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Abstract 
Intent specifications are a new way to structure 

specifications to support human problem solving,  
system and software development and evolution, 
traceability, and specification of design rationale. 
An intent specification provides a hierarchical 
abstraction based on intent ("why") in addition to 
the usual "what" and "how." For a given system 
being specified, an intent specification defines 
seven levels, each one of them supporting a 
different type of reasoning about the system. Each 
level is mapped to the appropriate parts of the intent 
levels above and below it, providing a means to 
trace design rationale and decisions from high-level 
system requirements and constraints down to code 
and vice versa (from code to specifications, 
requirements, and safety analyses). The third level 
of an intent specification contains a black-box 
model that uses an executable formal specification 
language, SpecTRM-RL, which provides special 
support for requirements review and analysis -- 
particularly for completeness and safety.  
SpecTRM-RL models can be mathematically 
analyzed and checked for various properties, 
including human-computer interaction properties 
such as mode confusion. They can also be executed 
as part of system simulations. 

 
The approach is demonstrated using an 

industrial robot designed to service the heat 
resistant tiles on the Space Shuttle. 

 

Introduction 
Intent Specifications are a new way of 

structuring system and software specifications to 
support the development of large and complex real-

time control systems [1].  Special attention is given 
to the support of system safety techniques 
throughout the entire development process. 

 
The specifications are organized along two 

dimensions: intent abstraction and part-whole 
abstraction (see Figure 1). The intent dimension 
specifies seven hierarchical levels that each support 
a different type of reasoning about the system. The 
part-whole dimension is itself divided into 
refinement and decomposition, providing a way to 
structure the pertinent information within each 
level. 

 
Lack of documentation and analysis of design 

decisions in any engineering project can lead to 
serious development delays and cost overruns, 
losses and disruptions during operations, and 
serious problems in upgrading and evolving the 
system design [2]. Specifying design rationale is 
particularly important to being able to change 
complex systems without introducing errors or 
inadvertently reversing decisions that should not be 
reversed. The fear of making such mistakes has on 
occasion led to leaving obsolete functions in the 
design (which, itself, has led to accidents).  In either 
case, the safety of the system is compromised by 
the lack of documentation of necessary 
information.    

 
The traditional specification models establish 

what-how relationships between the hierarchical 
levels. That is, they enumerate what functions are 
required and how they are accomplished.  The 
intent or "why" relationship adds the ability to keep 
track of the rationale behind system design 
decisions and changes.  Each intent level contains 
intent information ("why") about the level below. 
The levels are mapped to the appropriate parts of 
the intent levels above and below, providing  
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Figure 1: The structure of an intent specification for a complex software system 

 
 

traceability of high-level system requirements and 
constraints all the way to code and vice versa. 
 

Each intent level supports a different type of 
reasoning about the system. The Management level 
(level 0) provides a bridge from the contractual 
obligations and the management planning needs to 
the high-level engineering design plans. The 
System Purpose (level 1) assists system engineers 
in their reasoning about system-level goals, 
constraints, and limitations. It also documents basic 
hazard analysis and contains a hazard log to track 
the safety engineering activities.  The system safety 
analysis is used to establish safety-related system 
and software requirements and design constraints. 

 
The System Principles level (level 2) 

documents the system in terms of the physical 
principles and laws upon which the design is based. 
Complete functional structures and interfaces 
between components are defined at this point.  This 
level also documents task models and other results 

of human factors analyses for systems containing 
human operators.  Display and control information 
is defined as well.  

 
The Blackbox level (level 3) allows the 

designers to study the logical design of the system 
using a formal modeling language called 
SpecTRM-RL [3].  The tools associated with this 
language produce executable and analyzable 
models that engineers can use to study the complex 
interactions between the different components of 
the system.  SpecTRM-RL models can be built for 
the non-software components also, or they can be 
executed together with simulations and prototypes 
of hardware components. 

 
The Design Representation level (level 4) 

presents a detailed implementation-dependent 
software design as well as any applicable hardware 
design specifications. The Physical Representation 
level (level 5) contains the actual software and 
hardware implementation of the system as well as 
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any necessary training and maintenance manuals. 
Finally, the System Operations level (level 6) 
includes information produced during the actual 
operation of the system, which can be used in 
operational audits, performance analyses, 
operational safety analyses, and change analysis. 

 
Each level also contains documentation of the 

plans and results of the verification and validation 
appropriate for the design decisions contained in 
each level. 

 
A goal behind intent specifications is to 

support a human-centered, safety-driven 
development process methodology.  The 
specifications are human-centered not only in terms 
of supporting the design and integration of human-
automation interaction into the system engineering 
process but also in basing the specification structure 
on what is known about how expert problem solvers 
and the most successful engineers approach system 
development tasks. 

 
The specifications support safety-driven 

development by tightly integrating the system 
safety process and the information resulting from it 
into the system engineering process and decision-
making environment.  The goal is to support the 
design of safe systems rather than simply the 
attempt to verify safety after-the-fact.  Safety-
related design decisions are linked to hazard 
analyses and design implementations so that 
assurance of safety is also enhanced as well as any 
analyses required when changes are proposed. 

 
Unlike most formal specification languages, 

the formal language used in Level 3, called 
SpecTRM-RL, has been designed with readability 
and reviewability and minimal training 
requirements (5 to 10 minutes) as the top priority, 
as well as a notation that is close to the way 
engineers think about systems.   

 
Experiments have been conducted to determine 

the best way to present the information [4] and the 
experimental results have been validated by use of 
the language on several demonstration systems 
including a real Flight Management System [5] and 
an Air Traffic Control system upgrade project [6]. 

 

Various types of analysis techniques have been 
developed for SpecTRM-RL models including 
completeness and consistency analysis, a form of 
robustness analysis called Software Deviation 
Analysis, software hazard analysis, and mode 
confusion analysis [7] (for potential operator mode 
confusion caused or aggravated by the design of the 
automation).  

The Tessellator Robot Example 
In the next sections, an intent specification 

(levels 1 through 3 only) for a robotic system is 
described along with examples from the 
specification.  The example system is not only 
safety-critical, but it includes jointly shared control 
of the system by computers and humans. 

 

The Tessellator Robot 
 
The underside of the Space Shuttle is covered 

by approximately 17,000 silica heat-resistant tiles 
that shield its aluminum skin from the 3000-degree 
Fahrenheit temperatures the orbiter encounters as it 
passes through Earth's atmosphere to land.  These 
tiles have a glazed coating over soft and highly 
porous silica fibers. The tiles were designed to be 
extremely light and are 95% air by volume. 

 
Unfortunately, this excellent design has a 

negative side effect: the tiles are extremely 
hydrophilic, being capable of absorbing enough 
water to create a substantial weight problem. To 
avoid it, the Space Shuttle tiles are waterproofed 
through the use of a specialized hydrophobic 
chemical, DMES, which must be injected into every 
tile. This process must be repeated after each 
mission because the waterproofing chemical burns 
off during the orbiter's re-entry into Earth's 
atmosphere. 

 
This waterproofing task traditionally has been 

done manually.  Dowling et al. [8] report on the 
creation of a robot, called Tessellator, to carry out 
these thermal protection tasks previously done by 
ground personnel. The main objective of their effort 
is to decrease the time needed to perform the 
waterproofing operations while increasing the 
safety of the overall ground operations tasks 
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(DMES is a toxic chemical, and workers have to 
wear protective gear on the job).  

 
In addition, the robot is also designed to 

inspect each tile for possible damage. See Figure 2 
for a picture of the robot developed by the CMU 
team. 

 

 

         Figure 2: Tessellator robot 

 
The Tessellator has a computing environment 

consisting of four on-board computers and one off-
board database. The on-board computers control the 
Tessellator's high-level processing tasks, base and 
manipulator motions; monitor robot health and 
status; and controls the robot's vision and injection 
systems. The software for the robot comprises a 
large part of the entire system.  MAPS---the 
Mobility and Positioning Software---issues 
commands to the motor controller which controls 
movement of the mobile base of the robot.  MAPS 
is in turn controlled either by a destination and 
route provided by the Planner (AI-based software) 
or by a human-operated joystick.  

MAPS Intent Specification 
For the purpose of demonstrating Intent 

Specifications, we will focus on MAPS only. This 
part of the robot software is of special interest 
because it is responsible for many of the safety-
related functions.  Intent specification examples are 
drawn only from levels 1, 2, and 3.  Note that the 
original MAPS design has been modified to make it 
more interesting for study. 

Level 1: System Purpose 
Level 1 of an intent specification contains the 

goals, high-level functional requirements, 
constraints, and environmental assumptions 
corresponding to the system under study. The 
primary goal of MAPS is defined to be: 

 

Goal 1: MAPS shall control the movement of the 
robot around the work area to position the robot 
base in the appropriate hangar locations so that the 
tiles can be serviced.  

 

Examples of MAPS high-level functional 
requirements include: 
 

MAPS-1.1: MAPS shall process control commands 
to several Tessellator subsystems (Motor 
Controller, Legs, Scanner) to ensure the robot base 
moves according to the requests issued by the 
Planner or the operator. [↓MAPS-2.2, ↓MAPS-
2.2.2] 

MAPS-1.1.1:  MAPS shall be able to operate in 
Computer Mode (target position provided by the 
Planner). [↓MAPS-2.2.2, ↓MAPS-2.2.2.2, ↓MAPS-
2.2.2.6, ↓MAPS-2.2.4] 

Intent: The Planner is able to direct the robot 
efficiently so the robot meets all the required 
performance deadlines. 

… 

MAPS-1.1.1.3:  While in Computer Mode, MAPS 
shall prompt the laser scanner automatically. 
[↓MAPS-2.2.5.7, ↓MAPS-2.2.2.5.7.1, ↓MAPS-
2.2.2.5.7.2] 

Intent: MAPS can use the position information to 
correct the robot trajectory and figure out when the 
final position has been reached. 

… 

MAPS-1.2: MAPS is responsible for sending 
messages to the system log about events and errors. 
[↓MAPS-2.3] 

Intent: The recording of a variety of performance 
data will enable NASA system engineers fine-tune 
the software controlling the robot.    
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For traceability purposes, the high-level 
functional requirements are linked to the level 2 
system design principles that satisfy them.  

 

One of the major tasks in this part of the 
specification is to identify the boundaries of the 
system and enumerate assumptions the designers 
should use about the other components with which 
MAPS is to interact.  Figure 3 presents an overview 
of the Tessellator system. Examples of 
environmental assumptions are: 

 

Motor Controller 

 

MC1: When commanded to do so, the motor 
controller will provide power to the motor, which 
will drive the robot wheels.  

MC2: The robot may be driven in all three degrees 
of freedom (X,Y,θ), either singly or in any 
combination.  

MC3: The robot may be driven in position (relative 
displacement) or velocity mode.  

MC4: During power-up or following any error, the 
Motor Controller must be reset before sending it 
any orders. 

MC5: The Motor Controller is able to stop the 
motion of the robot within 0.2 seconds of receiving 
a ‘stop’ command    

 

Location System 

 

LS1: The scanner must be initialized before first use 
with bar codes and scanner codes (the location 
coordinates of the barcode reflectors). 

LS2: Upon request, the laser scanner will provide 
the current position of the robot in the form of 
global location coordinates with an accuracy of 
TBD.  

LS2.1: The robot base must stop before a reading 
takes place. 

Intent: The scanner triangulation calculations 
assume a static base and cannot correct their 
readings to take into account the robot base motion. 

 

Additional assumptions were defined for other 
elements as well: Planner, stabilizers, safety circuit, 
manipulator arm, injection system, vision system, 
proximity-sensing system, digital camera, operator, 
displays and controls, and the work area. The 
assumption and requirements on the operator are 
especially important since they play a key role in 
the design of the operator interface, the modeling of 
the operator tasks and procedures as well as in the 
writing of training plans and programs. 

 

Level 1 also contains the preliminary hazard 
analysis and hazard log.  The first step in a system 
safety engineering process is to identify system 
hazards.  For example, a MAPS-related hazard 
involves the loss of stability of the robot base: 
 

Hazard 3 (H3): Robot base becomes unstable 

 Subsystem: MAPS, stabilizers 

High-Level Causal Factors: Stabilizers not 
deployed while arm extended; Stabilizers retracted 
while arm extended; Robot falls over while crossing 
cover 

 Level and Effect:A2-4; Damage to Tessellator 
robot. 

Safety Constraints: [SC7] [SC8] 

 

From the list of hazards, the engineers must 
define safety-related system requirements and 
design constraints that ensure the robot never gets 
into one of the identified hazardous states.  For 
example, the safety constraints that result from H3 
are:
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Figure 3: System overview of the Tessellator robotic system 
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 [SC7]: Manipulator arm must move only when 
stabilizers are deployed. [↓ MAPS-2.2.5.10.3] 

[SC8]: Stabilizer legs must not be retracted until 
manipulator arm is fully stowed. [↓MAPS-2.2.5.10, 
↓MAPS-2.2.6.9.2] 

The safety constraints are then traced to those 
design features that ensure their satisfaction. This is 
of extreme importance because it allows designers 
to evaluate the safety of the original system design 
as well as to determine whether proposed design 
changes might affect system safety and thus need to 
be subjected to special analysis. 

 

Level 2: System Design Principles 
Level 2 of an intent specification documents 

the basic design principles upon which the system is 
built.  It also provides the basis of the rationale 
behind the design decisions in the levels below. 
Finally, the functional structures established here 
describe how the requirements and constraints 
documented in Level 1 are satisfied. 

 

One of the most important tasks in a complex 
system is the creation of an adequate interface 
design. For this, the project engineers must consider 
all the data dependencies among the software 
components of the system. Most likely, the 
interface design will be based on the environmental 
assumptions documented in level 1.  Examples for 
MAPS include: 

 
Planner/MAPS: The planner provides route of 
travel (in the form of a series of route segments) 
and destination to MAPS 

Scanner/MAPS: The scanner sends current robot 
position information to MAPS when requested. 
MAPS will initialize the scanner with information 
about bar codes and scanner codes (the location 
coordinates of the barcode reflectors).     

Level 2 also contains the basic principles 
behind the design of the controls and displays. The 
description of the human machine interface will 

include links to the assumptions and requirements 
on the operator tasks documented in level 1. In 
addition, a set of operator task design principles 
must be established. These describe the tasks for 
which the operator is responsible. A clear 
description of these procedures will enable the 
production of complete and accurate training 
requirements and manuals. 

 

The core of the level 2 of an intent 
specification is the set of design principles that 
specify how the design will satisfy the requirements 
documented in level 1 while not violating any 
design constraints. The MAPS level 2 functional 
design principles show the functional 
decomposition upon which the software logic is 
structured. MAPS functionality is divided in four 
different operating modes (initialization, computer, 
operator, and safety). The functionality for each 
mode is designed to be independent of the others. 
This feature allows the designers to change the 
internal logic of one mode without worrying about 
the effect the changes will have on the other modes. 
The mode selection logic implements the mode 
transitions. 

 

MAPS Design Principles  

MAPS-2.1: System initialization will be performed 
immediately at startup and will be performed only 
once. 

Intent: MAPS is responsible for initializing several 
robot subsystem prior to the beginning of normal 
operations 

MAPS-2.2: MAPS shall generate all robot 
subsystems control commands from appropriate 
destination/movement inputs. [↑ MAPS-1.1,↑SC1] 

MAPS-2.2.1: MAPS will not accept any motion 
commands until system initialization mode is 
complete. 

Intent: The normal operation of the system relies on 
the correct performance of the subsystems 
initialized during startup. 

MAPS-2.2.2: MAPS higher-level logic will provide 
a consistent way to determine under which mode 
the robot is to be controlled. [↑MAPS-1.1, ↑MAPS-
1.1.1, ↑MAPS 1.1.2] 
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MAPS-2.2.2.1: MAPS will default to Operator 
mode of operation after initialization and after 
recovery from any type of temporary shutdown or 
movement inhibition (such as from the safety fuse). 
[↑MAPS-1.1.1.2, ↑MAPS-1.1.2, ↑MAPS-1.1.2.1, 
↑SF2, ↑SC1] 

Intent: The Operator Mode was chosen as default 
because only the human operator is capable of 
taking high-level decisions such as determining if 
the shuttle hangar area is free of obstacles or 
deciding whether the recovery procedure from an 
error has been 100% satisfactory.    

… 

MAPS-2.2.3: Under Safety Mode, MAPS will stop 
the robot, prevent further motions, and provide a 
set of recovery procedures. [↑SC2,↑MC5] 

MAPS-2.2.3.1: When informed by the safety fuse 
that motion is not legal; MAPS will cease all 
movement operations and inhibit any further 
movement operations until informed that movement 
is again allowed. [↑SC2,↑SF1,↑MC5] 

MAPS-2.2.3.2: When the operator releases the 
dead-man switch, a rapid deceleration is required. 
This value shall default to TBD but should be 
changeable during operations. 
[↑Joystick4,↑MC5,↑SC2] 

… 

MAPS-2.2.5: When operating in Computer mode, 
MAPS will accept movement commands from the 
Planner and will issue all the necessary commands 
to move the robot. The route to the work area will 
be specified in the message from the planner as well 
as the final destination. [↑ MAPS-1.1.1, ↑MAPS-
1.1.1.1, ↑PL1.2, ↑SC1] 

… 

MAPS-2.2.5.7: MAPS shall query the laser scanner 
to obtain position information. [↑MAPS-1.1.1.3 
,↑LS2] 

MAPS-2.2.5.7.1: Position determination will occur 
prior to the beginning of each route segment when 
operating in the Computer mode of operations. 
[↑MAPS-1.1.1.3, ↑LS2,↑LS2.1] 

MAPS-2.2.5.7.2: Position determination will occur 
following the completion of each route segment 

when operating in Computer Mode. [↑MAPS-
1.1.1.3, ↑LS2,↑LS2.1] 

… 

MAPS-2.3: All meaningful events, whether errors 
or successful moves, will be logged into a central 
log.  [↑MAPS-1.2,↑L1] 

 

Each design principle is linked to the level 1 
requirements, assumptions, or constraints on which 
that they depend. The design principles are also 
linked to the level 3 blackbox model (the downward 
links are not shown here). 

 

Level 3: Black Box Behavior 
Level 3 is designed to provide the system 

designers with a complete set of tools with which to 
validate the specified requirements before 
implementation begins.  Only blackbox (externally 
visible) behavior is included, i.e., the input/output 
function to be computed by the component.  In 
engineering terminology, this is sometimes called 
the transfer function across the component.  
Blackbox models assist in the requirements review 
process by eliminating implementation details that 
do not affect external behavior and thus are not 
relevant in the validation of the requirements.  For 
this purpose, a model of the MAPS control software 
was produced using the formal specification 
language SpecTRM-RL. 

 

SpecTRM-RL is built upon a traditional Mealy 
automaton although users of the model need not be 
familiar with the underlying mathematical model.  
The notation has been designed to be practical for 
specifying very large and complex systems and to 
include all the information needed to build such 
systems. 

 

A SpecTRM-RL model has three components:  
(1) a specification of the supervisory interface to the 
component, (2) a specification of the control modes 
for the component, and (3) a model of the 
controlled process or plant including relevant 
operating modes, state variables, and interface 
variables (measured and manipulated process 
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variables as reflected by the inputs and outputs to 
the controller).  

 

Once the model is built it can be validated 
using human review by domain experts, simulation 
and execution in a simulation environment, and 
analysis tools specially created for this type of 
model (as stated earlier, to evaluate completeness 
and consistency, hazardous behavior, robustness, 
and mode confusion). 

 

Figure 5 shows the graphical part of the MAPS 
blackbox model.  The graphical notation purposely 
mimics the typical engineering drawing of a control 
loop. The upper left quadrant (gray box in figure 5) 
displays the possible supervisory modes under 
which MAPS can operate. MAPS has two 
supervisory modes, depending on whether the 
operator or the Planner is responsible for 
controlling the robot movement. 

 

The bottom left quadrant contains the 
operating modes for the controller itself. These are 
not internal states of the system but simply 
represent externally visible behavior about the 
controller's modes of operation. 

 
The right half of the MAPS model represents 

inferred information about the states of the 
controlled systems. For MAPS, most of the state 
variables defined are related to the condition of the 
robot subsystems. The definition of how these state 
values change is essentially the specification of the 
control laws that MAPS must enforce. 

 

Figure 4 shows an example of how legal state 
value changes are defined in SpecTRM-RL. The 
value of the Deadman Switch state depends on the 
input value received and the timing constraints 
defined on that input (shown elsewhere in the 
specification).  

Notice the use of AND/OR tables in figure 4.  
An AND/OR table evaluates to true if any of its 
columns evaluates to true. A column is true if all of 
its rows that have a "T" are true and all of its rows 

with an "F" are false. Rows containing an asterisk 
represent "don't care" (or irrelevant) conditions. For 
the Deadman switch case, the "Pressed" table 
evaluates to true if the current corresponding input 
value is "Pressed".  The Deadman switch 
"Unknown" table evaluates to true if the system is 
in startup (row1) or the Deadman switch input has 
become obsolete (row2).   One of the analysis tools 
checks to make sure that the specification is 
deterministic, that is, only one column can be true 
at a time. 

 

Note that all the system state variables in a 
SpecTRM-RL model are required to have an 
"Unknown" value.  A very common error found in 
requirements specifications and often associated 
with accidents is assuming that the computer 
always has an accurate (up-to-date) model of the 
controlled system.  If input processing and feedback 
is disrupted for some reason (including temporary 
halting of the computer itself), however, the 
assumed controlled-system state may inaccurately 
reflect the real state.  In SpecTRM-RL models, each 
state variable defaults to the unknown value at 
startup and returns to the unknown value after 
interruptions in processing or expected (and 
necessary) inputs are not received.  

 
 
             Deadman Switch 
                                    State Value 
 
 
                         DEFINITION 
= Pressed  

Deadman-Switch-Status = Pressed   T 
 
= Depressed  

Deadman-Switch-Status = Depressed   T 
 
= Unknown 

Startup  T *    
Deadman-Switch-Status = Obsolete  *  T  

 
 

Figure 4: Example of state transitions definition  

 

Returning to figure 5, note that the control 
inputs originating from the MAPS supervisor(s)  
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Scanner Initialization Request 
Output Command 

 
Destination: Scanner  
Acceptable Values: {Valid ,Invalid} 
   Units: N .A. 
   Granularity: N .A. 
   Exception-Handling: N .A. (1-bit assumed) 
   Hazardous Values:  
Timing Behavior:  
   Initiation Delay:  
   Completion Deadline:  
   Exception-Handling: Assumes value Invalid  
Feedback Information:  
   Variables: Scanner-Acknowledgement, Scanner-Status 
   Values: {Valid ,Invalid}, {Off,Ready,Lost,Failure} respectively 
   Relationship: Valid : Scanner-Acknowledgement{Valid} received  within x seconds; Scanner-Status{Ready} or 

{Lost} received  within y seconds (y>x assumed) 
   Min. time (latency):  
   Max. time:  
   Exception Handling: Scanner state set to value Failure 
Reversed By:  
Description: During startup (or after a scanner failure), MAPS must provide the proper commands to initialize the 

scanner. See also Scanner Initialization Data. 
References: MAPS-2.1.3  
 

DEFINITION  
= Valid  

MAPS Operating Mode in_state Initialization Mode  T  *  
MAPS Operating Mode in_state Safety Mode  *  T  

Scanner in_state Failure  *  T  
Ready to initiate recovery  *  T  

 
= Invalid  

MAPS Operating Mode in_state Initialization Mode  F  F  F  
MAPS Operating Mode in_state Safety Mode  F  *  *  

Scanner in_state Failure  *  F  *  
 Ready to initiate recovery  *  *  F  

 
  

Figure 6: Example of an output command  

 

(i.e., the human operator and the Planner) are 
shown to the left of the MAPS model.  Inputs 
coming from simple sensors (like the safety circuit) 
are shown above the model.  Finally, the output 
commands to the devices being controlled (like the 
Motor Controller or the scanner) are shown to the 
right of the MAPS model.  

An example output command specification is 
shown in figure 6.  Besides the AND/OR tables 
already discussed, the output command 
specifications have a number of fields containing 

information critical to the completeness of the 
specification.  We have identified about 60 
completeness criteria for requirements 
specifications that are particularly related to safety. 
Industrial projects have been using these 
successfully in a checklist format, but such 
checklists have drawbacks.  To assist in evaluating 
completeness and in reviewing requirements, the 
SpecTRM-RL modeling language either includes 
the information necessary to satisfy most of these 
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completeness criteria or simple tools can check 
them automatically. 

 

For example, accidents have resulted when 
software did not include checks on the feedback 
information provided about the effect of previous 
output commands.  Such feedback information (an 
example is shown in Figure 6) makes engineers 
consider carefully not only what their expectations 
are regarding the nature of the system interactions, 
but also forces them to provide a backup plan for 
those occasions when the expectations are not met.  
Overall, the blackbox SpecTRM-RL language 
encourages models to be built that help engineers 
focus their efforts on those issues fundamental to 
the safety of the system. 

Conclusions and Future Work 
The goal of intent specifications is to support 

the systems engineering techniques fundamental to 
the successful development of large and complex 
software-controlled systems.  The formal 
specification language SpecTRM-RL, used for 
blackbox behavioral modeling on Level 3, provides 
engineers with a tool to review and validate 
requirements specifications. 
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