

AN INTENT SPECIFICATIONS MODEL FOR A ROBOTIC SOFTWARE
CONTROL SYSTEM

Israel Navarro, Kristina Lundqvist, and Nancy Leveson

 Massachusetts Institute of Technology, Cambridge, MA

Abstract
Intent specifications are a new way to structure

specifications to support human problem solving,
system and software development and evolution,
traceability, and specification of design rationale.
An intent specification provides a hierarchical
abstraction based on intent ("why") in addition to
the usual "what" and "how." For a given system
being specified, an intent specification defines
seven levels, each one of them supporting a
different type of reasoning about the system. Each
level is mapped to the appropriate parts of the intent
levels above and below it, providing a means to
trace design rationale and decisions from high-level
system requirements and constraints down to code
and vice versa (from code to specifications,
requirements, and safety analyses). The third level
of an intent specification contains a black-box
model that uses an executable formal specification
language, SpecTRM-RL, which provides special
support for requirements review and analysis --
particularly for completeness and safety.
SpecTRM-RL models can be mathematically
analyzed and checked for various properties,
including human-computer interaction properties
such as mode confusion. They can also be executed
as part of system simulations.

The approach is demonstrated using an

industrial robot designed to service the heat
resistant tiles on the Space Shuttle.

Introduction
Intent Specifications are a new way of

structuring system and software specifications to
support the development of large and complex real-

time control systems [1]. Special attention is given
to the support of system safety techniques
throughout the entire development process.

The specifications are organized along two

dimensions: intent abstraction and part-whole
abstraction (see Figure 1). The intent dimension
specifies seven hierarchical levels that each support
a different type of reasoning about the system. The
part-whole dimension is itself divided into
refinement and decomposition, providing a way to
structure the pertinent information within each
level.

Lack of documentation and analysis of design

decisions in any engineering project can lead to
serious development delays and cost overruns,
losses and disruptions during operations, and
serious problems in upgrading and evolving the
system design [2]. Specifying design rationale is
particularly important to being able to change
complex systems without introducing errors or
inadvertently reversing decisions that should not be
reversed. The fear of making such mistakes has on
occasion led to leaving obsolete functions in the
design (which, itself, has led to accidents). In either
case, the safety of the system is compromised by
the lack of documentation of necessary
information.

The traditional specification models establish

what-how relationships between the hierarchical
levels. That is, they enumerate what functions are
required and how they are accomplished. The
intent or "why" relationship adds the ability to keep
track of the rationale behind system design
decisions and changes. Each intent level contains
intent information ("why") about the level below.
The levels are mapped to the appropriate parts of
the intent levels above and below, providing

 1

System
Purpose

System
Principles

Blackbox
Behavior

Design
Representation

Physical
Representation

Level 1

Level 2

Level 3

Level 4

Level 5

Assumptions
Constraints

System goals, high-level
requirements, design
constraints, limitations

Responsibilities
Requirements,
I/F requirements

Hazard Analysis

Intent

Refinement
Decomposition

Task analyses
Task allocation
Controls, displays

Validation plan
and results

Environment
models

Analysis plans
and results

HCI design

Test plans and
results

Software and hardware
design specifications

GUI design,
 physical controls
design

Software code, hardware
assembly instructions

Environment Operator System and components V& V

Level 6
Operations

Operator manuals
Maintenance
Training materials

Level 0 Project management plans, status information, safety plan, etc.

External
interfaces

Audit
procedures

Logic principles, control laws,
functional decomposition, and
allocation

Operator Task
models
HCI models

Blackbox functional models
Interface specifications

Test plans and
results

Error reports, change
 requests, etc.

Performance
monitoring and
audits

Figure 1: The structure of an intent specification for a complex software system

traceability of high-level system requirements and
constraints all the way to code and vice versa.

Each intent level supports a different type of
reasoning about the system. The Management level
(level 0) provides a bridge from the contractual
obligations and the management planning needs to
the high-level engineering design plans. The
System Purpose (level 1) assists system engineers
in their reasoning about system-level goals,
constraints, and limitations. It also documents basic
hazard analysis and contains a hazard log to track
the safety engineering activities. The system safety
analysis is used to establish safety-related system
and software requirements and design constraints.

The System Principles level (level 2)

documents the system in terms of the physical
principles and laws upon which the design is based.
Complete functional structures and interfaces
between components are defined at this point. This
level also documents task models and other results

of human factors analyses for systems containing
human operators. Display and control information
is defined as well.

The Blackbox level (level 3) allows the

designers to study the logical design of the system
using a formal modeling language called
SpecTRM-RL [3]. The tools associated with this
language produce executable and analyzable
models that engineers can use to study the complex
interactions between the different components of
the system. SpecTRM-RL models can be built for
the non-software components also, or they can be
executed together with simulations and prototypes
of hardware components.

The Design Representation level (level 4)

presents a detailed implementation-dependent
software design as well as any applicable hardware
design specifications. The Physical Representation
level (level 5) contains the actual software and
hardware implementation of the system as well as

 2

any necessary training and maintenance manuals.
Finally, the System Operations level (level 6)
includes information produced during the actual
operation of the system, which can be used in
operational audits, performance analyses,
operational safety analyses, and change analysis.

Each level also contains documentation of the

plans and results of the verification and validation
appropriate for the design decisions contained in
each level.

A goal behind intent specifications is to

support a human-centered, safety-driven
development process methodology. The
specifications are human-centered not only in terms
of supporting the design and integration of human-
automation interaction into the system engineering
process but also in basing the specification structure
on what is known about how expert problem solvers
and the most successful engineers approach system
development tasks.

The specifications support safety-driven

development by tightly integrating the system
safety process and the information resulting from it
into the system engineering process and decision-
making environment. The goal is to support the
design of safe systems rather than simply the
attempt to verify safety after-the-fact. Safety-
related design decisions are linked to hazard
analyses and design implementations so that
assurance of safety is also enhanced as well as any
analyses required when changes are proposed.

Unlike most formal specification languages,

the formal language used in Level 3, called
SpecTRM-RL, has been designed with readability
and reviewability and minimal training
requirements (5 to 10 minutes) as the top priority,
as well as a notation that is close to the way
engineers think about systems.

Experiments have been conducted to determine

the best way to present the information [4] and the
experimental results have been validated by use of
the language on several demonstration systems
including a real Flight Management System [5] and
an Air Traffic Control system upgrade project [6].

Various types of analysis techniques have been
developed for SpecTRM-RL models including
completeness and consistency analysis, a form of
robustness analysis called Software Deviation
Analysis, software hazard analysis, and mode
confusion analysis [7] (for potential operator mode
confusion caused or aggravated by the design of the
automation).

The Tessellator Robot Example
In the next sections, an intent specification

(levels 1 through 3 only) for a robotic system is
described along with examples from the
specification. The example system is not only
safety-critical, but it includes jointly shared control
of the system by computers and humans.

The Tessellator Robot

The underside of the Space Shuttle is covered

by approximately 17,000 silica heat-resistant tiles
that shield its aluminum skin from the 3000-degree
Fahrenheit temperatures the orbiter encounters as it
passes through Earth's atmosphere to land. These
tiles have a glazed coating over soft and highly
porous silica fibers. The tiles were designed to be
extremely light and are 95% air by volume.

Unfortunately, this excellent design has a

negative side effect: the tiles are extremely
hydrophilic, being capable of absorbing enough
water to create a substantial weight problem. To
avoid it, the Space Shuttle tiles are waterproofed
through the use of a specialized hydrophobic
chemical, DMES, which must be injected into every
tile. This process must be repeated after each
mission because the waterproofing chemical burns
off during the orbiter's re-entry into Earth's
atmosphere.

This waterproofing task traditionally has been

done manually. Dowling et al. [8] report on the
creation of a robot, called Tessellator, to carry out
these thermal protection tasks previously done by
ground personnel. The main objective of their effort
is to decrease the time needed to perform the
waterproofing operations while increasing the
safety of the overall ground operations tasks

 3

(DMES is a toxic chemical, and workers have to
wear protective gear on the job).

In addition, the robot is also designed to

inspect each tile for possible damage. See Figure 2
for a picture of the robot developed by the CMU
team.

 Figure 2: Tessellator robot

The Tessellator has a computing environment

consisting of four on-board computers and one off-
board database. The on-board computers control the
Tessellator's high-level processing tasks, base and
manipulator motions; monitor robot health and
status; and controls the robot's vision and injection
systems. The software for the robot comprises a
large part of the entire system. MAPS---the
Mobility and Positioning Software---issues
commands to the motor controller which controls
movement of the mobile base of the robot. MAPS
is in turn controlled either by a destination and
route provided by the Planner (AI-based software)
or by a human-operated joystick.

MAPS Intent Specification
For the purpose of demonstrating Intent

Specifications, we will focus on MAPS only. This
part of the robot software is of special interest
because it is responsible for many of the safety-
related functions. Intent specification examples are
drawn only from levels 1, 2, and 3. Note that the
original MAPS design has been modified to make it
more interesting for study.

Level 1: System Purpose
Level 1 of an intent specification contains the

goals, high-level functional requirements,
constraints, and environmental assumptions
corresponding to the system under study. The
primary goal of MAPS is defined to be:

Goal 1: MAPS shall control the movement of the
robot around the work area to position the robot
base in the appropriate hangar locations so that the
tiles can be serviced.

Examples of MAPS high-level functional
requirements include:

MAPS-1.1: MAPS shall process control commands
to several Tessellator subsystems (Motor
Controller, Legs, Scanner) to ensure the robot base
moves according to the requests issued by the
Planner or the operator. [↓MAPS-2.2, ↓MAPS-
2.2.2]

MAPS-1.1.1: MAPS shall be able to operate in
Computer Mode (target position provided by the
Planner). [↓MAPS-2.2.2, ↓MAPS-2.2.2.2, ↓MAPS-
2.2.2.6, ↓MAPS-2.2.4]

Intent: The Planner is able to direct the robot
efficiently so the robot meets all the required
performance deadlines.

…

MAPS-1.1.1.3: While in Computer Mode, MAPS
shall prompt the laser scanner automatically.
[↓MAPS-2.2.5.7, ↓MAPS-2.2.2.5.7.1, ↓MAPS-
2.2.2.5.7.2]

Intent: MAPS can use the position information to
correct the robot trajectory and figure out when the
final position has been reached.

…

MAPS-1.2: MAPS is responsible for sending
messages to the system log about events and errors.
[↓MAPS-2.3]

Intent: The recording of a variety of performance
data will enable NASA system engineers fine-tune
the software controlling the robot.

 4

For traceability purposes, the high-level
functional requirements are linked to the level 2
system design principles that satisfy them.

One of the major tasks in this part of the
specification is to identify the boundaries of the
system and enumerate assumptions the designers
should use about the other components with which
MAPS is to interact. Figure 3 presents an overview
of the Tessellator system. Examples of
environmental assumptions are:

Motor Controller

MC1: When commanded to do so, the motor
controller will provide power to the motor, which
will drive the robot wheels.

MC2: The robot may be driven in all three degrees
of freedom (X,Y,θ), either singly or in any
combination.

MC3: The robot may be driven in position (relative
displacement) or velocity mode.

MC4: During power-up or following any error, the
Motor Controller must be reset before sending it
any orders.

MC5: The Motor Controller is able to stop the
motion of the robot within 0.2 seconds of receiving
a ‘stop’ command

Location System

LS1: The scanner must be initialized before first use
with bar codes and scanner codes (the location
coordinates of the barcode reflectors).

LS2: Upon request, the laser scanner will provide
the current position of the robot in the form of
global location coordinates with an accuracy of
TBD.

LS2.1: The robot base must stop before a reading
takes place.

Intent: The scanner triangulation calculations
assume a static base and cannot correct their
readings to take into account the robot base motion.

Additional assumptions were defined for other
elements as well: Planner, stabilizers, safety circuit,
manipulator arm, injection system, vision system,
proximity-sensing system, digital camera, operator,
displays and controls, and the work area. The
assumption and requirements on the operator are
especially important since they play a key role in
the design of the operator interface, the modeling of
the operator tasks and procedures as well as in the
writing of training plans and programs.

Level 1 also contains the preliminary hazard
analysis and hazard log. The first step in a system
safety engineering process is to identify system
hazards. For example, a MAPS-related hazard
involves the loss of stability of the robot base:

Hazard 3 (H3): Robot base becomes unstable

 Subsystem: MAPS, stabilizers

High-Level Causal Factors: Stabilizers not
deployed while arm extended; Stabilizers retracted
while arm extended; Robot falls over while crossing
cover

 Level and Effect:A2-4; Damage to Tessellator
robot.

Safety Constraints: [SC7] [SC8]

From the list of hazards, the engineers must
define safety-related system requirements and
design constraints that ensure the robot never gets
into one of the identified hazardous states. For
example, the safety constraints that result from H3
are:

 5

TESSELLATOR AND MAPS: SYSTEM OVERVIEW

PLANNERMAPS

NASA Database WORKCELL
CONTROLLER

HUMAN
MACHINE

INTERFACE

HUMAN
OPERATOR

Information

Control

Uploaded
Results

Inpection Jobs &
Shuttle Position

Error Reports

Next Move to Perform

Digital
Camera

Stabilizers
(Legs)

Motor
Controller

Wheels

Motor

Manupulator
Arm

Locking
Hub

Operator
(2)

DMES

Robotic
Vision

System

External Objects

Proximity
Sensors Safety Circuit SC

Tiles

Bar Codes Location
System

Mission Log

Safety
Data

Possible Collisions

Upload
Results

Dowload
Job Orders

Peripheral Hangar Vision

Control
(Joystick)

(Switches off if
not safe to move)

Ok to move
(Deadman swtich)

Tile Images
Robot Status

Error Reports

Motor Status

Control

Control

SC

Safe to Move (Y/N)

SC

SC

Position
Query

Position
Info

Control

Control

Control

Tiles Position
and Images

DataData

Arm Position
and Status

Tessellator System Boundary

Continuous tasks

Only during start/finish operations

SC Safety circuit

Figure 3: System overview of the Tessellator robotic system

 6

 [SC7]: Manipulator arm must move only when
stabilizers are deployed. [↓ MAPS-2.2.5.10.3]

[SC8]: Stabilizer legs must not be retracted until
manipulator arm is fully stowed. [↓MAPS-2.2.5.10,
↓MAPS-2.2.6.9.2]

The safety constraints are then traced to those
design features that ensure their satisfaction. This is
of extreme importance because it allows designers
to evaluate the safety of the original system design
as well as to determine whether proposed design
changes might affect system safety and thus need to
be subjected to special analysis.

Level 2: System Design Principles
Level 2 of an intent specification documents

the basic design principles upon which the system is
built. It also provides the basis of the rationale
behind the design decisions in the levels below.
Finally, the functional structures established here
describe how the requirements and constraints
documented in Level 1 are satisfied.

One of the most important tasks in a complex
system is the creation of an adequate interface
design. For this, the project engineers must consider
all the data dependencies among the software
components of the system. Most likely, the
interface design will be based on the environmental
assumptions documented in level 1. Examples for
MAPS include:

Planner/MAPS: The planner provides route of
travel (in the form of a series of route segments)
and destination to MAPS

Scanner/MAPS: The scanner sends current robot
position information to MAPS when requested.
MAPS will initialize the scanner with information
about bar codes and scanner codes (the location
coordinates of the barcode reflectors).

Level 2 also contains the basic principles
behind the design of the controls and displays. The
description of the human machine interface will

include links to the assumptions and requirements
on the operator tasks documented in level 1. In
addition, a set of operator task design principles
must be established. These describe the tasks for
which the operator is responsible. A clear
description of these procedures will enable the
production of complete and accurate training
requirements and manuals.

The core of the level 2 of an intent
specification is the set of design principles that
specify how the design will satisfy the requirements
documented in level 1 while not violating any
design constraints. The MAPS level 2 functional
design principles show the functional
decomposition upon which the software logic is
structured. MAPS functionality is divided in four
different operating modes (initialization, computer,
operator, and safety). The functionality for each
mode is designed to be independent of the others.
This feature allows the designers to change the
internal logic of one mode without worrying about
the effect the changes will have on the other modes.
The mode selection logic implements the mode
transitions.

MAPS Design Principles

MAPS-2.1: System initialization will be performed
immediately at startup and will be performed only
once.

Intent: MAPS is responsible for initializing several
robot subsystem prior to the beginning of normal
operations

MAPS-2.2: MAPS shall generate all robot
subsystems control commands from appropriate
destination/movement inputs. [↑ MAPS-1.1,↑SC1]

MAPS-2.2.1: MAPS will not accept any motion
commands until system initialization mode is
complete.

Intent: The normal operation of the system relies on
the correct performance of the subsystems
initialized during startup.

MAPS-2.2.2: MAPS higher-level logic will provide
a consistent way to determine under which mode
the robot is to be controlled. [↑MAPS-1.1, ↑MAPS-
1.1.1, ↑MAPS 1.1.2]

 7

MAPS-2.2.2.1: MAPS will default to Operator
mode of operation after initialization and after
recovery from any type of temporary shutdown or
movement inhibition (such as from the safety fuse).
[↑MAPS-1.1.1.2, ↑MAPS-1.1.2, ↑MAPS-1.1.2.1,
↑SF2, ↑SC1]

Intent: The Operator Mode was chosen as default
because only the human operator is capable of
taking high-level decisions such as determining if
the shuttle hangar area is free of obstacles or
deciding whether the recovery procedure from an
error has been 100% satisfactory.

…

MAPS-2.2.3: Under Safety Mode, MAPS will stop
the robot, prevent further motions, and provide a
set of recovery procedures. [↑SC2,↑MC5]

MAPS-2.2.3.1: When informed by the safety fuse
that motion is not legal; MAPS will cease all
movement operations and inhibit any further
movement operations until informed that movement
is again allowed. [↑SC2,↑SF1,↑MC5]

MAPS-2.2.3.2: When the operator releases the
dead-man switch, a rapid deceleration is required.
This value shall default to TBD but should be
changeable during operations.
[↑Joystick4,↑MC5,↑SC2]

…

MAPS-2.2.5: When operating in Computer mode,
MAPS will accept movement commands from the
Planner and will issue all the necessary commands
to move the robot. The route to the work area will
be specified in the message from the planner as well
as the final destination. [↑ MAPS-1.1.1, ↑MAPS-
1.1.1.1, ↑PL1.2, ↑SC1]

…

MAPS-2.2.5.7: MAPS shall query the laser scanner
to obtain position information. [↑MAPS-1.1.1.3
,↑LS2]

MAPS-2.2.5.7.1: Position determination will occur
prior to the beginning of each route segment when
operating in the Computer mode of operations.
[↑MAPS-1.1.1.3, ↑LS2,↑LS2.1]

MAPS-2.2.5.7.2: Position determination will occur
following the completion of each route segment

when operating in Computer Mode. [↑MAPS-
1.1.1.3, ↑LS2,↑LS2.1]

…

MAPS-2.3: All meaningful events, whether errors
or successful moves, will be logged into a central
log. [↑MAPS-1.2,↑L1]

Each design principle is linked to the level 1
requirements, assumptions, or constraints on which
that they depend. The design principles are also
linked to the level 3 blackbox model (the downward
links are not shown here).

Level 3: Black Box Behavior
Level 3 is designed to provide the system

designers with a complete set of tools with which to
validate the specified requirements before
implementation begins. Only blackbox (externally
visible) behavior is included, i.e., the input/output
function to be computed by the component. In
engineering terminology, this is sometimes called
the transfer function across the component.
Blackbox models assist in the requirements review
process by eliminating implementation details that
do not affect external behavior and thus are not
relevant in the validation of the requirements. For
this purpose, a model of the MAPS control software
was produced using the formal specification
language SpecTRM-RL.

SpecTRM-RL is built upon a traditional Mealy
automaton although users of the model need not be
familiar with the underlying mathematical model.
The notation has been designed to be practical for
specifying very large and complex systems and to
include all the information needed to build such
systems.

A SpecTRM-RL model has three components:
(1) a specification of the supervisory interface to the
component, (2) a specification of the control modes
for the component, and (3) a model of the
controlled process or plant including relevant
operating modes, state variables, and interface
variables (measured and manipulated process

 8

variables as reflected by the inputs and outputs to
the controller).

Once the model is built it can be validated
using human review by domain experts, simulation
and execution in a simulation environment, and
analysis tools specially created for this type of
model (as stated earlier, to evaluate completeness
and consistency, hazardous behavior, robustness,
and mode confusion).

Figure 5 shows the graphical part of the MAPS
blackbox model. The graphical notation purposely
mimics the typical engineering drawing of a control
loop. The upper left quadrant (gray box in figure 5)
displays the possible supervisory modes under
which MAPS can operate. MAPS has two
supervisory modes, depending on whether the
operator or the Planner is responsible for
controlling the robot movement.

The bottom left quadrant contains the
operating modes for the controller itself. These are
not internal states of the system but simply
represent externally visible behavior about the
controller's modes of operation.

The right half of the MAPS model represents

inferred information about the states of the
controlled systems. For MAPS, most of the state
variables defined are related to the condition of the
robot subsystems. The definition of how these state
values change is essentially the specification of the
control laws that MAPS must enforce.

Figure 4 shows an example of how legal state
value changes are defined in SpecTRM-RL. The
value of the Deadman Switch state depends on the
input value received and the timing constraints
defined on that input (shown elsewhere in the
specification).

Notice the use of AND/OR tables in figure 4.
An AND/OR table evaluates to true if any of its
columns evaluates to true. A column is true if all of
its rows that have a "T" are true and all of its rows

with an "F" are false. Rows containing an asterisk
represent "don't care" (or irrelevant) conditions. For
the Deadman switch case, the "Pressed" table
evaluates to true if the current corresponding input
value is "Pressed". The Deadman switch
"Unknown" table evaluates to true if the system is
in startup (row1) or the Deadman switch input has
become obsolete (row2). One of the analysis tools
checks to make sure that the specification is
deterministic, that is, only one column can be true
at a time.

Note that all the system state variables in a
SpecTRM-RL model are required to have an
"Unknown" value. A very common error found in
requirements specifications and often associated
with accidents is assuming that the computer
always has an accurate (up-to-date) model of the
controlled system. If input processing and feedback
is disrupted for some reason (including temporary
halting of the computer itself), however, the
assumed controlled-system state may inaccurately
reflect the real state. In SpecTRM-RL models, each
state variable defaults to the unknown value at
startup and returns to the unknown value after
interruptions in processing or expected (and
necessary) inputs are not received.

 Deadman Switch
 State Value

 DEFINITION
= Pressed

Deadman-Switch-Status = Pressed T

= Depressed

Deadman-Switch-Status = Depressed T

= Unknown

Startup T *
Deadman-Switch-Status = Obsolete * T

Figure 4: Example of state transitions definition

Returning to figure 5, note that the control
inputs originating from the MAPS supervisor(s)

 9

SUPERVISORY MODE

CONTROL MODE

INFERRED SYSTEM STATES

Initialization Mode

Computer Mode

Operator Mode

Safety Mode

Computer

Operator Normal - ON

Normal - OFF

Shutdown

Failure

Motor Controller

Unknown

Normal-
Undeflected

Normal - Deflected

Shutdown

Failure

Joystick

Unknown

Normal

Unknown

Failure

Planner

Pressed

Depressed

Deadman Switch

Unknown

ON (Safe)

ON (Unsafe)

OFF

Unknown

Safety Circuit

Target Zone

Intermediate Zone

Outside Safe Work
Area

Dead Zone

Area

Unknown

Normal

Lost

Shutdown

Failure

Scanner

Unknown

Deployed

Retracted

Transition

Shutdown

Stabilizers

Unknown

Failure

Deployed

Stowed

Failure

Manipulator Arm

Unknown

Motor Controller
Scanner

Stabilizers

Safety Circuit Manipulator Arm

Control Commands

Feedback

Input Values

Planner
(AI-based

Control
Software)

Graphical
User

Interface
(GUI)

MODEL OF THE MAPS CONTROL SOFTWARE SYSTEM

Human
Operator

Displays
Controls

Figure 5: Graphical model of MAPS

 10

Scanner Initialization Request
Output Command

Destination: Scanner
Acceptable Values: {Valid ,Invalid}
 Units: N .A.
 Granularity: N .A.
 Exception-Handling: N .A. (1-bit assumed)
 Hazardous Values:
Timing Behavior:
 Initiation Delay:
 Completion Deadline:
 Exception-Handling: Assumes value Invalid
Feedback Information:
 Variables: Scanner-Acknowledgement, Scanner-Status
 Values: {Valid ,Invalid}, {Off,Ready,Lost,Failure} respectively
 Relationship: Valid : Scanner-Acknowledgement{Valid} received within x seconds; Scanner-Status{Ready} or

{Lost} received within y seconds (y>x assumed)
 Min. time (latency):
 Max. time:
 Exception Handling: Scanner state set to value Failure
Reversed By:
Description: During startup (or after a scanner failure), MAPS must provide the proper commands to initialize the

scanner. See also Scanner Initialization Data.
References: MAPS-2.1.3

DEFINITION
= Valid

MAPS Operating Mode in_state Initialization Mode T *
MAPS Operating Mode in_state Safety Mode * T

Scanner in_state Failure * T
Ready to initiate recovery * T

= Invalid

MAPS Operating Mode in_state Initialization Mode F F F
MAPS Operating Mode in_state Safety Mode F * *

Scanner in_state Failure * F *
 Ready to initiate recovery * * F

Figure 6: Example of an output command

(i.e., the human operator and the Planner) are
shown to the left of the MAPS model. Inputs
coming from simple sensors (like the safety circuit)
are shown above the model. Finally, the output
commands to the devices being controlled (like the
Motor Controller or the scanner) are shown to the
right of the MAPS model.

An example output command specification is
shown in figure 6. Besides the AND/OR tables
already discussed, the output command
specifications have a number of fields containing

information critical to the completeness of the
specification. We have identified about 60
completeness criteria for requirements
specifications that are particularly related to safety.
Industrial projects have been using these
successfully in a checklist format, but such
checklists have drawbacks. To assist in evaluating
completeness and in reviewing requirements, the
SpecTRM-RL modeling language either includes
the information necessary to satisfy most of these

 11

completeness criteria or simple tools can check
them automatically.

For example, accidents have resulted when
software did not include checks on the feedback
information provided about the effect of previous
output commands. Such feedback information (an
example is shown in Figure 6) makes engineers
consider carefully not only what their expectations
are regarding the nature of the system interactions,
but also forces them to provide a backup plan for
those occasions when the expectations are not met.
Overall, the blackbox SpecTRM-RL language
encourages models to be built that help engineers
focus their efforts on those issues fundamental to
the safety of the system.

Conclusions and Future Work
The goal of intent specifications is to support

the systems engineering techniques fundamental to
the successful development of large and complex
software-controlled systems. The formal
specification language SpecTRM-RL, used for
blackbox behavioral modeling on Level 3, provides
engineers with a tool to review and validate
requirements specifications.

References
[1] Leveson, N.G., “Intent Specifications: An
Approach to Building Human-Centered
Specifications,” IEEE Transactions on Software
Engineering, Vol. 26, No. 1, pp. 15-35, January
2000.

[2] Leveson, N.G., Safeware: System Safety and
Computers, Addison-Wesley Publishing Company,
1995.

[3] Leveson N.G., “Completeness in Formal
Specification Language Design for Process-Control
Systems,” ACM Formal Methods in Software
Practice, Portland, August 2000.

[4] Zimmerman, Marc, Investigating the
Readability of Formal Specification Languages,
MIT Aeronautics and Astronautics S.M. Thesis,
May 2001

[5] Zimmerman M., M. Rodriguez, B. Ingram, M.
Katahira, M. de Villepin, N.G. Leveson. “Making

Formal Methods Practical,” Digital Aviation
Systems Conference, October 2000.

[6] Leveson, N.G. et al., “Demonstration of a Safety
Analysis on a Complex System”, Software
Engineering Laboratory Workshop, NASA
Goddard, December 1997.

[7] Rodriguez, M., M. Zimmerman, M. Katahira,
Maxime de Villepin, B. Ingram, and N.G. Leveson,
“Identifying Mode Confusion Potential in Software
Design”, Digital Aviation Systems Conference
(DASC), October 2000.

[8] Dowling, K.R., R Bennett, M. Blackwell, T.
Graham, S. Gatrall, R. O’Toole, and H. Schempf,
“A Mobile Robot System for Ground Servicing
Operations on the Space Shuttle”, Cooperative
intelligent robotics in space III; Proceedings of the
Meeting, Boston, MA, Nov. 16-18, 1992 (A93-
29101 10-54). Bellingham, WA, Society of Photo-
Optical Instrumentation Engineers, 1992, p. 298-
309.

 12

	Abstract
	Introduction
	The Tessellator Robot Example
	The Tessellator Robot

	MAPS Intent Specification
	Level 1: System Purpose
	Level 2: System Design Principles
	Level 3: Black Box Behavior

	�
	Conclusions and Future Work
	References

