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1. Abstract
While automation has eliminated many types of

operator error, it has also created new types of
technology−induced human errors. Many of these
new errors are the result of what has been labeled
technology−centered automation, where designers
focus most of their attention on the mapping from
software inputs to outputs, on mathematical models
of required functionality, and on the technical
details and problems internal to the computer:
Little attention is given to evaluating software in
terms of whether it provides transparent and
consistent behavior that supports operators in their
monitoring and control tasks. The goal of our
research is to create and evaluate a methodology for
integrated design of complex systems, including
design of the automation and the human tasks, that
minimizes human error through appropriate system
and operator task design. The methodology is
based on formal modeling, simulation, and analysis
techniques for the software behavior, the user
model of the system, and the operator tasks. This
paper describes the human factors aspects of our
approach using as an example the vertical flight
control logic for a realistic aircraft flight
management system FMS. Although the MD−11
FMS was used to derive the example for our case
study, we made up much of the information due to
our lack of knowledge about the design and the
rationale of the real MD−11 design, and nothing in
this paper should be taken as applying to that
aircraft’s actual automation. A companion paper at
this conference describes the parts of the
methodology focusing on the modeling and
analysis of the automation itself.

2. Introduction
Advances in computing have had a significant

impact on the aviation industry. Automation is
assuming greater roles in commercial aircraft,
adding flexibility and enhanced capabilities. At the
same time, humans have had problems coping with
this new automation, and breakdowns in the
interaction of pilots and automated systems are
becoming more common. Pilots are at times lost in
the automation: They ask questions like "What is
the computer doing?" "Why is it doing that?"
"What will it do next?" "How do I stop it from
doing that?" and "How do I get it to do what I want
it to do?"[13] The resulting confusion, sometimes
called mode confusion, has been cited as a
contributing cause of accidents and serious
incidents, highlighting the need to develop ways to
prevent it.

Safety−critical systems, and particularly those
with a high level of complexity, require a
sophisticated design process. A methodology to
support such a process will not only address unsafe
and problematic system features, but will be able to
do so early in the design process when changes can
still be made relatively easily.

One of the long−term goals of the MIT
Software Engineering Research Lab (SERL) is to
create and evaluate such a methodology for
integrated design of the automation and human
tasks in complex systems. The methodology will
be based on formal modeling, simulation, and
analysis techniques starting with a user model of
the system and generating appropriate and safe
software and task models. The modeling and
analysis tools should assist engineers and human
factors experts in enhancing situation awareness,
minimizing human errors such as those related to
mode confusion, enhancing learnability, and
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simplifying the training of humans to interact with
the automation.  

Our first step in achieving these ambitious
goals is to determine how to use modeling and
analysis to detect or prevent automation features
that can lead to operator mode confusion. To
accomplish this, we use three different types of
models: 

1) a user model of the automation behavior:
this model is necessarily a simplification or
abstraction of the actual possible automation
behavior (which is often not completely
understood even by the designers),

2) an operator task model resulting from a task
analysis that identifies the major tasks of the
human controller and then breaks these down
into subtasks, eventually specifying the tasks
down to the level of the key presses, voice
communications, display cues, etc. involved in
performing the task, and

3) a detailed specification of the blackbox
automation behavior, that is, the blackbox
behavioral requirements of the automated
system. 

In a companion paper at this conference, we
describe our approach to modeling the automation
behavior [14]. In this paper, we describe the two
other types of models (user and task) we have
found helpful in detecting system features that can
lead to mode confusion. We then describe a
specific case study of the approach on a realistic
vertical flight control system. The goals of the case
study were to show scalability and efficacy of the
approach for complex systems.

Background and Related Work
In our initial attempt to study mode confusion,

Leveson et al. identified six categories of system
design features that can lead to mode confusion
errors: ambiguous interfaces, inconsistent system
behavior, indirect mode transitions, lack of
appropriate feedback, operator authority limits, and
unintended side effects [8]. Leveson and Palmer
made an initial attempt to learn more about how to
identify such design flaws using a pilot error that
has been the subject of many ASRS reports [9]. A
small but relevant part of the flight control system’s
blackbox software behavior was formally modeled

and the approach to identifying the cause of the
error −− a software requirements flaw −− was
demonstrated. One result of this case study was a
recognition that such mode confusion errors could
only be identified if the software (automation)
model was augmented by a simple model of the
controller’s view of the software’s behavior (a user
model) −− the formal software specification was
not enough.  

In subsequent research, we experimented with
task analysis and using an operator task model [1].
Most task analysis involves very expensive
simulator studies. While traditional task analysis is
very useful in learning about usability and human
preferences, it is not a very efficient nor effective
way to learn about potential human errors related to
safety. Not only are such errors rare and situation
dependent, but humans tend to use automation
differently over time. Formal analysis techniques
appear to be a useful adjunct to standard usability
analysis, which is still important and necessary.

By integrating executable models of the
automation and the human tasks, it should be
possible to simulate the interaction between
humans and computers in controlling the system.
The analyst will be able to examine the
ramifications of certain automation and human task
design decisions on overall safety.  

The closest approach to ours is that of Degani
and of Harrison and Fields. Degani [3] provides a
different classification of modes and of mode
confusion detection criteria. His classification of
mode confusion detection criteria is a subset of
ours. Degani also developed a task modeling
framework, known as OFAN, which is based on the
Statecharts language. Our experience in using
Statecharts on real systems found it to be
inadequate for our goals. Therefore, we have
designed a blackbox automation requirements
specification and modeling language called
SpecTRM−RL, which includes specification of
modes and which we have found scales to large and
complex systems [6]. Harrison and Fields use CSP
models to attempt to achieve similar goals, but this
language is very formal and probably not usable
without extensive training in discrete mathematics.

Javaux takes a more psychological approach.
He uses a finite state machine to describe a
cognitive mental model, which he uses to identify
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potential instances of mode confusion [4,5]. In
contrast, we do not try to model human cognition
or human mental models but instead model the
blackbox behavior of the automation that the user
expects and depends upon and the required steps
needed to complete a given task. Modeling the
actions involved in an operator task potentially
allows analyzing the interaction of the operator
with a formal model of the rest of the system.  

Vakil and Hansman [12] have proposed the
use of predictability as a measure of system
complexity, which they claim is directly related to
mode confusion. Their work also suggests
approaches to mitigating complexity−driven issues
in commercial flight systems.

Other researchers have applied Leveson’s
safety criteria for mode confusion and tried to use
formal methods techniques (e.g., model checking)
to detect these error forms in system specifications
[10,11].

3. Approach
To control a complex system, every controller

must have a model of the general behavior and
current state of the controlled process (see Figure
1). This model may be embedded in the control
logic of an automated controller or in the mental
model of a human controller or both. The model is
updated and kept consistent with the actual system
state through various forms of feedback from the
system to the controller. In addition, any human

controller (who is usually directly controlling the
automation but only indirectly the controlled
process) must also have a model (i.e., some
understanding) of the expected automation
behavior. When these models diverge from the
actual state of the controlled process (or the actual
automation behavior in the case of the human
supervisor of the automation) erroneous control
commands based on an incorrect model can lead to
an accident [Safeware]. The situation becomes
more complicated when there are multiple human
and automated controllers because the models of
the various controllers must also be kept consistent.

Errors result from inconsistent models of the
controlled process. Models may diverge either
because they were incorrect or incomplete to begin
with (they do not adequately reflect the behavior of
the controlled system) or because they are
improperly updated due to incorrect feedback about
the state of the modeled system. Note that there are
several sources of inconsistency due to improper
feedback.  

We believe that explicitly specifying and
validating these models during system design will
allow engineers to identify and eliminate error−
prone features of automation and interfaces and to
assist in task analysis and development of operator
training and reference materials. The models we
use for specifying the automation behavior are
described elsewhere. With respect to the human
operator or supervisor, we use two models: the
user model of the automation behavior and a task
model of the operator’s tasks in interacting with the
automation and the system.
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Figure 2.  User−centered Approach to System
Design.

If the system already exists, a human task
model and user model (expected system behavior)
can be extracted from the operator’s manual and
other operator documentation and training materials
for the given system. Ideally, of course, these
models would have been built first and the tasks
and detailed automation specifications as well as
training and operator materials will have been
derived from the user model (see Figure 2). In this
way, consistency can be ensured as the system is
designed, eliminating the need to verify consistency
at the end of the development process.

4. Flight Management System (FMS)
Case Study
To evaluate the feasibility of this approach, we

performed a case study on the vertical flight control
system for a realistic FMS. In developing the user
and task models for this work, we focused
specifically on the descent phase of flight,
including Early Descent, On−Path Descent, and
Late Descent. We selected the descent phase for
analysis because it has been documented as the
flight phase during which most accidents or
incidents occur.  Information required for the pilot’s
task model and user model (expected system
behavior) was created using the MD−11 Flight
Management System’s Pilot’s Guide as an example.
As noted earlier, the case study example does not
match the real MD−11 FMC, but the
documentation we had helped us understand the
type of knowledge expected of the pilots and how
this knowledge is used to operate the automation.

The components of the modeling language are
shown in Figure 3. Steps required to complete a
task are represented by states. A transition is
defined as the process of changing from one state to
the next. Conditions that trigger transitions are

called events and action describes a result or output
from the transition. A communication point links
different models together. In our case, the human
task model communicates its outputs (or actions)
via a communication point to the system model. In
this way, we are able to model human−computer
interaction.  

A state is represented by a square box. A
transition is represented by an arrow from one state
to the next, and events are shown in text above the
transition; actions are represented by text with gray
shade beneath the transition. Finally,
communication points are round boxes and refer to
another component in the model.

Figure 4 shows the user and pilot task models
we created. Relevant parts of a display model is
also included that shows the feedback regarding the
state of the automation provided to the pilot.  

Our analysis of these models is broken into
two parts. First, we examined the relationship
between the operator task model and the user
models in order to identify potential instances of
mode confusion based on Leveson’s categories.
Then we compared the user model (created from
information in a typical pilot’s guide and other
sources) with the actual automation design
(obtained from our example FMS specification) to
identify potential discrepancies between what the
operator is told about the system behavior and the
actual implemented system behavior.

Although we considered all six sources of
mode confusion identified by Leveson, only two
examples are presented here −− indirect mode
changes and inconsistent system behavior. The
next two subsections describe these features as well
as instances of them found in our models. The
third subsection describes our comparison of the
user model (expected system behavior as described
in the pilot manual) with the actual implemented
system behavior.
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4.1 Indirect Mode Changes

An indirect mode change occurs whenever
there is a change in mode by the automation
without any explicit command from the
operator. We show how an indirect mode
change can be detected with our models using
an example from our FMS case study.
On a descent path, the automation maintains

continuous altitude control along a predefined path.
When the aircraft speed exceeds the target speed by
more than five knots, the automation expects the
pilot to manually apply the speed brakes. However,
if the airspeed continues to increase and exceeds the
speed limit at an altitude 750 feet higher than the
speed limit altitude, the FMS will automatically
take action. It first displays the "Speed limit
exceed" label in the Control Display Unit. It then
replaces the target altitude by the speed limit
altitude and stops the descent. The aircraft then is
considered to be in a descent path overspeed
scenario. This triggers a mode change in the

automation from the Descent Path mode to the
Descent Path Overspeed mode. The automation
accordingly levels the aircraft, temporarily ending
the descent. Once the airspeed becomes three knots
less than the speed limit, the automation clears the
message in the control display unit (CDU) and
begins the descent again. This scenario is shown in
Figure 5.

Examination of the task models clearly shows
that this is an instance of an indirect mode change.
The automation transitions to the Descent Path
Overspeed mode based solely on the aircraft’s
altitude and speed − there is no direct interaction
with the pilot. Further, by viewing the task and
automation models simultaneously, we were able
to identify lack of feedback as a contributing factor
to a potential mode confusion error. According to
the design of the automation, the information
displayed by the Flight Mode Annunciation (FMA)
does not change throughout the operation.
According to the pilot’s model, the only event that
the pilot observes is the appearance (and
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disappearance) of a display. The pilot has no way to
know that the FMS has switched to the Descent
Path Overspeed mode.

Our models not only help identify sources of
mode confusion, but also help suggest
improvements to account for the error−prone
features identified. For example, Figure 6 shows
how including Stop Descent and Begin Descent as
output alerts or actions in the automation model
might make the pilot aware that a mode transition
has taken place. While this does not eliminate the
indirect mode transition, it might lessen the
likelihood that it would result in a mode confusion
error. Human factors experts would need to
determine what responses should be made to
potentially hazardous indirect mode transitions that
are detected during analysis.

4.2 Inconsistent System Behavior
A second example of a potential source of

mode confusion is inconsistent system behavior. A

fully consistent system allows similar tasks and
goals to be associated with similar or identical
actions. When the system is inconsistent by this
definition, the operator will have more difficulty
learning to operate the system and creating an
appropriate mental model. The following is an
example from our case study.

During an On−Path Descent, two events can
occur. First, if the aircraft speed is more than the
speed target plus five knots, then the "ADD
DRAG" message is displayed in the navigation
display. However, if the aircraft speed is below the
speed target by less than five knots, then the
"REDUCE DRAG" message is displayed in the
navigation display.

In the first case, the aircraft speed is too high
and an action from the pilot is required. In this case,
the pilot is required to engage the speed brakes. On
the other hand, the second case requires no action
from the pilot. If the speed decreases to 10 knots
below the target, then the FMS will apply thrust to
regain speed.

Figure 7 shows a visual formalism of this
scenario in our task modeling language. Our
formalism allows us to identify inconsistent system
behavior quickly. It is manifested clearly as a lack
of symmetry in the pilot model diagram.

4.3 Inconsistent Documentation
Mode confusion and other types of errors can

occur when the user’s model of the automation’s
design differs from its actual design, as reflected by
differences between the automation behavior
implied by the pilot’s guide and other operation and
training documentation and the actual implemented
automation behavior.

As an example of this, consider the transition
from Cruise Phase to Early Descent in our models.
In comparing the user model derived from the
pilot’s guide and the automation model generated
from the FMS system specification, we found both
an ambiguity in the definition of the cruise and
early descent phases and differences in the
conditions that are specified as triggering the flight
phase transition. In addition, the models explicitly
denote automation control modes that are never
annunciated to the pilot, such as the Flight Control
Computer Engaged mode, the vertical guidance
type, and the vertical guidance control mode. It is
clear that pilots should not have to know all the
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Figure 5.  Indirect Mode Transition.
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potential automation control modes. However,
there may be instances where lack of information
can lead to pilot error and it would be useful to
determine what information the pilot needs to
successfully supervise the automation. For
example, during the transition to Early Descent
mode, the pilot must ensure that the current profile
is engaged. Using our user model, we see that the
system does indicate whether the current profile is
engaged. However, it does not include information
regarding factors used by the automation (other
than the pilot command) that can indirectly affect
the "engaged" status of the current profile. There is
then a potential for an indirect mode transition, and
thus mode confusion although a human factors
expert would need to determine whether this is
actually a problem or not.  

5. Conclusions
By using a visual formalism consisting of a

user model of the automation, the actual automation
design, and an operator task model, we have been
able to detect several potential cases where mode
confusion could arise in a realistic aircraft FMS.
Potential for mode confusion was identified using
two different approaches: (1) comparing the task
model to the user model of the automation and (2)
comparing the user model of the automation to the
actual automation behavior model. The resulting
information can be used by human factors experts
in evaluating the system design.  

Our visual formalism serves additional
purposes as well, such as providing a clear and
concise means by which system designers can
communicate about human−computer interaction
issues and providing information that can be used
to generate user documentation and training
materials.

Our visual task modeling language can be
translated into our formal requirements
specification language, SpecTRM−RL. SpecTRM−
RL offers a suite of analysis tools including
execution of the models, completeness and
consistency checking, and various safety analysis
tools that can help assure total system safety.
Future work will involve automating this
translation, thereby making our task models more
amenable to formal analysis.

In the long term, we would like to design a
methodology and a set of automated tools to
support it that starts with the user model of the
system. The detailed automation behavior, operator
tasks, and documentation and training materials
would be generated starting from this user model.
Analysis tools would be used to evaluate various
properties, including safety, during early system
development phases.
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