent Specifications

13 Conclusions

iii

64

70
71
73
75
76
78
79
79

81
81
82
84
85
86
87
88
89
90
91
94
95
95
95
98
98
99

103
103
105
108
110

113
113
115
116

119

References
A Minimum Separation Standards
B Partial Fault Tree

C Sample ATC Requirements and Constraints
C.1 General ATC Safety Requirements
C.2 Automated System Requirements and Constraints

D Completeness Criteria for Black-Box Requirements Analysis
D.1 General Considerations
D.2 State Completeness Lo
D.3 Input and Output Variable Completeness
D.4 Trigger Event Completeness
D.4.1 Robustness Criteria
D.4.2 Nondeterminism
D.4.3 Value and Timing Assumptions
D.5 Output Specification Completeness
D.5.1 Environmental Capacity Considerations
D.5.2 Data Age e
D.5.3 Latency e
D.6 Output to Trigger Event Relationships
D.7 Specification of Transitions between States
D.7.1 Reachability oo
D.7.2 Recurrent Behavior L.
D.7.3 Reversibilityo o
D.7.4 Preemption
D.7.5 Path Robustness 0.
D.8 Constraint Analysis

E The SpecTRM-RL Models of CTAS at the DFW TRACON

F Partial Intent Specification of TCAS

v

121

127

130

138
138
139

144
144
145
145
146
146
146
146
148
149
150
151
151
152
152
152
153
153
154
155

157

163

1 Problem and Approach

Future changes to the air traffic control (ATC) system have two competing goals:

1. Increase Throughput: Requirements for moving both people and freight are in-
creasing. A commonly stated goal is to triple the system throughput in the next 10
years. Whatever the specific numbers, the only effective way to accomplish the goal
is to introduce more automation into the air traffic control (ATC) system.

2. Decrease Accident Rate: The number of aircraft accidents, especially those re-
lated ATC, is already very low. But given the current accident rate, it has been
estimated that the projected increase in traffic will result in one major accident a
week by the year 2005. NASA has stated a goal of reducing the accident rate by a
factor of 5 in ten years and a factor of 10 in 20 years.

Automation is clearly involved in both of these goals, although perhaps in different
ways. With the failure of the FAA’s attempts to introduce big changes into ATC (e.g.,
the ill-fated AAS project), a new strategy was adopted that instead tries to incorporate
smaller changes. CTAS (Center-TRACON Automation System) and passive FAST (Final
Approach Spacing Tool), the focus of this study, are intended to assist the controllers in
their tasks without introducing major changes in the way they do those tasks or in the
ATC system in general.

CTAS has been very carefully defined and engineered. Our study found no significant
safety implications in its use, although a few features deserve some additional considera-
tion. Real throughput gains, however, and perhaps safety gains, are going to require the
use of additional automation. Examples of proposed changes include free flight and direct
communication between the ground ATC computer and aircraft flight management sys-
tems. In all these scenarios, air traffic controllers and pilots assume more of a monitoring
role, although it is interesting that they are still tasked with the responsibility for safety
without a clear shift of some of that responsibility to the automation where it will clearly
lie.

Will safety increase or decrease with increased automation? Although theoretically
software does not “fail” and computer failure rates are low, it is difficult (and perhaps
impossible) to provide software that never does anything undesired or dangerous and to
assure this property with high confidence. In addition, it is unlikely that humans will be
entirely eliminated from the loop—humans will be needed to perform some functions that
cannot currently be automated. It is in systems that straddle this middle ground—where
humans and computers share control responsibility—that we find the most safety-related
problems today.

Our very low ATC-related accident rates are the result of designing very large margins
of error into the system. Aircraft are separated by relatively large distances and routed
on jetways or paths that allow human monitoring and control as well as human error
tolerance and recovery time. We cannot achieve the throughput goals (and others such as

fuel efficiency), however, without reducing separation and spacing, which will reduce the
tolerance for errors.

At the same time, traditional approaches to increasing safety and reliability developed
for relatively simple systems are not as successful when applied to complex systems made
up of electromechanical devices, computers, and humans. In simple systems, the majority
of accidents are caused by single component failures: Increasing the integrity of compo-
nents, therefore, is very effective in reducing losses. But in more complex systems, new
types of accidents are arising that are often not the result of a simple combination of com-
ponent failures. Perrow [Per84] calls these events system accidents and suggests that they
are caused by interactive complexity in the presence of tight coupling.

High-technology systems, such as air traffic control, are usually made up of networks
of closely related subsystems. Conditions leading to an accident emerge in the interfaces
between subsystems, and coupling causes disturbances to progress from one component to
another. System accident causes may be described as a coincidence of factors related to
each other through a complex network and stemming from multiple independent events.
Whereas in the past component failure was cited as the major factor in accidents, to-
day more accidents result from dangerous design characteristics and interactions among
components.

Computers have exacerbated the problems by allowing new levels of complexity and
coupling with more integrated, multi-loop control in systems containing large numbers of
dynamically interacting components. Increased complexity and coupling make it difficult
for the designer to consider all the system hazards, or even the most important ones, or
for the operators to handle all normal and abnormal situations and disturbances safely.

For the past 17 years, Professor Leveson and her graduate students have been develop-
ing a theoretical foundation for safety in complex, computer-based systems and building a
methodology upon that foundation. The methodology (as described in her book Safeware
[Lev95]) includes special management structures and procedures, system hazard analyses,
software hazard analyses, requirements modeling and analysis for completeness and safety,
special software design techniques including the design of human-machine interaction, ver-
ification, operational feedback, and change analysis.

The Safeware methodology is based on system safety techniques that are extended to
deal with software and human error. We use automation to enhance our ability to cope with
complex systems such as air traffic control. Identification, classification, and evaluation of
hazards is done using modeling and analysis. To be effective, the models and analysis tools
must consider the hardware, software, and human components in these systems. They also
need to include a variety of analysis techniques and orthogonal approaches: There exists
no single safety analysis or evaluation technique that can handle all aspects of complex
systems. Applying only one or two may make us feel satisfied but will produce limited
results. An effective safety program must span the entire life cycle and handle all potential
accident causes.

We report here on a demonstration of the Safeware methodology to a research version
of the Center-TRACON Automation System (CTAS) portion of the air traffic control

system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON
(Terminal Radar Approach Control). Although the Statement of Work asked only for a
formal-methods-based functional correctness and completeness analysis tool and a tool for
analyzing the system operations in the presence of failures, we felt that using only these
tools would not provide an adequate assessment of safety and therefore demonstrated the
additional activities necessary for a complete safety assessment.

Because safety analysis of a complex system is an interdisciplinary effort, our team
included system engineers, software engineers, human factors experts, and cognitive psy-
chologists. Figure 1 shows how our methodology and tools fit into a system engineering
program. We did not include the usual safety activities that take place in the later parts
of the life cycle due to the nature of the NASA AATT (Advanced Air Transportation
Technologies) program, which focuses on concept development and system design. As we
understand it, the FAA will be responsible for system implementation and operations.

We demonstrated most of the activities in Figure 1 although not necessarily as thor-
oughly as we might have given more time and information. Such a process is highly
iterative and includes continual updating of what has been done previously as new infor-
mation is gained through the system development process. In order to make the diagram
less cluttered, the backward links are not shown, but note that the safety information sys-
tem assists in this iteration process. An effective safety information system has been found
to rank second only to top management concern about safety in discriminating between
safe and unsafe companies matched on other variables [Kje87].

The parts of the process that we demonstrated for this project are:

1. Preliminary Hazard Identification and Standard Hazard Analyses. We were
astounded to find that the Lincoln Labs CTAS system specification produced for the
FAA not only does not include any information about safety but explicitly says that
there are no safety requirements on the system. We performed a Preliminary Hazard
Analysis (PHA) and defined some preliminary safety requirements and constraints
for CTAS and for air traffic control in general. We also produced a partial fault
tree for TRACON operations related to the operation of CTAS. The information we
generated is used in the demonstration of our analysis techniques, and we discuss
how it might be used for future upgrades.

2. Modeling. In order to do more than an evaluation of only the high-level ATC
concept, a detailed specification or model of the behavior of the system components
is required. A high-level design may appear to be safe while the detailed design
contains hazardous component interactions. The hazards and design constraints
identified in the first step must be traced to the system components, and assurance
must be provided that the hazards have been eliminated or mitigated and the design
constraints satisfied. Although theoretically this type of process could be performed
on the detailed design of the system (including code if the component is a computer),
a more practical approach is to provide hierarchical models and break the process up
into steps. We built a state-based model using a language called SpecTRM-RL that

3

SYSTEMS
ANALYSIS

Operations
Research
Modeling and
Analysis

Other types of
Systems Analysis

é/

—

SAFETY PROGRAM
Write Safety Program Plan

PHA
Identify system goals
fysy g Hazard List

Fault Tree Analysis

Write requirements L — Safety Requirements and

and constraints Constraints
SHA and SSHA
Generate alternative Completeness/Consistency
system designs Analysis
Simulation and Animation
Operator Task Analysis
Evaluate designs State Machine Hazard

and identify tradeoffs) Analysis
Deviation Analysis (FMECA)
Mode Confusion Analysis
Human Factors Evaluation
Other safety constraint

evaluations
Design and construct
components
Safety Verification -
Safety Testing

Software FTA

Operational Analysis <=——

Change Analysis
Incident and accident analysis
Periodic audits

Figure 1: A sample safety engineering program.

ZOoO——A>ZZmO0ON=Z— <—=Amm>wn

Smdn<wm

is readable and understandable with minimal training but has a formal foundation
that allows automated analysis. The models are also executable and visualization
tools were built and used to animate the results of the model execution.

. Controller Task Analysis. Humans form an important part of the ATC system,
and they cannot be ignored in any safety analysis. In order to include operator pro-
cedures in our models, we devised a new modeling language with the same formal
foundation as our SpecTRM-RL models. This model represents the nominal tasks
that the controller (and sometimes the pilot) perform and can be analyzed and ex-
ecuted along with the SpecTRM-RL model of the other system components. We
appreciate that humans do not necessarily perform tasks in the expected way. How-
ever, the first step is to determine whether the nominal or expected behavior is safe.
The implications of human error or deviations from nominal behavior is investigated
in our other analyses.

. Completeness and Consistency Analysis. Accidents involving computers can
usually be traced to incompleteness or other errors in the software requirements
specification, not coding errors [Lut92, Lev95]. We have a set of formally-defined
criteria to identify missing, incorrect, and ambiguous requirements in process-control
specifications. These criteria include much more than the mathematical completeness
that is checkable on most formal models, although we can check this too. Because
the adaptation data for CTAS is part of our model, completeness and consistency of
this data requires no extra effort or different techniques.

. Simulation and Animation. Our models are executable and we have visualization
tools to build animations appropriate to the model’s domain (in this case, air traffic
control). As an example, we have created an animation that shows the behavior of
the aircraft within the TRACON area as the formal model is stepped through its
states for a given set of inputs.

. State Machine Hazard Analysis. Hazard analysis techniques that use backward
search start with a hazardous state and determine the events that could lead to
this state. The analysis starts from hazards identified during the preliminary hazard
analysis and identifies their precursors. The information derived about both normal
and failure behavior can be used to redesign the system to prevent or minimize the
probability of the hazards.

. Deviation Analysis. Forward search techniques start with an initiating event and
trace it forward in time. Deviation analysis is a new type of forward hazard analysis
technique we developed that is similar in its goals to HAZOP (HAZards and OPer-
ability analysis), a very successful analysis procedure used in the chemical process
industry. Deviation analysis allows reasoning about the effects of system parameter
deviations on the components, that is, determining whether and how hazards can
result from the system or components operating in an imperfect environment.

8.

10.

Human Error Analysis. Humans are and will continue to be an important part of
any air traffic control system. Therefore, an effective safety program cannot just look
at the automated parts of the system but must consider the impact of human error
on the system and the effect of system design on human error. Increased automation
in complex systems has led to changes in the human controller’s role and, conversely,
to new types of technology-induced human error. We approach this problem in two
ways.

The first is a method we are developing for using our formal system models to detect
error-prone automation features early in the development process while significant
changes can still be made. We have taken what has been learned from past accidents
and simulator studies by cognitive psychologists and created a set of criteria to detect
automation design features that are likely to induce human errors. The information
produced from this mode confusion analysis can be used to redesign the automation
to take out the error-inducing features or to design the human-machine interface,
operator procedures, and training programs to minimize the errors.

Our second approach to safety analysis of human error is more like classical human
factors analysis. For this DFW CTAS study, we first looked at the types of human
errors in the current ATC system and then performed a comparative analysis of the
controller’s job with and without CTAS. Normally this step would be followed by
running experiments to determine the effect of the changes on human performance.
However, the time limitations of this study did not allow us to perform this final
step. Instead, we describe some relevant hypotheses and an experimental paradigm
for evaluating these hypotheses.

Operations Research Modeling and Analyses. In addition to safety, air traffic
control system designers must be concerned with efficiency. The systems engineering
process involves making tradeoffs between various goals such as safety, throughput,
and fuel efficiency. If a proposed upgrade turns out to degrade safety greatly while
providing only minimal benefit in terms of throughput or fuel economy, then it may
not be worthwhile to implement or an alternative design may provide a better result.
We used a discrete-event simulation to compare the total delay and fuel burn for five
different algorithms to schedule aircraft before they reach the TRACON feeder gates.
The models can provide information such as the amount of delay or the amount of
fuel consumed for various air traffic profiles operating under different scheduling
algorithms. We show how these models can be used in tradeoff studies to evaluate
proposed system designs.

Intent Specifications. The types of formal modeling and hazard analysis described
so far provide a comprehensive assessment methodology. However, the most effective
way to create a safe system is to build safety in from the beginning. The prelimi-
nary hazard analysis should start at the earliest concept formation stages of system
development and the information derived from it and other safety analyses should

be used to guide the emerging design. One of the problems in achieving this goal
is simply the difficulties inherent in communication among the diverse groups re-
quired to build a complex system. The goal of intent specifications is to provide
a bridge between the various groups working on a system like air traffic control
in order to ease coordinated design of components and interfaces and to provide
seamless transitions and mappings between the various development and mainte-
nance stages. The design rationale and the other information that is normally lost
during development are preserved in a single, logically structured document whose
design is based on fundamental principles of human problem-solving. Hazard con-
trols and safety-related design constraints are traced from the highest levels down
through system design, component design, and into hardware schematics or soft-
ware code. We did not have the information necessary to build a complete intent
specification for CTAS, but we describe what would be in it and show part of an
example specification for TCAS II (Traffic Alert and Collision Avoidance System),
which has similar aircraft tracking functions but is airborne and distributed on the
individual aircraft. Our complete sample TCAS intent specification is too large
(750 pages) to include in this report, but it can be viewed at the following URL:
www.cs.washington.edu/research /projects/safety /www /intent /intent.ps

The next sections of the report describe each of these components of our methodology
and their application to Build 2 of FAST (Final Approach Spacing Tool) operating in
experimental mode at the DFW TRACON.

2 Standard Safety Analyses

A safe system is one that is free from accidents or unacceptable losses. Accidents result
from hazards, where a hazard is defined as a system state or set of conditions that can lead
to an accident (given certain other, probably uncontrollable or unpredictable environmen-
tal conditions). In safety engineering, any safety assessment starts with identifying and
analyzing the system for hazards. Once the hazards are identified, steps can be taken to
eliminate them, reduce their likelihood, or mitigate their effects.

In addition, some hazard causes can be identified and eliminated or controlled. Al-
though it is usually impossible to anticipate all potential causes of hazards, obtaining
more information about them usually allows greater protection to be provided with fewer
tradeoffs, especially if the hazards are identified early in the design phase.

We demonstrated several standard safety analyses using the DFW TRACON as an
example, including a preliminary hazard analysis (PHA), a fault tree analysis (FTA), and
a failure modes and effects criticality analysis (FMECA). The FMECA is discussed later
in the report in the section on Deviation Analysis (Section 8). The information we derived
from the PHA and the FTA was used to specify some basic safety-related requirements
and design constraints for ATC.

2.1 Preliminary Hazard Analysis

A PHA is used in the early life cycle stages to identify critical system functions and broad
system hazards. It should be started early so that the information can be used in tradeoff
studies and selection among design alternatives. However, this process is not done once
and then considered to be complete: The process is iterative, with the PHA being updated
as more information about the design is obtained and as changes are made. In addition,
because the PHA starts at the concept formation stage of a project, little detail is usually
available and early assessments of hazards and risk levels are necessarily qualitative and
limited.
In general, performing a PHA involves:

1. Determining what hazards might exist during operation of the system and their
relative magnitude.

2. Developing guidelines, specifications, requirements, and design constraints to be fol-
lowed in system design.

3. Initiating actions for the control of particular hazards.

4. ldentifying management and technical responsibilities for action and risk acceptance
and assuring that effective control is exercised over the hazards.

5. Determining the magnitude and complexity of the safety problems in the program
(how much management and engineering attention is required to minimize and con-
trol hazards).

The results of the PHA are used in developing system safety requirements, preparing
performance and design specifications, evaluating the system design, test planning, prepar-
ing operational instructions, and management planning. In general, the results serve as a
framework or baseline for later analyses and as a checklist to ensure that management and
technical responsibilities for safety tasks are carried out. Doing a PHA is an absolutely
critical step in any safety program for a complex system.

The PHA starts with the hazard list. Our first step was to determine if such a list
already existed. We could find no list associated with the CTAS project so we contacted a
system safety engineer at the FAA who told us he did not know of the existence of a hazard
list for ATC. He said that such a list is not commonplace within the agency, although he
is working hard to get hazard analysis requirements placed into new contracts. We looked
at the System Specification for CTAS Build 2 written by MIT Lincoln Laboratory for the
FAA. Not only is this specification devoid of any mention of safety requirements (even
safety requirements not labeled as such but in the document anyway), but Section 3.7,
Safety Requirements, contains only the following sentence:

There are no special safety requirements for CTAS beyond than [sic] the normal
safety requirements for FAA equipment.

In addition, Section 3.18 of the specification labeled Precedence and Criticality Re-
quirements states that

All requirements specified in the document SHALL [4090] have equal weight.

We checked again with the system safety office at the FAA to determine whether the
“normal safety requirements” phrase in Section 3.7 held some important meaning or was
simply irrelevant in this context and received the following reply:

You’re unfortunately correct [in assuming the phrase is irrelevant in this con-
text], “normal safety requirements” are “2100” requirements like “no heavy
lifting, no sharp corners, etc.”

It was clear we were going to have to do a preliminary hazard analysis ourselves. We
note that our PHA results have not been reviewed and thus should only be taken as an
example. The PHA process normally involves intensive reviews by application experts
and the government agencies involved. This review process has not been done for our
PHA, and many changes would probably be required before it was acceptable for use
with a real ATC upgrade. In addition, such a list would normally be continually updated
with new hazards and information about previously identified hazards throughout system
design, implementation, testing and evaluation, and operation. Therefore, our list should
be considered as a starting point only.

One of the first steps in designing a safety-critical system, especially when the goal is to
redesign parts of an existing system, is to establish a safety policy for evaluating upgrades.
For example, how will design tradeoffs be made? Should they all be made with respect
to possible changes in safety, even when those changes may be small in comparison to the
other possible benefits of the change? Such a policy might be stated in terms of:

9

1. A possible goal accident rate or probability (usually stated in terms of 10 raised to
some negative number) or

2. Changes to the nature or level of hazards where hazard level may be evaluated either
qualitatively or quantitatively.

Using a goal accident rate makes decision making easy, but this rate usually is not pre-
dictable for a complex system in advance and can be determined only through extensive
experience and use!. Particularly when the accident rate is already very low, determining
whether it has changed is possible only over long periods of use. Use of the second type
of policy requires more engineering judgment and review but may provide more accurate
information upon which to base decisions. For example, a system change that resulted in
only a small increase in fuel efficiency or throughput might not be considered worthwhile
if it also required an increase in pilot—controller communication (which is known to be an
important factor in ATC-related accidents).

In any case, the responsibility for establishing this policy rests with the FAA and not
with the engineers designing upgrades for it. Such a policy may exist and we simply might
not have come across it in the reading we have done.

The next step is to identify potential system hazards. In the hazard list, we included
only the hazards related to TRACON operations and even then concentrated on automa-
tion aspects as this was the focus of the demonstration project. We identified six hazards?:

1. A pair of controlled aircraft violate minimum separation standards.

2. A controlled aircraft enters an unsafe atmospheric region (such as dangerous icing
conditions, wind shear areas, thunderstorm cells).

3. A controlled aircraft enters restricted airspace without authorization.

4. A controlled aircraft gets too close to a fixed obstacle or terrain other than a safe
point of touchdown on the assigned runway.

5. A controlled aircraft and an intruder (a VFR aircraft who should not be in controlled
airspace) violate minimum separation standards.

NOTE: Although the ATC controller is not strictly responsible for this airspace
hazard, radar returns may be available that allow the controller to provide some
prevention or mitigation of this condition.

! Arguments about the accuracy and usefulness of probabilistic risk assessment (PRA) in assessing the
potential for accidents in automated systems where accidents may involve human, software, management,
and organizational factors are complex and beyond the scope of this report.

2The number of hazards is usually small, even for a complex system. A list containing large numbers of
hazards usually means that hazard causes have been included and not just the hazards themselves. There
are important advantages to specifying a small high-level set of hazards first before attempting to identify
what are usually a large number of hazard causes.

10

6. Loss of controlled flight or loss of airframe integrity.

The first step after identifying the hazards is to assess their criticality level (in ATC
this level is almost always catastrophic) and to translate them into high level requirements
and constraints on the system design. These requirements are refined as more information
is obtained through the design and safety analysis programs. Some high-level requirements
and constraints are described in Section 2.3 and an example set is shown in Appendix C.

2.2 Fault Tree Analysis

Fault trees are perhaps the most widely used system hazard analysis technique. We created
a partial fault tree for the DFW TRACON. A complete fault tree would be very large,
so we constructed the top levels of the tree for the hazards we identified in the PHA and
showed the expansion of a few branches. Even following down only a few of the branches
related to only one of the hazards, we generated about 150 boxes. Fortunately, the other
branches will be very similar, with only small changes to reflect the particular hazard cause
being evaluated. Figure 2 shows the highest level of the fault tree for the first hazard—
loss of required separation between controlled aircraft (also called a near-miss accident or
NMACQC).

Figure 3 shows an example of a lower-level part of the fault tree for the NMAC hazard.
An important question in any such exercise is when to stop expanding the nodes. Complex
system fault trees containing only a few nodes will not be very useful. The more detail
included in the fault tree and the more the nodes are refined, the more information will
be available to the designers for eliminating or controlling the hazards.

Information from the fault tree can be used to generate safety-related system require-
ments and design constraints. Each of the leaf nodes in the tree (or a higher-level node
that leads to that leaf node) should be traceable to a design characteristic that will elimi-
nate or control it, or a decision must be made that the risk of that condition occurring will
be accepted (examples are provided in the TCAS sample intent specification contained in
Appendix F). In either event, the mitigation factor or the reason for risk acceptance must
be documented.

Frequently, probabilities are attached to the leaf nodes of a fault tree and a probability
calculated for the root hazard. Although this technique is very effective in systems made
up of hardware components whose failure rates are well known, it is more problematic
when applied to complex systems with software or human components or where the leaf
nodes are not all “failures.” In the attempt to get a calculated probability, sometimes
accidents or hazards that do not result from simple component failures are omitted from
such analyses in the interest of obtaining a probabilistic assessment. System accidents,
which result from dangerous interactions between components rather component failures,
are not included in such calculations and, in fact, are not well represented in the current
fault tree framework.

There is controversy in the computer science community as to how failure rates for
software should be determined or, indeed, whether such failure rates even make sense

11

A pair of controlled aircraft violate
minimum separation standards.

OR
| |
Violation of minimum Violation of distance or time Violation of minimum
in-trail separation while separation between streams separation between arrival
on final approach to same of aircraft landing on different traffic and departure traffic
runway. runways from nearby feeder airports.
|
OR

|

Two aircraft on final
approach to parallel
runways not spatially

An aircraft violates the non-
transgression zone while airport
is conducting independent ILS

staggered. approaches to parallel runways.
Two aircraft landing consecutively An aircraft fails to make
on different runways in intersecting turn from base to final
or converging operations violate approach.
minimum difference in threshold
crossing time.

Figure 2: Highest level of the fault tree for loss of required separation between controlled
aircraft

12

Controller instructions do not cause
aircraft to make necessary speed change.

O‘R
| | | | |
Controller does ~ Controller issues Controller issues Controller issues ~ Controller issues
not issue speed appropriate speed appropriate speed speed advisory speed advisory
advisory advisory but pilot advisory and pilot that does not too late to avoid
does not receive it. receives it but does avoid separation separation violation.
| not follow it. violation.
O‘R
| | |
Physical communication Human communication Controller issues
failure failure speed advisory to
| wrong aircraft.
OR |
‘ OR
| | | | |
Radio failure Radio on wrong Psychological Wrong label Label in
frequency slip associated with misleading
aircraft on place on
planview display screen.

Figure 3: Lower levels of the fault tree for loss of required separation between controlled
aircraft

13

for software, where errors are basic design flaws and the result of human mistakes rather
than physical phenomena. Even if the basic concept is believed, the models proposed
for measuring software reliability have not proven to be very accurate in practice. In
addition, not all software behavior is hazardous so simply estimating the probability that
software will do something that violates its specification is not a measure of whether it
will do something dangerous. In fact, most accidents related to software arise because the
specification was flawed, perhaps in failing to specify what to do in a particular case: A
measurement of whether the software behavior complies with the specification is therefore
unrelated to the potential contribution of the software to accidents.

Failure rates or probabilities are also difficult to obtain for humans controlling complex
systems. In human reliability estimation techniques, human performance is viewed as
a concatenation of standard actions and routines for which error characteristics can be
specified and frequencies determined by observing similar activities in other settings. In
such analyses, the task is modeled rather than the person. Rasmussen and others argue
that such an approach may succeed when the rate of technological change is slow, but it is
inadequate under the current conditions of rapid technological change [Ras87]. Computers
and other modern technology are removing repetitive tasks from humans, leaving them
with supervisory, diagnostic, and backup roles. Tasks can no longer be broken down into
simple actions; humans are more often engaged in decision making and complex problem
solving for which several different paths may lead to the same result. Only the goal serves
as a reference point when judging the quality of performance—task sequence is flexible and
very situation and person specific. Analysis, therefore, needs to be performed in terms of
the cognitive information processing activities related to diagnosis, goal evaluation, priority
setting, and planning. In addition, human actions cannot be separated from their context.
All of these factors makes probabilistic analysis of human error very difficult and reduces
confidence in the use of simple models.

We did not do a quantitative fault tree analysis. For the reasons stated and because
of a lack of accurate probabilistic data for the leaf nodes, we felt it was not very useful in
this instance. We note, however, that such analysis can be helpful in comparing designs,
particularly those parts of a system where probabilistic data is available. Sometimes fault
trees are abstracted to a few nodes (basically “hardware failure,” “human error,” and
“software failure”), and failure rates are associated with those nodes, but we did not feel
such an analysis would provide useful information. Another use of quantitative fault tree
analysis is for sensitivity analysis, i.e., to determine which parts of the tree contribute the
most to the hazard. This use of probabilistic analysis can be very helpful, but we did not
have enough information, even about relative failure rates, to do a sensitivity analysis.

2.3 Safety-Related ATC Requirements and Design Constraints

Engineering safe systems involves not only evaluating risk but, even more important, in-
cludes designing ways to reduce it. Safety needs to be designed into a system; it cannot
simply be measured or assessed into the system after the fact. There are usually other goals

14

in any system design (for ATC these include increasing throughput and fuel efficiency),
and tradeoffs are made continually during any design effort. By explicitly specifying the
safety requirements and design constraints, tradeoff decisions can be made with respect
to these requirements and constraints when alternative designs are being considered. In
addition, there is no way to evaluate at the end of the design and implementation phases
if the safety goals have been achieved if they have never been specified.

It is clear from examining CTAS and the papers written about it that the designers
had a very clear idea of the safety requirements and constraints and did an excellent job
of incorporating them into the CTAS design, but the system specification contains none
of this information. A common problem in any long-lived system is that the designers do
not specify why they made design decisions in a certain way, changes are made later that
undo the careful design, and accidents result.

To specify ATC and CTAS requirements and constraints, we used the PHA and FTA
results, experience we have had in specifying and performing safety assessments on similar
systems, and our knowledge of causal factors in past ATC-related accidents or in related
systems. Other types of information and processes that are helpful in this effort are
described in Leveson’s book Safeware [Lev95].

Figure 4 shows the first step in this process—associating each hazard with high-level
requirements (“shall” statements) and design constraints (“must not” statements). Each of
these high-level statements is then refined into more detailed requirements and constraints.
We show a partial list in Appendix C.

Once again, the list in Appendix C should be considered only a sample of what types
of requirements and constraints might be established for future ATC upgrades. Although
in the past some have argued that automation providing information or advisories is not
safety-critical because the controller ultimately has responsibility for safety and only the
controller issues advisories, we find this argument unconvincing. If we hold the controller
responsible for the safety of the airspace and the pilot responsible for the safety of the
aircraft, then we must hold ATC system designers responsible for not interfering with
the pilot’s or controller’s exercise of their responsibilities. If the design of tools causes or
contributes to safety-critical human error, then that design is itself safety-critical. The
most effective way to control the hazard may be to change the design of the tool and not
to attempt to work around those flaws—especially when there is no independent way for
the human operator to determine that the information being provided (on which human
decisions are being made) is incorrect.

2.4 Hazard Analysis Techniques

Hazard analysis is the heart of system safety engineering. In general, two types of hazard
analysis are usually performed: system hazard analysis and subsystem hazard analysis.
Every hazard analysis involves some sort of search through the system design for hazardous
states or conditions that could lead to hazards and a model upon which that search is based.

15

HAZARDS

REQUIREMENTS - CONSTRAINTS

1. A pair of controlled aircraft violate
minimum separation standards.

la.

ATC shall provide advisories that maintain
safe separation between aircraft.

1b. ATC shall provide conflict alerts.
2. A controlled aircraft enters an unsafe 2a. ATC must not issue advisories that direct aircraft
atmospheric region. into areas with unsafe atmospheric conditions.
(icing conditions, windshear areas, 2b. ATC shall provide weather advisories and alerts
thunderstorm cells) to flight crews.
2c. ATC shall warn aircraft that enter an unsafe

atmospheric region.

3. A controlled aircraft enters restricted 3a. ATC must not issue advisories that direct
airspace without authorization. an aircraft into restricted airspace unless
avoiding a greater hazard.
3b. ATC shall provide timely warnings to aircraft to
prevent their incursion into restricted airspace.
4. A controlled aircraft gets too close to 4. ATC shall provide advisories that maintain
a fixed obstacle or terrain other than safe separation between aircraft and terrain
a safe point of touchdown on assigned or physical obstacles.
runway.
5. A controlled aircraft and an intruder in 5. ATC shall provide alerts and advisories to
controlled airspace violate minimum avoid intruders if at all possible.
separation standards.
6. Loss of controlled flight or loss of 6a. ATC must not issue advisories outside the
airframe integrity. safe performance envelope of the aircraft.
6b. ATC advisories must not distract or disrupt
the crew from maintaining safety of flight.
6¢. ATC must not issue advisories that the pilot
or aircraft cannot fly or that degrade the
continued safe flight of the aircraft.
6d. ATC must not provide advisories that cause

an aircraft to fall below the standard glidepath
or intersect it at the wrong place.

Figure 4: System hazards and associated requirements

16

2.4.1 System and Subsystem Hazard Analysis

System Hazard Analysis (SHA) usually begins as the design matures (around preliminary
design review) and continues as the design is updated and changes are made. Its purpose
is to recommend changes and controls, to evaluate design responses to safety requirements,
and to document the corrective actions taken or controls instituted. Building on the PHA
as a foundation, SHA involves detailed studies of possible hazards created in the interfaces
between subsystems or by the system operating as a whole, including potential human
errors. In a system like ATC where the design of most of the system already exists, it
could start immediately.

SHA considers the system as a whole and identifies how the system operation, the
interfaces between the system components, and the interfaces between the system and its
operators can contribute to hazards. Specifically, SHA examines subsystem interfaces for:

1. Compliance with safety criteria in the system requirements specification;

2. Degradation of safety that could result from normal operation of the system and
subsystems; and

3. Possible combinations of independent, dependent, and simultaneous hazardous events
or failures, including erroneous behavior of safety controls and devices, that could
lead to hazards.

SHA does not just consider the hardware components of a system. It can be used
to identify high-risk human tasks and potentially safety-critical operator errors. This
information can then be used in the design of the HMI and operational procedures to
reduce errors and to provide facilities for operators to respond appropriately to automation
failures and errors. Hazard analysis results should also be used in operator training to point
out potential hazards and how they are controlled in the design or operational procedures.
The goal is to help the operator understand and appreciate the potential consequences
of bypassing protection features or inattention to safety-critical operations and to provide
the information necessary for humans to respond appropriately in emergency conditions.

Several different techniques have been used in system hazard analyses. Some, like
event trees, are appropriate only in the very specialized circumstances for which they
were developed—in the case of Event Trees, for analyzing failures of nuclear power plant
protection systems in response to a set of well-defined and single events (e.g., overheating
of the core). Event trees are not appropriate for performing system hazard analyses on
complex systems like air traffic control.

Subsystem Hazard Analysis (SSHA) examines individual subsystems and determines the
effect of their operation or failure—including normal performance, operational degradation,
functional failure, unintended function, and inadvertent function (proper function but at
the wrong time or in the wrong order)—on system hazards. It also identifies necessary
actions to determine how to eliminate or reduce the risk of identified hazards and evaluates
the system design response to the safety requirements of the subsystem specification.

17

SSHA is started as soon as the subsystems are designed in sufficient detail, and it is
updated as the design matures. As in SHA, design changes are evaluated to determine
whether system safety is affected.

SHA and SSHA are accomplished in similar ways, but the goals are different. SSHA
examines how individual component operation or failure affects the overall safety of the sys-
tem, whereas SHA determines how normal and failure modes of the components operating
together can affect system safety.

2.4.2 Models

Every hazard analysis requires some type of system model, which may range from a fuzzy
idea in the analyst’s mind to a complex and carefully specified mathematical model. The
model may also range from a high-level abstraction to a low-level and detailed prototype.
Nevertheless, information about the system must exist in some form, and that information
constitutes the system model upon which the analysis is performed.

The specification (model) can be used to identify hazards or to analyze the system
design for specific, known hazards. In either case, the model must be complete enough to
provide the information necessary to achieve the analysis goals.

While a fuzzy model in the mind of the analyst may be adequate for preliminary
hazard analyses and for simple systems, complex system hazard analysis requires a concrete
model. To be cost-effective and useful for the many types of hazard analysis needed for
these systems, the model should be usable by people from different engineering disciplines,
perhaps assisted by automated tools and involving multiple views of the model. Building
separate models for analyzing hardware, software, and human behavior will not only be
expensive (perhaps prohibitively so), but disjoint models will not allow analyzing the
interactions between these system components, which are where system accidents arise.

In addition, the modeling language should have a rigorously and unambiguously de-
fined semantics and be readable by application experts and the user community. If the
specification and analysis results are not readable and reviewable by system safety and
application experts, confidence in the results will be lessened. Readability and reviewabil-
ity will be enhanced by using languages that allow building models that are semantically
close to the user’s mental model of the system. That is, the semantic distance between
the model in the expert’s mind and the specification model should be minimized.

Furthermore, the language must be both formally analyzable and readable without
advanced mathematical training. Ideally, the specification language should reflect the way
that engineers and application experts think about the system, not the way mathematicians
do. While automated tools are helpful and may even be necessary to analyze some aspects
of large and complex models, we believe (and our empirical evidence [MLRPS97] and
industrial experiences support this view) that the most important errors will be found by
expert (human) review. The analysis tools we build and the mathematical theories upon
which they are based cannot possibly incorporate all the domain-specific knowledge such
as FAA rules and procedures, basic aeronautical engineering, human factors and cognitive

18

psychology, and so on required to find subtle safety-critical flaws in a complex system
design. On the other hand, the complexity of these systems leads to the necessity to use
formal models and automated assistance to support human navigation and understanding
of the models and system specifications and to perform automated analysis where possible.
We solve this dilemma by providing reviewable specifications based on an underlying formal
model.

Another reason for the need to provide reviewable modeling languages is that any
potential design flaws detected by automated tools will need to be evaluated by humans.
Thus readability of the models is a requirements for human processing of the analysis
results.

Finally, the economics of system development are unlikely to allow building mul-
tiple models or specifications. Instead, we have devised a way—which we call intent
specifications—to integrate formal and informal specifications so that the analysis tools
work directly on the normal system specifications (see Section 12).

2.4.3 Search Techniques

A safety analysis involves a search of the model. How the search is performed depends on
the structure of the model and the goal of the search. One classification for such search
techniques is forward or backward while a second is top-down and bottom-up [Lev95].

A forward (sometimes called inductive) search takes an initiating event or condition
and traces it forward in time. The result is a set of states or conditions that represent the
effects of the initiating event. An example of such a search is determining how the loss of
a particular control surface will affect the flight of an aircraft or how the garbling of some
radar data will affect the tracking of an aircraft in an air traffic control system.

Tracing an event forward can generate a large number of states, and the problem of
identifying all reachable states from an initial state may be unsolvable using a realistic
amount of resources. For this reason, forward analysis is often limited to only a small set
of temporally ordered events.

In a backward (also called deductive) search, the analyst starts with a final event or state
and identifies the preceding events or states. This type of search can be likened to Sherlock
Holmes reconstructing the events that led up to a crime. Backward search approaches
are useful in accident investigations and also in eliminating or controlling hazards during
system development by, in essence, investigating potential accidents before they occur.

The results of forward and backward searches are not necessarily the same (see Fig-
ure 5). Tracing an initial event forward will most likely result in several final states, not
all of which represent hazards or accidents. Because most accidents are caused by multiple
events, to be fully effective the forward analysis must include more than a single initiating
event. Combinatorial explosion usually makes an exhaustive search of this type impracti-
cal and limits the number of initiating events that can be considered. The advantage of a
forward search is that hazards that have not previously been identified can theoretically
be found.

19

Initiating Final Initiating Final
Events States Events States
A W | nonhazard A W nonhazard
B X | HAZARD B X | HAZARD
C Y | nonhazard C Y nonhazard
D Z | nonhazard D 7 nonhazard
<— backward search

— = forward search

Figure 5: Forward search and backward search provide different types of information. In
particular, the states found in the two searches will probably not be the same.

Tracing backward from a particular hazard or accident to its preceding states or events
may uncover multiple initiating or contributing events, but the hazards must be identified.
System engineers are quite effective in identifying system hazards, of which there are
usually a limited number. Finding all the causes of such hazards is a much more difficult
problem. It is easy to see that if the goal is to explore the precursors of a specific hazard
or accident, the most efficient method is a backward search procedure. On the other hand,
if the goal is to determine the effects of a specific event, a forward search is most efficient.

A second classification for search techniques is top-down and bottom-up [Lev95]. Here
the relationship being investigated is structural (whole-part): Higher-level abstractions
are refined or broken down into their constituent parts. In a top-down search, a basic
event, set, task, or system is broken down into more basic events, conditions, tasks, or
subsystems. When the search is bottom-up, subcomponents are put together in different
ways to determine the result. An example of a top-down search is identification of all the
ways two aircraft could violate minimum separation requirements. A bottom-up search
might examine the effect of a particular incorrect output from FAST.

As with forward and backward searches, the results of top-down and bottom-up searches
are not the same. For example, examining only the effects of individual component failures
on the overall system behavior (a bottom-up search) misses hazardous system behavior that
results from combinations of subsystem failures or from the interactions among nonfailure
(correct) behavior of several subsystems.

As in forward searches, considering the effects at the system level of all possible com-
binations of component behavior using a bottom-up approach is usually not practical.
Top-down searches that start from a hazardous system state will in most cases be more

20

useful in achieving this goal. On the other hand, determining the effect of a particular
component failure on system behavior is, theoretically, most efficiently accomplished using
a bottom-up search. Accomplishing this latter goal, however, is often very difficult for
complex systems.

Some search strategies do not fit into one of these categories, such as cause-consequence
analysis. Instead, the search starts with some event or deviation and uses a combination
of forward/backward and top-down/bottom-up searches to find paths between hazards
and their causes or effects. Cause-consequence analysis, for example, combines forward
and top-down searching. In any of the techniques, the search may start with deviations,
failures, changes, and so on.

In a previous experiment, we applied several different types of hazard analysis tech-
niques to the specification of experimental NASA Ames guidance software for a high-speed
civil aircraft using our formal specifications and automated tools. We found that each anal-
ysis detected different types of errors and hazards. Thus, together the techniques provided
a more comprehensive safety analysis than any individual technique [MLRPS97]. We also
discovered that the more the analysts knew about the application and the better they
understood the model, the more successful they were in finding potential problems.

In the rest of this report, we describe our modeling language and the analyses we believe
should be performed in building safety-critical complex systems. We provide examples
using passive FAST in the DFW TRACON environment as the test case, although the
limited nature of passive FAST does not allow for the most effective demonstration of the
usefulness of sophisticated analysis tools.

21

3 Formal Model

As stated earlier, all hazard analysis starts from some type of model. We designed a
modeling language, called RSML (Requirements State Machine Language), to specify the
system requirements for TCAS II, an airborne collision avoidance system required on most
aircraft in U.S. airspace [LHHR94]. Our TCAS II specification and the RSML language
were adopted as the basis for the official FAA TCAS specification, and RSML is still being
used to specify changes and upgrades to the system.

In the process of formally specifying the system requirements for TCAS II, we learned a
lot about how to design a reviewable specification language—our specification was reviewed
by a large number of people having varied backgrounds and knowledge, such as computer
scientists, aeronautical engineers, and pilots. We also learned what features appear to be
the most error-prone in such a language.

Our goals in designing an improved language, which we call SpecTRM-RL, include
enhancing readability, eliminating or changing features (such as internal broadcast events)
we found to be especially error prone in use, providing more support for building blackbox
models (specifiers who are used to including internal design in their specifications seem
to have difficulty building pure blackbox models), enforcing certain constraints to prevent
design features that are known to lead to accidents, and enhancing the ability to manually
check for these features.

SpecTRM-RL is at the heart of a CAD system (system engineering workbench) Leve-
son and colleagues are building called SpecTRM (Specification Tools and Requirements
Methodology). Some of the SpecTRM tools and analysis techniques are described and
demonstrated in this report. We first describe the modeling language and then the analy-
sis techniques and tools.

3.1 The SpecTRM-RL Modeling Language

Our models describe a system in terms of the blackbox behavior of the components. A
blackbox model of behavior permits statements and observations to be made only in terms
of outputs and the inputs that stimulate or trigger those outputs. The model does not in-
clude any information about the internal design of the component itself, only its externally
visible behavior. The overall system behavior is described by the combined behavior of
the components, and the system design is modeled in terms of these component behavior
models and the interactions and interfaces between the components.

In order to make the language formal enough to be analyzable and yet readable and
reviewable by non-mathematicians, we have defined a formal model that underlies a more
readable specification language(s). The underlying formal model is independent of any
specific, existing requirements language—we call it a requirements state machine (RSM).
It is based on a Mealy automaton, which provides a convenient abstraction for most state-
based specification languages.

For readers unfamiliar with such models, a state machine model shows the states of the

22

Reading at set point / Reading at set point /
Turn off pump Close drain pipe

Water
level
low

Low reading / High reading /
Activate pump Open drain pipe

Figure 6: A state machine model of a water level control.

system and the events that cause state changes (transitions between states). For example,
Figure 6 shows a simple model of a water-level controller for a water tank.

This model has three states (represented by circles): water-level-low, water-level-high,
and water level at the set point. The directed arcs represent transitions between states.
Each arc shows the condition for changing state (e.g., the water level reading is too high)
and an action to be taken when the transition occurs (e.g., open the drain pipe). When the
machine is in a particular state and the conditions on a transition from that state become
true, the machine changes to the new state and implements the action. In the example,
depending on the sensor reading of the water level and the current state of the model, the
controller will activate the pump, turn off the pump, open the drain, or close the drain.

Finite state machines are most appropriate for modeling digital devices with a finite
(although perhaps extremely large) number of states. But a finite-state model of an analog
or continuous device can also be useful if we are interested only in discrete categories of the
device’s behavior. In the water controller example, the required behavior of the controller
can usefully be specified by only three water level states into which the entire state space
can be divided. Most safety analyses fall into this category.

One problem with finite-state models of complex systems is that the large number
of states can make writing the model down impossible. We estimate that our model of
TCAS II has at least 10%° states, and our CTAS model has a similar number. To solve
this problem, we use a metamodel from which the entire state space could theoretically be
generated. The state space is, of course, never actually generated; the analysis is instead
performed on the metamodel itself. The metamodels we have constructed for even very
complex systems have required only a few hundred state variables.

Our models rest on the concept of a basic control loop (see Figure 7). The controller
reads the sensor data and using this information, along with perhaps other information,
formulates and issues a command to an actuator that actually manipulates the process in
some way to achieve the overall goals while satisfying constraints on the way those goals can
be achieved. Although FAST and the other CTAS components do not themselves issue
control commands, they provide the information (and sometimes the control command
itself) to the human controller who acts partly as a controller and partly as an actuator

23

Disturbances

|

Processinputs Process outputs
Controlled Measured
variables variables
Actuators Sensors
i |
! Automated !
| Controller |
! (Assistant) !
| |
I I
| |
| |
| |
| |
| Internal model |
| of supervisory |
: interface |
I I
| |
: Displays Controls :
I I
| |
| Human I
| Supervisor(s) |
| |
| |

(Controller(s))

Internal model
of automation

Figure 7: A basic control loop. A black-box requirements specification captures the con-
troller’s internal model of the process. Accidents occur when the internal model does not
accurately reflect the state of the controlled process.

24

for the CTAS software (that is, in FAST the direct link shown in Figure 7 from the
automated controller to the actuators is missing). Therefore, the CTAS components of
the ATC system are acting de facto as controllers and it is appropriate to model them as
control software.

All control software (and any controller in general) uses an internal model of the general
behavior and current state of the process that it is controlling. This internal model may
range from a very simple model including only a few variables to a much more complex
model. The model may be embedded in the control logic of an automated controller or in
the mental model of a human controller and is used to determine what control actions are
needed. The model is updated and kept consistent with the actual system state through
various forms of feedback.

When the controller’s model of the system diverges from the actual system state, erro-
neous control commands (based on the incorrect model) can lead to an accident [Lev95]—
for example, the software does not know that the plane is on the ground and raises the
landing gear or it does not identify an object as friendly and shoots a missile at it. The
situation becomes more complicated when there are multiple controllers (both human and
automated) because the system models of the various controllers must also be kept consis-
tent. In addition, pilots or air traffic controllers who are supervising or using automated
assistance must not only have valid models of the aircraft and the controlled airspace (re-
spectively), but they must also have a model of the automated systems’ behavior in order
to monitor or control the automation as well as the aircraft or airspace.

The automated controller also has a model of its interface to the human controllers or
its supervisor(s). This interface, which contains the controls, displays, alarm annuncia-
tors, etc., is important because it is the means by which the two controllers’ models are
synchronized.

We represent the controlled process and supervisory interface models using state ma-
chines and define required behavior in terms of transitions in this machine. The goal of
hazard analysis using our models is to ensure that the specified operation of the component
(i.e., the model of the component’s required behavior) will not lead to hazardous states in
the controlled process.

State space explosion is prevented in our models by dividing a component into subcom-
ponents and specifying the states of each of these parallel components as separate state
machines. The complete model then becomes the cross product of these state machines.
For example, Figure 8 shows two parallel state machines that might be part of an ATC
model. One describes the current traffic density—low, average, and high-—while the second
represents up to 90 schedule slots. Each of the schedule slots is either available, currently
scheduled, or blocked by the controller (i.e., is not presently available for scheduling by
CTAS). The current modeled state of the system (if these are the only two state machines
in the model) is a combination of the traffic density and the state of each of the 90 schedule
slots. In general, the entire possible state space is the cross product of the parallel state
machines or, in other words (for this case), every possible combination of traffic density
level and schedule slot availability.

25

Traffic Density Schedule Slot [1...90]

| Low — Available
PROCESS
MODEL — Average — Aircraft Scheduled
— High — Blocked

Figure 8: An example of how the process model is modeled using parallel components to
avoid the problem of state explosion

Schedule Slot [1...90]

Traffic Density 4{ Available ‘
PROCESS
MODEL Aircraft Type Supervisory Modes
AIRCRAFT
SCHEDULED
Blocked
;

Figure 9: An example of how the process model parallel components can be refined to show
the properties of the components

26

Each state may be further refined into additional parallel state machines. For example,
the states Aircraft Scheduled and Blocked can be further refined to show properties of
these states as shown in Figure 9. Thus, if a slot is scheduled, then the schedule slot
state also contains the aircraft type (light, heavy, large), ID, estimated time of arrival
(ETA), scheduled time of arrival (STA), and supervisory mode (manual or automatic). If
a schedule slot has been blocked by the controller (perhaps to handle emergency traffic or
popups), the blocked begin and end time will be represented in the state.

Our past experience in using these types of models has demonstrated that too many
levels of this type of refinement abstraction is more harmful than helpful in terms of human
understanding of the models. Therefore, we try to minimize the number of levels in the
model.

A SpecTRM-RL model of a control component has three parts: (1) a specification of
the operating modes of the component, (2) a specification of the component’s view of its
interface with the other components, and (3) a model of the controlled process.

The first part of a SpecTRM-RL model is a specification of the operating modes of the
component, for example, waypoint-capture mode or route-intercept mode. An operating
mode defines a mutually exclusive set of system behaviors. For example, the following
table shows the possible transitions between states in a simple state machine given two
system modes: startup mode and normal operation mode:

‘ a b ¢
Startup | ¢ b d
Normal | ¢ d «a

S e
L 2|®

Table 1: A simple state machine with two modes

The startup and normal processing modes in this machine determine how the machine
will behave. If the conditions occur that trigger a transition from state ¢, for example,
the machine will transfer to state d if it is in startup mode or to state a if it is in normal
processing mode. Note that this table does not show all the conditions under which the
transitions may be triggered, only the operating modes. In general, state transitions may
be triggered by events, conditions, or simply the passage of time. The current operating
mode determines how these triggers will be interpreted and what transitions will be taken.

The concepts of state and mode are not differentiated in our underlying formal RSM
models—they are both represented as states—but the concept of a mode is a useful ab-
straction in describing the behavior of control systems. Engineers often refer to modes
when describing required system functionality, and mode confusion is frequently impli-
cated in the analysis of operator errors that lead to accidents (see Section 9). Therefore,
SpecTRM-RL includes a mode abstraction and our analysis techniques incorporate the
concept of modes.

Figure 10 shows the operating modes part of our TMA (Traffic Management Advisor)

27

CONTROLLER
OPERATING

FCFS
MODES w/o Time Advance

FCFS
with Time Advance

Position Shift
w/o Time Advance

Position Shift
with Time Advance

Figure 10: Example of operating modes using the TMA model

model. The TMA can provide scheduling using First-Come-First Served (FCFS) without
time advance, FCF'S with time advance, and position shift with and without time advance.

A second part of a SpecTRM-RL model is a specification of the component’s view of
its interface with other components. The supervisory interface consists of the controls
by which a supervisor directs the control component and the displays or other means
of communication by which the component relays information back to the supervisor.
In addition to the supervisory interface, a control component usually has an interface
with the controlled system, which includes inputs and outputs from and to sensors and
actuators. Note that these interface models are simply the view that the component has
of the interfaces—the real interface (such as the ATC controller’s planview display) may
contain different information due to various types of design flaws or failures. By separating
the assumed interface from the real interface, we are able to model and analyze the effects

28

of various types of errors and failures.

The third part of a SpecTRM-RL model is the controller’s model of the controlled
system. The description of a simple component may include only a few relevant states. If
the controlled process or component is complex, the model of the controlled process may
itself be represented in terms of its operational modes and the states of its subcomponents.
If, during the design process, components that already exist are used, then those plug-in
component models would be inserted into the SpecTRM-RL model.

As with all state-machine models, transitions are governed by external events and
the current state of the modeled system. In SpecTRM-RL, the conditions under which
transitions are taken are specified separately from the graphical depiction of the state
machine. We have found that the behavior of real systems is too complex to write on
a line between two boxes. Instead, we use a form of logic table we call AND/OR tables.
Figure 11 shows an example specification for a transition.

Runway-Not-Assigned — Prefer-1L

Fast-Aircraft-Model. Engine-Type[A] in state jet
Aircraft-near-JEN[A] in state yes

Aircraft-near-UKW[A] in state yes
Fast-Controller-Assigns-Runway[A] in state Not-assigned

Figure 11: An example transition in SpecTRM-RL model

Required controller behavior may be based not only on the most recent measurement
of state variables and the assumed current state of the process but also on the previous
state and past variable values (both inputs and outputs). We specify these values using
the function PREV.

Before we describe our DFW TRACON model, a comment on the amount of work
involved in constructing such models might be useful. Some sort of model is necessary
to perform hazard analyses, and complex systems will necessarily require complex models
to get any real value or important information from the analysis process. Although the
amount of work involved in constructing these models is significant, starting from scratch
is not always necessary. In the case of analyzing upgrades to the ATC system, most of
the models can be reused because most of the components will not change. In addition,
the models of the components that will be altered can be designed in such a way that
modules or pieces can be substituted for proposed changes while the rest of the model
remains the same. To accomplish this goal, some care has to be taken when creating
the original model to determine what parts are likely to change and to modularize these
parts so that substitutions can easily be made. Our modeling language assists in this
process by providing facilities for specifying macros and functions that are “called” from

29

the main model and by the basic separation into components and independent (parallel)
state machines.

3.2 The DFW TRACON Model

In this section, we describe the models we built for FAST and relevant parts of the DFW
TRACON.

3.2.1 Overview of CTAS

The Center TRACON Automation System (CTAS) provides automation tools—the Traffic
Management Advisor (TMA), Descent Advisor (DA), and Final Approach Spacing Tool
(FAST)—for planning and controlling arrival air traffic. CTAS generates air traffic advi-
sories designed to increase fuel efficiency, reduce delays, and provide automated assistance
to air traffic controllers in achieving acceptable aircraft sequencing and separation as well
as improved airport capacity. CTAS must accomplish these goals without decreasing safety
or increasing controller workload.

In the U.S. ATC system, the airspace of the 48 contiguous states are divided into twenty
areas approximately 400 miles across. These areas, known as Air Route Traffic Control
Centers (ARTCCs) or “Centers” for short, are further divided into sectors. The Traffic
Management Advisor assists the Traffic Management Coordinator at a Center optimize
the arrival traffic flow and create a plan. At the same time, the Descent Advisor assists
the air traffic controllers of each sector by probing for and resolving conflicts between
aircraft and by providing air traffic control advisories to carry out the Traffic Management
Coordinator’s plan.

A separate component of CTAS assists controllers handling arrival air traffic in an area
within 40 miles of a major airport. Within this TRACON (Terminal Radar Approach
Control) area, the Final Approach Spacing Tool (FAST) assists approach controllers to
assign aircraft to runways as well as sequence and schedule aircraft onto the final approach
to the runway.

CTAS integrates these functions and thereby provides assistance to air traffic coordi-
nators and controllers in both Centers and TRACONs. Moreover, it can incorporate the
actions of controllers by refreshing advisories automatically whenever it receives controller
inputs or detects unplanned events. To insure accuracy, CTAS makes use of highly so-
phisticated performance models of the major aircraft types encountered at Centers and
TRACONSs including jets, turboprops, and piston engine aircraft. Also, each element of
CTAS adapts to changes in the traffic situation, air traffic controller imposed constraints,
and pilot and airline preferences existing at a particular Center or TRACON by using
what is called adaptation data. Each tool provides a distinct benefit while the entire suite
of tools greatly improves the coordination between sectors and facilities.

30

3.2.2 What We Modeled

We used our modeling language SpecTRM-RL to model the version of FAST Build 2 for the
Dallas/Ft. Worth TRACON. Along with our model of FAST, we needed to produce models
of the other components with which FAST interacts, including a model of the Radar Data
Processor (RDP), the Flight Data Processor (FDP), and the STARS database, National
Weather Service weather data, and the TRACON (human) controllers (see Figure 12).
Figure 13 shows how these components fit together and communicate within the ATC
system.

Tracon
Controller(s)

NWS Weather Data

Radar T

Aircraft

Figure 12: High level view of the aspects of CTAS we modeled.

Because we were limited in our information about DFW and FAST, we built a generic
TRACON model similar to DFW that presents the elements that would be present in
a real model. In some cases we simplified. For example, we did not have access to the
database of aircraft performance characteristics included in FAST, so we created some
generic aircraft performance models. In other cases, we simply made up information, such
as the adaptation data for FAST executing at DFW.

In our model of DFW, there are four corner posts (Glen Rose (JEN), Bonham (BYP),
Bowie (UKW) and Cedar Creek (CQY)), four final approach fixes (Siler, Searc, Deitz, and
Delmo), and two runways (1L and 1R). There is one standard approach defined from each

31

Sector Center Tracon Tracon

Controller T™MC T™MC Controller(s)
”””” DA TMA TMA FAST ~—~—~°~
RDP __ FDP 4{ NWS Wesather Data }7 RDP __ FDP
! T Radar !
N withdatelink . - ________ withdatalink L2
Aircraft
L -
T c

Aircraft STARS
Database

Figure 13: Overview of how the ATC components communicate.

final approach fix to each runway for a total of eight standard approaches in all. Figure
14 shows the DFW standard approaches we used, and Figure 15 shows the innermost area
within the Deitz, Delmo, Siler, and Searc fixes.

3.2.3 The FAST Model

Our model of FAST is based on the description of Passive FAST Build 2. As stated earlier,
a SpecTRM-RL model includes the component’s operating modes (if this abstraction is
useful for the component) and a model of the process for which the component generates
control commands—in this case the aircraft and airspace.

The FAST operating modes (Figure 16) include the accept mode—whether it is using
auto-ready or auto-accept—and, for each corner post, if aircraft gated through that corner
post are using the accept-mode policy. We also model the state of various interface modes
specific to FAST Build 2, including the overall state of the display and various pop-up
windows that cover parts of the PVD.

The Aircraft Model (Figure 17) includes the parts of the state of the aircraft that
is needed by FAST to generate advisories. There is one model for each aircraft. These
models include the aircraft’s size and engine type, runway assignment, controlling sector,
and whether the aircraft has been assigned a priority by the controller.

The aircraft model includes ETA and other kinematic data, as well as aircraft perfor-
mance models that are generated and used for 4D trajectory synthesis. In the interest of
time, we implemented the trajectory synthesis algorithms in C and built a table that we
used to drive simulations.

32

(ereas o110N)

<H=w<%

SEAY
)

Emmzﬂ%@
14

ST138 V.

/

PAE v

odv3s

e
ZININ

N
¥1sy zﬁﬂx

3IN0D N/
®),
LAt V4
(en),
dAT~ X
Ao ;@ ——

Boos (82)
Z1vVO \V4 0005
4

I8 V

podny
x4
JNA/HOA

juiod Builoday

>ag =

OVLHOA

STO9NAS

L e o,

s2)

fooe amaf"y

kO(.D_ MO3HO v

(2]
oo =)
% WNoIS IN339
(en) (ev)

Vo —V
(s1)
Gooe
4N 7
>

1SHIH V4

®)

Extiielv4

5

OoW13a 5/

\ Z\ dow

m4a D.

\ Q s
é
saine

W

(02
AVEAYI
JNNOV \V4

ooos!
AVVN
s

3S00N ¥/
ona [}

Figure 14: DFW Standard Approaches

33

SILER
6 |17 T8
1L 1R
TS5
b
DELMO

Tl

SEARC

T2

T9

ﬁ

DIETZ

DFW Terminal Area

—

T3 2 n.mi.

Figure 15: Our model of the standard approaches within the four final approach fixesL

Siler, Searc, Delmo, and Deitz

34

Display Modes Display Type

Setup Popup Dwell Popup Timeline Popup
FAST POPUP Setup Popup Dwell Popup Timeline Popup
MODES Down Down Down
OPERATING]] —
Setup Popup Dwell Popup Timeline Popup
MODES uP Up Up

Accept Type BPR Accept Type BUJ Accept Type
accerr | Aworeay |1 [ukwAuo
MODES | Auto Accept | UKW No Auto

SCY Accept Type AQN Accept Type

JEN Auto CQY Auto
JEN No Auto CQY No Auto

Figure 16: FAST Operating Modes as modeled in SpecTRM-RL

35

Size Designation

‘ Size Unknown ’7

FAST
AIRCRAFT L sml | —
MODEL e |
[1..xXxX]

Controlling Sector

‘ Center ‘—

| FeederEast | —

| FeederWest |—

‘ Runway 1L }—
‘ Runway 1R }—

Engine Type

‘ Engine Unknown }—

}7
‘ Turboprop }—

‘ Piston ‘7

| Jet

Sequence Number
Status

Sequence Number
Not Assigned

‘Assigned By FAST‘—

‘Assi gned Manually‘i

‘ Cannot Compute ‘7

Aircraft Priority

Not Given Priorityj
Given Priority |

Assigned Runway

‘ Not Assigned }—

[roen
| PeferlR
i |
i |
e |

‘ Frozen 1R }—

Figure 17: FAST Aircraft Model as modeled in SpecTRM-RL

36

3.2.4 Models of the Other System Components

Different levels of detail are possible and necessary for the various system component mod-
els. Our model of FAST is very detailed while the RDP model requires less information.

The operating mode abstraction is not necessary for our RDP model (Figure 18). RDP
processes and smoothes radar data and then outputs the clean radar data to the controllers
PVD (or, in this case, FAST). RDP may also generate some alarms: Minimum Safe Al-
titude Warning, Restricted Airspace Intrusion, Flight Plan Conformance Monitoring, and
Potential Conflict.

We folded the STARS database into the FAST model along with the adaptation data.
A limited form of FDP information is used by FAST, but this information is incorporated
also into the FAST model instead of building a separate model of FDP.

Finally, a simple weather model was incorporated into the 4D path synthesis compu-
tation. We only partially modeled the other components of CTAS (DA and TMA). The
graphical parts of these models are shown in Appendix E.

3.2.5 DPutting the Models Together

SpecTRM-RL models are blackbox and the semantics are defined such that the only way
in which components share information is through specification input and output inter-
faces. There are no broadcast events. This blackbox nature of the models allows us to
examine and perform preliminary analysis on single components and partially completed
systems, which greatly simplifies the construction of the models and the specification and
understanding of the overall system behavior.

3.2.6 Handling Adaptation Data, STARS, etc.

Adaptation data for FAST includes such information as preferred runway assignments,
decision criteria for changing runway assignments, freeze horizons, etc. We encapsulated
the adaptation data as functions and macros in the SpecTRM-RL model of FAST, which
allows:

1. Isolating the adaptation data in one place in the specification so it can be easily
changed.

2. Checking the consistency and logical (mathematical) completeness of the adaptation
as part of our automated completeness and consistency analysis.
3.2.7 Ease of Incorporating and Analyzing Additional Upgrades and System
Changes

The modular nature of SpecTRM-RL models as well as some features of the language, such
as the use of macros and functions, assist in modeling and hazard analysis of alternative

37

RDP

() C) () () () ()

BCeagon ,%ssgned A/CID Altitude
n
INPUTS e e

Code
[1...100]

Position-

die () () ()

[1...20] Time Altitude

Restricted Flight Plan Minimum :
Airspace Conformance Safe Altitude Potertiial

AIRCRAFT Intrusion Monitoring Warning Conflict
MODEL Yes Yes Ve ‘ Ve ‘
[1100] A A 1 i
v v v T

O ORORORON®

Altitude Course Speed Beacon Code

Figure 18: SpecTRM-RL Model of RDP

38

designs. For example, consider the changes necessary if Automatic Dependent Surveil-
lance (ADS) replaces the FDP. To model and examine the safety-related consequences
of such a change, the single RDP component would be replaced with an array of ADS
components—one for each aircraft. A first analysis of this change would indicate that a
new process is needed to replace the alarms that RDP generates like MSAW, RAI, Flight
Plan Conformance, and conflict alerts.

In addition, although the kinematic outputs (s, y, alt, speed, heading) of RDP and
ADS are functionally the same, the failure modes of the two systems are quite different.
While the probability that a single aircraft will be lost (not reporting) is low in an RDP
system, it is higher in an ADS-equipped system. Conversely, a catastrophic failure in RDP
might yield no radar information whereas a similar type of failure may not be as likely
with ADS. A controller is more likely to detect a loss of all aircraft information than a loss
of only one aircraft, particularly if the loss of a single aircraft occurs in certain conditions,
such as during an automatic handoff.

39

4 Controller Task Analysis

The idea of modeling the controller tasks in such a way that they can be simulated along
with the model of other system components arose from our work with the TAP (Terminal
Area Productivity) Project at NASA Ames. The TAP project is looking at terminal area
procedures in order to determine the safety ramifications of using data links in addition to
voice contact to communicate trajectories and routing information between the air traffic
controller and the aircraft.

CTAS relies on both humans and computers to provide safe and efficient aircraft ad-
visories. When developing a system like CTAS and examining its ramifications on safety,
it is important to examine the interaction of the humans and computers. The addition of
automation often greatly changes the demands on humans. Through our modeling tech-
niques, we are able to get a better grasp of these changes and can inspect the system to
ensure that the changes do not create new avenues for accidents to occur.

4.1 Controller Task Modeling Language

The first step in examining these interactions is to perform a task analysis for both the
current system and the proposed upgrades. The task analysis identifies the major tasks
of the human controller and then breaks these down into subtasks, eventually specifying
the tasks down to the level of the key presses, voice communications, display cues, etc.
involved in performing the task.

. Transition i Received from
Key: - > State Event Action [external communication }

Figure 19: Key for reading Controller Task Models

Figures 20, 21, and 22 show such a task analysis® for the handoff procedure that occurs
when one controller passes the control of an aircraft to another controller (see Figure 19
for a key to the notation). The handoff procedure involves communication between the
controller currently controlling the aircraft, the next controller to control the aircraft, and
the pilot. In order to get a better idea of their interaction in the handoff procedure, we
modeled this task from each individual’s point of view.

The language for modeling the task is our own and was created for the TAP project.
The underlying model is basically a state machine, like the rest of our models, but it
is depicted differently because we felt this format was more helpful in understanding the
operator tasks. The normative actions are seen on the main horizontal axis of each person’s
task model. Any non-normative behavior diverges from this main axis until the situation

3Color is an important feature of our models and visualizations. The readers of black-and-white versions
of this report may have difficulty understanding them.

40

Jopuey

10800y Jjopuey
o > | Bunoaley uonoalol
uonoalal oy JopuRy
SuonIpuod P
Hopuey
10BIU0D [emul 1981U0) 1daooy JopUBY panieoal doedsire
sJoiid penisoay [aonuos feniu! s3opd " Bundaooy 120 15anbay JjopueH joapisino |-
I 198100 ‘_Oh mc_u_d\s 9oueldaooe 10} Jjopuey __w>> t.m‘_u.__/\
suoppuod arenu|
Salenul 101
19]]0U0D 1XaN
Jjopuey pajalal
»
P 19101U02 IXBN JJOpUEY 10}
%u_%; SUOIIPUOD BINSUB O}
e saInpasold arenu|
1001d 0}
- abueyd ‘bay Iejjonuod
>
noawiy. anssi-al) Apeay 320 sowE_._.V WO} paniadal o0
abueyo = | asuodsai oN
"bayy Joj Jjopuey Joj
suompuoy SuonIpuoY
Y o Y |
10(id woy 1001d asuodsal apeniu| 19]|03U09 JUBLINY
oeq peal 3 0} abueyd e paydaoce e sJ9]j0nu0d e %ovcms \ Aq pajjonuod <
10 Bure ~ebessaul *baiy Bumnss| D HopueH y p WoulojBunepm | - Hsseid uneniu 1220 jjopuey Buiaq yesouy
abuey abueyo tau U 10} SUonpUE)
Kouanhayy Kouanbayy e
Nwsuel] 10§ SUORIPUOD

19]|01U0D ualIN

Model of Current Controller and Next Controller

Figure 20

41

‘mouxJe

<

0U pan2oay "bay) snoinaid
0} suIja! 10)id
JBq pes) JBq pea)
103J3s .Uw‘_v_ Uw,_n_ .Um.c Mau ou Uw_n_ :
"MouDE 13]j01u0d s[fol Joj Yoeq speal ol J3[JAIU9 UL
10} Bumen [om0 au e J0 01U
LM B0 0} paun] "Day MaN "bal} Agpuels ba pabuey wiiy Japun
salenulo|d W) valoy [\ |
josseyloyd | opesfgpuess | 1N SEHIOd
Ul “bayy mau
i slowa 10)d
13]j01u02
WwoJ ‘Mmouyoe oIpel anoe
. olpes Agpuels oIpel Aqpuels OIpEI aNJOE
SaN231 10l U boy >>_m= Ul "bayy mau Ul "bay mau Ul "bay mau
Sial 10/ SIgJU3 10]d Y siweiod siwalod Y
‘bay Agpuers "bal) umouyun
1981100ul —
01 paunjojd | e Agpuess
195 SEU 10ld passua 0} suINja1 10)id
"bayy man
40+

baly s Jajj0nuo
10U 0} S19S - bayy
9L $1931100 10]id

"bouy s]104U00
JUBLINY 0} 5195 - “hay)
9L $1931100 10]id

10lid

Model of Pilot

Figure 21

42

“fauanbayy Agpuess

al) Se 0) paiiajal sI kauanbaly pajoajasun ay L Aouanbal) annae ay) se z Kouanbaly pue T Aouanbal)
Usamiaq asoya 03 1ojid ayp smojfe jeuy yaums ajbibo e st aiayy g Aouanbaly sioluouw [eip pue Aejdsip
PU0Jas ay) pue T Aouanbay) sionuow [eip pue Aejdsip aUQ "S[eIp om) pue sAe|dsip om pey oipel ayL 810N

¢ fauanbal 1o} kejdsiq 7 fouanbal Joj Aedsiq
youms 3oL
oIpey Jo Wweibeiq
199[8s "hayy
s9|B6o1 10/
Agpuess T fouanbai4 Agpuers ¢ fouanbal4
anay ¢ fousnbai4 anoy T fouanbaly4 [

199[8s "hayy

s9|Bfioy 10/

Olpey

10

Model of aircraft radi

Figure 22

43

has been corrected and the normative procedure resumed. Color is used in the model to
differentiate between events and actions. The triggering events for a transition are shown
in blue text above the transition while any actions resulting from the transition are shown
in red text beneath the transition. A green outline around text denotes that this is a
communication point between two components in the model. For example, in Figure 20
there is a green outline around the action Initiate Handoff in the Current Controller model
and a green outline around the trigger Initiate Handoff in the Next Controller model. This
part of the model denotes that the action of initiating a handoff in the Current Controller
model causes a transition to occur in the Next Controller model.

Another form of our controller task models, shown below, includes cognitive, percep-
tual, and motor requirements.

4.2 Modeling Tasks Using SpecTRM-RL

Connecting these models to our FAST model, we are able to simulate the interaction
between the humans and the computer. The analyst is able to closely inspect the ram-
ifications of certain automation and human task design decisions on overall safety. For
example, we know that humans do not make good monitors and that relegating humans
to a monitoring role can lead to accidents. If the controllers at any time need to take over
full control, we want to ensure they have enough information about the system state to
do so effectively. Our models also allow the analyst to examine the cognitive, perceptual,
and motor demands on the humans, at least with respect to the normative tasks.

From the task analysis, we created a model of the handoff procedure using SpecTRM-
RL. There are aspects of nondeterminism that are inherent in the controller’s behavior
that do not exist in a software system. To accommodate these unique qualities of modeling
controller behavior, we had to expand the semantics of some parts of the SpecTRM-RL
modeling language. In our task models, we need to be able to represent inputs that
motivate the controller to perform a given action. The exact cause of these actions are not
necessarily important for our modeling purposes. For example, although there are some
physical constraints that determine the time period in which a handoff is initiated, the
exact time that the current controller begins this process is determined by many factors,
such as the controller’s work load. For our purposes, we needed to be able to communicate
to the model that these motivating conditions have occurred so that the model execution
can progress.

Our slight changes to the semantics of the SpecTRM-RL modeling language do not
violate the underlying mathematical model. We are still able to perform the mathematical
analyses, such as consistency and completeness checks, forward and backward simulation,
or deviation analysis, on a system model that has been augmented with the normative
controller task models. While these analyses give the analyst a clearer picture of the
system, there are many interesting questions that these mathematical procedures do not
answer, such as:

e Are we modeling the handoff procedures correctly under normal operating condi-

44

tions? Under expected abnormal operating conditions?
e How does communication flow between the controllers and pilot during the handoft?

e What types of cognitive, perceptual, and motor resources are required of the pilot
and controllers?

e How does the cognitive, perceptual, and motor load on the pilot and controllers vary
throughout the task?

e When looking at two or more proposed handoff protocols, how do the demands on
the pilot and controllers change under the different protocols?

The designer of the automation and the controller procedures can answer some of these
questions through executing the augmented SpecTRM-RL models and using visualization
(animation) on various scenarios to determine the results. The flexibility of the visual-
ization tool in its interaction with the model provides a powerful aid to help the analyst
explore the system design more thoroughly.

The first visualization we created for our handoff procedure shows the overall commu-
nication flow between the controller currently controlling an aircraft, the next controller
to control the aircraft, and the pilot. This visualization highlights the actions (shown in
red) that are taken by each person involved in the handoff procedure. Figures 23 and 24
show a snapshot from this visualization. From it, we can determine if we have modeled the
handoff procedure correctly. It also allows us to inspect the communication flow between
the controllers and the pilot as the steps for the handoff procedure are simulated to the
detail of the necessary computer commands to enable the handoff using FAST.

The second visualization (Figure 25) we created allows us to inspect the cognitive,
perceptual and motor load on the pilot during the handoff procedure. Barry Crane, a
cognitive psychologist at NASA Ames, has broken down the different actions that are
required by the pilot during the handoff procedure into the following categories:

e Cognitive resources
e Perceptual resources (aural or visual)
e Motor resources (hand or voice)

From this visualization, we can compare the effects of multiple suggested handoff proce-
dures on the pilot’s cognitive, perceptual and motor load to determine which procedures
present safety risks.

45

o clientid®688.cCont 000 [,

Current Controller

Next controller

refected handoff [

Alrcraft belng Walting for next Issulng freq. Walting for
controlled by —= IE:‘::;:?' consl;mller's I Hand(:gd ™ chan%erg‘ = read gack
current controlier response accep pliot from pliot
[} [}
No response
recelied from fa
controlier Ready to re-lssue
freq.change =
1o pliot

Figure 23: Communication visualization: Current Controller

46

S clientid®i3mCont 0000 [

Next Controller

Alrcraft vrell Wakting for "
Handoff request Accepting a Recelved pllot's
autskde of - = llot's Inllal - p
alrspace recehved handoff P oy Inltlal contact
Refecting -

handoff

Figure 24: Communication visualization: Next Controller

47

Pllottunedto | Pllat has set
unknovrn freq. standby freq.
[
| ¥
Pllot has not Pllot has set
¥ ¥ changed freq. standby freq. L S |
Under firm Tuned 1o \Waling for
cantrolof next acknowrledgement]
current contraller cantralier fram controlier
&
Frequency not Frequency
read back read back
Recelved no
cknovrledgement*
from controller
Detect Assess Load Respond Execute
] I |]

Figure 25: Cognitive and perceptual load on the Pilot

48

5 Completeness and Consistency Analysis

After the preliminary hazard analysis has been performed and information is available
about system hazards, the next step of the process is to document the identified behav-
ioral requirements and constraints and to show that the requirements specification satisfies
them. This step also includes demonstrating the completeness of the requirements spec-
ification with respect to general system safety properties. Once a blackbox model of the
required system behavior has been built, this model can be evaluated as to whether it
satisfies design criteria that are known to minimize errors and accidents.

5.1 General Completeness Criteria

The goal of requirements completeness analysis is to ensure that the model of the process
used by the software is sufficiently complete so that no hazardous process states are in-
cluded. Accidents involving computers are usually the result of incompleteness or other
errors in the software requirements, not coding errors [Lut92, Lev95]. Jaffe and colleagues
[Jaf88, JLHM91, Lev95] have defined a set of formal criteria to identify missing, incorrect,
and ambiguous requirements for process-control systems. Some of these criteria must be
satisfied by all such systems; they arise from the basic properties inherent in a process-
control system. Other criteria involve heuristics for finding flaws that frequently lead to
accidents and can be used to improve the specification by examining, within the context of
the particular physical process being controlled, properties that are often present in such
systems. Some of the criteria are related to human-computer interaction such as providing
appropriate feedback during graceful degradation and completely specifying preemption
logic when multi-step operator inputs can be interrupted before they are complete. Addi-
tional constraints related to human-computer interaction are described in Section 9.

In order to make the general semantic analysis procedures applicable to any black-
box, behavioral requirements specification, we devised a formal modeling language (RSM)
independent of any specific, existing requirements language that is an abstraction of most
state-based specification languages. The criteria are defined in terms of requirements for
completely specifying the parts of this abstract state machine [JLHM91].

A few of the Jaffe criteria were derived from mathematical completeness aspects of the
formal RSM model underlying SpecTRM-RL, but most resulted from the experience Jaffe
had in building such systems over a large number of years. These lessons learned were
used to define design criteria for an RSM model.

Robyn Lutz [Lut93] at NASA JPL applied the criteria experimentally in checklist form
to 192 safety-critical errors in the Voyager and Galileo spacecraft software that had been
identified as safety-critical. These errors had not been discovered until late integration
and system test, and therefore they had escaped the usual requirements verification and
software testing process. The criteria identified 142 of the errors. The errors not identified
involved design and thus were not the focus of the criteria and the checklist. Any such
after-the-fact experiment is always suspect, of course; no proof is offered that these errors

49

would have been found if the criteria had been applied to the requirements originally.
But the fact that they were related to so many real, safety-critical errors is encouraging.
It is not necessarily surprising, however, since most of the criteria were developed using
experience with critical errors, incidents, and accidents in real systems.

The Jaffe criteria have been made into checklists by government and industry and are
being used in a wide variety of applications such as radar systems, the Japanese module
of the Space Station, and review criteria for FDA medical device inspectors.

A complete list of the criteria are included in Appendix D. Briefly and informally, they
involve:

e State Completeness: Checking for completeness of transitions and default values
during normal and non-normal operation, including startup and shutdown.

e Input and Output Variable Completeness: Checking that all information from
the sensors is used by the controller and that legal output values never produced by
the computer have not been inadvertently omitted.

e Human—Computer Interface Completeness: Checking criteria specifically re-
lated to the interaction between the computer and operator.

e Trigger-Event Completeness: Checking the conditions specified for the values
and timing of inputs from the sensors that trigger a state change in the controller’s
model of the process. Criteria here ensure the complete description and handling of
all inputs including essential value and timing assumptions about these inputs. The
software must be prepared to respond in real time to all possible inputs and input
sequences—there must be no observable events that leave the program’s behavior
indeterminate—and to respond to input capacity and overload conditions.

e Output Specification Completeness: Checking that the conditions specified for
the outputs of the software are complete with respect to timing and value including
environmental capacity, data age, and latency requirements.

e Output-to-Trigger-Event Relationships: Checking the complete specification of
the relationship between inputs and outputs including feedback loops and graceful
degradation.

e Transition Completeness: Checking properties of the paths between states includ-
ing basic reachability, recurrent or cyclic behavior, reversible behavior, reachability
of safe states, preemption of transactions, path robustness, and consistency with
required system-level constraints.

Jaffe originally identified 26 completeness criteria, which we have now extended to over
50. Most of these criteria can be checked by inspection. In order to assist in this inspection
and to assist the specifier in writing complete specifications from the beginning, we have
designed SpecTRM-RL to enforce (where possible) the criteria in the language syntax and

50

to make others more easily checkable in the resulting models. For example, SpecTRM-
RL requires that all components of the controlled system model have an UNKNOWN state,
which is the default for startup and after transitions from normal processing to any type of
temporary or partial shutdown. The controlled system can usually continue to change state
when the computer is shut down, and the software model of the process must be updated
at startup or restart to reflect the actual process state. Many accidents have occurred in
systems where the software assumed the status of the process had not changed since the
computer was last operational and issued commands based on this erroneous information.
In translating from our RSML specification of TCAS to a SpecTRM-RL model, for exam-
ple, we found such an omission. When TCAS is turned on, the altitude layer is initialized
as below 400 feet (where oral alert annunciations are inhibited). Although TCAS is nor-
mally turned on while the aircraft is on the ground and the initialization is thus correct,
it is possible to turn it on while at a higher altitude layer, and there are unusual scenarios
where this event might occur.

The checking of a few of the criteria need to be aided by automated tools for large
and complex models. Our Consistency and Completeness Analysis tool [HLI6] checks two
criteria that are difficult to check manually: (1) consistency (no two transitions out of a
state are satisfied simultaneously, that is, the behavior described is deterministic) and (2)
transition or mathematical completeness (there is a behavior defined for every possible
input and input sequence). We used this tool while constructing the CTAS models and
found that even when the models were very incomplete, it yielded useful information about
the transitions that had been specified. In addition, as stated earlier in this report, the
tool allows checking the adaptation data for completeness and consistency.

Using the automated completeness checking tool on our models, we found 48 cases
where transitions out of a state were incompletely specified. For example, we had a state
AUTO-READY indicating that FAST would query the operator to accept aircraft that
fly over cornerposts. We had not specified how FAST would react to a command to go
into AUTO-ACCEPT (in which FAST automatically accepts aircraft without querying the
controller) under the following situations:

Power-Mode in state Fast-On
Setup-Popup in state Setup-Popup-Up -
s

Display-Type in state Color

in other words, if the display type is not color, the setup menu is not being shown, or
the power is off. Although the last case is obviously not realistic (the controller cannot
select anything if the power is off), the other two cases are reasonable. Spurious inputs,
keyboard shortcuts (when the menu is not being displayed), latent inputs, and so on need
to be handled.

We also checked for nondeterminism in our model but did not find any instances of it.

51

5.2 Timing Constraints

The timing analysis we were able to do was limited by the amount of information we had
about CTAS. But we did take the system requirements specification (Center TRACON
Automation System, Build 2, System Specification, Revised Draft, 14 February 1997, Cor-
rected Copy, MIT Lincoln Laboratory) and examine it for completeness with respect to
the specification of the timing requirements.

The requirements that we examined are given on pages 17-21 of the document for all
functions and central monitoring and control (M&C), on pages 67-68 for FAST processing,
and on pages 93-94 for the TMC-GUI (Traffic Management Coordinator Graphical User
Interface).

The questions that we asked relate to the clarity and precision of the specifications, the
interactions among the constraints, and the robustness of the requirements. Depending on
the interpretation, there would clearly be some problems in building software that actually
meets these specifications. These problems could affect the safety of CTAS.

In general, the timing requirements are very incomplete with respect to safety issues
(as is the entire document). For example, on page 93, a basic timing requirement is
specified for FAST that it shall display requested data to the TMC (response) as a result
of the TCA data requests (stimuli) with a mean response time of 3 seconds or less, a 99
percentile response time of 5 seconds or less, and a maximum response time of 10 seconds
or less. Where did these numbers come from? Are they safety-related or are they simply for
convenience? Can they be changed if the system implementation cannot achieve them or if
the underlying technology changes? Are there different times for safety-related responses,
i.e., are all responses equally important and needed in the same time frame? If there is
a need for “triage,” i.e., not all the responses can be accomplished in the average or even
the maximum time, what information is the most important to provide, i.e., what are the
fail safe requirements for timing? What happens if the deadlines cannot be met?

5.2.1 General Function and M&C Requirements

All CTAS processes or functions, except the M&C functions, must handle at least five
different kinds of timing constraints, expressed as “SHALL”s in the document. These con-
straints are given as “adaptable” deadlines, which we interpret to mean deadlines that
depend upon the particular instance (air traffic control site) of CTAS and the particu-
lar function. Exceeding a deadline indicates either a function failure or an exceptional
situation.

The deadlines are described in the following list. The notation ¢; is our own and is used
later in this section.

e Initialization time (¢;,;;): The deadline for completing the initialization of a func-
tion.

e Shutdown time (¢s,;): The deadline to shutdown a process after receiving a shut-
down command (“Off-line Time”).

52

e State saving interval (fs,.): The earliest time preceding a failure at which it must
be possible to restore state.

e Normal response time (Zs4,5): The deadline for responding to an M&C status
query (“Stable Time”).

e Abnormal response time (Z4,,): The deadline following “Stable Time” for a
response to an M&C status query (“Delayed Time”).

Figure 26 shows a state-machine description of a generic essential restartable process,
focusing on states and transitions related to the above timing deadlines. The timing-
related transitions (timeouts) are shown in blue. This description was inferred from the
document, making reasonable educated guesses in several places, as discussed below.

The text labeled timeout[t,] on a transition specifies the maximum time (t,) for residing
in the state; for example, ;4105 1S the maximum time that a process can reside in the Status-
Respond state. If that time is exceeded, a timeout transition occurs to a new state—in the
example, to the state Status-Response-Delayed.

Following are some of the questions and issues arising from an examination of the
specified timing requirements:

1. Two of the deadlines, Zs41ys and tgerqy, and obviously system safety, are concerned
with the response to an M&C status query. However, the document seems to require
that CTAS processes send status data on their own, rather than in response to
explicit queries. For example, on page 102, M&C outputs do not include a status
query command and, as specified on page 67, the FAST function sends status data
periodically.

2. Assuming that M&C does send status queries, can there be more than one query
outstanding at the same time? Figure 26 allows only one query at a time. If sev-
eral are allowed, the timing and failure checking could be very complex, potentially
overloading the system and causing a failure.

3. Does the “Delayed Time” deadline include the “Stable Time” already passed?

4. Is a shutdown instruction identical to (synonymous with) pushing the CTAS Stop
button?

5. The requirement to restore state to a value at an adaptable time prior to a failure (the
reason for the timeout and state saving after t,4,. in the states Normal-Processing,
Status Respond, and Delayed-Status-Respond) could be interpreted in a non-tolerant
manner as maintaining a state value 4, units before a failure detection rather than
the failure itself. For example, in the figure, a process could be failed in either
the Status-Respond or Delayed-Status-Respond states, and the failure may not be
detected until the Recover-From-Failure state is entered through a timeout; however,
the most recent saved state operation could have been triggered after the failure had

93

Ti -

meout[t-shut]

Clean Up

Timeout[t-savg]/
Save st

ate utdown
Shutdown
Err
Status Status

Recover Reques Response
from
Failure Status

Err Status Response

Respond
Tirheout[t-save]/ Shutdown
Error Save state

. timeout(jt-status]
Timeout[t\delay]

Respond
Q Timeout[t-save]/
Save state

Figure 26: State-machine model description of a generic essential restartable process

04

occurred. (Of course, keeping a history of saved states would allow access to a recent
“correct” state prior to the actual failure.)

. The dotted transition from Fail-Stop to Normal-Stop indicates that some other means

for recovering from failure are necessary. There is no specification of what those
means might be.

5.2.2 FAST Functions

In FAST, the same timing constraint is defined for input, output, and aircraft processing
functions: They are to be executed periodically with a period and deadline of six seconds.
These functions include:

F1: Calculate a new aircraft arrival plan.

F2: Update arrival plan if a TMC command is received.

F3: Output to TMC-GUI and controller screens.

F4: Send status to M&C.

F5: Update the number of TRACON-visible aircraft based on ARTS radar.

Some of our questions and issues follow:

1.
2.
3.

Is function F2 part of F1, or is it an entirely separate update?
What happens if the six second deadline is missed? Is this a FAST or CTAS failure?

The six second period seems to be “hard wired.” What happens if technology changes
to make this period shorter or even longer?

How does FAST’s periodic constraint interact with the global constraints described
in Section 5.2.1 above? For example, if the adaptation times tyq4ys and tgeq, are
less than six seconds, the system may signal timeout failures even though FAST is
working correctly. It might also mean that M&C status queries cannot be issued
more frequently than once every six seconds.

. It is not clear from the document whether the intent is that F1 through F6 are to

be performed once every six seconds as a unit or, alternatively, each of F1 through
F6 may have its own six second execution cycle. The difference is that the lat-
ter interpretation, while perhaps more complex to implement, is more flexible and
robust—periods can be changed, functions can be allocated to different hardware
processors, and errors may be easier to detect and handle.

5.2.3 TMC-GUI

Some very specific and precise deterministic and stochastic timing constraints are defined
for response and feedback time for the GUI. We have not examined these constraints in
any detail, except to note that no mention is made of any requirements for checking these
constraints or for handling constraint violations during system execution.

95

6 Simulation and Animation

Visualizations are pictorial representations of information that help convey meaning and
explain concepts. The arrangement and portrayal of information can facilitate or distract
from learning and understanding.

Information visualization for requirement and systems analysis is concerned primarily
with providing different views of a specification so the designer or analyst can understand
the system and the system model. They can help explain the relationship and interactions
between system components. Because a system specification is the link between the oper-
ators, designers, and developers of a system, the information needs to be presented in the
most natural manner for the intended user while still maintaining the ability to be easily
verified. Visualizations, when effective, reduce cognitive load by highlighting the relevant
interactions and aspects of a system.

Most requirements or system specification languages are either completely textual or
provide only a single system view. Information is often grouped to make automated
analysis easier. Automated tools can check static attributes such as completeness and
consistency, but expert review of these specifications is often difficult. Very formal, math-
ematical languages are often far from the model the expert has of the problem domain and
finding errors through human review can be difficult. Useful visualizations provide alter-
native system views that can help experts verify system behavior with minimal overhead.
In addition, when checking a system specification, experts are verifying behavior of many
different aspects of a system. Thus, the information they need will depend on the question
being asked.

Experience gained from the specification of other systems helped us to build a list
of questions commonly asked during the system specification review process. This list
includes questions such as:

1. What caused the system to get into this state?

2. What is the relationship between these n states?

3. What states can the system transition to from this state?
4. Is this what I really want the system to do?

5. What happens if the system receives input x?

6. Under what conditions does the system output x?

The requirements specification of the FAST system that we created includes visualiza-
tions to help analysts answer these questions. We also want to use visualization techniques
in the representation of the output of our automated analysis tools although these inter-
faces are still under development.

o6

6.1 Visualizations and SpecTRM-RL

Our IB Toolkit is an interface and visualization builder that allows users to build graph-
ical user interfaces (GUIs) and visualizations of SpecTRM-RL models quickly and easily.
Very little previous knowledge about interface programming or graphics is required. Two
important assumptions made in the design of the IB Toolkit is that SpecTRM-RL users
have a basic understanding of the event programming model and that they are familiar
with the Tcl/Tk environment.

The IB Toolkit provides a drag-and-drop mechanism for interface and visualization
building. There is a toolbox from which users can click to choose objects to draw on an
interface canvas. Once an object is drawn on the canvas, an attribute window for that
object is popped up on the screen so the user can modify the relevant attributes of the
object and attach code that controls the behavior of the object. A visualization is created
by drawing and modifying multiple objects on the canvas.

Once the “look” of the visualization is completed, it can be attached to a SpecTRM-
RL specification to control its execution, display the execution outputs, or display internal
states or actions of the model during execution. Attaching (linking) a visualization to a
SpecTRM-RL model using the IB Toolkit is automatic. The toolkit uses a set of subroutine
libraries to access the named variables in the model and then creates a set of bindings
between the model variables and automatically generated visualization variables. The
visualization attributes can be changed based on the SpecTRM-RL model state.

6.2 Pseudo PVD

The first visualization that we created was a simplified planview display (PVD) to help
system designers determine the correctness of the 4D trajectory synthesis algorithms, to
monitor the behavior of the aircraft in a simulation, and to control the execution of the
model (see Figure 27).

The pseudo PVD has three windows, each presenting a different aspect of the 4D
trajectory algorithms. The window to the left is a timeline that shows each aircraft’s
estimated time to landing. The window to the right is an altitude indicator for the planes,
which is divided into two sections. The upper, black section is a coarse-grained altitude
indicator for aircraft flying higher than 9000 feet. The larger, blue portion is a more
finely grained altitude scale. Because we are modeling the TRACON area, we are mainly
concerned with the altitude changes of aircraft below 9000 feet. We included the capability
of tracking aircraft at higher, cruising altitudes, however, so the visualization can be used
for a broader range of analyses.

The main, center window mimics a simplified PVD. The simplified PVD shows only con-
trolled aircraft, the two runways in the model, and the DEW corner posts. We felt the sim-
plified view would be more useful to the system designer than a real PVD visualization—
our goal here is to assist the system designer and not to create or evaluate the interface
itself. The PVD visualization receives 4D trajectories for each of the controlled aircraft and
displays each aircraft and its predicted flightpath. As the model simulation continues, the

o7

Y 4d flight plan [
File Options Checkpoints
Timeline: ETA in minutes [Pl WA (D TEFEERY — Altitude, in feet
LEI\;‘IYN : 33000 feet
HIKAY NIMIZ =
JUTES =
AAL123 0000 feet
o,
SIIZER % $ =
<Y %
il]
"
DIETZ L
DELMO
= ®
EAGLE2 TACKE B
P | &
CURLE EAG
= 0 feet
=] -
T —
i\ 2 nantiral milea
Current time in simulation (in minutes)
76
\ Jo|
4] 5 1o I5 20 25 20
Simulate | Step | Step Ahead.. | Reset |

Figure 27: Simplified PVD: The PVD visualization has three windows to help analysts
better understand the execution of the specification. The window on the left displays the
aircraft time-to-arrival information. The one on the right displays each aircraft’s altitude,
and the center display shows aircraft flightpaths and horizontal spatial information for
each of the planes in the system.

o8

PVD shows the aircraft moving along their projected flightpaths, updating the flightpaths
as directed by the model. In addition to the separate altitude indicator in the left window,
the pseudo PVD includes grey shadows of the planes to indicate the relative altitudes of
each of the planes. The shadowing provides a more complete view of the simulation results
in one picture without requiring a context switch to another window.

Because we are concerned with providing visualizations that help answer the questions
asked by system designers and reviewers, the pseudo PVD allows the designer to alter the
displayed information dynamically during execution. Users have the following options:

e Turn off the 4D trajectory path trace.

e Show the entire path trace from simulation beginning to landing.
e Show just the path trace of where the plane has been.

e Show the last few steps and the next few steps in the path.

e Zoom in or zoom out to any distance from the runways.

e Show labeled waypoints or not.

e Display selected aircraft information such as speed, assigned runway, and sequence
number.

The PVD visualization is attached to the SpecTRM-RL FAST system model and con-
trols the simulation of the model. It does this by sending messages to the model that a
controller would normally issue during the operation of FAST. The visualization also re-
ceives messages from the FAST model so it can update the display as the model executes.
FAST decides which runway to assign to each aircraft, and it informs the display about
the path each aircraft is predicted to fly.

6.3 State Machine Model

We use a visualization of the underlying SpecTRM-RL model in our simulation and anal-
ysis. Each portion of the model is represented in a separate window. For a simulation
of three aircraft, we would have four visualization windows: one for each of the aircraft
models (Figure 28) and one to display the FAST operating modes. The state machine
view of the system model facilitates answering question number three from above. When
coupled with the model simulation it helps answer question number five.

What we want to focus on here is the layout and the visualization of the underlying
state-machine model. We use principles described by Tufte [Tuf90] in our graphical layout
of the state machines. For example, one of these principles is to eliminate unnecessary
“grouping” boxes. In Figure 28 the states Size Unknown, Heavy, Small, and Large are
not grouped within a box, but rather are simply denoted as related atomic states by the
Size Designation label located above the states and the transition arrows between the

99

states. This type of layout reduces the amount of clutter in the display and does not draw
attention to or create the artificial visual space that would be present had we put a box
around state machines. If there are multiple hierarchical levels and delineating boxes are
necessary, we have reduced the contrast between the containing states by bordering these
states in light grey.

When the state machine visualizations are coupled with a model execution, an analyst
can view the behavior of the model. In the state machine representation, color is used only
to denote state activity. The outline and name of a state are drawn in red when, during
execution, the model is “in” a state; in black when a state is inactive; and in a muted
purple when the status of a state is unknown.

6.4 Transition Tables

While the state machine representation presented above helps analysts answer many ques-
tions, we found that the underlying transition tables that govern the behavior of our models
are good representations to help answer the question: What caused the system to get into
this state? We have included in our simulation the ability to access these tables and to
have them dynamically represent the activity of the transitions (Figure 29). During a
simulation of the FAST model, single clicking on a state will bring up a window with all
the transition tables that influence how the model might transition into that state (see
Figure 30). If the state being examined is currently active, the transition that caused the
model to change to that state as well as the specific column that enabled the transition
are both highlighted.

60

Fast Aircraft Model

Size Designation
Size Unknown

Heawy

Large

Controlling Sector
Center

Feeder East
Feeder West
Runway 1R

Runway 1L

Unknown

=
i
=,
[£=1
=]
m
=1
]
=
=
5
]

Engine Type

Englne Unknowrn

Turboprop

Mot Assigned
Prefer 1L
Prefer 1R
Selected 1L

Selected 1R
Frozen 1L

Frozen 1R

Unknown

Aircraft Priority

Mot Glven Priority

Sequence Number Status

Figure 28: Visualization of the FAST Aircraft Model

(a0 preferdr 0000 [-[a]

Figure 29: Example transition into the state Prefer;R

6

[y

= [feeder west 2| ElE

Figure 30: Example of transition tables for transitions into the state Feeder West

62

7 State Machine Hazard Analysis

Top-down and backward hazard analyses start from a hazard and determine if and how
the hazardous state can be reached. We have found that the backward reachability graph
explodes quickly even though many of the branches are physically impossible. Therefore,
we currently implement the process in SpecTRM by having the analyst start the model
in a hazardous state and work back one step at a time, using our backward simulation
capability. At each step, the analyst prunes the tree of irrelevant branches and decides
which branch to follow next.

Using this process, we can implement the safety analysis algorithms defined by Leveson
and Stolzy [LS87] that evaluate whether the system can reach a hazardous state when
operated as specified and when there are various types of failures. Complete reachability
analysis, even going backward from one state, is infeasible for large state-machine models.
However, the analysis algorithms are designed to detect the critical states on the paths
to hazardous states. These critical states are informally defined as states from which
there are paths that lead to the hazardous state and paths that lead to other states. The
identification of a critical state can be used to change the design in a way that eliminates
the path to the hazardous state, or, if that is not possible, to design suitable controls. The
critical state itself might not be reachable, but that only means that the procedures will
eliminate hazardous states that could not really have been reached.

We performed this type of hazard analysis on the DFW model with only limited re-
sults. Part of the reason revolves around our switch from RSML to our new modeling
language, SpecTRM-RL, midstream. We began developing a specification of CTAS in
RSML, but our new visualization tools were developed to work with SpecTRM-RL models
so the effort was switched to developing a model in the new language. Unfortunately, we
discovered that we did not have enough time to switch our older analysis tools (backward
simulation, consistency and completeness checker, and deviation analysis) to the new lan-
guage. Therefore, we ran them on the partially specified versions of the RSML model of
CTAS. Although for completeness and consistency checking this change simply provided
us with more instances of incompleteness to detect, the state machine hazard analysis and
deviation analysis tools provided only limited results (the RSML models were too simple
to contain interesting hazards), and therefore the results are only suggestive of how the
techniques would work on a less superficial CTAS specification. For example, we found
that two different menus could possibly be popped up at the same time (in our RSML
model) when they were supposed to be mutually exclusive. Previous use of these tools on
more complete models, such as a flight management system, produced more interesting
results [MLRPS97].

63

8 Deviation Analysis and FMECA

Failure Modes and Effects Analysis (FMEA) and Failure Modes and Effects Criticality
Analysis (FMECA) are most effective in examining the effects of hardware-related failures.
A limitation of the approach is that it usually looks at single failures only, although
accidents in complex systems often occur as a result of multiple events or failures.

Applying a FMEA or any bottom-up or forward analysis technique to software is com-
plicated by the large number of ways that computers can contribute to system hazards. A
valve that has only two or three relevant discrete states (such as open, closed, or partially
open) and a similarly limited number of failure states (fail open, fail shut, or fail partially
open), for example, can be examined for the potential effects of these states on the system
state. Computers, however, can assume so many states, exhibit so many visible and po-
tentially important behaviors, and have such a complex effect on the system that complete
bottom-up or forward system analyses are, in most cases, impractical. In simpler systems,
where the software can affect only a few system parameters, such an analysis might be
useful.

FMEA and FMECA can provide important information, however, and they should be
performed for systems where hardware failure (such as radars) is possible. They are most
helpful in determining what effects complete failure of major components of the system
might have. In the case of CTAS, the changes involved in using FAST do not have a major
impact on the backup procedures currently in place.

We examine the problem of erroneous outputs from FAST elsewhere in this report, but
the total failure of the CTAS software or computer hardware should not, in general, be
any different than a current failure of the RDP. Such a failure might have an important
impact if the use of the automation allowed less spacing and more aircraft to be handled
by a single controller than is true today. In that case, the necessity of the controller
to handle increased traffic using flight strips alone might lead to a hazard. Although
this problem does not seem to exist for passive FAST, the operational system should be
audited periodically to make sure that the automation is not used in an unexpected way to
increase controller load beyond what could be handled safely using current manual backup
procedures.

A detailed analysis of the failure modes and effects related to total failure of CTAS
will depend upon details of the installation at DFW, to which we have no access. For
example, the effect of CTAS failure may depend on whether the TRACON has a DARC or
EDARC system. DARC is the Direct Access Radar Channel, while EDARC is enhanced
DARC. DARC/EDARC is, in essence, an independent path (and a much different version
of digital logic) from the radar input lines at the centers to the controllers, although there
are still several common points of failure with the main RDP path. At the enroute centers,
the controllers are expected to respond to a failure of the RDP by switching their displays
(PVDs) to EDARC. They will not see “raw” radar returns, but the data is a lot less
processed than normal RDP data. So the results of a FMECA would depend on whether
the DFW TRACON has DARC, if it is planned to be retained with CTAS, and if the new

64

displays have the capability to display it.

In addition, if the FAST logic is implemented as a coroutine to coresident RDP logic,
FAST can probably preclude the proper functioning of RDP in several ways. Even if FAST
is independent of RDP, there are a couple of cases where FAST could bring down RDP.

In general, the use of forward analyses, like FMEA and FMECA or HAZOP, run
into difficulties when applied to complex systems with software components. When the
tracing of a failure (FMECA) or deviation (HAZOP) reaches a computer component, it
may be difficult to determine what affect that failure will have on the software behavior
and outputs, particularly before the software has been implemented. Even after it is
implemented, only a limited number of test cases can be evaluated. We solve this problem
using a new forward analysis technique for software developed by Reese [Ree96, Ree96]
called Software Deviation Analysis (SDA).

Like HAZOP, SDA is based on the underlying assumption that many accidents are the
result of deviations in system variables. A deviation is the difference between the actual
and correct values. SDA can determine whether a hazardous software behavior (usually
an output) can result from a class of input deviations, such as measured aircraft speed
too low (the measured or assumed speed is less than the actual speed). SDA is a way
of evaluating system components for robustness (in the security community this is often
called survivability) or how they will behave in an imperfect environment.

Figure 31 shows an overview of the procedure. The analyst provides a formal soft-
ware requirements specification (e.g., an RSML or SpecTRM-RL specification), which the
procedure automatically converts into a causality diagram. The causality diagram is an
internal data structure that encodes causal information between system variables, based
on the specification and the semantics of the specification language. The simplicity of
causality diagrams makes the search algorithm more straightforward and easier to adapt
to a new specification language. Causality diagrams may also be helpful to the analyst in
understanding how system variables are inter-related.

At this point, the causality diagram describes the relationship between the actual values
of system variables, but not their deviations. The procedure next augments the causality
diagram with deviation formulas so that variable deviations are represented.

After the analyst’s specification is converted to an augmented causality diagram, the
procedure is ready for the analyst to identify the safety-critical software outputs and at
least one deviation in the input environment.

The augmented causality diagram, safety-critical software outputs, and the initial de-
viations are passed to the search program, which constructs a tree of states. The initial
deviations are at the root of the search tree. Leaves are either dead-end searches (in which
the state does not contain any deviations) or states containing safety-critical deviations.

The search is based on applying qualitative mathematics to the causality diagram.
Qualitative mathematics partitions infinite domains into a small set of intervals and pro-
vides mathematical operations on these intervals. The use of fixed intervals simplifies the
analysis compared to iterations over the entire state space. Like HAZOP, it also lends
itself naturally to the qualitative nature of deviations, such as “slightly too high.”

65

Specification
Deviation Formulas
Causality Diagram ‘{ Qualitative Math

Augmented Diagram ‘{

=-=5-=
Search é_.@

Figure 31: Overview of deviation analysis procedure.

66

The output of the procedure is a list of scenarios. A scenario is a set of deviations in the
software inputs plus constraints on the execution states of the software that are sufficient
to lead to a deviation in a safety-critical software output. The deviation analysis procedure
can optionally add further deviations as it constrains the software state, allowing for the
analysis of multiple independent failures.

We did not perform a FMECA or HAZOP for this study; the process is very straight-
forward. Instead, we demonstrated how SDA could be used to provide information for
a FMECA or other forward analysis. Unfortunately, we again ran into the problem that
the conversion of our SDA tool from RSML to SpecTRM-RL was not completed in time
to apply SDA to the more complete SpecTRM-RL model. We were able to run the tool,
but we did not find any serious problems in our simple model. Figures 32 and 33 show
the input and output (respectively) from a sample execution of our SDA tool. We are
currently working on better ways to visualize the output from the deviation analysis.

67

===
Hle Simulate Help

==

Set Up ‘ Search Parameters ‘ Initial Assumptions | Output ‘

Significant Nodes : Show All —
States Al states CTAS:FAST_OFF
FAST_SUPERVISORY _MODES states CTASIFAST_ON
FAST OFF Add states CTAZCOMPUTER _OFF
FAST_ON
COMPUTEER_OFF
FOWER_MODE
ELANE
HELP Remove
NORMAL A
= Lt
Deviating Nodes : Show all —-‘
States | statesDev.CTAS:FAST OFF: |
FAST_SUPERVISORY_MO: Add
FAST_OFF Deviationn: Wrong -
TFAST on T
COMFPUTEE_OFF Value: on .
FOWER_MWODE
BLANE Remova
HELF | ctatacTiar CTACGEAQT NN ¥
B =]

Step

Figure 32: Deviation analysis input screen

68

= E [Fisoftware Deviation Analysis Tool
Hle Simulate Help

Set Up | Search Parameters | Initial Assumptions | Output

STATE: state294 STATUS: has_deviations significant
STATE HISTORY: state2394
#STEFS: 0 # ADDED ASEUMPTIONS: O
ASSUMPTIONS:
Step 00 nodel873: dewCTAS:FAST_OFF {POWER_MODE IN_STATE FAST_OFF})
Step O nodeld: value(CTAS FAST _OFF {FOWER_MODE IN_STATE FAST_OFF})
Step 00 nodel1902: dev{CTAS:FAST_ON {POWER_MODE IN_STATE FAST_ONN})
Step 00 nodel?: lvalue(CTASFAST ON {FOWERE_MODE IN_STATE FAST_ON1)
VAL UES:
Step O node695: valus(CTAS FAST _POPM _2) =
Step O node832: value(CTAS FAST AN _10B) =
Step O node817: value(CTAS FAST_AM_9) =
Step 0 nodesd?: value(CTAS FAST DM _4) =
Step O nodebd2: value(CTASFAST DM _3) =
Step O node26: value(CTAS. COMPUTER_OF
Step O node?58: value(CTAS FAST_AM_4A)
Step O nodeb35: value(CTAS FAST DM _7) =
Step O node?15: value(CTAS FAST POPM _5=F
Step O nodeb17: value(CTAS FAST_PIM_4)
Step 00 nodeV43: value(CTAS FAST AN _2)
Step O node730: value(CTAS FAST_AM &
Step O nodeb 10 valus(CTAS FAST_FIV_3)
Step O node824: value(CTAS FAST _AM 10A)=F
Step O node708: value(CTAS FAST_POPM _4) =F
)R

T

Step 0 nodesd®: value(CTAS FAST POPM_
Step O node8 10 valus(CTAS FAST_ANM_8B
Step O nodel 3 value(CTASIFAST_ON {FO
Step O nodeb27: value(CTAS FAST_DM_2)
Sten 00 node795: value(CTAS FAST AWM D

L

F
ER_MODE IN_STATE FAST QN1 =F
I
I

oo

=

Step

Figure 33: Deviation analysis output

69

9 Mode Confusion Analysis

As the role of automation changes in a system, so does the role of human operators. A
safety analysis must examine these changes for their potential effect on human error that
could lead to accidents and identify ways to change the system design and operator training
to reduce this potential. In this section and the next, we describe two complementary
approaches to this problem: The first focuses on the automation to evaluate its potential
to contribute to human error while the second focuses more on the human to evaluate the
effect of the proposed system changes on human performance (see Section 10).

Increased automation in complex systems has led to changes in the human controller’s
role and to new types of technology-induced human error. Some of these errors are the
result of what Sarter, Woods, and Billings have called technology-centered automation
[SWO5a]. Too often, the designers of the automation focus on technical aspects and do not
devote enough attention to the cognitive and other demands on the operator. The result of
technology-centered automation has been what Wiener calls clumsy automation. Software
engineers building embedded controllers are rarely taught or understand the set of cognitive
processing activities associated with maintaining situation and mode awareness and how
their designs can affect these human activities. Instead, they tend to focus on the mapping
from software inputs to outputs, on mathematical models of required functionality, and
on the technical details and problems internal to the computer. Little attention has been
given to evaluating software in terms of whether it provides transparent and consistent
behavior that supports operators in their monitoring and control tasks.

In our examination of CTAS, we were pleased to see the amount of thought that had
gone into the human-machine interaction component of the system. But passive FAST
and even active FAST are currently limited in their control activities and primarily pro-
vide information to the controller. In order to achieve the increased throughput in the
ATC system that is planned for the future, automation is going to have to take over more
direct control functions. It is at this point, where the system is being controlled jointly
by computers and humans, that other complex systems have started to experience acci-
dents related to a lack of coordinated activities and information flow between the various
controllers. One particularly problematic feature of these new designs is a proliferation
of modes, where (as defined earlier) modes define mutually exclusive sets of system be-
havior. Examples of operating modes relevant to CTAS are waypoint-capture mode and
route-intercept mode.

Mode-rich systems provide flexibility and enhanced capabilities, but they also increase
the need for and difficulty of maintaining mode awareness, which can lead to new types of
mode-related problems. Attempts to mitigate these errors have primarily involved giving
more authority to the automation, enhancing operator training, or changing the interface.
Giving more authority to the automation has led to serious accidents that operators tried
to prevent but could not because of their authority limits.

Eliminating humans completely from these control loops is simply not possible at this
time while ensuring an acceptable level of safety. Therefore, humans will continue to be in

70

these control loops, and, if it is true that mode-related human errors are caused by clumsy
or poorly designed automation, then changing the human interface, operator training,
or operational procedures is not the only possible solution to our problems: “Training
cannot and should not be the fix for bad design” [SW95a]. Instead, if we can identify
automation design characteristics that lead to mode awareness errors or that increase
cognitive demands, then we may be able to redesign the automation without reducing
system capabilities. In addition, knowing the causes of increased cognitive load will make
changes in training or interface design more effective. The approach chosen will depend
upon such factors as relative costs, perceived effectiveness, and required tradeoffs.

This section describes an approach to detecting error-prone automation features early
in the development process while significant changes can still be made to the conceptual
design of the system [LPS97, LP97]. To accomplish this goal, designers need to be able to
identify problematic design features. Our approach to this problem is to identify design
constraints on the automation based on known cognitive constraints on the human operator
and engineered or natural environmental constraints. These constraints are based on the
types of errors that humans make in highly automated systems, as determined by human
factors studies and by examining past accidents in highly automated systems. Using this
information, we analyze the blackbox behavior specified in our blackbox models of the
automation (the SpecTRM-RL models) to predict where errors will occur and use this
information to design the automation; to design or evaluate the design of the operator
procedures, tasks, and interface; and to make tradeoff decisions in the early development
stages of the system. In fact, part of the reason for modeling modes the way we do in
SpecTRM-RL is based on our desire to analyze the models for mode-confusion potential.

For our analysis approach to work, human errors must be non-random. After studying
accidents and incidents in the new, highly automated aircraft, Sarter and Woods [SW95b]
have concluded that certain errors are predictable: They are the regular and predictable
consequences of a variety of identifiable factors. Although they are “accentuated” by poor
interface design and gaps or misconceptions in the user’s mental model of the system,
mismatches between expected and actual automation behavior is not necessarily related
to an inadequate operator mental model, but can also result from inconsistent automation
behavior. Sarter and Woods identify some of these error forms.

In the rest of this section, we first define mode confusion more carefully and then define
some design and analysis criteria we have identified to detect features of blackbox state-
based requirements specifications (i.e., features of SpecTRM-RL models) that are likely to
lead to mode-confusion errors.

9.1 Mode Confusion

High-tech systems, such as aircraft control systems, are starting to experience a prolifera-
tion of modes. The new mode-rich systems provide flexibility and enhanced capabilities,
but they also increase the need for and difficulty of maintaining mode awareness, which
can lead to new types of mode-related problems.

71

While automation has eliminated some types of mode-awareness errors, it has also
created the potential for new types of errors. Sarter and Woods [SW95a] extend the
classic definition of mode error and distinguish between errors of commission (where an
operator takes an inappropriate action) and errors of omission (where the operator fails
to take a required action).

The first automated systems tended to have only a small number of independent modes,
and functions were associated with one overall mode setting. In addition, the consequences
of operator mode awareness problems tended to be minor, partly because feedback about
operator errors was fast and complete enough that operators were able to recover before
the errors caused serious problems (Rasmussen’s concept of error tolerance [Ras90)).

Studies of less complex aircraft automation show that pilots sometimes lose track of
the automation behavior and experience difficulties in directing the automation, primarily
in the context of highly dynamic and/or non-normal situations [SW95a]. In most cases,
these problems are associated with errors of commission, that is, with errors that require a
pilot action in order for the problem to occur. This type of error is the classic mode error
identified and defined by Norman—an intention is executed in a way that is appropriate
for one mode but the device is actually in a different mode. Because the operator has
taken an explicit action, he or she is likely to check that the intended effect of the action
has actually occurred. The short feedback loops allow the operator to repair most errors
before serious consequences result. This type of error is still the prevalent one on relatively
simple devices such as word processors.

In contrast, studies of more advanced automation in aircraft like the A-320 find that
mode errors of omission are the dominant form of error [SW95b]. In this type of mode
error, the operator fails to take an action that is required, perhaps because the automation
has done something undesirable (perhaps involving a mode change) and the operator does
not notice. In other words, the operator fails to detect and react to an undesired system
behavior that he or she did not explicitly invoke. Because the mode or behavioral changes
are not expected, the operator is less likely to pay attention to the relevant indications
(such as mode annunciations) at the right time and detect the mode change or undesired
behavior.

Errors of omission are closely related to the role change of the operator from direct
control to monitor, exception handler, and supervisor of the automation. As these roles
change, the operator tasks and cognitive demands are not necessarily reduced, but instead
tend to change in their basic nature. The added or changed cognitive demands tend to
congregate at high-tempo, high-criticality periods [SW95a]. While some types of errors
and failures have declined, new error forms and paths to system breakdown have been
introduced.

Some of these new error forms are a result of mode proliferation without appropriate
support. Providing support has been complicated by some unexpected changes in operator
behavior in working with complex automation. For example, during long periods of flight,
pilots do not have to monitor the mode annunciations continuously. Instead, they need
to predict the occurrence of mode transitions in order to attend to the right indications

72

at the right time. A-320 pilots have identified this new type of monitoring behavior in
surveys conducted by Sarter and Woods. However, the automation and interfaces have
been designed assuming conventional monitoring.

Simply calling for systems with fewer or less complex modes is unrealistic: Simplifying
modes and automation behavior often requires tradeoffs with increased precision or effi-
ciency and with marketing demands from a diverse set of customers [SW95a]. However,
systems may exhibit accidental complexity where the automation can be redesigned to re-
duce the potential for human error without sacrificing system capabilities. Where tradeoffs
with desired goals are required to eliminate potential mode-confusion errors, hazard anal-
ysis may be able to assist in providing the information necessary for appropriate decision
making.

In section 5 we described completeness criteria we have identified for behavioral spec-
ifications of control systems. In attempting to extend these criteria (design constraints)
to cover mode-confusion errors, we built on the experience accumulated by human factors
experts such as the results of Sarter and Woods’ studies of A-320 accidents and incidents
along with other reports of mode-related error. We have so far identified six categories
of potential design flaws: interface interpretation errors, inconsistent behavior, indirect
mode changes, operator authority limits, unintended side effects, and lack of appropriate
feedback.

Before describing each of these, we note that applying our criteria to a complex control
system will almost surely identify a large number of behaviors that could lead to mode
confusion. Getting rid of all such behaviors would most likely result in an overly simple
control system that does not satisfy many of its goals. Instead, this information should
be used to redesign the automation, to provide information for safety-related tradeoff
decisions, and to design interfaces, operational procedures, and operator training programs.
For example, accidents most often occur during transitions between normal and non-normal
operating modes or while operating in non-normal modes. Therefore, the non-normal mode
transitions should be identified and have more stringent design constraints applied to them.

9.2 Interface Interpretation Errors

Interface mode errors are the classic form of mode confusion error: (1) the computer
interprets user-entered values differently than intended or (2) it maps multiple conditions
onto the same output depending on the active operational mode and the operator interprets
the interface erroneously.

A common example of an input interface interpretation error occurs with many word
processors where the user may think they are in insert mode but instead are in command
mode and their input is interpreted differently than they intended.

An example of an output interface mode problem was identified by Cook et.al. [CPWM91]
in a medical operating room device with two operating modes: warmup and normal. The
device starts in warmup mode when turned on and changes from normal mode to warmup
mode whenever either of two particular settings are adjusted by the operator. The meaning

73

of alarm messages and the effect of controls are different in these two modes, but neither
the current device operating mode nor a change in mode are indicated to the operator. In
addition, four distinct alarm-triggering conditions are mapped onto two alarm messages
so that the same message has different meanings depending on the operating mode. In
order to understand what internal condition triggered the message, the operator must infer
which malfunction is being indicated by the alarm.

A more complex example occurs in a proposed A-320 accident scenario where the crew
directed the automated system to fly in the TRACK/FLIGHT PATH ANGLE mode, which
is a combined mode related to both lateral (TRACK) and vertical (FLIGHT PATH ANGLE)
navigation:

When they were given radar vectors by the air traffic controller, they may have
switched from the TRACK to the HDG SEL mode to be able to enter the heading
requested by the controller. However, pushing the button to change the lateral
mode also automatically changes the vertical mode from FLIGHT PATH ANGLE
to VERTICAL SPEED—the mode switch button affects both lateral and vertical
navigation. When the pilots subsequently entered “33” to select the desired
flight path angle of 3.3 degrees, the automation interpreted their input as a
desired vertical speed of 3300 ft. This was not intended by the pilots who were
not aware of the active “interface mode” and failed to detect the problem. As
a consequence of the too steep descent, the airplane crashed into a mountain

[SW95b].

Several design constraints can assist in reducing interface interpretation errors. The
first is that any mode used to control interpretation of the supervisory interface should
be annunciated to the operator (that is, it should be part of the displays interface in our
SpecTRM-RL modeling language). More generally, the current operating mode of the
automation should be annunciated (should be in the displays interface). In addition, any
change of operating mode should trigger a change in the current operating mode reflected
in the interface (and thus displayed to the operator), i.e., the annunciated mode must be
consistent with the internal operating mode. Consistency between displayed and current
mode is, of course, an obvious design constraint and a violation almost always signals
an error in the requirements specification. The first constraint should hold for almost all
systems as well.

Degani [Deg96] notes a third type of interface confusion error that results from mapping
a single input control action to multiple internal mode changes, depending on the order of
the control actions. He calls this circular mode transitions. For example, pushing a button
on a device with a small input interface (e.g., a watch with one or two buttons) will often
cycle through the possible modes, going to the next mode with the next button push. The
user can get confused about what input mode the device is currently in. A possible design
constraint here is that if a control input is used to trigger a mode transition, then it must
be associated with only one mode change, that is, the mapping from control inputs to
mode changes is one-to-one (a mathematical function). Note that it is unlikely that one

74

would want to require that the function be bijective, because that would eliminate the
possibility of all indirect mode changes. For some simple devices, even the constraint that
the function be injective (one-to-one) may be impossible to enforce, and feedback about
the current mode is the only possible solution to the problem.

Another design constraint related to these types of interface interpretation errors is that
interpretation of the supervisory interface should not be conditioned on modes (an example
is the accident related to the interpretation of “33” described earlier). This constraint is
much stronger than the first three and may not always be feasible or desirable to enforce.
However, our analysis tools will highlight these transitions to the designer/analyst so that
appropriate scrutiny can be applied to that part of the design. Degani’s circular mode
transition is a subcase of this design constraint.

9.3 Inconsistent Behavior

A more complex type of mode-confusion error, which is more often related to errors of
omission than the interface errors mentioned above, is triggered by inconsistent behavior
of the automation. Carroll and Olson define a consistent design as one where a similar task
or goal is associated with similar or identical actions [CO88|. Consistent behavior makes it
easier for the operator to learn how a system works, to build an appropriate mental model
of the automation, and to anticipate system behavior.

An example of inconsistency was detected in an A-320 simulator study involving a
go-around below 100 feet above ground level. Sarter and Woods found that pilots failed to
anticipate and realize that the autothrust system did not arm when they selected TOGA
(take off/go around) power under these conditions because it did so under all other cir-
cumstances where TOGA power is applied [SW95b]. Another example of inconsistent
automation behavior, which was implicated in an A-320 accident, involves a protection
function that is provided in all automation configurations except the altitude acquisition
mode in which the autopilot was operating.

Consistency is particularly important in high-tempo, highly dynamic phases of flight
where pilots may have to rely on their automatic systems to work as expected without
constant monitoring. Even in more low pressure situations, consistency (or predictability)
is important in light of the evidence from pilot surveys that their normal monitoring
behavior may change on advanced flight decks [SW95b)].

Pilots on conventional aircraft use a highly trained instrument scanning pattern of
recurrently sampling a given set of basic flight parameters. In contrast, some A-320 pilots
explained that they no longer have a scan anymore but allocate their attention within and
across cockpit displays on the basis of expected behavior. Their monitoring objective is
to verify expected automation states and behaviors. If the automation behavior is not
consistent, mode errors of omission may occur where the pilot fails to intervene when
necessary:

Note the fundamental difference between these two monitoring strategies. In
the case of a standard pattern, the pilot’s attention allocation is externally

75

guided while monitoring on advanced aircraft requires mental effort on the
part of the pilot who has to determine on his own where to look next under
varying task circumstances. Based on his expectations, the pilot only monitors
part of all available data. Parameters that are not expected to change may
be neglected for a long time. A standard instrument scan, on the other hand,
serves to ensure that all relevant parameters concerning airplane behavior will
be monitored at certain time intervals to make sure that no unexpected and
maybe undesirable changes occur [SW95b].

In our previous design criteria and analysis tools, we include a check for nondeterminism
in the software behavior; that is, we check to determine whether more than one transition
can be taken out of a state under the same conditions [HL96]. But consistency in this case
requires more than simple deterministic behavior on the part of the automation. If the
operator provides the same inputs but different outputs (behaviors) result for some reason
other than what the operator has done (or even may know about), then the behavior is
inconsistent from the operator viewpoint even though it is not mathematically inconsistent
or nondeterministic. More formally, inconsistent behavior results from two state transition
functions of the form:

t1:8 X1, xx — {sx O}
ty:s X i, xy—{sx 0}

where s € ¥ is a state, i, is an operator input, O is an output, and x and y can be states,
reference values, supervisory interface values, etc.

We have identified several different design constraints related to various types of incon-
sistency. However, there may be reasons why having such inconsistencies is necessary or
reasonable. Again, our tools can point out such potential problems to the designer/analyst
who must make the final decision about whether the automation should be changed. Be-
cause consistency may be most important during critical situations or when the behavior
is related to a safety design constraint, our hazard analysis tools may be able to assist with
these decisions and our new intent specifications [Lev97] (a form of Rasmussen’s means-
ends hierarchy adapted for software), as described in Section 12, can be used to trace such
behavior back to its original system goals and safety constraints to identify any reasons
for the specified inconsistent behavior.

9.4 Indirect Mode Changes

Indirect mode changes occur when the automation changes mode without an explicit in-
struction by the operator. Such transitions may be triggered on conditions in the au-
tomated controller (such as preprogrammed envelope protection) or sensor input about
the state of the controlled system (such as achievement of a preprogrammed target or an
armed state with a preselected mode transition).

76

Like many of the other mode-confusion problems noted in this paper, indirect mode
transitions create the potential for mode errors of omission and of inadvertent activation
of modes by the operator. Again, the problems are related to changes in scanning methods
and difficulty in forming expectations of uncommanded or externally triggered behavior.

Behavioral expectations are formed based on the operators’ knowledge of input to the
automation and on his or her mental model of the automation’s designed behavior. Gaps or
misconceptions in the operator’s mental model may interfere with predicting and tracking
indirect mode transitions or with understanding the interactions between different modes.

An example of an accident that has been attributed to an indirect mode change occurred
while an A-320 was landing in Bangalore. In this case, the pilot selection of a lower altitude
while the automation was in the ALTITUDE ACQUISITION mode resulted in the activation of
the OPEN DESCENT mode. It has been speculated that the pilots did not notice the mode
annunciation because the indirect mode change occurred during approach when the pilots
were busy and they were not expecting the change [SW95a]. Another example of such
an indirect mode change in the A-320 automation involves an automatic mode transition
triggered when the airspeed exceeds a predefined limit. For example, if the pilot selects a
very high vertical speed that results in the airspeed decreasing below a particular limit,
the automation will change to the OPEN CLIMB mode, which allows the airplane to regain
speed. As a final example, Palmer has described an example of a common indirect mode
transition problem called a “kill-the-capture bust” that has been noted in hundreds of
ASRS reports [Pal96]. Leveson and Palmer have modeled an example of this problem in
SpecTRM-RL and shown how it could be detected and fixed [LP97].

In general, there are four ways to trigger a mode change:

1. Operator explicitly selects a new mode.

2. Operator enters data (such as a target altitude) or a command that leads to a mode
change:
(a) Under all conditions.
(b) When the automation is in a particular state.
(c) When the controlled system model or environment is in a particular state.

3. Operator does not do anything but the transition is triggered by conditions in the
controlled system.

4. Operator selects a mode change but the automation does something else, either
because of the state of the automation and/or the state of the controlled system.

Operator errors associated with indirect mode changes are a phenomenon found pri-
marily in advanced automation. Early automation tended to involve only a small number
of independent modes. Most functions were associated with only one overall mode setting.
We probably do not want to go back to automation that will change mode only in response

7

to direct operator input, but design constraints are desirable that limit such indirect tran-
sitions and eliminate it when possible. Our analysis methods highlight mode changes that
are independent of direct and immediate instructions from human supervisors, and our
tools may also be able to assist the analyst in identifying the most hazardous indirect
mode changes.

9.5 Operator Authority Limits

Interlocks and lockouts are often used to ensure safety. Interlocks are commonly used to
prevent hazardous system states by enforcing correct sequencing of events or actions or to
isolate two events in time. A lockout makes it impossible or difficult to enter a hazardous
state.

Authority limiting is a type of lockout or interlock that prevents actions that could
cause the system to reach hazardous states. Such authority limitations must be carefully
analyzed to make sure they do not prohibit maneuvers that may be needed in extreme
situations. Recent events have involved pilots “fighting” with the automation over control
of the aircraft after observing unexpected or undesirable aircraft or automation behavior.

Various types of authority limits are used to prevent operator error or to provide
protection when the operator cannot or does not take proper action. For example, advanced
aircraft automation often has the ability to detect and prevent or recover from predefined
unsafe aircraft configurations such as a stall. Once a hazardous state is detected, the
automation has the power to override or limit pilot input.

Some accidents and incidents in highly automated aircraft have involved pilots not be-
ing able to overcome the protection limits or the pilots not being aware that the protection
functions were in force. For example, the pilots during one A-320 approach disconnected
the autopilot while leaving the flight directors and the autothrust system engaged. Under
these conditions, the automation provides automatic speed protection by preventing the
aircraft from exceeding upper and lower airspeed limits:

At some point during the approach, after flaps 20 had been selected, the air-
craft exceeded the upper airspeed limit for that configuration by 2 kts. As a
consequence, the automation intervened by pitching the airplane up to reduce
airspeed back to 195 kts. The pilots, who were not aware that the automatic
speed protection was active, observed the uncommanded automation behavior.
Concerned about the unexpected reduction in airspeed at this critical phase of
flight, they rapidly increased thrust to counterbalance the automation. As a
consequence of this sudden burst of power, the airplane pitched up to about 50
degrees, entered a sharp left bank, and went into a dive. The pilots eventually
disengaged the autothrust system and its associated protection function and
regained control of the aircraft [SW95b].

Various design criteria are related to authority limits. For example, information about
any modes or states where the operator input is ignored or limited must be provided in the

78

supervisory interface. In addition, the analysis tools can examine the specified software
behavior and detect exceptions to following operator requests. Again, the information in
the intent specification is useful in determining whether such design features are intentional
and whether they are related to identified hazards.

9.6 Unintended Side Effects

Mode ambiguity can also arise when an action intended to have one particular effect has
an additional effect, i.e. an unintended side effect. An example occurred in a Sarter and
Woods A-320 simulator study where it was discovered that pilots were not aware that
entering a runway change after entering data for the assigned approach results in the
deletion of all previously entered altitude and speed constraints even though they may
still apply.

This type of design flaw differs from indirect mode changes in that the unintended
change is not in the mode but in some other type of information, such as reference values.
Degani describes this type of problem in terms of a mode/reference value interaction, but
more generally the same problem occurs when any operator entry (for example, an input
value rather than a mode change) has unintended side effects.

Unintended side effects can contribute to mode confusion and often need to be evaluated
by the design team. If a decision is made to keep the behavior, proper feedback constraints
may be required to prevent the type of confusion that seems to result.

9.7 Lack of Appropriate Feedback

Many of the original Jaffe criteria or the newly defined criteria mentioned above are related
to providing appropriate feedback (for example, providing feedback about the status of
interlocks and lockouts and providing graceful degradation). In general, operators need
to have the information necessary to understand the mode transitions taken, that is, the
conditions that trigger transitions between modes. Operators need not only to track the
current active modes and to understand their implications, but they also need to keep
track of other automation and system status information that may result in the indirect
activation of modes. The difference between these design constraints and those requiring
mode transition annunciations described in the section on interface interpretation errors
is that in this case the automated system must not simply notify the operator that a
mode change has already occurred (annunciate the present mode), but it must provide the
information necessary for the operator to predict or anticipate mode changes.

Incomplete feedback is often implicated in accident scenarios. For example, in the
A-320 Bangalore accident, the pilot flying (PF) had disengaged his flight director during
the approach and was assuming that the pilot-not-flying (PNF) would do the same thing
[SWO5a]. The result would have been a mode configuration in which airspeed is auto-
matically controlled by the autothrottle (the SPEED mode), which is the recommended
procedure for the approach phase. However, the PNF never turned off his flight director,

79

and the OPEN DESCENT mode became active when a lower altitude was selected. This
indirect mode change (explained above) led to the hazardous state and eventually the ac-
cident. But a complicating factor was that each pilot only received an indication of the
status of his own flight director and not all the information necessary to determine whether
the desired mode would be engaged. The lack of feedback or knowledge of the complete
system state contributed to the pilots not detecting the unsafe state in time to reverse it.

Where automation has the ability to take autonomous actions (i.e., those not directly
commanded by the operator), information interchange becomes crucial in coordinating
activities and in detecting mismatches between expected and actual system behavior. A
behavioral description of the software, as provided by SpecTRM-RL, is useful in determin-
ing exactly what information the operator needs to monitor and control the automated
system.

The problems of providing salient feedback are, of course, much more complicated than
simply identifying the information that needs to be conveyed, but identification is an im-
portant step in the process. In our original Jaffe criteria (Appendix D), we identified design
constraints on basic feedback to the computer about the state of the controlled process
and some types of operator feedback requirements, but these need to be augmented with
a complete set of requirements on the feedback to the operator or automation supervisor.
An example constraint is that operators must have access to all information on critical
mode transitions in order to predict and monitor those transitions.

One important aspect of using feedback for error detection is the need for independent,
information. Errors can only be found through discrepancies in duplicate but indepen-
dently supplied information. One way to detect that automated equipment is not operat-
ing correctly is for operators to detect a discrepancy between the automation behavior and
their mental model of how they think the automation should work. However, operators
often have limited understanding of complex automation behavior or are afraid to step in.

In addition, often an error is only detectable using some information about the state
of the environment or the controlled process. However, if the erroneous behavior is occur-
ring because the automation is confused about the environment or system state, then it
obviously cannot provide this information to the operator. That is, the automation may
show only consistent information because it does not know there is an error in its system
model. Therefore, it is not surprising that Sarter and Woods found that pilots mostly
found errors through information given in nonautomated displays and instruments (i.e.,
based on observations between desired and actual aircraft behavior, not on indications of
the nominal status of the automated systems). The same phenomenon is true for other
types of systems. The problem is complicated by the fact that operators cannot always
see what the automation is doing and can only tell by directly observing the reaction of
the system or by getting feedback from some independent display. Providing independent
feedback and providing more feedback on what the automation is doing can alleviate these
problems.

80

10 Human Factors Safety Analysis

Classic human factors evaluation involves a task analysis and experimentation to better
understand the effect of the task design on human performance. Human factors safety
analysis is similar, but focuses only on the safety-related aspects of human performance
rather than worrying about important, but in this context extraneous, factors such as
efficiency, job satisfaction, and so on. For this DFW demonstration project, the cognitive
psychologists and human factors experts on our team examined the literature to determine
the errors human controllers make in the current ATC system, compared the controllers’
current task with their new tasks using FAST, and proposed some hypotheses about the
effect of the FAST design on human performance and an experimental paradigm to evaluate
those hypotheses.

10.1 Human Error in the Current ATC System

In order to understand potential errors in air traffic control settings enhanced with FAST,
we need to understand the errors controllers make under the present system. Then we can
look at the changes in operations using FAST and provide some hypotheses about whether
past error behavior will decrease, increase, or be unaffected by the new automated tools.
Our first step was to review the literature on human error in air traffic control.

This literature is based in part on analysis of aircraft accidents. Unfortunately, this
approach is not as straightforward as it sounds. For one thing, aircraft accidents (defined
as hull damage or loss of life) are extremely rare events. In addition, accidents occurring in
highly redundant systems like aviation often have multiple causes [Die91]. If, for instance,
two aircraft are approaching one another at the same altitude, the controller issues an
advisory for change of altitude, the pilot reads back the advisory, and the controller listens
for the readback as well as continuing to monitor the radar to ascertain whether the change
of altitude actually takes place. In addition to this, automatic systems (sometimes in both
the cockpit and the TRACON or enroute center) issue warnings if loss of separation is
imminent. All of these messages have to be ignored for an accident to occur. And each
separate act of oversight may have a separate cause.

It is not surprising that humans are implicated in more than half of all aircraft accidents;
they are assigned ultimate responsibility for safety in the system. The proportion of error
attributed to humans, also not surprisingly, increases as the equipment becomes more
reliable [Nag88]. Nearly 50 percent of all accidents occur during approaches and landings,
and 75 percent of these accidents are attributed to human error [Nag88]. This percentage
is larger than that of any other phase of flight.

Relatively few errors are attributed directly to the air traffic controller. An analysis by
Sears [Sea86] estimated that only 9 percent of the 93 major accidents occurring between
1959 and 1983 were found to be the fault of an air traffic controller. Six percent were
the result of communication between ATC and the pilot. In a more recent analysis of
accidents, McCoy and Funk [McC91] found that controllers were implicated in 6 of 38 (16

81

percent) of the accidents occurring between 1985 and 1989.

Another source of information about controller errors lies in reports of incident, also
referred to as operational errors and deviations (OED). They are more common than
accidents, but still fairly infrequent. Operational errors occur when a controller allows
less than the required minimum separation between aircraft (or between an aircraft and
an obstruction). The ARTCC system has tracked incidents automatically since 1984.
Operational deviations occur when an aircraft enters another controller’s airspace without
permission and a report is filed by the second controller’s facility. Both kinds of information
are available through the OED data base at the Office of Aviation Safety. The FAA
estimates that 99 percent of all air traffic control errors described in incident reports were
due to human errors rather than equipment malfunctions [FAA90].

A third source of information about errors is voluntary reports made by controllers
and pilots to the Aviation Safety Reporting System. These are confidential reports of the
occurrence of dangerous air traffic situations. They are usually the result of a breakdown
in standard procedures or errors. These anonymous reports provide an additional source
of information about human error in which a formal violation of separation did not result.
Based on this source of information, Morrison and Wright [Mor89] grouped controller errors
into two broad categories: communication (clearance composition, readback errors) and
control (monitoring and coordination).

10.1.1 Communication

Many believe that communication errors constitute the largest single category of errors in
aviation. The Canadian Aviation Safety Board reported that over half of incident reports
cite breakdown in communication as a contributing factor [CASB90]. Similar conclusions
result from an analysis of errors in enroute control [Rod93]. An early report by Billings
[Bil81] suggested that more than 73 percent of the errors resulting in incident reports
occur in the transfer of information. The vast major of those—85 percent—occur when
the information is transmitted orally.

Communication errors can have several sources. Some errors arise from the imprecision
in natural language. The 1977 accident at Tenerife in the Canary Islands was attributed to
a confusion about the term “at take off,” which was used by the flight crew to mean they
were in the process of taking off and interpreted by the controller to mean at the point
of taking off. As a result of this confusion, the aircraft in question collided with another
aircraft taxiing onto the same runway. A contributing factor was an earlier confusion in
which the pilot assumed he was cleared for take off when he received a communication
describing the route for which he was cleared after take off [Cus94].

An accident that occurred in Cove Neck, New York was attributed to a remark that
failed to convey the proper level of urgency. The flight crew notified the controller that
they were “running out of fuel” but did not use the word ‘emergency.” The controller did
not realize the severity of the fuel shortage and failed to clear the aircraft for immediate
landing. As a result, the aircraft ran out of fuel and crashed, killed 583 people, one of the

82

worst accidents in aviation history [Cus94].

Problems with the general ambiguity of language can be exacerbated by the speed
with which the controller speaks as well as inadequacies in the equipment transmitting
the message. Controllers who must relay several messages in a short period tend to speak
more rapidly. Sometimes the problem is with the equipment: Interference can cause parts
of the transmission to be lost. In addition, the equipment is slow and does not always pick
up the beginning of the transmission if the controller starts talking too quickly.

The use of standardized terminology both increases explicitness and helps to overcome
technical problems. If a controller wants to deny a taxiing aircraft permission to cross
a particular runway because another aircraft is landing on it, the controller should say
“Hold short for landing traffic.” This utterance has an agreed upon meaning: do not
cross the runway. In addition, it has few words in common with a message granting
clearance to cross the runway. This uniqueness has a distinct advantage—another phrase
such as “remain clear of the runway,” under faulty transmission or rapid fire speech, may
be misconstrued as clearance. Unfortunately, pilots and controllers sometimes slip back
into colloquial English, which naturally defeats the purpose of language standardization.

Confusion in call signs can give rise to a problem inherent in the “party line” nature
of controller/aircraft communications. The controller communicates with several aircraft
on the same frequency, each identified by a different call sign. The controller, missing the
call sign, may misunderstand which pilot is making a request or reading back an advisory
or clearance. Likewise, a pilot not hearing the call sign, may mistakenly respond to an
advisory or clearance meant for another aircraft. This confusion can result from similar
call numbers, pilots or controllers failing to give the call signs, or obscuring of information
through faulty transmissions.

Even when the language and transmission are clear and include all of the proper infor-
mation, the human information processing system may introduce its own brand of inter-
ference. People are biased to perceive what they expect to hear. The proper procedure for
issuing advisories and clearances is for the controller to speak and the pilot to repeat back
what he or she heard so that the controller can check to make sure that the information has
been properly received. However, the pilot may expect to receive clearance to a particular
altitude because he has requested it or because it is the standard altitude for a particular
route. In one incident, a pilot flying at 7,000 feet requested a higher altitude. This request
was denied with the remark “Unable, traffic at 8000.” The pilot mistook this as clearance
to 8,000 and began to climb. Likewise, the controller may perceive what he or she expects
to hear, i.e., an accurate readback. In an incident described by Cushing [Cus94], the pilot
of an inbound carrier cleared to descend to 12,000 read back 10,000. The mistake was not
caught by the controller because the standard altitude for the route was 12,000 and that
was what he had issued.

Some misperceptions cannot be explained by expectations, such as when numbers are
transposed or altitudes are heard as speeds or headings and vice versa. In addition, some
incident reports suggest memory errors. The pilot may not remember all of a long string
of advisories. The controller may not remember having issued a clearance or may forget

83

to complete a handoff [Mor89]. Sometimes, distracting situations interfere with memory
as well. On one occasion, a flight crew dealing with the consequences of a bird entangled
in an engine completely forgot to switch to tower frequency or to request permission to
land [Cus94].

Successful communication depends, in part, upon a mental model of the situation
that is shared by both the sender and the receiver of the message. When people have
different understandings of the current situation, a message may mean different things
to each of them. Thus, a potential cause of faulty communication is a discrepancy in
the information available to the pilot and controller [SPS95]. A pilot may be unaware
of other traffic that causes the controller to issue inconvenient advisories. Because he
does not fully understand the situation, the pilot may be reluctant to follow the advisory
immediately. Likewise, sometimes the pilot is privy to information not available to the
controller. A case in point is the airborne Traffic Alert and Collision Avoidance System
(TCAS), which provides a visual display of traffic for pilots as well as warning them of
impending separation conflicts. It also provides specific escape maneuvers or resolution
advisories (for example, an advisory to descend). The resolution advisory, issued directly
to the pilot but unknown to the controller, can give rise to unexpected situations on the
part of the controller, as when the pilot follows a TCAS advisory to change altitudes.
The controller does not expect the aircraft to change course and must then deal with the
impact of that unanticipated change on the overall traffic pattern. A similar situation can
arise if the pilot sees VFR aircraft! unknown to the controller.

10.1.2 Situation Awareness

Information available to the pilot or controller, such as that discussed in the previous
section, is part of what has come to be called situation awareness. Endsley [ER96] defined
situation awareness as “perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning, and the projection of their status
in the near future.” Many believe that failure in situation awareness is also a prominent
cause of air traffic control errors. Evidence for this hypothesis includes the fact that
enroute center errors typically take place immediately after the controller returns from
break and fails to realize that a critical situation was developing [Red92]. Note that the
problem is simply another form safety requirement that we talked about earlier in terms
of the computer needing an accurate model of the controlled process (the airspace).
Situation awareness has to do with the accuracy of one’s mental model of events and
objects in the real world. As such, it is dependent on the amount of attention allocated to
the situation (which determines the perceptual elements processed) and memory (which
maintains a record of those elements for future problem solving). Both attention and
memory have been implicated in controller errors [McC91|. Contrary to reports naming
communication as the largest single category of errors (by Rodgers, Billings, and Redding,

YVFR aircraft are conducting flight in accordance with visual flight rules, sometimes without
transponders.

84

cited earlier), Stager and Hameluck [Sta89, Sta90] concluded that 60 percent of errors in
the air traffic system (based on an analysis of 301 incidents) were caused by insufficient
attention, nonrecognition of conflict, and judgment errors.

Redding [Red92] concluded that many of the errors he analyzed could have been avoided
by effective monitoring of the radar screen and incoming flight progress strips and by using
the information to update situation awareness. Failure in monitoring altitude, heading,
and flight path was listed among the causes of controller error identified by Morrison and
Wright [Mor89] in an analysis of aviation safety reporting system records. According to
Redding, the second greatest source of air traffic control error (after communication) was
the misidentification or misuse of radar data (37.6 percent). Controller debriefing reports
following an error indicate that controllers themselves attribute inadequate interpretation
of radar data as being a causal factor in 33.4 percent of their errors [FAA90].

Redding also concluded that 20 percent of errors in situation awareness result from a
mismatch between the controllers expectations and what actually occurred in the airspace.
This mismatch becomes a problem when the controller fails to create a backup plan for
handling alternative scenario evolutions, or simply fails to update situation awareness to
include the unexpected turn of events. An example is when the controller expects an
aircraft or another center to take a certain action that it fails to take. In one case, the
controller thought that an aircraft had already descended as he advised it to do, even
though the radar scope plainly displayed altitude information indicating that it had not
[Red92].

10.1.3 Workload

A seemingly likely cause of controller errors is increased workload. Workload in air traffic
control is often described in terms of traffic complexity, including such factors as number
and type of aircraft, staffing, emergencies, and weather [Rod93]. Air traffic control is
renowned for its hectic and stressful environment, and a reasonable hypothesis is that
errors increase with workload. Indeed, workload was implicated in a Los Angeles Airport
(LAX) accident in 1991 in which a departing commuter plane was placed on the runway in
the path of a landing US Air 737 [WMM97]. According to Morrison and Wright [Mor89],
heavy workload is the reason cited by many who report safety errors. The fact that many
such errors can be traced to a lack of timeliness (not giving a clearance in time or failing
to correct a navigational error in a timely fashion) tends to support this idea.

Errors also occur, however, in conditions of low or moderate level workload [Sta91].
Several analysts suggest that increased workload is not associated with increased errors.
In an analysis of operation irregularities and incidents in Canada, Stager and Hameluck
[Sta89] found that more errors occur in periods of low to moderate workload and inter-
mediate volume and complexity. Similar results were reported by the same researchers
[Sta90] using a variety of workload measures to analyze 301 operating irregularities in the
Canadian air traffic system. They found that 80 percent of all errors occurred in periods of
average or below average workload. A Canadian Aviation Safety Board report [CASB90],

85

attributing errors to planning, judgment, and attention lapses, found that such errors take
place primarily in periods of moderate workload.

Similar results have been found with American enroute controller. In an analysis of
OED’s occurring between 1985 and 1988, Shroeder and Nye (in [Rod93]) found that 25 per-
cent of errors occurred in conditions of below average complexity and 39 percent occurred
in conditions of average complexity. Redding [Red92], in an analysis of enroute center
errors found that they occurred predominantly in periods of only moderate complexity—=8
aircraft or less. A full 72 percent of errors occurred while controllers were controlling 10
aircraft or less.

Although these findings suggest that it is important to understand controller errors in
moderate to low workload situations, because of the lack of base rate information it is not
possible to draw conclusions about the relative likelihood of errors under varying workload
conditions. Rodgers, however, points out that although the number of aircraft operations
handled increased over his period of study (1985-1988), the average number of aircraft
handled during an OED (operational error and deviation) decreased. This result suggests
that errors occurring during high workload situations did not increase even though periods
of high workload did increase.

Rodgers [Rod93] hypothesized that different types of errors might be associated with
high and low workload. A major error was defined as less than half a mile horizontal
separation and less than 500 feet vertical separation. He found that, on the one hand,
computer entry and flight strip processing errors as well as deficiencies in giving or utilizing
relief briefings were slightly more likely with greater numbers of aircraft. On the other
hand, errors in coordination between sectors and facilities were slightly more likely under
conditions of low complexity. There was no significant relationship, however, between
severity of error, as reflected in proximity of the aircraft in a separation violation, and
workload.

Rodgers noted that separation errors in his study primarily involved loss of horizontal
rather than vertical separation. This result may be due to the fact that horizontal sep-
aration is determined by combining information derived from the separation of the two
targets on the planview display along with their relative speeds and trajectories. Altitude
information, on the other hand, is available directly from the data block. In addition,
Rodgers found that most errors occurred when one aircraft was level and the other was
either climbing or descending.

10.1.4 Vigilance

Maintaining vigilance in periods of low traffic load is simultaneously boring and demanding.
Some maintain that these factors in themselves constitutes an increase in workload (see
[WDH96]). Typically, performance of vigilance tasks declines over time; much of this
decline is said to take place over the first 30 minutes of a watch [Tei74], As the time spent
on vigilance tasks increases, detection rate (i.e.,) is reduced and reaction time increases
[DP82]. In air traffic control, vigilance must be maintained to detect loss of separation,

86

altitude deviations, VFR popups, and incorrect pilot readbacks.

Very few studies address vigilance in ATC directly. Simulation studies of vigilance
using university students (e.g., [Tha89]) suggest that detection of complex targets was
reduced over time as would be expected from the typical vigilance pattern. A study using
North American Aerospace Defense (NORAD) operators, however, found that professional
controllers in realistic settings may not be as susceptible to the same vigilance decrements
[PAOM95].

Thus, it is not clear whether errors are disproportionately associated with vigilance
tasks in actual air traffic control settings. Performance of vigilance tasks is particularly
important in the context of increased automation, but there is little work addressing this
question directly. One likely result of increased automation of controller tasks is that the
job will become increasingly one of monitoring operations, i.e., maintaining vigilance.

In summary, the study of human error in the current aviation system shows that a large
proportion of errors takes place in the course of information transfer. These errors are due
in part to the ambiguity of natural language, confusion about addressee, inconsistency of
the equipment, as well as the expectations and understanding of both sender and receiver
of the message. Simulation studies of CTAS suggest that the number of overall instructions
will be reduced [DEG90], thereby reducing the opportunity for communication errors. At
the same time, errors resulting from lack of shared situation awareness may increase in
likelihood. We address these issues in the next section.

Another major source of errors in the present air traffic control system is inadequate
situation awareness, i.e., the controllers’ understanding of the current airspace situation
(current state) and its possible evolutions (future states). Again, we feel CTAS is likely
to have a direct impact on this aspect of air traffic control. Surprisingly, the research
literature suggests that controller errors do not appear to be directly related to workload:
A larger proportion of controller errors occur under average or light workload conditions.
Although CTAS may serve to lighten the workload, this effect alone cannot be expected
to reduce controller errors. Finally, we discovered that there is very little work on the
aspect of air traffic control upon which increased automation is likely to have the biggest
impact—vigilance.

10.2 Comparative Analysis of Present and FAST augmented ATC
procedures

Our step for this project was to review the literature on errors that have been attributed
to air traffic controllers. The results are summarized in the previous section. We next
compared the current control procedures® with those of controllers using FAST. From the
combined analyses, we identified potential safety-related human factors problem areas in
a FAST-augmented air traffic control system.

We focused our analysis on the duties of the TRACON controller, who handles air-

®Much of the analysis of present procedures is based on the work of Mundra [Mun89)].

87

craft in the airspace extending approximately 40 nmi from the airport. Duties are divided
usually between controllers who handle departing aircraft and those who handle approach-
ing aircraft, using segregated airspace. Departure and arrival controllers coordinate when
potential conflicts arise.

In addition to control responsibilities for the main airport, the TRACON often pro-
vides control services for nearby (satellite) airports, which usually have separate control
positions. TRACONSs that have substantial general aviation traffic also have separate VFR,
positions. For the purposes of this analysis, we focus on the approach positions for the
main Dallas/Ft. Worth Airport (DFW).

Aircraft typically enter the DFW TRACON at three or four feeder gates at the TRA-
CON boundary. The approach controllers duties are further divided between those who
control aircraft in the sequencing space after the aircraft have been accepted over the
feeder gates (called feeder controllers, of which there are usually two) and those who han-
dle aircraft on the final approach pattern, beginning either at the downwind or the base
leg of the approach (called final controllers, again also usually two). Controllers working
the feeder position accept approaching aircraft over feeder fixes, merge them into a well-
spaced sequence, and hand them off to the final approach controllers. Final controllers
space aircraft for final approach and hand them off to the Tower for landing.

These general duties are identical under FAST. However, the exact procedures used
may be quite different, depending on the degree of FAST automation implemented. In
the following, we first assume the use of the entire FAST automation capabilities and then
note relevant differences between full FAST and passive FAST (a less automated version
of FAST). The analysis is divided into stages of the operations: before the aircraft enters
the TRACON, handoff from the enroute center, sequencing and spacing, and controlling
the aircraft.

10.2.1 Before the Aircraft Enters the TRACON

Under the current system, the TRACON controller receives information about aircraft
entering the TRACON airspace from surrounding centers in two forms: flight progress
strips and the arrival /departure tabular list.

Flightstrips, printed approximately 30 minutes before the aircraft is anticipated to
arrive at the sector, are usually received earlier than aircraft appear on the tab list. The
flightstrips, which are part of the interface between the TRACON and enroute computers,
provide the TRACON controller with information about the kind and volume of aircraft
the TRACON will receive as well as their arrival routes. This information is used by the
controller for planning and staffing decisions.

The Arrival/Departure Tabular List appears on the radar screen. For arrival positions,
it lists aircraft that will arrive at the TRACON in the next 15 to 20 minutes. An aircraft
is dropped from the Tab list once it is picked up by the radar.

The enroute center feeds traffic into the TRACON at a rate specified by the TRACON,
usually 5 nmi apart. If traffic flow exceeds the requested rate, the flow is reduced or

88

some traffic is maintained in holding patterns. In addition, center controllers attempt to
feed aircraft into the TRACON equally over all the corner posts. Aircraft entering the
TRACON at a particular fix are usually routed to the same runway. An uneven flow over
the corner posts requires rerouting inside the TRACON to maintain even utilization of all
runways. Rerouting within the TRACON is more difficult than changing routes outside.
Under FAST, the TMA (Traffic Management Advisor) generates arrival schedules opti-
mized to provide maximum runway throughput while arrival traffic is still in enroute center
airspace. This sequence is displayed on a timeline that can be seen on the TRACON radar
scopes before the aircraft enter the sector. Aircraft listed on the timeline are color coded
according to the feeder gate by which they will enter. The timeline can be set to display
time of arrival at the feeder fix, the FAF (final approach fix) or the runway threshold. It
can also be set to display aircraft that are as much as 60 minutes from the specified arrival
point. Information for making staffing decisions, therefore, is available much sooner than
under the present system. In addition, aircraft approach the TRACON more evenly spaced
across feeder gates, requiring less use of holding patterns at the TRACON boundary.

10.2.2 Handoff from the Enroute Center

The main tool of the TRACON controller is a radar screen that depicts the position of
all the aircraft in the sector. Each aircraft shown on the screen is accompanied by a data
block that, under the present system, contains the call sign, altitude, ground speed, and
weight class of the aircraft. The symbol of the controller responsible for that aircraft is
shown over the center of the actual target, and a status area is designated for the receiving
controller’s symbol when a handoff is initiated.

The data block can also show a low altitude warning if the aircraft descends below
the minimum safe altitude for that terrain and a conflict alert that notifies the controller
when legal separation is lost. An additional line on the data block is used for scratch
pad information entered by the controller, such as the runway assignment. The type of
information entered in the scratch pad is standardized within a particular TRACON. In
general, controllers can only see the data blocks of aircraft under their control. However,
they are able to see data blocks of other aircraft if they press a ‘quick look’ key. Typically,
arrival controllers set their controls so that they can see all arrival aircraft, regardless of
what position is handling them.

When an aircraft is about 10 to 15 nmi from the TRACON, the enroute center com-
puter initiates a handoff to the TRACON computer by transferring information concerning
that aircraft. When this event occurs, a flashing light appears on the TRACON feeder con-
troller’s scope. The initiating (center) controller’s screen shows the receiving (TRACON)
controller’s symbol in the data tag status block. The receiving controller acknowledges the
handoff by positioning the cursor over the icon. The initiating controller’s icon flashes a
few times to indicate that the handoff has been completed. The initiating controller ad-
vises the pilot of the frequency upon which to contact the receiving controller. If anything
goes wrong, the center and TRACON controllers can talk by telephone.

89

The handoff procedure under FAST is identical in the auto-read-accept mode. In
addition, FAST provides an autoaccept mode that accepts the aircraft without input from
the controller, although the advantages of this feature are unclear. The disadvantage, as
discussed below, is that it reduces the controller’s role to one of monitoring the handoff.

10.2.3 Sequencing and Spacing

After aircraft have been accepted into the TRACON over the feeder gates, they are assigned
by runway by the feeder controller. Aircraft entering a particular feeder gate are usually
assigned to the nearest runway. Runway assignments are indicated on the planview display
in different ways, depending on the convention of the particular TRACON-—New York, for
example, uses the position of the leader line (such as straight up or to the left) to indicate
the runway assignment while other TRACONSs use an entry on the scratch pad.

The feeder controller must then sequence and space the aircraft to feed them safely
into the approach pattern where they are handed off to the final controller. Aircraft whose
entry point is the farthest away usually enter the approach pattern at the downwind leg
while those who are nearer enter it at the base leg.

Aircraft entering the feeder gates are separated mainly by altitude. Arrival traffic from
different directions must be merged into final approach streams and eventually brought
down to the same altitude. Merging arrival traffic into a desired sequence for the final
approach and maintaining required spacing is the primary duty of the approach controller.
Thus, a major component of the tasks of both the feeder and final approach controllers is
“situation awareness,” that is, knowing the relative positions of aircraft in the airspace as
well as their probable future positions.

Under the current system, controllers accomplish these tasks using a series of guidelines
or heuristics to construct a mental model of the sequence from their understanding if the
current positions of all of the aircraft. The controller must first determine the interval
required between each pair in the sequence. Aircraft must be at least 1000 feet apart
vertically or have horizontal separation of 3 to 5 miles, depending on the weight class of
the aircraft (see Appendix A for the detailed requirements). Although altitude can be
compared numerically (it appears on the data tag), distance is presumably estimated by
mentally converting radarscope distances into nautical miles.

The sequence itself is determined by visualizing a common point the aircraft will cross
and estimating the flying time to that point for each of the aircraft. The order in which
aircraft arrive at the common point determines the basic sequence. Thus, the sequence
is usually obvious or determined by entry into the downwind leg of the pattern. If there
is a tie at the sequence point, the controller selects the order based on decreasing overall
system delay. Normally, the following guidelines apply:

1. Slower aircraft follow faster aircraft;
2. Heavy jets follow nonheavy aircraft on final approach;

3. An aircraft on final approach precedes an aircraft on the base leg.

90

Sometimes, after a sequence has been determined the controller must alter it to deal
with unexpected situations. VFR aircraft can turn with little or no forewarning and must
be merged into the sequence quickly. This task is complex because these aircraft require
especially large spacing intervals. In addition, missed approaches must be merged back into
the sequence and occasionally there is an emergency that bypasses the sequence altogether.

Although an FAA directive recommends defining the sequence as early as possible, in
practice most experienced controllers tend to delay formulating a sequence in their mind.
This delay allows them to issue fewer control instructions and to be responsive to differing
performance variations of the aircraft as well as to incorporate unexpected results. Clearly,
sequencing and spacing aircraft is an extremely computationally intensive cognitive task,
and it absorbs much of the controller’s mental resources. Not only must the controller solve
a complex spatial-temporal problem, but she or he must also maintain a large memory
load, including the aircrafts’ current positions and characteristics as well as the sequence
itself.

Under FAST, the sequence and runway assignments are determined automatically for
the controller. These assignments are actually completed by the TMA and submitted
to the FAST scheduler even before the aircraft enters the TRACON. As in the present
system, the initial runway assignment is based upon the feeder gate by which the aircraft
enters the TRACON. The sequencing algorithm constructs a first-come-first-served order
based on the aircraft’s current route, operating characteristics, and the current weather
and runway configuration. The sequence number and runway assignment are shown on
the fourth line of the data tag when it first appears on the radar screen.

The sequence of aircraft approaching and currently in the TRACON appears on the
timeline on the planview display. Aircraft are ordered on the timeline so that those closest
to the outer marker (runway or arrival fix, depending on the timeline setting) are lower
on the list. Aircraft move down the list as time advances. The time line shows the STA
(scheduled time of arrival) and ETA (estimated time of arrival). The STA is color coded by
feeder gate allowing the controller to quickly match the timeline information with aircraft
displayed on the radar screen. FAST automatically detects missed approaches or aircraft
that have failed to execute a clearance and automatically resequences them. Thus, FAST
augmentation greatly reduces both the computational and memory load of the sequencing
task freeing the controller to solve other problems. However, the fact that the controller
devotes fewer attentional resources to the aircraft and their mutual spatial relationships
could reduce situational awareness.

10.2.4 Controlling Aircraft

Once the controller decides upon the sequence, he or she directs aircraft, through a series
of instructions, into position and eventually to the final approach path. Although there
are no published routes inside the TRACON, there are nominal paths or flow patterns.
The degree to which the nominal path is followed is a function of the current traffic level,
weather, and runway conditions. Controllers are not required to follow nominal routes at

91

all times, nor can they. In fact, deviation from the nominal routes is one of the tools the
controller uses to achieve sequencing and spacing, i.e., vectoring. An example of spacing
through vectoring is tromboning on the downwind leg. The controller instructs the aircraft
to intercept the downwind leg at a point that achieves the proper interval with respect to
other aircraft in the sequence. The path can be lengthened further by delaying the turn
to base beyond the end of the standard downwind leg. Controllers report that vectoring
judgments are made by envisioning the point in the flight path at which a command to
enter the base leg (or final) minimizes conflicts and maintains proper spacing. Occasionally,
when traffic is especially heavy, aircraft will be taken off the nominal path altogether and
maintained in airborne holding patterns.

Speed control is the other major tool used by the controller to establish a sequence
with proper spacing. When traffic is heavy, for instance, controllers tend to slow traffic
down to gain more time and get more precise turn to final approach. The controller
attempts to maintain spacing within a sequence by keeping changes in airspeed, vector,
and altitude at a minimum. Control techniques are to some extent idiosyncratic, however.
Some controllers prefer vectoring and some prefer speed instructions. Controllers may
also develop preferred headings to issue in the sequencing area. Likewise, they may have
preferred width of the base leg for optimal control on the turn to final.

When issuing instructions, the controller must consider several other factors as well.
The current wind conditions, for instance, affect how instructions are carried out. The
controller sometimes gets a feel for wind conditions by requesting a pilot’s airspeed and
comparing that with the ground speed shown on the data tag. The controller must also
consider variations in piloting: Control instructions can have different outcomes depending
on how the pilot controls the aircraft. Controllers come to expect more precise performance
from commercial pilots, for example. On the other hand, controllers issue only the most
routine instructions to foreign pilots lest they be misunderstood. Occasionally, controllers
will choose to issue several small heading changes instead of one big one to reduce their
vulnerability to how the pilot will respond. Aircraft performance is another consideration.
VFR aircraft must be further behind high performance aircraft when they are in trail
because they are more susceptible to turbulence. Likewise, they must be further ahead
when they lead because they are slower and more easily overtaken.

The controller juggles these factors simultaneously while making complex spatial tem-
poral judgments and continually evaluating the overall situation o determine if the in-
structions are being carried out and the desired sequence is emerging. At the same time,
controller memory load is high; much of the control plan is maintained in the controller’s
memory. For standard approaches, specific advisories are issued at standard places. Usu-
ally, however, the instructions the controller intends to use deviate from these procedures
and must be actively maintained in memory or noted down on the flightstrip. Thus, a
large proportion of the memory load has to do with prospective memory, i.e., things you
must remember to do in the future. The controller must remember which instructions
to issue to which aircraft and where. In addition, she or he must remember to monitor
responses to those instructions that have already been issued. Moreover, as soon as the

92

instructions are executed they must be flushed from the controller’s memory so they are
not confused with future plans. Obviously, in heavy traffic the computational and memory
load is extremely high.

Under active FAST, not only are sequencing and runway assignments automated, but
the system also monitors aircraft progress and recommends advisories. FAST analyses each
aircraft’s present position, velocity, altitude, and heading every 15 seconds and updates its
ETA, initially assuming the nominal path. FAST compares the DTA to the STA to detect
differences, called time errors, which are displayed in orange on the third line of the data
tag and on the time line. If the time error is small and the ETA is earlier than the STA,
FAST evaluates whether a change in speed will alleviate the error, taking into consideration
the aircraft’s operating characteristics and the wind conditions. If a reduction in speed
solves the problem, the numerical value of the appropriate speed change appears in orange
on the fourth line of the data tag. When the aircraft is within 5 nmi of the spot where
the speed change advisory should be issued, an orange marker appears in that spot on the
planview display. If a speed change will not solve the problem, FAST considers a route
change, such as extending the path to the runway: When the aircraft is within 5 nmi of
the turn to base (or final approach) that will resolve the time error, the data tag turns blue
and a blue turn vector appears on the screen in the location where the instruction should
be issued. These same advisories appear in white for aircraft entering the TRACON from
the opposite direction.

If the aircraft’s ETA is late (compared to the STA), the controller can advise an increase
in speed or shorten the aircraft’s route. FAST calculates advisories to shorten the route
in either the route-intercept mode (RI) or the waypoint-capture mode (WC). In RI mode,
FAST searches for an interception of the nominal route by extending the aircraft’s current
heading to a point on the route that enables the aircraft to maintain its position in the
sequence. If the controller selects the aircraft with the mouse, the turn that will accomplish
the intercept is shown in yellow. Once the aircraft has intercepted the route, it follows the
nominal route to the FAF and FAST provides advisories for the turns to base leg and to
final.

In the WC mode, FAST computes a path directly to a waypoint, potentially bypassing
much of the standard route. The controller selects the waypoint with the mouse and the
waypoint turns yellow. The controller then selects the aircraft and a menu pops up from
which the controller selects WC mode. A yellow turn arc is shown that intercepts with
a straight line leading to the waypoint. FAST bases its calculations of these advisories
on the aircraft’s position 10 seconds of flight time into the future to allow the controller
time to react. As soon as any advisory is displayed, the ETA on the time line will reflect
arrival based on completion of the advisory. If the advisories are not followed, the ETA is
readjusted.

Thus, FAST takes on much of both the computational and memory load involved in
the task of controlling the aircraft. It calculates the exact amount of time error, posts
a notice to the controller, and calculates precise advisories to solve the problem. It also
reminds the controller of the instructions when it is time to issue them. The controller

93

must monitor the time line or the data tag to detect the need for heading or speed changes,
and the controller must choose the method by which the change will be calculated (route
intercept or waypoint capture).

In addition, the controller must then issue the verbal instructions to the pilot and
monitor readback. The controller is the ultimate judge as to whether to accept advisory
recommendations. However, if the controller chooses to use the FAST advisories, the
computationally intensive spatial-temporal calculations and the heavy prospective memory
load are almost completely eliminated. In addition, the calculations themselves are much
more accurate than the estimating procedures currently used and, as such, reduce the
number of adjustments required as well as increase throughput.

10.2.5 Passive FAST

FAST has been implemented using varying levels of automation. Passive FAST provides
schedule and runway assignments but does not provide the other advisories described
above. The passive FAST sequencing algorithm assumes the nominal route unless the
controller enters route change information in the flight plan panel. FAST also takes into
account other controller input such as runway assignment changes, missed approaches,
and emergency priority for particular aircraft. As with the fully automated version, the
sequence number and runway assignment are displayed on the fourth line of the data tag.
The landing sequence is displayed on the timeline, which shows ETA and STA and indicates
time errors. A bracket on the timeline indicates the earliest and latest possible arrival
time of that aircraft based on its engine type, weather, and heading. As in the active
version, resequencing is automatic and continuous and takes into account the aircraft’s
present position and that of all other aircraft. Passive FAST automatically detects and
resequences missed approaches and aircraft that have failed to execute clearances.

Although passive FAST does not provide specific advisories, it does provide several
types of information to assist in making control decisions. For example, passive FAST
assists in detecting future conflicts by providing trend vectors that indicate where the
aircraft will be if it continues on its current path.

Similarly, the controller can view the tracking history of a given aircraft that shows
the last several fixes of the aircraft as a series of X’s. Information about the distance and
heading between two objects (VORs, aircraft, airports) can be elicited by dwelling on each
object and pressing the space bar. In addition, passive FAST provides a winds panel that
shows the winds at six different altitudes above the airport. All this information must
be estimated by the controller under the present system. While eliciting the information
using FAST probably requires approximately the same level of involvement, the product
is much more accurate. For the most part, however, the difference between passive and
active FAST appears to be one of degree rather than kind.

94

10.2.6 Summary of the Comparative Analysis

In general, FAST reduces controller workload [Lee95] and provides more precise advisories
that require fewer corrections [SLS95]. Simulations suggest that significantly less airspace
is used when controllers employ FAST advisories (due to less off-nominal route vectoring)
than when they use the current procedures. With the automation, controllers were found
to space aircraft more tightly (without violating minimums) and handled approximately
4.6 more aircraft per hour than without the FAST automation. Controllers involved in the
simulations commented that FAST usually confirmed their plan and sometimes came up
with a better one, although occasionally controllers missed or ignored advisories [DEG90].

Although these are significant advantages in terms of both increased throughput and
decreased workload, they may well result in reduction in attentional involvement in the
task. Passive FAST assumes the task of generating landing sequence and runway assign-
ments, although the controller must decide which instructions are best able to accomplish
that sequence. Active FAST reduces involvement in both of these tasks. As analyses of pre-
vious controller errors suggest, situational awareness, which is a direct result of attention
processes, is an area in which the controller is especially vulnerable.

In addition, monitoring tasks are increased with FAST. Controllers monitor the plan-
view display for information such as sequence numbers, runway assignments, time errors,
and advisories. This shift in duties from those involving active participation to those
involving monitoring may increase the necessity for vigilance. At present, the effect of
vigilance on air traffic control performance is not well understood. Are reduced situational
awareness and increased necessity for vigilance indeed aspects of air traffic control with
FAST augmentation? The next section outlines a research program that would address
these issues.

10.3 Outstanding Safety Questions

The simulation study by Davis et.al. [DEG90] found that FAST reduces controller work-
load and results in significantly more efficient use of the airspace. Controllers issued fewer
speed and heading clearances, handled more aircraft, and reported a reduction in subjec-
tive workload. These results suggest that FAST implementation will greatly improve the
efficiency of the air traffic system. In addition, the reduction in workload and instructions
issued may well lead to increased safety, to the extent that errors in the present system
are attributed to these factors. However, there are potentially negative effects as well. Ex-
perts hypothesize that increased automation may decrease situation awareness, increase
vigilance requirements, and lead to skill degradation. These issues must be thoroughly
investigated to ensure that safety will be maintained.

10.3.1 Decreased Situational Awareness?

Many believe that a reduction in situation awareness is a likely side effect of automation.
Situation awareness is the controller’s understanding of the current state of the airspace

95

being controlled and the rules that govern its dynamics. It can be thought of as a men-
tal model of the relative positions of aircraft in that space and, as such, it is based on
information available on the radar screen.

However, situation awareness is more than that. The mental model also includes knowl-
edge of the dynamics governing the situation that allows the controller to project events
and aircraft positions into the future. As such, situation awareness makes use of in-
formation stored in long-term memory, such as maps, flight plans, aircraft performance
information, procedures, and separation standards [Mor80]. The information about the
current state of affairs gleaned from the radar scope combined with general knowledge
in long-term memory results in the controller’s model of the situation currently active in
working memory.

The controller’s mental model of the situation serves as a guide for planning, informa-
tion gathering, and monitoring and, as such, is directly related to performance [Mog91].
As described in Section 10.1, many controller errors have been attributed to a failure in
situation awareness. Thus, accuracy of the mental model is essential to controller perfor-
mance.

The cognitive processes that underlie situation awareness are attention and memory.
The more attention one pays to something, the more accurate and memorable is one’s
mental representation for it. In addition, memory for self-generated information is better
than for information presented to one “ready-made” [Sla78]. What this means in terms
of air traffic control is that the more thoroughly the controller must process information
relating to an aircraft and the greater the percentage of that information that is self-
generated, the stronger and more accurately it is represented in the controller’s model of
the airspace.

Under the current system, for example, the controller must generate the landing se-
quence by analyzing the relative positions of the aircraft, selecting a point in the approach
path that they will all cross, and fast-forwarding the aircraft positions in the mental model
until each one crosses that point. This task requires close consideration of each aircraft’s
operating capacities, speed, altitude, and heading. It is an extremely attention-absorbing
task. Both passive and active FAST preclude this entire process by presenting the controller
with a completed landing sequence. Clearly providing this information vastly reduces the
attentional requirements, and it may reduce the controller’s overall understanding and
memory for the situation as well. As a result, the controller’s model of the airspace may
suffer. Note that active FAST takes on even more of the controller’s attention-intense
tasks by recommending heading and speed adjustments.

Situation awareness may be further reduced by the fact that FAST makes some de-
cisions without consulting the controller, such as automatically accepting handoffs, rese-
quencing aircraft, and making new runway assignments. The results of these actions are
available to the controller, but the controller must maintain vigilance in monitoring to
detect them.

Extensive research suggests that situation awareness is compromised by reduced at-
tentional requirements (e.g., [WBO80, Hop91, Vor93]. Other research, however, concludes

96

that situation awareness does not necessarily suffer from reduced attentional requirements.
For example, Vortac et.al. [VEFM] found that automated flightstrips neither reduced
attention nor impaired performance. In fact, there was an increase in performance in
prospective memory tasks under the automated conditions suggesting that in some cir-
cumstances the reduced workload that accompanies automation may serve to increase
situation awareness.

Automation may impact situation awareness in other ways, however. It may reduce
shared situation awareness in that FAST-enhanced ATC may substantially alter the con-
troller’s model of the situation as compared to that of the pilot. More likely, increased
automation may increase the requirements on the controller’s understanding of the au-
tomation itself. The need for controller awareness of system automation dynamics, pro-
cesses, inputs, and outputs [KC96] may well increase as the automation becomes more
complex. A similar increase in the necessity for understanding automation has taken
place in aircraft cockpits over the past few years. Several studies have demonstrated
that even experienced pilots do not fully understand complex flight management systems
[SW92, SW94a, SW94b, SW95a, SW95b]. Moreover, lack of understanding of an au-
tomated system has been implicated in a significant number of recent incident reports
[VMH95].

The importance of operator understanding of automated systems in the air traffic
control environment can be illustrated using an example from FAST. To make an intelligent
decision about whether to accept a FAST recommendation, the controller must understand
how the solution was generated. The controller would need to know, for instance, whether
FAST’s recommendation was made in the light of the most recent events, such as a missed
approach, a popup, or a delay in heading change. If so, the recommendation can be
followed without potential for conflict. However, if the recommendation was formulated
before the missed approach took place, the controller needs to consider the joint impact
of the current situation and FAST’s recommendation on the future state of the airspace.
Thus, understanding exactly how FAST generates its recommendation is a vital component
of the controller’s situation awareness.

In addition, an accurate mental model of the automation is important in detecting and
diagnosing problems. FAST calculations, for instance, are dependent to a certain extent
on information provided to it by the controller, such as route and runway assignment
changes. The automation may provide erroneous recommendations if the controller has
made a data-entry error. Detection of such an error might well depend on a thorough
understanding of the underlying algorithms by which the system generates its advisories.
At the very least, an accurate model of the automation is important for the controller to
understand the conditions under which the automation can and cannot be trusted as well
as what sorts of errors are likely.

97

10.3.2 Increased Vigilance Requirements?

Another potential unintended side effect of increased automation is an increase in the vig-
ilance component of the controller’s task. The usual findings with respect to vigilance are
that there is a significant decrement in response time and target detection rate after about
30 minutes of vigilance monitoring. This problem already exists in cockpit automation.
Failures in monitoring of the flight management system and autopilot have been blamed
for several aircraft accidents and incidents [Lee92, Mos94, Mui88, Ril94]. This may be due
in some cases to complacency, i.e., too much trust in the automation that leads to failure
in adequate monitoring [Mos94].

Vigilance requirements in air traffic control increase to the extent that the controllers
responsibilities shift from those that involve overt activities to those that involve monitor-
ing. This kind of shift may well take place under FAST. For example, FAST provides the
controller with sequence numbers, runway assignments, time errors, and advisories, reliev-
ing the controller of the duty to actively generate this information: Using FAST, when the
information is required, the controller simply obtains it from the planview display where
it is posted.

The designers of FAST have wisely tried to keep the controller involved in all steps of
the process. The controller decides whether a speed or heading change is the best solution
for a time error, and the controller chooses the method by which a heading correction is
calculated (route intercept or waypoint capture). Moreover, the controller is the ultimate
judge as to whether to accept advisory recommendations. Finally, the controller issues the
verbal instructions to the pilot and monitors readback. Nonetheless, there is a distinct
reduction in level of active problem solving required by the controller and a simultane-
ous increase in the monitoring required. These changes may well increase the vigilance
component of ATC, although without systematic investigation it is difficult to tell.

Unfortunately, it is unknown at present how an increase in vigilance requirements
would impact the performance of experienced air traffic controllers. Laboratory studies
suggest that, after about a half hour of vigilance monitoring, response time increases and
target detection decreases [DP82]. However, it is not clear whether these findings are
generalizable to the air traffic control settings [PAOMO95].

10.3.3 Skills Degradation?

Another potential impact of increased automation is the degradation of skills. If controllers
are not required to generate landing sequences and time error solutions, they may become
increasingly less adept at performing these tasks. This skill degradation could have two
possible negative outcomes. First, lack of practice could serve to erode their understanding
of the underlying dynamics of the system [Hop88|, which is the long-term memory com-
ponent of situation awareness. Second, the skills themselves may be slowly eroded with
lack of practice [Bai90], compromising the quality of human intervention in the event of
an automation failure.

98

10.4 Experiments to Answer These Questions

During this demonstration of our approach to assuring safety as applied to the DFW TRA-
CON, we did not have time to run experiments to answer the outstanding safety questions
we identified in our human factors comparison of current procedures and changes implied
by the use of FAST. We have, however, designed experiments that we feel would provide
important information about the impact of FAST automation on human ATC information
processing and performance in two major areas: situation awareness and vigilance. In
addition, these experiments would assess the impact of any decline in performance in the
event of a system failure. Although we believe the potential for skill degradation is also an
important consideration, we do not believe it can be adequately assessed within the scope
of the present project. However, we recommend that skills be assessed periodically and
that periodic practice sessions in non-FAST augmented control settings be mandated.

The main questions for which we would seek answers through experimentation are: (1)
Does the FAST augmentation alter situation awareness? (2) Does it increase the necessity
for vigilance? (3) How do potential changes in situation awareness and vigilance impact
performance?

A series of experiments are described to investigate the retrospective memory com-
ponent of situation awareness, assessing recall memory for information presented in a
planview display. Comprehension of future implications are assessed as well. In addition,
prospective memory for tasks, such as issuing instructions, are evaluated. A second series
of experiments would assess the vigilance component, operationalized as the monitoring
of sequence and runway assignment changes and compliance with instructions.

Participants. Participants in all the experiments would be fully trained professional
air traffic controllers. Some may participate in more than one phase of the program;
they would be paid for their participation. It is important to use professional controllers
because of evidence of the limited generalizability of conclusions from experiments using
nonprofessionals.

Materials. The most common measurement of situational awareness is the query tech-
nique or Situation Awareness Global Assessment technique [End88], in which participants
perform control duties in high fidelity simulations, the situation is frozen at random in-
tervals, and the subjects’ knowledge is assessed (e.g., [GDOT]). We propose the use of a
similar technique in most of the experiments described below.

Procedure. Participants interact with the simulation in one of two main conditions.
In the automated condition, the sequence information and runway assignments are pro-
vided (Passive FAST). In the non-automated condition, participants generate their own
sequences as they do under current procedures. Both groups of subjects perform control
duties in a sequence of identical, time-limited scenarios. Scenarios vary systematically by
traffic load and complexity, ranging from simple scenarios to those with maximum traffic

99

loads. Presentation order is randomized to prevent subjects from anticipating traffic load.
Scenarios are halted periodically, the screen darkened, and the participants’ knowledge as-
sessed. Assessment procedures vary by experiment, depending on the particular research
question.

Situation Awareness: Retrospective memory component. Fzrperiment 1: After
participating in the simulation for various periods of time, the simulation is halted and the
screen darkened. Participants perform a cued memory test in which they are given a map
of the sector, including sector boundaries, navigation aids, and airports. They are asked to
indicate the location of each aircraft as well as call sign, altitude, ground speed, heading,
sequence number, and runway assignment. Subjects are asked to indicate whether each
aircraft was currently engaged in a change of altitude (climbing or descending) or change
of heading (right or left turn).

Experiment 2: After participating in the simulation for various periods of time, the simu-
lation is halted and the screen darkened. Participants are asked to judge the proximity of
pairs of aircraft, described by their call sign, without the aid of a map.

Situation Awareness: Spatial-temporal projection. FEzrperiment 3: After partici-
pating in the simulation for various periods of time, the simulation is halted and the screen
darkened. Participants are given a map with the present location of all aircraft in the sec-
tor and asked to draw the anticipated flight plan of each. Subjects are asked to indicate
whether there was any potential loss of separation if all aircraft stayed on course.

Situation Awareness: Prospective memory. FEzperiment 4: After participating in
the simulation for various periods of time, the simulation is halted and the screen darkened.
Participants are given a map with the present location of each aircraft in the sector and
asked to indicate which aircraft had received clearances that had not been completed and
whether the aircraft was conforming to clearance when the simulation was halted. They
are also asked to indicate which aircraft would need a change of heading or altitude within
the next five minutes.

Note: Experiments 1, 3, and 4 may be combined to allow for direct comparison of
performance by task types across levels of automation.

Performance in all the above experiments would be assessed by subject matter experts
using the FAA’s On the Job Training Evaluation Form (OJT: FAA Form 3120-25).

Results and Discussion. Decrease in recall accuracy in either the automated or non-
automated conditions would suggest a decrease in situation awareness. In addition, we
would assess potential interactions between automation level and traffic load and com-
plexity. One possible prediction is that memory accuracy at the two levels of automation
is comparable under light load and decreases in one or both conditions as traffic complexity
and load increases.

100

Similar analyses would be conducted to detect differences in spatial-temporal projec-
tion, prospective memory, and interactions with traffic load and complexity. These tasks
may well be differentially affected by automation and traffic load. Previous work [VEFM]
suggests, for instance, that prospective memory is enhanced under automated conditions.

Job performance (as assessed by subject matter experts using FAA’s On the Job Train-
ing Form) would be compared across automation conditions to determine whether there are
any systematic performance differences between the two groups. Job performance would
also be compared with performance on situation awareness measures to detect potential
relationships between these variables.

Another method that has been used to assess controller’s situation awareness or men-
tal model is multidimensional scaling (MDS). Murphy et.al. [Mur89] suggested that the
technique could be used to capture the mental picture of current and future situations
and controllers’ understanding of ATC rules and operational procedures. Plotting com-
parison judgments in dimensional stimuli space was used by Lapin [Lap85] to demonstrate
that skilled controller’s space was 3-dimensional while unskilled controller’s was only 2-
dimensional.

In experiment 2, participants are asked to make spatial comparison judgments between
pairs of aircraft. These would be plotted in dimensional stimuli space and analyzed to de-
tect systematic differences between automated and non-automated groups. Results would
be used in conjunction with those yielded in the above analysis to understand better the
full impact of automation in situation awareness.

Situation Awareness: Understanding of the automation. FEzxperiment 5: Partic-
ipants are involved in simulated shift change transitions. Scenarios vary in complexity
and traffic load. Controllers’ ability to detect route change data entry errors by previous
controllers is measured over the course of a series of 10 minute scenarios. Participants
in this experiment will have some familiarity with FAST, possibly through participation
in previous phases of the research program. Detection rate is analyzed as a function of
complexity and traffic load.

Vigilance: Monitoring. Fzperiment 6: In this experiment, the impact of automa-
tion on vigilance monitoring is assessed in a manner similar to that used by Thackray
[Tha89]. Controllers participate in simulations for various periods of time, as above. How-
ever, scenarios are designed to systematically vary controller interaction with aircraft (e.g.,
increased pilot requests). Each scenarios contains several changes in planview display in-
formation, such as a change in runway assignment or sequence number, that must be
detected through efficient monitoring. Participants interact with the simulation for a pe-
riod of time, after which the simulation is halted and the screen darkened. Participants
are given a recall memory task, as described in Experiment 1 above.

Results and Discussion. These experiments assess awareness of monitored information
as a function of interaction level and length of participation. A reasonable prediction is

101

that participants will be less likely to notice and encode in memory changes pertaining to
aircraft that require less controller interaction (e.g., increased pilot requests) after periods
of participation. This result would suggest a vigilance decrement.

Results from this series of experiments would indicate the impact of automation on
situation awareness, vigilance requirements, and performance in air traffic control. From
these results, we would be able to assess the impact on system safety as well as the ability
of the controllers to maintain safety in the event of a system failure.

102

11 Operations Research Modeling and Analyses

Introduction

As traffic increases, there is a continuing increase in congestion of arriving aircraft to
TRACONSs. Various scheduling methods have been discussed to smooth the flow and
decrease delays and fuel consumption, however additional complexities increase the burden
and risk for the air traffic controller. The question is then, what is the optimum balance
between safety and cost efficiency?

The objective of this preliminary research is to illustrate a methodology to evaluate
the impact of different scheduling algorithms on delay and fuel consumption, and the
consequent trade-offs between efficiency and safety.

For this purpose, traffic destined for a TRACON feeder gate was simulated from the
moment when aircraft reached the Center until their arrival at the gate. The overall
performance in terms of fuel and delay was analyzed under different CTAS scheduling
algorithms. Three of the five algorithms accounted for safety by reducing the number of
advisories issued by the controller. These three scheduling algorithms are contrasted with
two others that account for minimal fuel burn in the schedule.

Although this preliminary research is limited by the accuracy of the data, the compar-
isons demonstrate the type of trade-off studies between efficiency and safety that could be
performed with this methodology.

The simulation model developed is described in section 11.1. Section 11.2 explains the
different scheduling algorithms considered, and section 11.3 shows the simulation details
and data. Finally, the results and conclusions are presented in the last two sections.

11.1 Model

In order to set up the model, the Center was divided into four quadrants, each quadrant
containing a feeder gate as shown in Figure 34. Each quadrant was assumed to be inde-
pendent. Three tracks were traced along a quadrant, where each track starts at a point
in the Center and finishes at the gate. Therefore, the tracks start at different positions
along the quadrant, but all of them finish at the same point. Figure 35 illustrates the three
tracks modeled in a quadrant.

A track consists of a set of waypoints equally spaced and different altitude levels.
A waypoint is identified by two coordinates, the first one is the distance in units from
the starting point and the second one is the altitude, as can be seen in Figure 36. The
waypoints in this study are 16.5 nautical miles apart, approximately 2 minutes for an
airplane cruising at Mach 0.85. Five altitude levels were used with a vertical separation of
1000 ft. The feeder gate is located at the lowest altitude, FL 330 [TAEO85]. Therefore, all
aircraft finish their route at 33000 ft of altitude regardless of the starting altitude. More
altitude levels are necessary to more accurately describe the physical system, however this
preliminary model was developed with only five levels to demonstrate the potential of this
methodology. The model can be extended to include more altitudes and waypoints.

103

Figure 34: Top View of the Center and TRACON Air Space.

FEEDER GATE

Figure 35: Tracks Along a Quadrant of the Center terminating in the Feeder Gate.

FL 370
FL 360
FL 350
FL 340
FL 330

wp (15,370
A A A A A A A AN AN AN AN AN A " :
DOOOOOOOOOOOOOOO
DOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOLOOOOO
O A A A A A A A A A A AN A A A\> N> > A
123 456 7 8 9 1011 12 13 14 15 16 17 18 19 20

Figure 36: Cross Section of a Track.

104

Minimum Fuel Path
FL370 Q0000000000000
FL 360 QhOOOOOOOOOOOOOOO
e O Y aYaYaVataVaVaVaVaVaVaVata
FL 30 Ommmmmmmmmmmmmmmm%&@

3o O

Maximum Safety Path

L e YaTalalalalalalalalalalaVata)
L QO00000000000000
s G
L o000 00000000006000

e QO00000000000000000

Figure 37: Comparison of Paths. Minimum Fuel Burn vs. Minimum Pilot-Controller
Communication.

To maintain the minimum separation required by the FAA, only one airplane is allowed
in an arc between waypoints at the same time. Also, aircraft can drop only one altitude
level between waypoints. This assumption makes the descent rate approximately 1000 ft.
in 2 minutes, or 500 ft./min. on average.

Finally, to establish the trade off between increase in fuel burn and safety, two paths
were designed. The first path has minimum fuel burn, and it is based on the assumption
that an airplane will always descend to its optimum altitude and maintain it for the whole
trajectory until it has to reach the gate. The second path has minimum communications
between the pilot and the controller, making it the safest path. In this path, the airplane
maintains the starting altitude until the gate, when only one advisory is issued for descent.
It is assumed that all airplanes follow either the path with lowest fuel burn or the path with
minimum pilot-controller communication. The two paths are shown in Figure 37. In this
figure, the path is shown for an aircraft whose optimal altitude is FL 350. It would take
two advisories for the airplane to drop from FL 370 to FL 350, hold, and then descend to
FL 330. In the safer path, the airplane would hold at its entry altitude (e.g., FL 370) and
then descend to FL 330, using only one communication between the pilot and controller.

11.2 Scheduling Algorithms

Five scheduling algorithms were considered in the research. Four of the five were based on
a FIFO (First In, First Out) discipline. The current scheduling algorithm implemented in
CTAS is based on FIFO. This rule implies that passing is not allowed. Fast aircraft may
get stuck behind slower ones, and large gaps in front of slow aircraft may also result.

When an aircraft reaches the Center, its ETA (Estimated Time of Arrival) is calculated.
In the basic scheduling algorithm, if an aircraft’s ETA is too close to another aircraft’s
STA (Scheduled Time of Arrival), the controller maintains the FAA minimum separation
requirements by delaying the aircraft that arrived last.

Even though a fast airplane is not allowed to pass a slower one at the same altitude, it is

105

t=2

FL 370

FL360 =

FL 350

FL 340)=

FL 330

>
» >

Figure 38: Example of Altitude Overtakes. The Airplane At FL 360 is Faster Than The
One At FL 340.

Algorithm Discipline Altitude Overtakes Path
A FIFO No Minimum Fuel
B FIFO No Maximum Safety
C FIFO Yes Minimum Fuel
D FIFO Yes Maximum Safety
E Allows Horizontal Passing No Maximum Safety

Table 2: Summary of Scheduling Algorithms.

possible to have one of the aircraft descend to allow an altitude overtake. For example, two
airplanes are shown in Figure 38 where a fast airplane is at FL 360 and a slower airplane
is at FL 340. The faster airplane is allowed to overtake the slower one, as illustrated in
the figure. Altitude overtakes allow multiple airplanes per geographical location at a time,
that is, two aircraft can be at the same waypoint at the same time, as long as they are
flying at different altitudes.

Four variations of the basic FIFO algorithm presently used were studied. All scheduling
algorithms are summarized in Table 2. In cases A and B, altitude overtakes were not
allowed, while cases C and D permitted them. On the other hand, in cases A and C all
aircraft followed the path with minimum fuel burn, whereas in cases B and D the safest
path was taken.

Finally, algorithm E introduced the possibility to pass horizontally. This algorithm was
based on a proposed scheduling algorithm described in [New66]. Algorithm E recognizes
two horizons—initial and freeze. The initial horizon was located at the entrance of Center
while the freeze horizon was located 165 nm away from the feeder gate.

As aircraft enter the Center and pass the initial horizon, their ETA is calculated and
an STA is generated. If a fast airplane arrives and it can pass another aircraft that has not
reached freeze horizon yet, then the slower aircraft is delayed to let the faster airplane pass.
If an arriving airplane can pass a frozen airplane (already passed the freeze threshold) it
may do so only if there is enough space to pass safely without delaying the frozen airplane.

106

Once an airplane is frozen, it cannot be delayed to allow passing anymore.

this algorithm follow.

Example 1: Current order : A -B-C
Aircraft D enters Center shortly after aircraft C. Both A and B are frozen.
Aircraft D is not fast enough to pass.
ETAy < ETAg < ETAc < ETAp
The algorithm will produce the sequence:
STAy < STAp < STAc < STAp
Aircraft D was delayed to maintain minimum separation

Example 2: Current order : A-B-C
Aircraft D enters Center shortly after aircraft C. Both A and B are frozen.
Aircraft D could arrive between aircraft B and C.
ETAy, < ETAg < ETAp < ETA¢
The algorithm will produce the sequence:
STA, < STAg < STAp < STA¢

Examples of

Aircraft D was inserted between B and C, aircraft C was delayed once to let D pass and

delayed again to maintain minimum separation between D and C

Example 3: Current order : A-B-C
Aircraft D enters Center shortly after aircraft C. Both A and B are frozen.

Aircraft D could arrive between A and B, and there is enough space between A and B to

insert D without respacing.
ETAy, < ETAp < ETAg < ETA¢
The algorithm will produce the sequence:
STA, < STAp < STAg < STA¢
Aircraft D was inserted between A and B, no aircraft were delayed

Example 4: Current order : A -B-C
Aircraft D enters Center shortly after aircraft C. Both A and B are frozen.

Aircraft D could arrive between A and B, but there is not enough space between A and B

to insert D without respacing
ETAy, < ETAp < ETAp < ETA¢
The algorithm will produce the sequence:
STAy < STAp < STAp < STA¢

Aircraft D was inserted before the first non frozen aircraft, and all aircraft following D

were respaced. C was delayed to maintain minimum separation

These algorithms were chosen from a group of possibilities to illustrate a methodology
of analysis. In the future, other algorithms or modifications to the ones presented here can

be included in the study.

107

F330 F340 F350 F360 F370
2.0 1.0 0.0 1.0 2.0
1.0 0.5 0.0 0.5 1.0
1.0 0.5 0.0 1.0 2.0

W N =R

Table 3: Fuel Burn Penalty by Flight Level as a Percentage Increase From Optimal Flight
Level, F350.

11.3 Simulation Details

The study performed uses a discrete event simulation language (Arena 3.01 [Peg95]) to
capture aircraft when they enter the Center (assumed at a distance of 330 nm from the
feeder gate at TRACON), and route them to one of three possible tracks. Each airplane
follows a path of waypoints where only one aircraft is allowed in an arc between waypoints
at a time. If an aircraft arrives at a waypoint and there is another aircraft in that arc, it
is sent to a holding pattern represented by a queue where it waits until the arc is free. If
an aircraft is going to pass another one horizontally, as in Algorithm E, the delay of the
slower aircraft is represented as time in the queue while the passing aircraft occupies the
arc.

The simulation was run for 60 aircraft arriving every 2 minutes. The system started
empty and finished empty. The track and altitude for each aircraft were randomized
following a uniform distribution.

The performance measures were chosen to be delay and fuel burn because of the im-
portance of these factors in the justification of CTAS: “If CTAS were to be implemented
nationwide, the airlines would save about a billion dollars per year, mostly from reductions
in delay and fuel costs.” [Mew97].

The ETA’s were calculated for each aircraft by simply obtaining the product of speed
and distance for each arc and summing over all arcs on the aircraft’s path. The delay was
calculated by comparing the initial ETA with the actual arrival time to the feeder gate:

Delay = Feeder Gate Crossing Time — ETA

The fuel usage was calculated at the end of each arc and it included the fuel consump-
tion during the holding time if an aircraft had to be put on hold. Although fuel flow is a
function of several variables, there exists precedent for adopting the assumption that fuel
flow remains constant for the time period of interest at the given altitude (see [Tho96]).
Deviations from this optimum altitude are modeled as a fuel flow penalty. Table 3 lists
the fuel flow penalties used in this study. The equation to determine the amount of fuel
burned in a given arc [Tho96] is:

Fuel = Average Fuel Consumption * (1 4+ Altitude Penalty) * Transit Time

where the average fuel consumption for each aircraft type was taken from is shown in
Table 4 [Tho96]. The transit time was calculated as the distance between waypoints (fixed

108

Mach | Fuel(gal/min)
0.85 60
0.83 48
0.80 26

Table 4: Average Fuel Consumption by Mach Number.

Mach | F330 F340 F350 F360 F370
0.85 | 494 492 490 490 490
0.83 | 483 481 479 479 479
0.80 | 465 464 462 462 462

Table 5: True Air Speed in Nautical Miles Per Hour for Constant Mach Number by Flight
Level.

at 16.5 nm) divided by the speed of the aircraft at the particular flying altitude.

Three different types of aircraft were used for the study, where the aircraft were assumed
to maintain their listed cruise Mach number during their entire flight (i.e., they do not
change speed in level flight, and do not change cruise Mach with altitude) [Tho96]. Due
to the lack of real data, the aircraft mix and characteristics were taken from a study of
Oceanic Airspace Design [Tho96].

Two cases of speeds modified by altitude were studied. In the first case the speeds
are shown in Table 5 [Tho96]. In the second case, the speeds were modified arbitrarily to
evaluate the effect of variability, as illustrated in Table 6. However it is noted that these
particular speeds may not reflect a real situation.

The capacity at the TRACON feeder gate was varied to study the effect of congestion
in the system. Five settings of capacity were implemented:

1 aircraft every 0.5 minutes (120 aircraft per hour)

1 aircraft every 1 minute (60 aircraft per hour)

1 aircraft every 2 minutes (30 aircraft per hour)

1 aircraft every 3 minutes (20 aircraft per hour)

1 aircraft every 4 minutes (15 aircraft per hour)

Mach | F330 F340 F350 F360 F370
085 | 894 892 890 890 890
0.83 | 483 481 479 479 479
0.80 | 165 164 162 162 162

Table 6: Case 2 : Different Speeds to Evaluate Effect of Variability. In Nautical Miles Per
Hour.

109

TRACON | A B C D E
0.5 02 02 02 02 0.2
03 03 03 03 03
13 13 13 13 14
285 28.5 28.5 28.5 28.6
98.0 58.0 58.0 58.0 58.1

PENGURN (R

Table 7: Average Delay in Minutes for Similar Speeds.

TRACON | A B C D E
0.5 1887 1893 1887 1893 1890
1916 1921 1916 1921 1919
2016 2022 2014 2022 2024
3272 3278 3272 3278 3279
4634 4639 4634 4639 4639

PENGUEE G

Table 8: Average Fuel Burn in Gallons for Similar Speeds.

Given that the arrivals at Center occur every two minutes, it is reasonable to expect
that the system flow is ideal when the capacity at TRACON is greater than 30 aircraft
per hour (i.e., less than one airplane every two minutes). Since randomness is introduced,
delays when the arrival rate is exactly equal to the leaving rate can be foreseen. Delays
and fuel burn are expected to increase when the capacity at the TRACON is smaller than
the arrival rate.

11.4 Results

Two sets of runs were completed, the first one corresponds to aircraft at similar speeds
and the other one corresponds to aircraft at different speeds.

Tables 7 and 8, and Figures 39 and 40 present the results obtained from the simulation
for aircraft flying at similar speeds. Note that the capacity at the TRACON feeder gate
severely impacts delay and fuel consumption. As was expected, as soon as the arrival rate
exceeds the TRACON capacity, the average delay is enlarged by a factor of 30, while the
average fuel burn per aircraft is increased by approximately 1200 gallons.

It is important to point out that for aircraft with similar speeds all the scheduling
algorithms have similar performance. When comparing algorithms A and C with B and
D (minimum fuel burn vs. minimum pilot-controller communications), the savings in
fuel burn are so small that it is better to be safe by generating a minimum number of
advisories. On the other hand, when comparing Algorithms A and B against C and D (No
altitude overtakes vs. Altitude overtakes), there is not enough difference in delay or fuel
consumption that would make the increased risk of allowing altitude overtakes worthwhile.

Algorithm E (Horizontal passing allowed, minimum advisories) is slightly better in
terms of delay and fuel consumption than algorithms B and D (minimum advisories) and

110

TBA 2 minutes

Similar Speeds

Average Delay (minutes)

0.0 1.0 2.0 3.0 4.0
TRACON Acceptance rate

Figure 39: Average Delay for Aircraft with Similar Speeds.

TBA 2 minutes
Similar Speeds

5000.0

G—oOA
| o—HB
= o—oC
= AH—AD
§ 40000 - 1 [—*E
<
S
=
£
3
2 30000 -
S
o
]
S
s
o
& 20000
2
1000.0
0.0 1.0 2.0 3.0 4.0

Figure 40: Average Fuel Consumption for Aircraft with Similar Speeds.

slightly worse than algorithms A and C (minimum fuel path). One explanation is that,
with all the airplanes flying at roughly the same speeds, the flow is already fairly smooth
and there is no opportunity for savings.

Tables 9 and 10, and Figures 41 and 42, present results for aircraft flying at extremely
different speeds. When there is a large variation in aircraft speeds, we would expect larger
delays and increased fuel consumption, as is illustrated when comparing the tables. In this
scenario, Algorithm E demonstrates enormous savings in delay and fuel when TRACON
capacity is one airplane every 0.5 minutes.

The effect on delay of having a large disparity in speeds exceeds the effect of TRA-
CON capacity. For the case when all aircraft have similar speeds, the main bottleneck in
the system is at the feeder gate to TRACON. When the airplanes have different speeds,
intermediate delays are introduced throughout the system by slow aircraft. Scheduling
Algorithm E is able to smooth out these intermediate delays by allowing fast aircraft to
pass slower ones horizontally.

111

TRACON | A B C D E
0.5 38.6 38.6 386 386 34
1 38.9 389 389 389 34
2 43.5 43.5 435 435 4.0
3 59.4 594 594 594 83
4 79 79 719 719 27.7

Table 9: Average Delay in Minutes for Different Speeds.

TRACON | A B C D E
0.5 4291 4302 4291 4302 2348
1 4332 4343 4332 4343 2373
2 4587 4598 4587 4598 2447
3 9339 5350 5339 5350 2696
4 6205 6216 6205 6216 3535

Table 10: Average Fuel Burn in Gallons for Different Speeds.

TBA 2 minutes

Different Speeds

Average Delay (minutes)

Je

1.0

2.0

3.0

TRACON Acceptance Rate

4.0

Figure 41: Average Delay for Aircraft with Different Speeds.

7000.0

TBA 2 minutes

Different Speeds

6000.0

5000.0

4000.0

Average Fuel Consumption (gallons)

3000.0

5|o—<C
1 |&~—=AD
*—*E

Je

2000.0
0.0

1.0

2.0

3.0

TRACON Acceptance Rate

4.0

Figure 42: Average Fuel Consumption for Aircraft with Different Speeds

112

12 Intent Specifications

The types of formal and informal modeling and analysis described in the previous sections
together provide a comprehensive assessment methodology. The most effective way to
create a safe system, however, is to build safety in from the beginning. The preliminary
hazard analysis should start at the earliest concept formation stages of system development
and the information should be used to guide the emerging design. Later system and
subsystem hazard analysis information is used to evaluate the designs and make tradeoff
decisions.

Intent specifications support both general system development and system safety anal-
ysis. The design rationale and other information that is normally lost during development
are preserved in a single, logically-structured document whose design is based on fun-
damental principles of human problem solving. Safety-related requirements and design
constraints are traced from the highest levels down through system design, component
design, and into hardware schematics or software code.

12.1 Goals for Intent Specifications

Intent specifications are based on research in systems theory, cognitive psychology, and
human-machine interaction and have several goals.

1. Bridge between disciplines: Attempts to build complex systems often run up against
the difficulties inherent in communication among the diverse groups needed to com-
plete the project successfully. Specifications should assist in communication and
coordination among diverse groups of system designers and builders. One goal of
intent specifications is to provide a bridge between the various groups working on a
complex system like air traffic control in order to ease coordinated design of compo-
nents and interfaces and to provide seamless transitions and mappings between the
various development and maintenance stages.

2. Traceability: A complete safety analysis and methodology for building safety-critical
systems requires identifying the system-level requirements and constraints and then
tracing them down to the components. After the safety-critical behavior of each
component has been identified (including the implications of its behavior when the
components interact with each other), verification is required that the components
do not violate the identified safety-related behavioral requirements and constraints.
In addition, whenever any change is made to the system or when new information is
obtained that brings the safety of the design into doubt, revalidation is required to
ensure that the change does not degrade safety. This analysis cannot be performed
efficiently without the ability to trace design features to specific safety constraints
and safety-related design decisions.

3. Support human problem solving: Human-centered specifications allow for and support
different cognitive and problem-solving styles. They should be based on fundamental

113

principles of psychology and what is known about human problem solving. A goal
for intent specifications is to make it easy for users to extract and focus on the
important information for the specific task at hand without limiting the problem-
solving strategies used.

. Support for ensuring safety and other system qualities: Essential system-level prop-
erties must be built into the design from the beginning; they cannot be added on
or simply measured afterward. Up-front planning and changes to the development
process are needed to achieve particular objectives. These changes include using
notations and techniques for reasoning about particular properties, constructing the
system and the software in it to achieve them, and validating (at each step, starting
from the very beginning of system development) that the evolving system has the
desired qualities. Our specifications must reflect and support this process.

. Integrate formal and informal specifications and enhance their interaction: While
mathematical techniques are useful in some parts of the development process and
are crucial in developing software for critical systems, informal techniques will always
be a large part (if not most) of any complex software development effort. Our
models have limits in that the actual system has properties beyond the model, and
mathematical methods cannot handle all aspects of system development. To be used
widely in industry, our approach to specification must be driven by the need (1)
to systematically and realistically balance and integrate informal and mathematical
aspects of software development and (2) to make the formal parts of the specification
easily readable, understandable, and usable by everyone involved in the development
and maintenance process.

. Assist in software evolution: Systems and software are continually changing and
evolving; they must be designed to be changeable and the specifications must support
evolution without compromising the confidence in the properties that were initially
verified. One requirement for correct and safe system evolution is knowing the ratio-
nale behind a design. Unfortunately, the reasons why something was done a certain
way is often not recorded. Changing a safety-critical system requires determining
that the change will not degrade safety. Accidents commonly occur after changes
are made to a system. The original designers often think carefully about the safety
of their designs and implement effective procedures to eliminate or control hazards.
Changes always occur, however, and those who implement them often are not those
who originally designed the system. The maintainers do not know why a particular
design feature was included and inadvertently remove it while making the change.
Recording all the design rationale is difficult and may not be effective if the necessary
information is difficult to find when a change is made. Intent specifications record
and link the rationale or “why” information directly in the system specification so
that it is easy to find and use.

114

12.2 Intent or “Why” Abstraction

The design of intent specifications is based on the fundamental principles of problem-
solving and abstraction that humans use to make complex tasks intellectually manageable.
The problems in performing system engineering and software engineering activities such as
safety evaluations are rooted in complexity and intellectual manageability. Psychologists
have found that complexity itself is not a problem if humans are presented with meaningful
information in a coherent, structured context. “People don’t mind dealing with complexity
if they have some way of controlling or handling it ...if a person is allowed to structure a
complex situation according to his perceptual and conceptual needs [New66].

One approach found to be effective in dealing with complexity is hierarchical abstrac-
tion, that is, structuring the situation such that the problem solver can transfer the problem
to a different level of abstraction. In general systems theory, models of complex systems
can be expressed in terms of a hierarchy of levels of organization, each more complex than
the one below, where a level is characterized by having emergent properties [Che81, Lev95].
The concept of emergence involves the idea that at any given level of complexity, some
properties characteristic of that level (emergent at that level) are irreducible. Such prop-
erties do not exist at lower levels in the sense that they are meaningless in the language
appropriate to those levels. For example, the shape of an apple, although eventually ex-
plainable in terms of the cells of the apple, has no meaning at a cellular description level.

Hierarchy theory deals with the fundamental differences and relationships between
one level of complexity and another: what generates the levels, what separates them, and
what links them. Emergent properties associated with a set of components at one level in a
hierarchy are related to constraints upon the degree of freedom of those components. Note
that different description languages are required at each level: Describing the emergent
properties resulting from the imposition of constraints requires a language at a higher level
(a metalevel) different than that describing the components themselves.

The goal of hierarchical abstraction is to allow both top-down and bottom-up reasoning
about a complex system. In computer science, we have made much use of (1) part-whole
(decomposition) abstractions where each level of a hierarchy represents an aggregation of
the components at a lower level and of (2) information-hiding abstractions where each
level contains the same conceptual information but hides some details about the concepts,
that is, each level is a refinement of the information at a higher level. A higher level of the
usual software specifications can be thought of as providing “what” information while the
next lower level describes “how.” Such hierarchies, however, do not provide information
about “why.”

Higher-level emergent information about purpose or intent cannot be inferred from
what we normally include in such specifications. Design errors may result when we either
guess incorrectly about higher-level intent or omit it from our decision-making process.
For example, while specifying the system requirements for TCAS using a pseudocode
specification, we learned (orally from a reviewer) that crossing maneuvers were avoided
in the design for safety reasons. This important safety constraint was not represented in
the pseudocode and could not have been unless it had been added in textual comments

115

Decomposition

Refinemen/

System
Purpose

Environment ~~ Operator System Components

System
Principles

I ntent
Blackbox

Behavior

Design
Representation

Code
(Physical
Representation)

Figure 43: The form of a SpecTRM-RL specification.

somewhere.

Each level of an intent abstraction contains the goals or purpose for the level below
and describes the system in terms of a different set of attributes or language. Higher level
goals are not constructed by integrating information from lower levels; instead each level
provides different, emergent information with respect to the lower levels. A change of level
represents both a shift in concepts and structure for the representation (and not just a
refinement of them) as well as a change in the type of information used to characterize the
state of the system at that level.

Mappings between levels are many-to-many: Components of the lower levels can serve
several purposes while purposes at a higher level may be realized using several components
of the lower-level model. These goal-oriented links between levels can be followed in either
direction. Changes at higher levels will propagate downward, i.e., require changes in lower
levels while design errors at lower levels can only be explained through upward mappings
(that is, in terms of the goals the design is expected to achieve).

12.3 SpecTRM-RL Intent Specifications

System and software specifications in SpecTRM are organized along three abstraction
dimensions: intent, refinement, and decomposition (see Figure 43). The vertical dimension
specifies the level of intent at which the problem is being considered, i.e., the language or

116

model that is currently being used. The decomposition and refinement dimensions allow
users to change their focus of attention to more or less detailed views within each level or
model. The information at each level is fully linked to related information at the levels
above and below it.

The intent dimension has five levels of abstraction. The highest level of the specifi-
cation contains the overall goals and safety constraints. Some of the information here is
generated through the preliminary hazard analysis process. The next lower level contains
the underlying scientific principles upon which the design at the lower levels is based and
through which the goals and constraints at the highest level are satisfied. Models and
specifications at this level may be subjected to operations research and other types of sys-
tem analyses to evaluate alternative designs (such as various aircraft spacing and routing
alternatives for an ATC system) with respect to the higher-level goals and constraints.
The third level contains the black-box functional behavior model of the type we produced
for CTAS. This level is the most appropriate one for formal models. The fourth and fifth
levels contain design and implementation information. Because each level is mapped to the
appropriate parts of the intent levels above and below it, traceability of design rationale
and design decisions is provided from high-level system requirements and constraints down
to code (or physical form if the function is implemented in hardware) and vice versa.

Each level of an intent specification supports a different type of reasoning about the
system and represents a different model of the same system. The model at each level is
described in terms of a different set of attributes or language. Level 1 (System Purpose)
assists system engineers in their reasoning about system-level properties such as goals,
constraints, hazards, priorities, and tradeoffs. The second level allows engineers to reason
about the system in terms of the physical principles and laws upon which the design is
based. The third level enhances reasoning about the logical design of the system as a
whole and the interactions between components as well as the functional state without
being distracted by implementation issues. The lowest two levels provide the information
necessary to reason about individual component design and implementation issues. The
mappings between levels provide the relational information that allows reasoning across
the hierarchical levels and tracing from high-level requirements down to implementation
and vice versa.

The intent information represents the design rationale upon which the specification is
based and thus design rationale is integrated directly into the specification. Each level also
contains information about underlying assumptions upon which the design and validation
is based. Assumptions are especially important in operational safety analyses. When
conditions change such that the assumptions are no longer true, then a new safety analysis
should be triggered. These assumptions may be included in a safety analysis document (or
at least should be), but are not usually traced to the parts of the implementations they
affect. Thus the system safety engineer may know that a safety analysis assumption has
changed (e.g., the pacemakers are now being used on children rather than the adults for
which the design was originally designed and validated), but it is normally a very difficult
and resource-intensive process to figure out what parts of the design used that assumption.

117

Because the separation of human factors and the design of the human-computer inter-
face from the main system and component design can lead to serious deficiencies in each,
we have attempted to integrate both types of specifications at each level and across levels.
Interface specifications and specifications of important aspects of the system environment
are also integrated into the intent specification. Finally, each level of the intent specifica-
tion includes a specification of the requirements and results of verification and validation
activities.

We did not have the information available to complete an intent specification for CTAS
or even for FAST. We have created such a specification for TCAS II, however, which is
similar to ATC but resides on individual aircraft in order to provide the pilot with collision
avoidance information. We took the formal system specification we created for the FAA
TCAS project and extended it to provide an example of intent specifications. The table of
contents and Level 1 of our specification can be found in Appendix F. The entire specifica-
tion is too large to include in this report, Readers who are interested can found the example
specification at the following URL: www.cs.washington.edu/projects/www/intent /intent.ps

In general, the rationale behind the safety-related design decisions in CTAS needs
to be documented. This documentation may exist (we have not been privy to all the
documentation that exists for the project) but it is not recorded in the Lincoln Labs system
specification for CTAS Build 2. In fact, that document does not include the reasons for
any of the design decisions.

118

13 Conclusions

Although computers seemingly give us the ability to build systems of limitless complexity,
spectacular failures such as the FAA’s Advanced Automation System and the FBI’s CIC
demonstrate the difficulty in realizing this goal. The limits seem to be in human ability to
intellectually manage the design of such systems—to understand all the potential interac-
tions and behaviors and to assure not only that the goals are achieved but that no adverse
or undesired behavior results while achieving the goals.

Engineers have always tried to stretch the limits of the complexity of the systems we are
able to build successfully. With the development of digital computers, the intellectual limits
have become as important as the technical ones. We are attempting to build systems so
complex that humans, without assistance, cannot fully understand them in terms of all the
potential interactions and behaviors. We are especially having difficulty building complex
systems composed of diverse components, including human, computers, and various types
of electromechanical devices. The failure of the FAA in building a new ATC system is a
public example, but less well publicized failures abound.

Attempting to replace human designers with “intelligent” computers has not proven
to be very successful. Other types of automated tools to assist designers have focused on
taking care of housekeeping and routine clerical chores, such as configuration management
tools. These tools have been very successful in helping to organize development projects,
but they do not help much in augmenting the problem-solving abilities of the developers
and in stretching the limits to understanding complex systems.

We believe that stretching those limits will require new methodologies and techniques
based on understanding how humans solve problems and providing support for that prob-
lem solving process. It will also require new forms of abstraction and visualization that
allow designers to understand and analyze systems from different viewpoints. Finally, it
will require support for humans trained in different disciplines to work together. Integrated
product teams have been helpful to some degree, but the problems in communication and
providing common ways to think about systems has limited their success.

SpecTRM is a methodology and tool set to assist in building complex systems made up
of diverse components. At its heart is a form of specification called an intent specification
designed to support human problem solving. In this report, we have demonstrated how
some SpecTRM tools and techniques can be used to assess safety for ATC upgrades and
outlined the main components of a comprehensive safety program. Although we were
unable to get experienced controllers on our team in the time frame of this project, any
real ATC safety program would obviously have to include such expertise. We did try,
however, to demonstrate how multiple disciplines might work together by forming such a
team for this demonstration.

Because of the nature of the NASA CTAS (and AATT) projects, we concentrated on
the early parts of a system’s lifecycle. Any real safety program would have to include
safety testing and verification activities. It also needs to include a component for the
operations phase. During operational use of a system, incident and accident data should

119

be collected and analyzed along with analysis of any changes or modifications. Change
analysis uses the same procedures as those used during the original development. Our
modular models along with the tracing of safety-related constraints to the design that is
part of an intent specification should make it easier to perform this change analysis. In
addition, periodic audits should be made to ensure that the assumptions underlying the
safety analysis (which are recorded in the intent specification) have not been violated by
the natural changes that occur in any system over time.

Assuring safety or any other system-level property for any complex system is difficult
and will require sophisticated tools and multidisciplinary teams that span the lifecyle.
SpecTRM is an attempt to provide a bridge between disciplines and to stretch the limits
of complexity we can handle successfully.

120

References

[FAA90]

[Bai90]

[Bil81]

Federal Aviation Administration. Profile of operational errors in the national
airspace system. Technical report, FAA, 1990.

L. Bainbridge. Development of skill reduction in workload. Developing Skills
with Information Technology, 1989.

C. Billings. Information transfer problems in teh aviation system. Technical
report, NASA, 1975.

[CASB90] Canadian Aviation Safety Board. Report on a special investigation into air

[CO88]

[Che81]

traffic control services in canada. Technical Report 90-SO001, Canadian Aviation
Safety Board, 1990.

J.M. Carroll and J.R. Olson. Mental models in human—computer interaction. in
M. Helander (Ed.) Handbook of Human—Computer Interaction, Elsevier Science
Publishers, pp. 4565, 1988.

P. Checkland. Systems Thinking, Systems Practice. John Wiley & Sons, 1981.

[CPWMO1] R.I. Cook, S.S. Potter, D.D. Woods, and J.M. McDonald. Evaluating the

[Cus94]

[DP82]

[DEG90]

[Deg96|

[Die91]

[End8s)]

[ER96]

human engineering of microprocessor-controlled operating room devices. Journal
of Clinical Monitoring, 7, pp. 217-226, 1991.

S. Cushing. Fatal words: Communication clashes and airplane crashes. Univer-
sity of Chicago Press, 1994.

D.R. Davis and R. Parasuraman. The Psychology of Vigilance. London Academic
Press, 1982.

T.J. Davis, H. Erzberger, and S.M. Green. Simulator evaluation of the final
approach spacing tool. Technical report, NASA, 1990.

A. Degani. Modeling Human-Machine Systems: On Modes, Error, and Patterns
of Interaction. Ph. D. thesis, Georgia Institute of Technology, 1996.

A.E. Diehl. Human performance and system safety considerations in aviation
mishaps. International Journal of Aviation Psychology, pages 97-106, 1991.

M. Endsley. Situation awareness global assessment technique (SAGAT). In Na-
tional Aerospace and Electronic Conference, May 1988.

M. Endsley and M. Rodgers. Attention distribution and situation awareness in
air traffic control. In The 40th Annual Meeting of Human Factors Society, 1996.

121

[GDOT] S.D. Gronlund, M.R.P. Dougherty, D.D. Ohrt, G.L. Thomson, M.K. Blickley,

[HL96)

[Hop91]

[Hop88]

[Jaf88]

[JL89]

D. Bain, F. Arnell, and C.A. Manning. Role of memory in air traffic control. in
press.

M.P.E. Heimdahl, and N. Leveson. Completeness and consistency analysis of
state-based requirements. Transactions on Software Engineering, June 1996.

V.D. Hopkin. Error models for operating irregularities: Implications for automa-
tion. In Automation and Systems Issues in Air Traffic Control. 1991.

V.D. Hopkins. Training implications of technical advances in air traffic control. In

Symposium on air traffic control training for tomorrows technology, pages 6-26,
1988.

M.S. Jaffe. Completeness, Robustness, and Safety of Real-Time Requirements
Specification. Ph.D. Dissertation, University of California, Irvine, 1988.

M.S. Jaffe, and N.G. Leveson Implications of the man-machine interface for
software requirements completeness in real-time, safety-critical software systems.

Proceedings of IFAC/IFIP SAFECOMP 89, Dec. 1989.

[JLHMO1] M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and B.E. Melhart. Software re-

[KC96]

[Kje87]

quirements analysis for real-time process-control systems. IEEE Transations on
Software Engineering, SE-17(3):241-258, March 1991.

B.H. Kantowitz and J.L. Campbell. Pilot workload and flight deck automation.
In Automation and Human Performance: Theory and Applications. 1996.

U. Kjellan. Deviations and the Feedback Control of Accidents. in J. Rasmussen,
K. Duncan, and J. Leplat (eds.) New Technology and Human Error, pp. 143-156,
John Wiley & Sons, New York, 1987.

[LSJM67] D. Landis, C.A. Silver, M. Jones, and S. Messick. Level of proficiency and multi-

[Lap85]

[Lee92]

[Lee95|

dimensional viewpoints about problem similarity. Journal of Applied Psychology,
51:216-222, 1967.

Y.A. Lapin. Spacial representation and the activity of the air traffic controller.
Moskovskogo Universiteta Sireya 14 Psikhologiya, 14:68-70, 1985.

J.D. Lee and N. Moray. Trust, control strategies and allocation of function in
human machine systems. Ergonomics, 35:1243-120, 1992.

K.K. Lee and T.J. Davis. The development of the final approach spacing tool
(FAST): A cooperative controller-engineer design approach. Technical Report
110359, NASA, 1995.

122

[Lev95|

[Lev97]

[LPY7]

N.G. Leveson. Safeware: System Safety and Computers. Addison-Wesley Pub-
lishing Co., 1995.

N.G. Leveson. Intent Specifications: An Approach to Building Human-Centered
Specifications. Submitted for publication.

N.G. Leveson and E. Palmer. Designing Automation to Reduce Operator Errors.
Systems, Man, and Cybernetics Conference, Orlando, October 1997.

[LHHR94] Leveson, N. G., M. Heimdahl, H. Hildreth, and J. Reese. Requirements specifi-

[LPS97]

[LS87]

[Lut92]

[Lut93]

[McC91]

[Mew97|

cation for process-control systems. IEEFE Transactions on Software Engineering,
September 1994.

N.G. Leveson, L.D. Pinnell, S.D. Sandys, S. Koga, and J.D. Reese. Analyzing
Software Specifications for Mode Confusion Potential. Proc. Workshop on Human
Error and System Development, Glascow, March 1997.

N.G. Leveson and J.L. Stolzy. Safety analysis using Petri nets. IEEE Trans. on
Software Engineering, SE-13(3):386-397), March 1987.

R.R. Lutz. Analyzing software requirements errors in safety-critical, embedded
systems. Software Requirements Conference, 1992.

R.R. Lutz. Targeting safety-related errors during software requirements analysis.
Proc. Sigsoft ’93: Foundations of Software Engineering, 1993.

W.E. McCoy and K.H. Funk II. A taxonomy of atc operator errors based on a
model of human information processing. In The Sizth International Symppsium
on Awiation Psychology, 1991.

M. Mewhinney, Nasa Technology increases efficiency at new airport (NASA Re-
lease 95-66). (http://ccf.arc.nasa.gov/dx/basket/storiesetc/CTAS95-18.html)

[MLRPS97] F. Modugno, N.G. Leveson, J.D. Reese, K. Partridge, and S.D. Sandys.

[Mog91]

[Mor80]

[Mor89]

Integrated safety analysis of requirements specifications. Third IEEFE Interational
Symposium on Requirements Engineering, 1997 (also Requirements Engineering
Journal, 1997).

R.H. Mogford. Error models for operation irregularities: implications for au-
tomation. Automation and Systems Issues in Air Traffic Control, 1991.

N. Moray. Human information processing and supervisory control. Technical
Report AD-A092840, 1980.

R. Morrison and R.H. Wright. Atc control and communications problems: an
overview of the recent ASRS data. In The Fifth International Symposium in
Awiation Psychology, 1989.

123

[Mos94]

[Mui88]

[Mung9]

[Mur89]

[Nag88]

[New66]

[Pal96]

[Peg95|

[Per84]

K.L. Mosier, L.J. Skitke, and K.J. Korte. Cognitive and social psychology is-
sues in flight crew/automation interation. In Human Performance in Automated
Systems: Current Research and Trends. 1994.

B.M. Muir. Trust between humans and the design of decision aids. In Cognitive
Engineering in Complexr Dynamic Worlds, pages 71-83. 1988.

A. Mundra. Description of air traffic control in the current terminal airspace
environment. Technical Report MTR-88W00167, 1989.

Murphy, Reaux, Stewert, Coleman, and Kelly. Modeling air traffic control per-
formance in highly automated environments. In Human Factors Society, pages
47-51, 1989.

D.C. Nagel. Human error in aviation operations. In Human Factors in Aviation,
pages 263-303. 1988.

J.R. Newman. Extensions of human capability through information processing
and display systems. Technical Report SP-2560, System Development Corpora-
tion, 1966.

D. Palmer. “Oops, it didn’t arm” — a case study of two automation surprises.
NASA Technical Report, 1996.

C. Pegden. Introduction to Simulation using SIMAN. McGraw Hill, 1995.

C. Perrow. Normal Accidents: Living with High-Risk Technology. Basic Books,
Inc., New York, 1984.

[PAOM95] R.A. Pigueau, R.G. Angus, P. O’Neill, and I. Mack. Vigilance latencies

[Ras87]

[Ras90]

[Red92]

[Ree96]

to aircraft detection among NORAD surveillance operators. Human Factors,
37(3):624-637, 1995.

J. Rasmussen. Approaches to the control of the effects of human error on chem-
ical plant safety. International Symposium on Preventing Major Chemical Plant
Accidents, American Institute of Chemical Engineers, February 1987.

J. Rasmussen. Human error and the problem of causality in analysis of accidents.
In D.E. Broadbent, J. Reason, and A. Baddeley, editors, Human Factors in
Hazardous Situations, pages 1-12; Clarendon Press, Oxford, 1990.

R.E. Redding. Analysis of operational error and workload in air traffic control.
In Human Factors Society, 1992.

J. D. Reese and N.G. Leveson Software Deviation Analysis: A Safeware Tech-
nique. AIChe 31st Annual Loss Prevention Symposium, Houston, March 1997.

124

[Ree96]

[Ril94]

[Rod93]

[SPS95]

[SW92]

[SW94a|

[SW94b)

[SWO5a)]

[SW95b]

[Seal6]

[S1a78]

[SLS95]

[Stadl]

J. D. Reese and N.G. Leveson Software Deviation Analysis. International Con-
ference on Software Engineering, Boston, Mary 1997.

V. Riley. A theory of operator reliance on automation. In Human Performance
in Automated Systems: Current Research and Trends, 1994.

M. Rodgers. An examination of operational error database for enroute air traffic
control centers. Technical report, FAA Civil Aeromedical Institute, 1993.

E. Salas, D.P. Prince, and L. Shrestha. Situation awareness in team performance:
implications for measurement and training. Human Factors, 1995.

N. Sarter and D.D. Woods. Pilot interaction with cockpit automation: oper-
ational experience with the flight management system. Internation Journal of
Avwiation Psychology, 1992.

N. Sarter and D.D. Woods. Decomposing automation: automony, authority,
observability and perceived anamacy. In Human Performance in Automated
Systems: Current Research and Trends, pages 191-197. 1994.

N. Sarter and D.D Woods. Pilot interaction and cockpit automation II. an exper-
imental study in pilots’ model and awareness of automation in flight management
systems. International Journal of Aviation Psychology, 4:1-28, 1994.

N.D. Sarter and D. Woods. “How in the world did I ever get into that mode?”:
Mode error and awareness in supervisory control. Human Factors 37, 5-19.

N. Sarter and D.D. Woods. Silent, strong, and out of the loop: Properties of
advanced (cockpit) automation and their impact on human-automation interac-
tion. Technical Report 95-TR-01, Cognitive Systems Engineering Laboratory,
Ohio State University, 1995.

R.L. Sears. A new look at accident contributions and implications of operations
and training procedures. Unpublished report from Boeing Commercial Airplane
Company.

N.J. Slamecka and P. Graff. The generation effect: delineation of a phenomenon.
Journal of Experimental Psychology: Human Learning and Memory, 4:592—-604,
1978.

R.A. Slattery, K.K. Lee, and B.D. Sandford. Effects of atc automation on precise
approaches to closely spaced parallel runways. In The 1995 A1AA, Guidance,
Nauvigation, and Control Conference, August 1995.

P. Stager. Error models for operating irregularities: implications for automation.
In Automation and Systems Issues in Aiwr Traffic Control. 1991.

125

[Sta90] Stager and Hameluck. Factor in air traffic control operating irregularities. Tech-
nical Report TP 9324E, Transport Canada, 1990.

[Sta89] Stager, Hameluck, and Jubis. Underlying factors in air traffic control incidents.
In The 33rd Annual Meeting of Human Factors Society, 19809.

[Tei74] W.H. Teichner. The detection of a simple visual signal as a funtion of time on
watch. Human Factors, 16:339-353, 1974.

[Tha89] R.I. Thackray and R.M. Touchstone. Detection efficiency on air traffic control
monitoring task with and without computer aiding. Awiation, Space and Envi-
ronmental Medicine, 60:744—748, 1989.

[Tho96] S. Thorarinsson. An optimization approach to oceanic airspace design. Master’s
thesis, University of Washington, 1996.

[TAEOS85] L. Tobias, L. Alcabin, H. Erzberger, and P.O’Brien. Simulation studies of time
control procedures for the advanced air traffic control system. Technical Report
2493, NASA, 1985.

[Tuf90] E.R. Tufte. Envisioning Information. Graphics Press, 1990.

[VMH95] S.F. Vakil, A.L. Midkiff, and R.J. Hansman. Mode awareness problems in ad-
vanced autoflight systems. MIT Aeronautical Systems Lab, 1995.

[Vor93] O.U. Vortac. Should Hal open the pod bay doors? An argument of modular
automation. Embry Riddle Aeronautical University Press, 1993.

[VEFM] O.U. Vortac, M.B. Edwards, D.K. Fuller, and C.A. Manning. Automation and
cognition in air traffic control: An emperical investigation. Applied Cognitive
Psychology.

[WDH96] J.S. Warm, W.M. Denber, and P.A. Hancock. Vigilance and workload in auto-
mated systems. In Automation and Human Performance: Theory and Applica-
tions. 1996.

[WBO80] D. Whitefield, R.D. Ball, and G. Ord. Some human factors aspects of computer
aiding concepts for air traffic controller. Human Factors, 22:569-580, 1980.

[WMMO97] C. Wickens, A.S. Mavor, and J.P. McGee. Flight to the Future: Human Factors
in Air Traffic Control. National Academy Press, 1997.

126

A Minimum Separation Standards

Separation Standards

Source: Thompson, S.D., Terminal Areas Separation Standards: Historical Development, Current Standards, and

Processes for Change, 16 January 1997

RADAR SEPARATION

In en route airspace

Below FL600 5 miles
At or above FL600 10 miles
Both aircraft are within 40 miles of the
radar antenna and below FL180 3 miles
In terminal area
Both targets are less than 40 miles from the antenna 3 miles
Either target is 40 miles or more from the antenna site 5 miles
VERTICAL SEPARATION
Below FL290 1,000 feet
At FL290 and above 2,000 feet

127

WAKE VORTEX SEPARATION

General Wake Vortex Separation Standards

Heavy behind Heavy 4 miles
Large or Heavy behind a Boeing 757 4 miles
Small or Large behind a Heavy 5 miles
Small behind a Boeing 757 5 miles

Landing Wake Vortex Separation Standards

Small behind a Large 4 miles
Small behind a Boeing 757 5 miles
Small behind a Heavy 6 miles

TERMINAL RADAR SEPARATION REQUIREMENTS FOR APPROACH

Separation may be reduced to 2.5 miles on final (within 10 miles of the runway
threshold) under the following conditions:

The leading aircraft’s weight class is the same or less than the trailing aircraft
The leading aircraft is not a Heavy or a Boeing 757

The average runway occupancy time is a documented 50 seconds or less
Radar displays are operational in the tower

Runway turnoff points are visible from the control tower

VERTICAL SEPARATION DURING ILS OPERATIONS TO PARALLEL
RUNWAYS

Vertical separation during vectoring to approach in the case of parallel runway ILS
operations is maintained by having the aircraft using one runway maintain an altitude
at least 1,000 feet higher than the aircraft using the other runway.

128

DEPENDENT PARALLEL ILS OPERATIONS

Diagonal separation requirements when conducting operations to two parallel run-
ways in IMC

Runway centerlines are between 2,500
and 4,300 feet apart 1.5 nautical miles

Runway centerlines are between 4,300
and 9,000 feet apart 2 nautical miles

129

B Partial Fault Tree

This appendix contains a partial ATC fault tree. For the most part, only the parts of
ATC related to CTAS and passive FAST (e.g., arrival traffic in the TRACON area) are
considered. Because of the size of the fault tree, we did not finish it but only included
enough for the reader to get a feel for what such a fault tree might contain.

The standard fault tree notation, while very easy to read, is not space efficient. The
size of our fault tree made a horizontal format more practical than the normal vertical

format.

130

A pair of controlled aircraft violate minimum separation.

—Violation of minimum in-trail separation while aircraft on final approach to same runway.

—A/C arein violation of in-trail separation standards when initially assuming in-trail relationship
(merging incorrectly)

Conflict between in-trail a/c and turbo-prop traffic that was split off earlier but is now
being vectored to remerge with the jet traffic.

ORAircraft merged incorrectly with traffic on opposite downwind

Aircraft on downwind fails to execute aturn-to-base in timely manner
and resequenced incorrectly.

OR
— A/Cinitially established in valid trail but later violate separation standards

Excess positive closure rate exists upon initial establishment of in trail relationshi P
and a/c do not maneuver suffl_C|entI¥) to avoid violation [a/c will compress to less than
OR| !egal separation if continue with published procedure]

[schedule generated by TMA contains conflicts]
Change in closure rates causes violation of in trail separation standards => A

OR

—Unscheduled arrival (popup, missed approach, emergency) leadsto in-trail separation violation

—Violation of distance or time separation between streams of aircraft landing on different runways.

—Two aircraft on final approach to parallel runways not spatially staggered.

—Two aircraft Iandi_n? consecutively on different runways in intersecting or converging
operations violate minimum difference in threshold crossing timé.

OR
---/An aircraft violates the non-trangression zone while airport is conducting

simultaneous independent |LC'S approaches to parallel runways.

— Aircraft fails to make turn from base to final approach

—Violation of minimum separation between arrival traffic and departure traffic from nearby
feeder airports or overflight traffic.

131

A Changein closure rates causes violation of in trail separation standards

AND

—One or more aircraft change ground speed

OR

—Weather disrupts aircraft trajectory (e.g., tailwinds)

—Pilot changes speed

CAS advisory saysto change speed

OR —Pilot misprograms autopilot

Pilot mishears speed advisory

—Autopilot error

—Maneuver required to avoid violation of in trail separation standards

—Insufficient or no corrective maneuvering occurs

OR

—Insufficient speed changein leading or trailing aircraft

AND

—Pilot does not recognize problem on his’her own

Does not recognize visually (by see and avoid)
AND [

TCAS does not provide aert

—Controller instructions do not cause aircraft to make necessary speed change
r—Controller does not issue speed advisory => A.1

—Controller issues speed advisory but pilot does not receiveit. =>A.2
OR [~Controller issues speed advisory, pilot receives but does not follow it. =>A.3
—Controller issues speed advisory that does not avoid separation violation. => A 4

—Controller issues speed advisory but too late to avoid separation violation. => A5

—Controller issues speed advisory to wrong aircraft. => A.6

—Insufficient path stretching occurs => B

132

A.1 Controller does not issue speed advisory.

—Controller does not perceive the conflict.

—Conflict alert does not cause controller to perceive advisory.

AND

Controller believes conflict dlert isfalse alarm.
OR ENO conflict alertisdisplayed.=> A.1.1

Controller does not see conflict alert

Alert removed from screen before seesit.

—Controller does not preceive conflict based on displayed information (poition, route, speed data)
r—Controller misinterprets displayed information
Flight data blocks in misleading position

—A/c data unavailable

—Not displayed at all

OR Plane not identified on plan view display (no flight data block displayed)
Incorrect handoff

OR OR ELOSS of radar tracking data

OR Display failure

—Data displayed but not long enough to perceiveit.

—Displayed a/c data incorrect with respect to actual situation (airspace state)
[Recent sensor data missing for one or both a/c (a/c displayed in coast)
Automation provides wrong a/c information
Automation software flaw
[(acorrupted but not detected by automation

—Controller distracted or inattentive

—Controller preceives conflict but too late to avoid separation violation

[Controller distracted
Display delayed

—Automation failure and backup procedures do not work
R [Control lers out of practice
Equipment not maintained

133

A.1.1 No conflict alert displayed

OR

—Controller has suppressed display of conflict alert

For one or both a/c individually
OR EFor region in which one or both a/c currently displayed

For hisor her entire display

—Automation fails to declare conflict

—Too much recent sensor data missing for one or both a/c
—Hard sensor failure

—Sensor coverage failure

OR [Permanent shadow zone

Transient failure (atmospherics)

—Communication failure

[Data not received

OR Datareceived but discarded as corrupted

—Automation decision not to declare conflict isincorrect.

Software conflict detection logic flaw
OR ESoftware corrupted

Data corrupted (undetected by automation)

—Automation conflict detection not being executed
Task not dispatched properly by operating system
OR —Computer hardware failure.
Fast not computing trajectories (so unable to detect a conflict)

Controller has dirrected FAST to assign a given runway.

134

A.2 Controller issues appropriate speed advisory but pilot does not receiveit.

—Physical communication failure

R [Radio failure
OR Radio on wrong frequency

—Human communication failure

—Controller issues advisory to wrong aircraft
Psychological dip
OR —Wrong label associated with aircraft on planview display

Right label on aircraft but in misleading place on screen

A.3 Controller issues appropriate speed advisory, pilot receivesit, but does not follow it.

Pilot distracted by other alert or emergency.
Pilot does not believe based on own evaluation and believes will endanger safety of aircraft
OR TCAS issues conflicting advisory.
Aircraft automation causes advisory not to be followed.
Pilot enters wrong information into FM S

OR —Information entered right, automation error

Advisory incompatible with aircraft automation (doesn't react the way controller
assumesit will).

135

A.4 Controller issues speed advisory that does not avoid separation violation.

Controller error
OR Doesn't use CTAS speed advisory and miscal culates required speed.
Automation error
CTAS usesinaccurate models of aircraft dynamics and propulsion system performance
CTAS usesincorrect atmospheric data.

CTAS usesincorrect algorithm.

A.5 Controller issues speed advisory but too late to avoid separation violation.

CTAS does not provide information in timely manner.

OR —Controller distracted by other problem.
Advisory needed at handoff point and handoff delayed

(2 controllers set up to autoaccept and wrong one assigned aircraft)

136

\ B. Insufficient path stretching occurs.

Pilot does not recognize problem on his own
AND [C
ontroller instructions do not cause aircraft to make necessary path changes
—Controller does not issue appropriate advisories
—Automation failure and backup does not work

Controllers out of practice
OR EEqui ptment not maintained

Increased traffic load due to automation and controllers unable to handle
with manual methods.
OR —Controller does not know advisory needed
[M ental model flawed (incorrect view of situation)
Overconfidence in automation and automation error occurs

STA to metering gate is outside aircraft’ s accessible time range
for speed control but PS not displayed in data block for aircraft

Controller issues incorrect advisory.

r—Autopath stretching tool provides wrong information
OR Miscalculates ﬁosition along the off-course direction in front of
the aircraft where required delay will have been absorbed.
Miscalculates required delay.
Incorrect algorithm

Does not update location of path stretch marker in

oR response to changing conditions.
Magnetic heading displayed to capture waypoint isincorrect.

— Controller misreads path stretching information

— Controller does not use path stretching tool and incorrectly calculates
required heading, speed, and latitude advisories

—Controller does not issue a new heading vector that returns a/c to
predesignated capture waypoint on original route when a/c reaches marker.

Distracted, etc.

Controller issues appropriate advisories but pilot does not receive them.

—Controller issues, pilots receives but does not follow

—Controller issues advisories but too late to avoid separation violation

137

C

Sample ATC Requirements and Constraints

This section should be taken as an example only of safety-related requirements and design
constraints for ATC upgrades. We made no attempt to be complete.

C.1 General ATC Safety Requirements

1.

2.

ATC shall provide advisories that maintain safe separation between aircraft.

The system shall protect against pilots not following advisories, aircraft automation
errors, and any other event that causes an aircraft to deviate from an approved path
or trajectory while under ATC control.

(a) ATC shall warn aircraft that enter an unsafe atmospheric region.

(b) ATC shall provide timely warnings to aircraft to prevent their incursion into
restricted airspace.

(c) ATC shall provide conflict alerts and shall do so early enough that a violation
of minimum separation standards (i.e, a near midair collision) can be avoided.

(d) ATC shall provide alerts and advisories to avoid intruders if at all possible.

. ATC shall provide weather advisories and alerts to flight crews.

. ATC shall provide advisories that maintain safe separation between aircraft and

terrain or physical obstacles.

. All IFR aircraft within the ATC system shall be under positive control (there is two-

way radio communication with a controller who has responsibility for that aircraft)
until the pilot and ATC agree to terminate IFR services.

. The ATC system shall be compatible with TCAS and other aircraft navigation sys-

tems.

. The system shall be able to operate safely in the event of the failure of any compo-

nent(s).

(a) There must be backup or emergency (contingency) procedures in case of radar
or computer failure.

(b) Backup or emergency procedures must be capable of maintaining adequate
safety in the worst case airspace situation including that made possible (for
example, increased traffic or decreased separation) by introducing automated
aids.

(c) At a minimum, controllers must have access to TBD (flight strip information)
in the event of computer failure.

138

General ATC Design Constraints

1.

ATC must not issue advisories to an approach aircraft that would cause a conflict
with overflight traffic.

. ATC must not cause or contribute to an aircraft executing a controlled maneuver

into terrain.

. ATC must not issue advisories that direct aircraft into areas with unsafe atmospheric

conditions.

. ATC must not issue advisories that direct aircraft into restricted airspace unless

avoiding a greater hazard.

. ATC must not issue advisories outside the safe performance envelope of the aircraft.

. ATC advisories must not distract or disrupt the crew from maintaining safety of

flight.

e ATC must not adversely affect workload in the cockpit so as to degrade safety
of flight.

. ATC must not issue advisories that the pilot or aircraft cannot fly or that degrade

the continued safe flight of the aircraft.

. ATC must not issue advisories that cause an aircraft to fall below the standard

glidepath or intersect it at the wrong place.

. ATC must not provide an advisory to an aircraft that thwarts a TCAS maneuver

and leads to an NMAC (near midair collision) unless the goal is to protect against a
greater hazard.

Note: TCAS has related and complementary design constraints: (1) it must not
interfere with the ground-based ATC system and (2) it must generate advisories
that require as little deviation as possible from ATC clearances.

C.2 Automated System Requirements and Constraints

The specific requirements and constraints on the automation will depend on what the
automation has been tasked to do. The following are some example constraints that might
apply to the current CTAS automation or to some of its planned upgrades.

The most general or high-level constraints on the automation might be:

1.

The automated system must not interfere or reduce the ability of the controller to
maintain safety of the airspace.

139

2.

Note: As long as we hold the pilot responsible for the safety of the aircraft
and the controller for the safety of the airspace, then we must hold ATC system
designers responsible for not interfering with the pilot’s or controller’s exercise
of their responsibility.

The automated system must not create hazards that would not have existed had the
automation not been installed.

In addition to these general constraints, more specific requirements and constraints might
be specified such as:

1.

2.

CTAS shall provide conflict alerts early enough that the conflicts can be avoided.

CTAS shall minimize maneuvering advisories for areas of planned close separation
(such as approaches to parallel runways).

CTAS shall maintain a consistent global ordering (sequence numbers) for each run-
way.

The schedule generated by the TMA must be conflict free to within specified sepa-
ration requirements at the runway and at the metering fix.

Speed advisories and turn advisories generated by FAST must always maintain safe
separation.

(a) If the trajectory and conflict resolution logic (1) detects that a jet currently in-
trail with other jets will compress to less than legal separation if it continues on
the published STAR procedure or (2) detects a future conflict with a merging
turbo-prop on downwind or in merging with traffic on the opposite downwind,
then FAST must provide a speed advisory that slows the jet in order to avoid
loss of legal separation at the merge point. FAST must not fail to provide the
speed advisory, provide it too late, or provide an incorrect advisory.

(b) FAST must not provide an incorrect turn advisory to the final approach course,
fail to display it to the controller at the point at which to issue the turn, provide
it at the wrong point, fail to provide one when needed or provide it too late.

. The automated system shall be able to detect unscheduled arrivals such as missed

approaches and popups, aircraft that have failed to execute a clearance, emergencies,
disturbances, etc. and display a new set of advisories in time to avoid a hazard or
to mitigate any hazards if it is not possible to avoid the hazard entirely.

. After the freeze point, CTAS must not change runway assignments except to avoid

a hazard.

140

8.

10.

11.

12.

13.

14.

New controller aids must not interfere with the safety-related functions of any existing
ATC components that the new aid is not replacing or changing.

. The automated system must not negatively affect controller workload in a way that

could lead to an increase in safety-related human errors.

Note: This design constraint may involve either increases or reductions in
workload (causing reduced monitoring ability) and leads to design decisions
such as FAST giving highest priority to pulling a dissimilar engine or weight
class out of the traffic stream when doing runway allocation and reallocation.

Note: An alternative way of stating this might be that CTAS must not increase
controller workload to the point where human error is increased nor decrease it
to the point where monitoring ability is reduced.

New controller aids must not degrade the functions provided by the existing ATC
system.

If human controllers and pilots are assigned monitoring responsibility for automated
subsystems, then they must be provided with independent means to detect errors in
the information provided by or erroneous behavior of those subsystems.

Automation upgrades must be compatible with TCAS and other aircraft systems.
Automated aids must operate safely for all possible combinations of aircraft types
and on-board automation.

The automated system must not generate advisories that will confuse the pilot or
exceed the ability of a human to follow or use them or distract the pilot during
critical phases of flight or when handling emergencies.

(a) FAST must avoid making runway changes late in the traffic flow (i.e., near the
feeder gates) in order to avoid undesirable increases in workload for pilots of
arriving aircraft (in terms of late changes in selecting navigation frequencies
and configuring the aircraft for an approach).

The automated system must never produce information (trajectories, advisories, se-
quences, or runway assignments) that will lead to a hazard.

(a) FAST must never assign two aircraft to the same runway or in any other way
produce runway assignments that will lead to a hazard.

Assumption: Because the controllers cannot see on their screens all the
information that FAST has, runway assignments are likely to generate trust
in controllers and they are very likely not to question them. Therefore,
the controllers should not be relied upon to provide monitoring and error
detection in computer-generated runway assignments.

141

(b) CTAS must not generate speed, altitude, or turn advisories that lead to a
violation of minimum separation standards.

(c) CTAS must not create an advisory for an arrival aircraft that would cause a
conflict with overflight traffic or lead the aircraft into restricted space unless
avoiding a greater hazard was the goal.

(d) CTAS must not create advisories that cause an aircraft to fall below the stan-
dard glidepath or to intersect it at the wrong point.

(e) CTAS must not generate trajectories and/or advisories outside the safe perfor-
mance envelope for the aircraft involved, such as advisories that significantly
reduce stall margins or result in stall warnings or that require the aircraft to
maintain high vertical rates of climb or descent, except to prevent a greater
hazard.

(f) Path stretching advisories must not lead to a hazard.

15. The upgrades must not reduce situational awareness of the controllers or the flight
crews in any way that could decrease safety (lead to a hazard).

(a) The system must provide controllers with the information needed to maintain an
adequate mental model of the traffic situation and present it effectively (e.g., in
a way that controllers will notice it and can use it without unreasonable effort).

(b) Controller vigilance must not be reduced by the automated aids.

(c) Pilots must be aware of and able to understand and evaluate any trajectories
that might be given either directly to the pilot or through a data link.

16. The system design must reduce the number and complexity of the controls to a
minimum consistent with safe system operation.

17. The computer controls used by ATC controllers in all possible combinations and
sequences must not result in a condition or state of the automation whose presence
or continuation could lead to a system hazard.

18. Displays must not fail to provide information needed by the flight crew or the con-
troller to avoid hazards and must not confuse the flight crew or controller as to the
current state of the airspace system.

(a) If an advisory or alert is generated by the automation, it must not be removed
before the operator has seen it and it is no longer applicable or needed by the
controller to safely control traffic.

(b) Information displayed by the automated system must not be delayed beyond
the time that the controller can use it appropriately.

142

(c) High-priority (safety-related) alerts must be emphasized to the controller, must
be easily readable, and must never be hidden or overlapped by other screen
displays.

(d) Changes to safety-related displays (e.g., runway assignments or sequence num-
bers) must be denoted in such a way that the controller (or pilot) knows that
a change has been made (e.g., CTAS must in some way highlight the fact that
a runway assignment has changed and perhaps require an acknowledgment if
workload tradeoffs are determined to be acceptable)®.

Note: The controller can manually override the runway assignment. In the
absence of an override, FAST will assume that the controller has accepted
the assignment it has generated.

(e) High-priority (safety-related) alerts must never be removed without acknowl-
edgment of the controller unless it has become obsolete. If alert queues are used,
obsolete information should, in most cases, be marked and allowed to scroll off
the screen rather than simply being eliminated.

(f) High-priority (safety-related) alerts must never be eliminated to reduce screen
clutter. Screen clutter must be minimized according to a precedence based on
safety.

(g) If there is a need to remove information from the screen before the information
becomes obsolete, a priority should be established to eliminate it in order of
least criticality and potential contribution to a hazard.

(h) Graphical advisories should be used where possible.

(i) The potential for confusing information about one aircraft with that for another
must be eliminated or reduced as much as possible.

19. The automation must never cause the controller to send an advisory to the wrong
aircraft.

(a) CTAS must never put the wrong label on an aircraft.

(b) CTAS must not place information on the screen for one aircraft such that it can
be confused with another aircraft.

6For aircraft on final approach, FAST issues speed advisories only if necessary to maintain safe sep-
aration. FAST documentation states that in order to reduce display clutter in the final approach zone,
FAST advisories are displayed “only briefly but long enough for controllers to observe them.” How is it
determined that the controller has observed them or how long this period should be?

143

D Completeness Criteria for Black-Box Requirements
Analysis

A requirements specification describes the required black-box behavior of the component.
Although design information is sometimes included in requirements specifications, the
safety analysis described in this report is concerned only with black-box behavior, which
is the only aspect of a component specification that can directly affect system hazards.

The requirements specification defines the function to be implemented. The goal of
completeness analysis basically is to ensure that the model of the process used by the
automated controller—in our case, described using a state machine model—is sufficiently
complete and accurate that hazardous process states do not occur. We have defined com-
pleteness criteria for each of the state machine parts: the states, the transition (triggering)
events, the inputs and outputs, and the relationship between the transition events and
their related outputs.

The following list contains only the criteria without discussion or description. For more
information about the criteria, see Safeware [Lev95].

D.1 General Considerations

Completeness requires that both the characteristics of the outputs and the assumptions
about their triggering events be specified:

trigger = output

In response to a single occurrence of the given stimulus or trigger, the program must
produce only a single output set. A black-box statement of behavior allows statements and
observations to be made only in terms of outputs and the externally observable conditions
or events that stimulate or trigger them (the triggers for short). In terms of the state
machine, this restriction means that both the states and the events on the transitions
must be externally observable.

Not only must the output be produced given a particular trigger, but it must not be
produced without the trigger:

trigger <= output

where output may be a single output or a set of outputs (such as periodically repeated
output) all triggered by a single event.

A complete trigger specification must include all conditions that trigger the output,
that is, the set of conditions that can be inferred from the existence of an output. Such
conditions represent assumptions about the environment in which the program or system
is to execute. For black box requirements, the terms of the trigger condition must involve
only observable phenomena external to the program whose behavior is being specified,
that is phenomena visible at the blackbox boundary (inputs and outputs, the passage of
time, sense switches).

144

D.2 State Completeness

The operational states will, of course, be specific to the system. But in general, these
states can be separated into normal and non-normal processing modes, and completeness
criteria can be applied to the transitions between these modes.

Transitions from normal operation to non-normal operation are often associated with
accidents. In particular, when computers are involved, many accidents and failures stem
from incompleteness in the way the software deals with startup and with transitions be-
tween normal processing and various types of partial or total shutdown.

o The system and software must start in a safe state. Interlocks should be initialized
or checked to be operational at system startup, including startup after temporarily
overriding interlocks.

e The internal software model of the process must be updated to reflect the actual process
state at initial startup and after temporary shutdown.

o All system and local variables must be properly initialized upon startup, including
clocks.

e The behavior of the software with respect to inputs received before startup, after shut-
down, or when the computer is temporarily disconnected from the process (off-line)
must be specified, or it must be determined that this information can be safely ignored,
and this conclusion must be documented.

e The mazrimum time the computer waits before the first input must be specified.

e Paths from fail-safe (partial or total shutdown) states must be specified. The time in
a safe but reduced-function state should be minimized.

e Interlock failures should result in the halting of hazardous functions.

o There must be a response specified for the arrival of an input in any state, including
indeterminate states.

D.3 Input and Output Variable Completeness

The inputs and outputs represent the information the sensors can provide to the software
(the controlled variables) and the commands that the software can provide to the actuators
(to change the manipulated variables). These input and output variables and commands
must be rigorously defined in the documentation.

At the black-box boundary, only time and value are observable by the software. There-
fore, the triggers and outputs must be defined only as constants or as the value and
time of observable events or conditions. Events include program inputs, prior program
outputs, program startup, and hardware-dependent events such as power-out-of-tolerance

145

interrupts. Conditions may be expressed in terms of the value of hardware-dependent
attributes accessible by the software such as time-of-day clocks or sense switches.

o All information from the sensors should be used somewhere in the specification.

o Legal output values that are never produced should be checked for potential specifica-
tion incompleteness.

D.4 Trigger Event Completeness

The behavior of the control subsystem is defined with respect to assumptions about the
behavior of the other parts of the system—the conditions in the other parts of the control
loop or in the environment in which the controller operates. A robust system will detect and
respond appropriately to violations of these assumptions (such as unexpected inputs). By
definition, then, the robustness of the software built from the specification depends upon
the completeness of the specification of the environmental assumptions—there should be
no observable events that leave the program’s behavior indeterminate. These events can
be observed by the software only in terms of trigger events, and thus completeness of the
environmental assumptions is related to the completeness of the specification of the trigger
events and the response of the computer to any potential inputs.

D.4.1 Robustness Criteria

o To be robust, the events that trigger state changes must satisfy the following:

1. Every state must have a behavior (transition) defined for every possible input.

2. The logical OR of the conditions on every transition out of any state must form
a tautology.

3. FEvery state must have a software behavior (transition) defined in case there is
no input for a given period of time (a timeout).

D.4.2 Nondeterminism
e The behavior of the state machine should be deterministic (only one possible transi-
tion out of a state is applicable at any time).

D.4.3 Value and Timing Assumptions

Ensuring that the triggers in the requirements specification satisfy the previous four criteria
is necessary, but it is not sufficient for trigger event completeness. The criteria ensure
that there is always exactly one transition that can be taken out of every state, but
they do not guarantee that all assumptions about the environment have been specified
or that there is a defined response for all possible input conditions the environment can

146

produce. Completeness depends upon the amount and type of information (restrictions and
assumptions such as legal range) that is included in the triggers. The more assumptions
about the triggers included, the more likely that the four above criteria will ensure that
the requirements include responses to unplanned events.

In real-time systems, the times of inputs and outputs are as important as the values.
Therefore, both value and time are required in the characterization of the environmental
assumptions (triggers) and in the outputs.

Essential Value Assumptions

Value assumptions state the values or range of values of the trigger variables and events.
An input may not require a specification of its possible values. A hardwired hardware
interrupt, for example, has no value, but it may still trigger an output. When the value of
an input is used to determine the value or time of an output, the acceptable characteristics
of the input must be specified, such as range of acceptable values, set of acceptable values,
or parity of acceptable values.

o All incoming values should be checked and a response specified in the event of an
out-of-range or unexpected value.

Essential Timing Assumptions

The need for and importance of specifying timing assumptions in the software require-
ments stem from the nature and importance of timing in process control, where timing
problems are a common cause of runtime failures. Two different timing assumptions are

essential in the requirements specification of triggers: timing intervals and capacity or
load.”

Timing Intervals. While the specification of the value of an event is usual but optional,
a timing specification is always required: The mere existence of an observable event (with
no timing specification) in and of itself is never sufficient—at the least, inputs must be
required to arrive after program startup (or to be handled as described in other criteria).

o All inputs must be fully bounded in time, and the proper behavior specified in case
the limits are violated or an expected input does not arrive.

e A trigger involving the nonexistence of an input must be fully bounded in time.

7 Load here refers to a rate, whereas capacity refers to the ability to handle that rate.

147

Capacity or Load. In an interrupt-driven system, the count of unmasked input inter-
rupts received over a given period partitions the computer state space into at least two
states: normal and overloaded. The required response to an input will differ in the two
states, so both cases must be specified.

o A minimum and mazximum load assumption must be specified for all interrupt-signaled
events whose arrival rate is not dominated (limited) by another type of event.

o A minimume-arrival-rate check by the software should be required for each physically
distinct communication path. Software should have the capacity to query its environ-
ment with respect to inactivity over a given communication path.

e The response to excessive inputs (violations of load assumptions) must be specified.

The requirements for dealing with overload generally fall into one of five classes:

1. Requirements to generate warning messages.

2. Requirements to generate outputs to reduce the load (messages to external systems
to “slow down”).

3. Requirements to lock out interrupt signals for the overloaded channels.

4. Requirements to produce outputs (up to some higher load limit) that have reduced
accuracy or response time requirements or some other characteristic that will allow
the CPU to continue to cope with the higher load.

5. Requirements to reduce the functionality of the software or, in extreme cases, to shut
down the computer or the process.

The first three classes are handled in an obvious way. The behavior in the fourth and
fifth classes (commonly called performance degradation and function shedding) should be
graceful—that is, predictable and not abrupt.

o [f the desired response to an overload condition is performance degradation, the spec-
ified degradation should be graceful and operators should be informed.

o If function shedding or reconfiguration is used, a hysteresis delay and other checks
must be included in the conditions required to return to normal processing load.

e Operators must be informed about the conditions leading to graceful degradation and

the actions taken as a result of these conditions.

D.5 Output Specification Completeness

As with trigger events, the complete specification of the behavior of an output event
requires both its value and its time.

o Safety-critical outputs should be checked for reasonableness and for hazardous values
and timing.

148

D.5.1 Environmental Capacity Considerations

The rate at which the sensors produce data and send it to the computer is the concern in
input capacity. Output capacity, on the other hand, defines the rate at which the actuators
or operators can accept and react to data produced by the computer. If the sensors can
generate inputs at a faster rate than the output environment can “absorb” or process
outputs, an output overload might occur.

e For the largest interval in which both input and output loads are assumed and spec-
ified, the absorption rate of the output environment must equal or exceed the input
arrival rate.

Output load limitations may be required because of physical limitations in the actuators
(such as a limit on the number of adjustments a valve can make per second), constraints
on process behavior (excessive wear on actuators might increase maintenance costs), or
safety considerations (such as a restriction on how often a catalyst can be safely added to
a chemical process).

Differences in input and output capacity result in the need to handle three cases:

1. The input and output rates are both within limits, and the “normal” response can
be generated.

2. The input rate is within limits, but the output rate will be exceeded if a normally
timed output is produced, in which case some sort of special action is required.

3. The input rate is excessive, in which case some abnormal response is necessary (grace-
ful degradation).

e Contingency action must be specified when the output absorption rate limit will be
exceeded.

e Update timing requirements or other solutions to potential overload problems, such
as operator event queues, need to be specified.

o Automatic update and deletion requirements for information in the human—computer
interface must be specified.

Events placed in operator interface queues may be negated by subsequent events. The
requirements specification should include the conditions under which such entries may be
automatically updated or deleted from a queue. Some entries should be deleted only upon
explicit operator request; however, workload may be such that the entries must be queued
until the operator can acknowledge them. For example, when an air traffic control operator
asks for the count of aircraft whose velocity exceeds a certain speed, the response may be
queued and should not disappear until the operator acknowledges receipt.

Some queued events may become irrelevant to the operator, such as information about
a warning to an air traffic controller that an aircraft is too close to the ground or to ground-
based hazards such as tall antennas (called a minimum safe altitude warning or MSAW).

149

The warning itself may be shown on the situation display, but additional information that
cannot be displayed may be put into a queue. If the portion of the queue that contains the
MSAW-related information is not currently visible to the operator, it may be removed from
the queue automatically when the MSAW is removed from the situation display. If that
portion of the queue is currently visible, the queued information should not be removed:
Operators generally find it distressing when information disappears while they are looking
at it or while they are temporarily glancing away.

There could be safety implications as well. Suppose that there are MSAWSs for two
separate aircraft, but the queue display can accommodate only one event at a time. The
operator might glance back at the display, not realizing that the first event has been
removed and replaced by the second. The operator would then read the recommended
course for the second aircraft and transmit it to the first aircraft, not realizing that the
event data he or she is reading is not the same data seen a second or two before.

e The required disposition for obsolete queue events must include specification of what
to do when the event is currently being displayed and when it is not.

In general, obsolete event data currently being displayed cannot be automatically
deleted or replaced. It may be modified to show obsolescence and removed when the
operator indicates to do so or when the overall display is modified in such a way that
the obsolete event display becomes invisible (for example, the queue is advanced and the
obsolete information is scrolled off the display).

D.5.2 Data Age

Another important aspect of the specification of output timing involves data obsolescence.
In practical terms, few, if any, input values are valid forever. Even if nothing else happens
and the entire program is idle, the mere passage of time renders much data of dubious
validity eventually. Although the computer is idle, the real world in which the computer
is embedded (the process the computer is controlling) is unlikely to be. Control decisions
must be based on data from the current state of the system, not on obsolete information.

o All inputs used in specifying output events must be properly limited in the time they
can be used (data age). Output commands that may not be able to be executed im-
mediately must be limited in the time they are valid.

e Incomplete hazardous action sequences (transactions) should have a finite time spec-
ified after which the software should be required to cancel the sequence automatically
and inform the operator.

e Revocation of a partially completed action sequence may require (1) specification of
multiple times and conditions under which varying automatic cancelation or post-
ponement actions are taken without operator confirmation and (2) specification of
operator warnings to be issued in the event of such revocation.

150

D.5.3 Latency

Since a computer is not arbitrarily fast, there is a time interval during which the receipt of
new information cannot change an output even though it arrives prior to the actual output
action. The duration of this latency interval is influenced by both the hardware and the
software design. An executive or operating system that permits the use of interrupts to
signal data arrival may have a shorter latency interval than one that uses periodic polling,
but underlying hardware constraints prevent the latency from being eliminated completely.
Thus, the latency interval can be made quite small, but it can never be reduced to zero.
The acceptable length of the latency interval is determined by the process that the software
is controlling.

The choice of operating system, interrupt logic, scheduling priority, and system de-
sign parameters will be influenced by the latency requirements. Also, behavioral analysis
of the requirements to determine consistency with process functional requirements and
constraints may not be correct unless the value of this behavioral parameter is known
and specified for the software. Therefore, the requirements specification must include the
allowable latency factor.

o A latency factor must be included when an output is triggered by an interval of
time without a specified input and the upper bound on the interval is not a simple,
observable event.

e Contingency action may need to be specified to handle events that occur within the
latency period.

o A latency factor must be specified for changeable human—computer interface data
displays used for critical decision making. Appropriate contingency action must be
specified for data affecting the display that arrives within the latency period.

e A hysteresis delay action must be specified for human—computer interface data to
allow time for meaningful human interpretation. Requirements may also be needed
that state what to do if data should have been changed during the hysteresis period.

D.6 Output to Trigger Event Relationships

Some criteria for analyzing requirements specifications relate not to input or output speci-
fications alone but to the relationship between them. Although, in general, the relationship
depends on the control function being specified, basic process control concepts can be used
to generate criteria that apply to all process control systems, such as feedback and stability
requirements.

Responsiveness and spontaneity deal with the actual behavior of the controlled process
and how it reacts (or does not react) to output produced by the controller. In particular,
does a given output cause the process to change, and if so, is that change detectable by
means of some input? Basic process control models include feedback to provide information

151

about expected responses to changes in the manipulated variables and information about
state changes caused by disturbances in the process.

e Basic feedback loops, as defined by the process control function, must be included in
the software requirements. That s, there should be an input that the software can
use to detect the effect of any output on the process. The requirements must include
appropriate checks on these inputs in order to detect internal or external failures or
errors.

o FEvery output to which a detectable input is expected must have associated with it:
(1) a requirement to handle the normal response and (2) requirements to handle a
response that is missing, too late, too early, or has an unexpected value.

e Spontaneous receipt of a nonspontaneous input must be detected and responded to as
an abnormal condition.

D.7 Specification of Transitions between States

Requirements analysis may involve examining not only the triggers and outputs associ-
ated with each state and the relationship between them, but also the paths between states.
These paths are uniquely defined by the sequence of trigger events along the path. Transi-
tions between modes are particularly hazardous and susceptible to incomplete specification,
and they should be carefully checked.

D.7.1 Reachability
o All specified states must be reachable from the initial state.

Most state-based models include techniques for reachability analysis. In complex sys-
tems, complete reachability analysis is often impractical, but it may be possible in some
cases to devise algorithms that reduce the necessary state space search by focusing on a
few properties. The backward-reachability hazard analysis techniques for state machine
models outlined in Section 7 are examples of algorithms that limit the amount of the reach-
ability graph that must be generated to get enough information to eliminate hazardous
states from the requirements specification.

D.7.2 Recurrent Behavior

Most process control software is cyclic—it is not designed to terminate under normal
operation. Its purpose is to control and monitor a physical environment; the nature of the
application usually calls for it to repeat one single task continuously, to alternate between
a finite set of distinct tasks, or to repeat a sequence of tasks while in a given mode.
Most systems, however, include some states with noncyclic behavior such as temporary or
permanent shutdown states or those where the software changes to a different operating
mode.

152

o Desired recurrent behavior must be part of at least one cycle. Required sequences of
events must be implemented in and limited by the specified transitions.

e States should not inhibit the production of later required outputs.

An inhibiting state for an output is a state from which the output cannot be generated.
If every state from which the output can be generated is unreachable from an inhibiting
state, then the output cannot be generated again once the inhibiting state is reached.
Whether or not this condition represents an incompleteness depends upon the application.

D.7.3 Reversibility

In a process control system, a command issued to an actuator often can be canceled or
reversed by some other command or combination of commands. This capability is referred
to as reversibility.

e Qutput commands should usually be reversible.

e If x is to be reversible by vy, there must be a path between the state where x is issued
and a state where y 1s issued.

D.7.4 Preemption

When the same physical resource, such as a data entry device or display, must be used in
distinct multistep actions at the human—computer interface, requirements will be needed
to deal with preemption logic. In addition, some actions may have to be prohibited until
others are completed.

e Preemption requirements must be specified for any multistep transactions in conjunc-
tion with all other possible control activations.

In general, there are three possible system responses to an operator action from a
parallel-entry source prior to completion of a transaction initiated by some previous control
activation: (1) normal processing in parallel with the uncompleted transaction, (2) refusal
to accept the new action, and (3) preemption of the partially completed transaction.

If preemption is possible, then the attempted activation of a multistep sequence requir-
ing the use of a resource already involved in another incomplete transaction provides the
following three choices:

1. The new request could completely cancel the previous, incomplete transaction, clear-
ing or replacing any displays associated with it.

2. The new request could preempt the shared resources, but the displayed state could
be preserved and restored upon completion of the new transaction.

3. The operator could be prompted and required to indicate the disposition of the
incomplete transaction, in which case there will in general be four alternatives:

153

a. Cancel the incomplete transaction and start the newly requested one.

b. Complete the old transaction and then proceed automatically with the new
request.

c. Cancel the new request and continue with the old, incomplete transaction.

d. Defer but do not cancel the old, incomplete transaction.

If any transactions are deferred and restored, obsolete information must be identified, as
discussed previously.

D.7.5 Path Robustness

For most safety-critical, process-control software, there are concerns beyond pure reacha-
bility: Even if a state fulfills all reachability requirements, there is still the question of the
robustness of the path, or paths, affecting a particular state.

Suppose that every possible path from a state where command X is issued to any state
where command Y is issued includes the arrival of input I. Then if the computer’s ability
to receive I is ever lost, perhaps due to sensor failure, there are circumstances under which
it will not be possible to issue a Y command. The loss of the ability to receive I is said to
be a soft failure mode because it could inhibit the software from providing an output with
the value Y.

If the receipt of I occurs in every path expression from all states that produce X
commands to all states that produce ¥ commands, then loss of the ability to receive I is
now said to be a hard failure mode because it will inhibit the software from producing a
Y command.

o Soft and hard failure modes should be eliminated for all hazard-reducing outputs.
Hazard-increasing outputs should have both soft and hard failure modes.

The more failure modes the requirements state machine specification has, whether soft
or hard, the less robust with respect to external disturbances will be the software that is
correctly built to that specification. Robustness, in this case, may conflict with safety. A
fail-safe system should have no soft failure modes, much less hard ones, on paths between
dangerous states and safe states. At the same time, hard failure modes are desirable on the
paths from safe to hazardous (but unavoidable) states. An unsafe state, where a hazardous
output can be produced, should have at least one, and possibly several, hard failure modes
for the production of the output command.

e Multiple paths should be provided for state changes that maintain or enhance safety.
Multiple inputs or triggers should be required for paths from safe to hazardous states.

In general, operators should be provided with multiple logical ways to issue the com-
mands needed to maintain the safety of the system so that a single hardware failure cannot
prevent the operator from taking action to avoid a hazard. On the other hand, multiple in-
terlocks and checks should be associated with potentially hazardous human actions—such
as a requirement for two independent inputs or triggers before a potentially hazardous
command is executed by the computer.

154

D.8 Constraint Analysis

In addition to satisfying general completeness criteria, the requirements must also be
shown to include the identified, system-specific requirements and to be consistent with the
identified system design constraints.

o Transitions must satisfy software system safety requirements and constraints.

e Reachable hazardous states should be eliminated or, if that is not possible (they are
needed to achieve the goals of the system), their frequency and duration reduced.

It is not always possible to enforce a requirement that the software cannot reach haz-
ardous states—sometimes a hazardous state is unavoidable. But this possibility should be
known so that steps can be taken to minimize the risk associated with the hazard, such as
minimizing the exposure or adding system safeguards to protect the system against such
states.

The type of analysis required to guarantee consistency between the software require-
ments specification and the safety constraints depends upon the type of constraints in-
volved. The presence of constraints can potentially affect most of the criteria that have
been described in this appendix. Some types of constraints can be ensured by the criteria
already described; others require additional analysis. For example, basic reachability anal-
ysis can verify that only safe states are reachable. Basic reachability analysis may need
to be extended, however, to consider additional constraints on the sequence of events or
states.

More generally, the specification may be checked for a general safety policy that is de-
fined for the particular system. This process is very similar to checking that a specification
satisfies a particular security policy. The following is an example of a general safety policy
for which the specification could be checked:

1. ‘ There must be no paths to unplanned hazardous states. ‘

The computer never initiates a control action (output) that will move the process
from a safe to an unplanned hazardous state.

Every hazardous state must have a path to a safe state. All paths
from the hazardous state must lead to safe states. Time in the
hazardous state must be minimized, and contingency action may be
necessary to reduce risk while in the hazardous state.

If the system gets into a hazardous state (by an unplanned transition that is not
initiated by the computer such as component failures, human error, or environmental
stress), then the computer controller will transform the hazardous state into a safe

155

state (every path from a hazardous state leads to a safe state). The time in the
hazardous state will be minimized to reduce the likelihood of an accident.

There may be several possible safe states, depending on the type of hazard or on
conditions in the environment. For example, the action to be taken if there is a
failure in a flight-control system may depend on whether the aircraft is in level flight
or is landing.

If a state state cannot be reached from a hazardous state, all
3. | paths from that state must lead to a minimum risk state. At
least one such path must exist.

If a system gets into a hazardous state and there is no possible path to a safe state,
then the computer will transform the state into one with the minimum risk possible
given the hazard and the environmental conditions, and it will do so such that the
system is in a hazardous state for the minimum amount of time possible.

It may not be possible to build a completely safe system—that is, to avoid all hazardous
states or to get from every hazardous state to a safe state. In that event, the system must
be redesigned or abandoned, or some risk must be accepted. This risk can be reduced
by providing procedures to minimize the probability of the hazardous state leading to an
accident (such as minimizing its exposure time) or to minimize the effects of an accident.

156

E The SpecTRM-RL Models of CTAS at the DFW
TRACON

Because of the size of the models, we have included only the graphical parts and not the
transition tables.

Sector Center Tracon Tracon
Controller TMC TMC Controller(s)
”””” DA TMA TMA FAST ~—~~~~°°

RDP _ FDP —{ NWS Westher Data }7 RDP _ FDP

T Radar
17777777777”””””””””””> with datalink

T S -
L]
Aircraft m
Database >

Figure 44: High Level commmunication diagram of CTAS components

157

T UezZoI4
T Uezo4
andwio) Jouue) Uny—

T peIR RS

T BRI

1Sv4 Ag paubssy

peubssy 10N T Rl

Jaquinp aousnbag

- [omores |
[|

Ajuold UBAID

Aond

doudoqun 1.

o

s
e

. poUBESY 10N — ewed | NS 1N umowUN [umowyunazs |
Jogquin sousnbas Remuny paubssy Jojoes Bulfjonuod Aloud ey adA | auibug uorreubiseq azis
—
avad
0Ny ON ADD 7 ony oN Nar 7 7 0NV ON dAg 7 7 0Ny ON MXN 7 7 1de20y Oy 7 adAL Aejdsia
ony ADD 7 oy NIe 7 ﬁ onydAg 7 ﬁ ony M3n 7 ﬁ fApeay oy 7 S3AOW 14300V E
adA] 10800y NOV adA] 1dedoy ADS adA] 1dedov rNg adA] 10000V Hdg adA 1 1ded0y jE
WE
dn dn dn S9poN Aejdsia
dndod auipwil dndod |pma dndogd dnjes
1O Joindwod
moa g amoa | 4O endwoo |
dndog autpuilL dndod 1pma E S3dokdndod
dndod auipwi L dndod |pm@ dndogd dnies
| somed |
Spo Bmod
1 1
1 1
adA 1 Aedsia aneA Alold 1ssejsulbug Se|08zISs | Uonsod A uonisod X apm|y
1 1
() s O+ OO O O
1 1
1 1
1 1
ARemuny paubissy Jequin aouanbag
[xxx1]
(Y () SEm

ONILVH3dO

PoocT]

T3aon
14O IV

1sv4

S3AON

1Sv4

Figure 45: FAST Model

[xxx 1]
S1NdNI
14vH0d IV

1SVv4

158

Descent Advisor

Horizontal Guidance Modes Spacing Advisories
CONTROLLER | Route Intercept
OPERATING
MODES Waypoint Capture

Speed Profile Modes

’ Descent Speed TMA Interface
| TMA Present
’ Cruise Speed
| TMA Absent
Cruise plus
Descent Speed

Figure 46: Descent Advisor Model

159

Descent Advisor

AIRCRAFT[1...90]

Horizontal Guidance Mode Speed Profile Mode DA Mode
AIRCRAFT ’ Route Intercept ’ Descent Speed F
MODES ’ Waypoint Capture ’ Cruise Speed F
>’ Default Cruise plus
Descent Speed | |
>’ Default F
Aircraft Type Profile Status
AIRCRAFT ’ Light PROFILE sp
STATE CHARACTERISTICS
’ Large Inquiry
| Heavy Cleared

Q Q Q Top of Descent

ID Speed Heading

e OO0 O

Y-Pos Altitude ETA
X-Pos Y-Pos Altitude

TIMELINE Q Q Q
CHARACTERISTICS
STA Minimum Arrival Time Maximum Arrival Time

Figure 47: Aircraft [1 ...90] Model

160

TMA

CONTROLLER
OPERATING
MODES

FCFS
w/o Time Advance

FCFS
with Time Advance

Position Shift
w/o Time Advance

Position Shift
with Time Advance

|

Traffic Density

PROCESS
MODEL

Schedule Slot [1...90]

4 Available

AIRCRAFT
SCHEDULED

Aircraft Type Supervisory Modes

Blocked

Figure 48: Traffic Management Advisor Model

161

RDP

() C) () () () ()

Code Do, ACID Altituce
INPUTS

Code
[1...100]

Position-

die () () ()

[1...20] Time Altitude

Restricted Flight Plan Minimum :
Airspace Conformance Safe Altitude Potertiial

AIRCRAFT Intrusion Monitoring Warning Conflict
MODEL Yes Yes Ve ‘ Ve ‘
[1100] A A 1

v v v i T

O ORORORON®

Altitude Course Speed Beacon Code

Figure 49: Radar Data Processor Model

162

F Partial Intent Specification of TCAS

Because the intent specification of TCAS is so large (750 pages, which includes the software
design specification and much of the code), we have included it only in the printed final
report for NASA. A copy of our example TCAS intent specification can be found online
at: http://sunnyday.mit.edu/papers/intent.pdf

163

