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Abstract 
Despite its potential, formal methods have 

had difficulty gaining acceptance in the industrial 
sector.  Some complaints are based on supposed 
impracticality:  Many consider formal methods to 
be an approach to system specification and analysis 
that requires a large learning time.  Contributing to 
this skepticism is the fact that some types of formal 
methods have not yet been proven to handle 
systems of realistic complexity.  To learn more 
about how to design formal specification languages 
that can be used for complex systems and require 
minimal training, we developed a formal 
specification of an English language specification 
of the vertical flight control system similar to that 
found in the MD-11.1  This paper describes the 
lessons learned from this experience. A companion 
paper at this conference describes how the model 
can be used in human--computer interaction 
analysis and pilot task analysis [3]. 

 

1  Introduction 
Formal specifications and mathematical 

analysis theoretically present a way out of the 
dilemma posed by our inability to test even a small 
part of the enormous state space involved in most 
digital systems.  They have the potential for both 
increasing safety and decreasing the cost of 
certifying flight-critical systems.  The past 30 years 
have advanced the state of knowledge about formal 
methods to the point where many important 
problems can be solved.  While formal methods are 
being applied to hardware in industry,  the results of 
formal methods research for software has only 
rarely reached beyond the research lab and been 

                                                      
1 The specification, although realistic, is not identical to the real 
MD-11 software and should not be used to infer anything about 
that aircraft’s software. 

used in industrial practice for day-to-day software 
development. 

Several reasons may be hypothesized for 
the lack of wide-spread adoption.  First, engineers 
are not trained in discrete mathematics and the 
notations are not as parsimonious as continuous 
math.  So while a control law can be represented as 
a differential equation, the discrete mode logic for a 
flight management system might require hundreds 
of pages of formal logic to specify.  The review of 
such specifications by domain experts is a daunting 
task.  In addition, the tools provided for formal 
analysis of such specifications are often difficult for 
engineers to use:  They may require in-depth 
knowledge of discrete mathematics, and may  
require domain experts to translate the problem as 
they understand it in their domain of expertise into 
another domain; for example, they may be required 
to specify a set of axioms that describe the domain 
and to restate the problem in terms of theorems and 
lemmas that they must then prove, perhaps with 
some assistance from an automated tool. 

In addition, the scope and scalability of 
formal methods remain additional concerns both in 
industrial and academic communities.  There has as 
yet been only limited success with applying formal 
methods to complex systems. 

We have been experimenting with the 
design of formal specification languages and 
analysis tools with usability as a major design 
criterion.  This paper describes our experiences and 
experimental results in building and using a formal 
model of the blackbox requirements for a vertical 
flight control system.  The remainder of the paper is 
organized as follows:  Section 2 describes the 
modeling language we selected for this case study, 
SpecTRM-RL, and the resulting model.  Section 3 
describes the lessons learned from the case study 
and how they might be used to point to further 
research directions, and compares the language 
used with others that have been proposed. 
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2  The SpecTMR-RL Specification 
Language 

To learn more about how to design formal 
specification languages, we have been 
experimenting with various language features and 
using the prototype languages to learn more about 
what features should be included in such languages.   
Our latest experimental prototype is called 
SpecTRM-RL (Specification Tools and 
Requirements Methodology—Requirements Lan-
guage).  

SpecTRM-RL is part of a larger 
specification methodology, called Intent 
Specifications, that includes both formal and 
informal specifications [1].  The blackbox 
behavioral requirements specifications (level 3 of 
an intent specification) are described using 
SpecTRM-RL, which has an underlying state-
machine model.  The language itself abstracts away 
from this formal model and emphasizes readability 
and reviewability, which distinguishes it from most 
other formal specification languages. 

Reviewability is arguably one of the most 
important properties of any specification.  The 
specification must not only be reviewable by one 
group trained in the language, but must be readable 
by a large variety of people with diverse 
backgrounds and expertise including system 
designers and developers, customers, users, 
certifiers, etc.  Readability by a general audience 
allows all involved parties to discuss and analyze a 
specification using a single common model.  
Furthermore, our experience in analyzing formal 
specifications for complex systems suggests that the 
most significant errors and omissions will be found 
by human experts rather than automated tools.  This 
fact does not mean that automated tools are not 
useful and important in finding some types of 
errors, especially those that require rather tedious 
checks, but humans are required to determine 
whether a specification conforms with engineering 
expectations and requirements.  In addition, even 
those design or specifications flaws found by tools 
will need to be evaluated by human experts.  
Therefore, readability of system specifications is a 
requirement not only for human understanding of 
complex models but also for human processing of 
the analysis results. 

Readability is also desirable as it has 
associated with it a short familiarization time.  
Certainly any specification language is going to 
require some training in order to understand and 
use.  However, particularly with respect to review, 
this time cannot be too long or it becomes 
impractical to have the large amount of reviewing 
that leads to high-quality specifications and 
software. 

Leveson's research group started to look at 
reviewability and design of formal specification 
languages while creating such a specification for 
TCAS II for the FAA.  Since that time, we have 
been creating specifications of real systems and 
experimenting with specification language features 
with respect to usability.  SpecTRM-RL is the latest 
manifestation of the lessons we have learned to 
date. 

We believe that readability and 
reviewability are enhanced by minimizing semantic 
distance between the reviewer's mental model of the 
system being designed and the specification model.  
Semantic distance can loosely be defined as the 
amount of effort required to translate from one 
model to another.  We believe that the application 
expert's ability to find errors in a requirements 
specification can be enhanced by reducing the 
semantic distance  between their understanding of 
the required process control behavior and the 
specification of that behavior.  This, in turn, implies 
that specifications use familiar engineering 
notations and that they be written in terms of the 
externally observable behavior of the component 
being specified.  Any information related only to 
the implementation of that behavior should not be 
included.  That is, the specification should be 
blackbox.  Thus SpecTRM-RL specifications 
include only the input/output function being 
computed by the component (the transfer function) 
and do not include any information about the 
internal design of the component or how that 
externally visible behavior is actually realized.  In 
fact, the blackbox behavior might be achieved 
through the use of hardware or software.  In 
addition, we hypothesize that state-machine models, 
i.e., a description of a system's behavior in terms of 
states and transitions between states, is a natural   
way for engineers to think about control systems.  
SpecTRM-RL therefore is based on an underlying 
state machine model. 
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  Readability is also enhanced, we believe, 
by limiting the semantic domain of the language.  
SpecTRM-RL was designed primarily for process-
control systems.  The high-levels of the 
specification look very similar to process-control 
diagrams.  Figure 1 shows the basic format of the 
specification.  There are four main parts:  (1) a 
specification of the supervisory modes of the 
controller being modeled, (2) a specification of its 
control modes (3) a model of the controlled process 
(or plant in control theory terminology) that 
includes the inferred operating modes and system 
state (these are inferred from the measured inputs), 
and (4) a specification of the inputs and outputs to 
the controller. The graphical notation mimics the 
typical engineering drawing of a control loop. 

Every automated controller has at least two 
interfaces:  one with the supervisor(s) that issues 
instructions to the automated controller (the 
supervisory interface) and one with each controlled 
system component (controlled system interface).  
The supervisory interface is shown to the left of the 
main controller model while the interface with the 
controlled component is to shown the right.  There 
may be additional interfaces (shown at the top) with 
various environmental sensors. 

The supervisory interface consists of a 
model of the operator controls and a model of the 
displays or other means of communication by 
which the component relays information to the 
supervisor.  Note that the interface models are 
simply the logical view that the controller has of the 
interfaces---the real state of the interface may be 
inconsistent with the assumed state due to various 
types of design flaws or failures.  By separating the 
assumed interface from the real interface, we are 
able to model and analyze the effects of various 
types of errors and failures (e.g., communication 
errors or display hardware failures).  In addition, 
separating the physical design of the interface from 
the logical design (required content) will facilitate 
changes and allow parallel development of the 
software and the interface design.  During 
development, mockups of the physical GUI or 
interface design can be generated and tested using 
the output of the SpecTRM-RL simulator.   

Supervisory modes are used in specifying 
information about the current supervisor of the 
controller and are useful when a component may 
have multiple supervisors at any time.  For 
example, a flight control computer in an aircraft 
may get inputs from the flight management 
computer and also directly from the pilot.  Required 

Figure 1.  The Form of a SpecTRM-RL Specification 
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behavior may differ depending on which 
supervisory mode is currently in effect.  Mode-
awareness errors related to confusion in 
coordination between multiple supervisors can be 
defined (and the potential for such errors 
theoretically identified from the models) in terms of 
these supervisory modes.  In systems with complex 
displays (such as Air Traffic Control systems), it 
may also be useful to define various display modes. 

The bottom left quadrant of Figure 1 
provides information about the control modes for 
the controller itself.  These are not internal states of 
the controller (which are not included in our 
specifications) but simply represent externally 
visible behavior about the controller’s modes of 
operation.  Control Modes are used in describing 
the required behavior of the controller. Modern 
avionics systems may have dozens of modes.  
Control modes may be used in the interpretation of 
the component’s interfaces or to describe the 

component’s required process-control behavior.   

The right half of the controller model 
represents inferred information about the operating 
modes and states of the controlled system (the  
plant in control theory terminology).  A simple 
plant model may include only a few relevant state 
variables.  If the controlled process or component is 
complex, the model of the controlled process may 
be represented in terms of its operational modes and 
the states of its subcomponents.  Operational modes 
are useful in specifying sets of related behaviors of 
the controlled-system (plant) model.  For example, 
it may be helpful to define the operational state of 
an aircraft in terms of it being in takeoff, climb, 
cruise, descent, or landing mode.  

In a hierarchical control system, the 
controlled process may itself be a controller of 
another process.  For example, the flight 
management system may be controlled by a pilot 
and may issue commands to a flight control 
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Figure 2.  SpecTRM-RL Model for the Vertical Flight Control System. 
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computer, which issues commands to an engine 
controller.  If, during the design process, 
components that already exist are used, then those 
plug-in component models can be inserted into the 
SpecTRM-RL process model.  Additionally, parts 
of a SpecTRM-RL model can be reused or changed 
to represent different members of a product family.   

The vertical flight control system for a 
high-tech aircraft like the MD-11 operates as part of 
the flight management system (FMS) and provides 
targets and controls necessary to maintain a 
predetermined vertical profile and provide 
guidance, control, and annunciation functions.    
Using the aircraft position relative to its vertical 
profile and any operational commands from the 
pilot, the guidance function determines appropriate 
altitude, speed, thrust, and pitch targets as well as 
the integrated pitch/thrust control mode necessary 
to maintain the desired trajectory.  The control 
function calculates (in real-time) the pitch 
commands necessary for the aircraft to track the 
targets computed by the guidance functions.  
Finally, annunciation provides information to the 
FCC (flight control computer) to be displayed in the 
cockpit, based on the guidance and control 
functions.  This information includes the flight 
mode, speed target, and altitude targets of the 
aircraft. 

Figure 2 shows the SpecTRM-RL model of 
this system.  Because the system is too large to 
show on one page (or one screen), the specification 
is hierarchically decomposed.  Figure 2 also shows 
the possible values that the Flight Phase state 
variable can assume.  In reality, every state variable 
(including operating modes) listed on the system 
model is associated with a similar set of values. We 
listed only the names of the other state variables for 
space reasons. 

Each piece of this model needs to be 
specified in detail.  As an example, Figure 3 shows 
the specification for the Target Altitude output.  
This variable determines the target altitude for the 
current leg of the aircraft’s path.  The conditions 
under which outputs are assigned values are 
described using a tabular representation called 
AND/OR tables.  Each AND/OR table is divided 
into two parts, Control Modes and State Values.  
The Control Modes section describes the value of 
the control modes necessary for the transition, while 
the State Values section describes the values of and 

conditions on inputs and state variables.  This 
distinction allows the reader to better understand 
each mode of the system’s behavior, and we found 
it helpful in detecting specification errors – 
particularly omissions.   

AND/OR tables are concise representations 
of propositional logic (in disjunctive normal form) 
that we have found to be easily read and interpreted.  
The far left column of the table lists logical 
(boolean) phrases.  Each of the other columns is a 
conjunction of those phrases and contains the 
logical values of the expressions (a ‘ * ’  denotes 
“don’ t care” ).  A column evaluates to true if all of 
its elements are true.  If one of the columns is true, 
then the table evaluates to true.  For example, the 
Target Altitude output figure 3 would be Vertical 
Guidance Climb Target Altitude if the Operating 
Procedure is Airmass Ascent and the current flight 
phase is Takeoff or Climb, OR if the Operating 
Procedure is Climb InterLev and the current flight 
phase is either Takeoff or Climb. 

SpecTRM-RL allows the use of macros.  
Macros are simply named pieces of AND/OR tables 
that can be referenced from within another table.  
For example, figure 4 shows a simple macro that 
was created for this model.  It looks and behaves 
the same as any logic table in the model, but it can 
be referenced from other logic tables.  The Valid 
Aircraft Speed macro will evaluate to true if the 
corresponding AND/OR table evaluates to true.  
While the use of macros is not necessary, we have 
found it simplifies the specification and thus makes 
it easier to understand while also enhancing 
changeability and specification reuse.   Macros, for 
the most part, correspond to typical abstractions 
used by application experts in describing the 
requirements and therefore add to the 
understandability of the specification. In addition, 
we have found this feature convenient for 
expressing hierarchical abstraction and enhancing 
hierarchical review and understanding of the 
specification. 

 

3  Lessons Learned 
Except for Leveson (who acted only as 

reviewer), the other authors (who actually created 
the model) had no previous experience with 
building formal specifications and limited 
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Type: INTEGER

Target Altitude
Output Variable

Destination:  TBD
Feedback Information:

Variables:  UNDEFINED
Values: UNDEFINED
Min time between outputs: 10 MHz
Max time between outputs: UNDEFINED

TRIGGERING CONDITION 

Vertical Guidance Operating Procedure IN_STATE Airmass Ascent T T *  *  

Vertical Guidance Operating Procedure IN_STATE Climb InterLev *  *  T T 

Flight Phase IN_STATE Takeoff T *  T *  

Flight Phase IN_STATE Climb *  T *  T 

 
 
 

TRIGGERING CONDITION 

Vertical Guidance Operating Procedure IN_STATE Airmass Ascent *  T *  

Vertical Guidance Operating Procedure IN_STATE Climb InterLev *  *  T 

Flight Phase IN_STATE Cruise *  T T 

Active Cruise FL Valid () T *  *  

 
 
 

TRIGGERING CONDITION 

Vertical Guidance Operating Procedure IN_STATE Cruise *  T 

Step Climb IN_STATE False *  T 

Clearance Altitude < Active Cruise FL – 250 *  T 

Vertical Guidance Descet Target Alt != -1000 T T 

Active Operational Procedure Valid() T *  

 

Notes: 
The Vertical Guidance Descent Target Altitude is assigned a default of –1000 ft when no other  
Descent Alt Constraints are entered in the flight plan. 

 
 

Control Modes

State Values

Control Modes

State Values

Control Modes

State Values

Initiation Delay:  0 milliseconds
Completion Deadline:  TBD
Exception Handling:  None specified

Exception Handling:  None SpecifiedReferences: N/A

:= Vertical Guidance Climb Target Altitude IF

:= Active Cruise Flight Level IF

:= Vertical Guidance Descent Altitude IF

Figure 3.  SpecTRM-RL Specification for the Target Altitude Output. 
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knowledge of formal specification languages.  
Most, in fact, had never written a requirements 
specification before.  Training involved simply 
reading a paper about SpecTRM-RL and examining 
a simple example specification.  In fact, the 
specifiers (who were all aerospace engineering 
undergraduate and graduate students) worked under 
a handicap as no user documentation or manuals 
were available so they had to rely on the example 
specification (which was trivial compared to the 
specification they were tasked to build). 

We estimate the model took approximately 
8 person months to create.  This result is 
encouraging considering the lack of experience or 
knowledge about either SpecTRM-RL or the MD-
11 flight management system and the lack of 
sophisticated tools to assist in the development.  We 
believe this time could be significantly reduced 
given appropriate tools. 

We found that using SpecTRM-RL to build 
the model was an easier task than our previous 
specification of TCAS-II using RSML.  This result 
is not surprising as lessons learned while building 
the TCAS specification were incorporated into the 

design of SpecTRM-RL.  However, despite the 
improvements of SpecTRM-RL, cognitive 
manageability remained a concern throughout the 
specification task. 

To assist with this manageability, each of 
the specifiers independently discovered the 
usefulness of starting the specification process by 
creating macros.  We have concluded that for very 
complex models (such as a flight management 
system), macros are almost a requirement if humans 
are to be able to handle the complexity involved in 
constructing the specification.  Basically, there 
needs to be some way of organizing the information 
into chunks in order to build a formal specification 
of such a complex system.   Most example formal 
specifications we have seen abstract much of this 
complexity away, but a complete specification 
requires that this information be present.  We found 
that other types of standard information organizing 
tools are also necessary, such as a data dictionary. 

Cognitive manageability was also a concern 
when modifying the specification.  It was often very 
difficult to consider and evaluate the ramifications 
of a potential change.  Verifying the correctness of 
our model was also a painstaking experience.  The 
model was easy to read and (when looked at in 
reasonable chunks) understand, but maintaining an 
accurate mental model of the entire system proved 
to be a challenging, if not impossible, task.  Of 
course this problem is not confined to formal 
specifications---it is an even worse problem with 
large English language specifications.  In fact, we 
believe the SpecTRM-RL specification is much 
easier to review and use than the English 
specification we used to get the information to 
create it.  But tools are needed to assist humans in 
dealing with the complexity of any complete 
specification.  This specification effort has provided 
us with ideas for such tools, which we plan to 
develop and use in further experimentation. 

We did have some simple tools, and we 
found them very useful.  For example, our high-
level, graphical view of the specification helped 
keep the overall structure in mind, and the fact that 
SpecTRM-RL is executable was useful in error-
checking the evolving specification.  A consistency 
and completeness tool identified input conditions 
that were either not accounted for in our 
specification or led to an ambiguous system 
response (i.e., nondeterministic behavior).  

Figure 4.  Sample Macro Definition. 

M a c r o

A i r c r a f t  S p e e d  V a l i d

Parameters: NONE 

Condition: 

FlightPhase IN_STATE Takeoff T *  *  * *  

FlightPhase IN_STATE Climb *  T *  * *  

FlightPhase IN_STATE Cruise *  *  T * *  

FlightPhase IN_STATE Descent *  *  *  T *  

ADC CAS < Vmax + 10 T T T T *  

ADC CAS > Vmin – 20 T T T T *  

FlightPhase IN_STATE Approach *  *  *  * T 

ADC CAS < Vmax + 10 *  *  *  * T 

ADC CAS > Vmin – 10 *  *  *  * T 
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Statecharts-like languages, such as UML and 
RSML, use internal-broadcast events to synchronize 
and order behavior.  We found in our TCAS-II 
project that nearly all errors found in our final 
specification were related to internal events and that 
reviewing event-synchronized specifications was 
extremely difficult and error-prone.  SpecTRM-RL 
does not use events to denote ordering---instead the 
ordering of transitions is specified directly---and we 
found that this greatly simplified the task of 
creating the FMS specification compared to our 
TCAS-II specification. 

We also found that the hierarchical and 
modular structure of SpecTRM-RL was conducive 
to dividing the specification into smaller 
components and specifying these separately.  Any 
usable formal specification language will need this 
feature. 

Based on this experience, a major area of 
our future work will be on the visualization of 
formal specifications.  The graphical model 
conveys a minimal amount of information, but more 
sophisticated visualizations would have been 
helpful.  We plan to experiment with different 
visualization tools that will present meaningful 
information in manageable pieces to help the 
human user develop a mental model in as much 
detail as desired.  Based on our experiences with 
specifying the Vertical Flight Control system, we 
believe that the use of visualization to assist with 
cognitive manageability is the key to making formal 
methods practical for large-scale specifications, and 
thus more attractive to industry.  This direction of 
research is not tied to formal methods alone, but has 
applications to informal specification development 
as well.  The task of simply understanding a large 
system is daunting and can be aided by 
visualization tools, regardless of whether formal 
analysis of a specification is desired.  

 

4  Conclusions 
SpecTRM-RL is our latest experimental 

specification language to assist us in learning more 
about making formal specification practical.  In the 
work described here, we created a formal 
specification of a very complex but real system to 
learn more about how to create such languages.  
Some of the features that we had previously 

introduced proved useful.  For example, while some 
formal specification languages only include 
symbolic or tabular notations, the ability in 
SpecTRM-RL to create and hierarchically 
decompose a graphical model of the system proved 
to be critical.  We cannot imagine how cognitive 
manageability could be achieved using  
specification languages that do not provide this 
feature.   

In addition, the substitution of tabular and 
other formats for propositional logic and other 
mathematical notations was critical not only in 
reading the specification but in creating it.  We have 
found that some specification language features are 
also very helpful in detecting important omissions 
and other specification errors: These are described 
in more detail elsewhere [2].   Not using internally 
broadcast events also seemed to simplify the effort 
involved in creating and understanding a complex 
specification. 

We are taking what we learned from this 
effort and developing more experimental tools to 
evaluate new ideas.  A major area of future effort 
will be on visualization and tools to assist in 
organizing the information used in developing a 
specification.  We are also working on various 
types of analysis tools.   
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