
Reducing the Effects of Requirements Changes through
System Design

Israel Navarro, Nancy Leveson, Kristina Lundqvist
Massachusetts Institute of Technology

Software Engineering Research Laboratory, 33-313
Cambridge, MA 02139

ABSTRACT
The continuous stream of requirements changes that often takes
place during software development can create major problems in
the development process. This paper defines a concept we call
semantic coupling that along with features of intent specifications
can be used during system design to reduce the impact of
changing requirements. The practicality of using the approach on
real software is demonstrated using the intent specification of the
control software for a NASA robot designed to service the heat
resistant tiles on the Space Shuttle.

1. INTRODUCTION
Requirements changes cause havoc in a development process
when the effects of the changes ripple through a large part of the
system and software design, which then affects other parts until
the overall design and conceptual model may be affected and start
to degrade. Hopefully, the highest-level, most abstract
requirements will not change, but sometimes they do, as system
requirements become better understood. Reversals in TCAS (an
airborne collision avoidance system required on almost all
commercial aircraft in the U.S.) are an example of this problem.
About four years after the original TCAS requirements
specification and system design were completed and TCAS
development was at the point of being tested on commercial
flights, experts discovered that the design did not adequately
cover the case where the pilot of an intruder aircraft does not
follow his or her TCAS advisory, and thus TCAS must alter the
advisory to its own pilot. This change in basic requirements (the
need to reverse advisories) caused extensive changes in the TCAS
system and software design, some of which introduced additional
subtle problems and errors that took years to discover and rectify.

While the highest most abstract and global level requirements,
such as detecting potential threats in TCAS, are less likely to
change than lower-level requirements, when they do they have the
most important (and costly) repercussions. A change at the
highest level (or at any level) may require changes and reanalysis
at all the levels below it. The impact of change in safety-critical
systems can be extremely costly as changes can require a new
system safety analysis. Any reduction in the effort required to
accomplish this analysis will have a tremendous impact on cost

and schedule.

We believe the reason requirements changes cause so much
disruption to a project is rooted in the concept of semantic
coupling. In general, tightly coupled systems are highly
interdependent: Each part is linked to many other parts, so that a
failure or unplanned behavior in one can rapidly affect the others.

The concept of software module coupling is not new; it has been
used in software design for over 20 years to make software
components more composable and reusable and to enhance the
understandability of individual modules so they are easier to
modify. Structural coupling characterizes a module’s relationship
to other modules, that is, it measures the interdependence of two
modules. The more connections between modules, the more
dependent they are. Modularity and low coupling help confine
the effects of changes to a single module.

Yourdon and Constantine [10] and Myers [7] identified three
factors related to module coupling: the number of interfaces, the
complexity of the interfaces, and the type of information flow
(data or control) along the interfaces. These factors affect
visibility outside the interface, the amount of information
exported through interfaces, and the required interaction among
programmers. Five types of module coupling have been
identified, but in general modules are considered tightly coupled
if they use shared variables or if they exchange control
information. Software engineering attempts to define coupling
have been limited to software module design and primarily to
structural rather than semantic dependencies.

The counterpart to coupling is cohesion. A module could be said
to have high cohesion if all the elements have a strong
relationship to each other. Nine types of cohesion have been
identified. Some of these types of cohesion are related to
functionality, while others are not. All have been defined rather
vaguely, usually using examples alone.

The need for these measures of the “goodness”' of a design stem
from the more general problem of complexity or intellectual
manageability of the systems we are trying to build. Intellectual
manageability can be enhanced by organizing information in a
coherent, structured form, by using appropriate abstractions, and
by reducing the dependencies among system components [7]. At
the code level, this approach led to the concepts of coupling and
cohesion.

In this paper, we show how a new organization of information,
called an intent specification, along with a concept we call
semantic coupling, can assist in creating system designs that
reduce the effects of requirements changes. Just as module
coupling has been used to guide the structural decomposition of
modules, semantic coupling could be used to guide the process of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

functional decomposition of requirements and high-level system
design.

The next section presents the basic concepts of Intent
Specifications. Then semantic coupling is defined and a process
outlined for identifying and reducing it. To determine the
feasibility of applying the concept to real systems, we have
applied the process to the Mobility and Positioning Software
(MAPS) of a robot designed for NASA to service the heat-
resistant tiles on the Space Shuttle. The results of this study are
described.

2. INTENT SPECIFICATIONS
The design of intent specifications applies research in systems
theory, cognitive psychology, and human-machine interaction to
specification design in order to support the tasks humans perform
during system and software development [4]. The structure,
content, and notation of intent specifications are designed to assist
software engineering in developing appropriate mental models
about the system while supporting them in using a wide array of
problem-solving strategies.

Intent specifications employ a type of hierarchical abstraction
based on intent or purpose. In computer science, we have made
extensive use of hierarchical abstraction to allow both top-down
and bottom-up reasoning about complex systems. Two types of
abstraction have been used: (1) part-whole abstractions where
each level of a hierarchy represents an aggregation of the
components at a lower level and (2) information hiding
(refinement) abstractions where higher levels contain the same
conceptual information but hide some details about the concepts,
that is, each level is a refinement of the information at a higher
level.

Using these hierarchical abstractions, each level of the usual
software specifications can be thought of as providing “what”
information while the next lower level describes “how.” Such
hierarchies, however, do not provide information about “why.”
Information about purpose or intent (i.e., design rationale) cannot
be inferred from what we normally include in such specifications.
Design errors may result when we either guess incorrectly about
intent or omit it from our decision-making process.

Similar problems are faced by cognitive engineers and human
factors specialists in designing interfaces for operators of complex
systems. The human-machine interface provides a representation
of the state of the system that the operator can use to solve
problems and perform tasks, such as monitoring and diagnosis.
Software specifications can be thought of as an “interface”
between the software and the maintainer of that software or
between the designer and the implementer. Intent specifications
apply these ideas in operator-machine interface design to the
“interface” provided by system and software specifications.

Intent specifications are organized along three dimensions: part-
whole, refinement, and intent (see Figure 1). The vertical
dimension specifies the level of intent at which the problem is
being considered, i.e., the language or model that is currently
being used. The horizontal decomposition (part-whole) and
refinement dimensions allow users to change their focus of
attention to more or less detailed views within each level or
model. The information at each level is fully linked to related
information at the levels above and below it.

Each level of the intent abstraction contains information about
goals or purpose for the level below, described using a different
set of attributes or language. Higher level goals are not
constructed by integrating information from lower levels; instead
each level provides different, emergent information with respect

System
Purpose

System
Principles

Blackbox
Behavior

Design
Representation

Physical
Representation

Level 1

Level 2

Level 3

Level 4

Level 5

Assumptions
Constraints

System goals, high-level
requirements, design
constraints, limitations

Responsibilities
Requirements,
I/F requirements

Hazard Analysis

Intent

Refinement
Decomposition

Task analyses
Task allocation
Controls, displays

Validation plan
and results

Environment
models

Analysis plans
and results

HCI design

Test plans and
results

Software and hardware
design specifications

GUI design,
 physical controls
design

Software code, hardware
assembly instructions

Environment Operator System and components V& V

Level 6
Operations

Operator manuals
Maintenance
Training materials

Level 0 Project management plans, status information, safety plan, etc.

External
interfaces

Audit
procedures

Logic principles, control laws,
functional decomposition, and
allocation

Operator Task
models
HCI models

Blackbox functional models
Interface specifications

Test plans and
results

Error reports, change
 requests, etc.

Performance
monitoring and
audits

Figure 1. The Structure of an Intent Specification.

to the lower levels. A change of level represents both a shift in
concepts and structure for the representation (and not just a
refinement of them) as well as a change in the type of information
used to characterize the state of the system at that level. Thus each
level is a different view or model of the entire system and may use
a different language.

Mappings between levels are potentially many-to-many:
Components of the lower levels can serve several purposes while
purposes at a higher level may be realized using several
components of the lower-level model. These goal-oriented links
between levels can be followed in either direction. Changes at
higher levels will propagate downward, i.e., require changes in
lower levels, while design errors at lower levels can only be
explained through upward mappings (that is, in terms of the goals
the design is expected to achieve). In this paper, we show how
the structure of these mappings from one intent level to another
define the semantic coupling between the components at the
higher level and can be designed to reduce this coupling..

Intent specifications assist in identifying intent-related
dependencies. Because each level is mapped to the appropriate
parts of the intent levels above and below it, traceability of not
only requirements but also design rationale and design decisions
is provided from high-level system goals and constraints down to
code (or physical form if the function is implemented in
hardware) and vice versa. This mapping is not a mathematical
relationship, but a mapping based on design rationale and intent.
For example, while one level might describe the logic of TCAS II
in terms of whether an intruder aircraft is on the ground or not,
the next higher level might define “on the ground” (which is
surprisingly complex) and why the engineers chose that particular
definition [6].

Consideration of purpose or reason (top-down analysis in an
intent hierarchy) has been shown to play a major role in
understanding the operation of complex systems [8]. Experts and
successful problem solvers tend to focus first on analyzing the
functional structure of the problem at a high level of abstraction
and then narrow their search for a solution by focusing on more
concrete details [2]. Representations that constrain search in a
way that is explicitly related to the purpose or intent for which the
system is designed have been shown to be more effective than
those that do not because they facilitate the type of goal-directed
behavior exhibited by experts [9]. Therefore, intent specifications
should be able to improve the problem solving required in
software development and evolution tasks by providing a
representation of the system that facilitates goal-oriented search.

Our current conception of intent specifications has seven
hierarchical levels, each level supporting a different type of
reasoning about the system. The Management level (Level 0)
provides a bridge from the contractual obligations and the
management planning needs to the high-level engineering design
plans. The System Purpose (Level 1) assists system engineers in
their reasoning about system-level goals, constraints, and
limitations. It also documents basic hazard analysis and contains a
hazard log to track the safety engineering activities. The system
safety analysis is used to establish safety-related system and
software requirements and design constraints.

The System Principles level (Level 2) documents the system in
terms of the physical principles and laws upon which the design is
based. Complete functional structures and interfaces between

components are defined at this point. This level also documents
task models and other results of human factors analyses for
systems containing human operators. Display and control
information is defined as well.

The Blackbox level (Level 3) allows the designers to study the
logical design of the system using a formal modeling language
called SpecTRM-RL [5]. The tools associated with this language
produce executable and analyzable models that engineers can use
to study the complex interactions between the different
components of the system. SpecTRM-RL models can be built for
the non-software components also, or they can be executed
together with simulations and prototypes of hardware
components.

The Design Representation level (Level 4) presents a detailed
implementation-dependent software design as well as any
applicable hardware design specifications. The Physical
Representation level (Level 5) contains the actual software and
hardware implementation of the system as well as any necessary
training and maintenance manuals. Finally, the System Operations
level (level 6) includes information produced during the actual
operation of the system, which can be used in operational audits,
performance analyses, operational safety analyses, and change
analysis.

Each level also contains documentation of the plans for and
results of the verification and validation process for the design
decisions contained in each level.

3. SEMANTIC COUPLING
Intent specifications [4] allow isolating the assumptions that need
to be considered or reconsidered to make a particular change and
also provide traceability between requirements and design and
each level of the intent hierarchy. Therefore, they may not only
help in understanding the system and the relationships between
requirements and design so that changes can be made correctly,
but may also be helpful in validating any changes to make sure
that they do not violate the intent of the original designers (and
thus introduce serious errors in changing something important).

While recording design rationale in a usable and traceable way
should reduce the effort involved in responding to changed
requirements, it is still possible to design intent specifications for
which changes in requirements will cause extensive changes
(rippling effects) at each level of the specification. To assist with
this problem, we introduce the concept of semantic coupling.

Semantic coupling or independence is defined in terms of the
mappings between the levels of the intent specification, that is,
mappings between the goals and the means for achieving the
goals. The emphasis in this paper will be on the first two levels,
but the same definition applies at each level. At the lower levels
of an intent specification, where the logic is mapped to software
structures and modules, the concept is identical to that of module
cohesion and coupling, but the functional aspects of these
concepts can be more carefully defined by tracing the functions
back up the levels of the intent specification (the functional
decomposition process).

Using these mappings, three levels of coupling or independence
can be identified:

1. Uncoupled: the mappings or functions from
requirements to design principles are all one-to-
one.

2. Loosely coupled: the mappings are one-to-many.

3. Tightly coupled: the mappings are many-to-many.

For any complex control system, a completely uncoupled design,
while allowing changes to requirements with minimal impact, is
usually not practical. A more realistic goal is to design to reduce
the impact of requirements changes, i.e., to eliminate the rippling
effects to other requirements and therefore through the system
design as a whole by designing the mappings to be one-to-many.
Our design goal then becomes: eliminate (or if not possible,
reduce) many-to-many mappings and create a design such that the
one-to-many mappings are reduced. The latter can be
accomplished by a careful ordering of design decisions and
hierarchical ordering of requirements, as illustrated below. For
ease of manipulation and visualization, we describe the functions
using Matrix Algebra constructs. Thus, the relationship between
the requirements (R) and the system design principles (SDPs) can
be characterized mathematically by expressing them in terms of
vectors:

(1) {FR} = [A] {SDP}

where {R} is a vector of m requirements, {SDP} is a vector of n
system design principles, and [A] is the traceability matrix. The
values of the traceability matrix will be either * or 0, where *
indicates a mapping exists between the corresponding vector
components while 0 signifies no mapping.

Consider the case of a square traceability matrix where m=n=3.
The simplest and most desirable design, an uncoupled design, is
one in which all the non-diagonal elements of the traceability
matrix are zero. That is:

(2)
















=
















=

*00

0*0

00*

333231

232221

222111

AAA

AAA

AAA

[A]

In the uncoupled design, each of the FRs can be satisfied
independently from the others. If a requirement (R) changes, all
one needs to do is to adjust the corresponding system design
principle (SDP). Note that in software, the traceability matrix will
almost always not be square, that is, there will be multiple SDPs
for each requirement.

A coupled design is one in which elements on both sides of the
diagonal are non-zero, as in:

(4)































=

















3

2

1

3

2

1

**0

0**

SDP

SDP

SDP

FR

FR

FR

In this case, a change in any of the requirements is likely to
produce a cascading effect, forcing all three SDPs to be adjusted.
In general, any requirements changes in a coupled design can
require a highly complex, iterative redesign of the system. This
process can be extremely expensive, particularly if the changes
take place far into the detailed design or implementation phase.

The third case is the loosely coupled design, where the traceability
matrix is lower or upper triangular:

(5)































=

















3

2

1

3

2

1

0**

00*

SDP

SDP

SDP

FR

FR

FR

In a loosely coupled design, even though the requirements are not
strictly independent, the impact of potential changes can be
reduced by adjusting the SDPs in the proper order. Thus, as
stated above, while total independence or uncoupling is almost
always not achievable for real systems, the effects of changes in a
loosely coupled design can be reduced by a careful ordering of
design decisions and hierarchical ordering of requirements. Our
goal then, is to create designs that are loosely coupled and to
order the design decisions such that changes will have minimal
impact.

The process above is oversimplified because different types of
requirements will affect the design in different ways. In an intent
specification, Level 1 contains three types of “requirements”:
functional requirements1, environmental assumptions, and design
constraints.

System Design Principles
SDP1 SDP2 SDP3

MAPS High-level FRs

FR1
FR2
Environmental Assumptions
EA1
EA2
Design Constraints
C1
SC1

Figure 2. Example Traceability Matrix.

Figure 2 shows the general form and simple example of a
traceability matrix. The three types of requirements are separated
as they involve tradeoffs with each other or have different
implications for system design.

Functional requirements are derived from general system goals,
i.e., the mission of the system. The top part of Figure 2 shows an
example of high-level functional requirements (FR1 and FR2) and
their mapping to the system design principles (SDP1 and SDP2)
that is clearly decoupled: SDP1 and SDP2 independently satisfy
FR1 and FR2, respectively.

Environmental assumptions lead to a second type of requirement
that arises as soon as the system boundary is defined and the
system interface thus becomes bound to (dependent upon)
assumptions about the components in the environment. Intent
specifications include specification of environmental assumptions

1 We do not separate performance requirements from functional

requirements. In a real-time system, this separation is not
possible and when attempted, as often occurs, leads to many of
the problems that arise in building such systems. The reason
behind this claim is beyond the scope of this paper. See Jaffe [3]
for an explanation.

at Level 1 and the mapping of these assumptions to Level 2
system design principles. In Figure 2, the links connecting the
environment assumptions and system design principles indicate
that those SDPs depend on assumptions about the behavior of
components in the system environment (the system interface).
This dependency can be a simple data dependency (format, range,
or time properties) but can also include behavioral information
(the external system is expected to accomplish certain tasks, etc.).
Detailing these data dependencies is important in defining a sound
system interface. In addition, some environmental dependencies
can lead to undesirable semantic couplings. In Figure 2, both
SDP1 and SDP2 are dependent on environmental assumption
EA1 and thus this system is coupled with respect to the
environmental assumptions; changes in this assumption could
have a large impact on the design. Appropriate design changes or
tradeoff decisions should take this coupling into account in order
to reduce its effects.

The third type of requirement, design constraints (DCs), specify
restrictions on the way the system can satisfy the requirements.
Constraints may be safety constraints, e.g., the operation of TCAS
must not interfere with the ground-based air traffic control system,
or non-safety constraints, e.g., TCAS-generated avoidance
maneuvers must minimize the impact of the evasive maneuver on
the aircraft flight path. Safety constraints are derived from the
system hazard analysis performed for safety-critical systems.
Other design constraints (i.e., not safety related) may be imposed
by the customer or potential users of the system or may result
from non-mission related requirements imposed on the system
design.

The mappings from design constraints (DCs) to SDPs have a
different meaning than those linking FRs and SDPs. The SDPs
must not violate the DCs, but they also do not necessarily
implement a safety function nor does the function necessarily
need to be modified to accommodate the constraint. Thus, two
SDPs are not coupled just because the same safety constraint
applies to them. However, any change to a SDP linked to a DC
means that an analysis must be triggered if any changes are made
in the SDP in order to ensure that safety has not been
compromised. Thus constraints need not be independent from the
FRs and they do not necessarily couple DCs, but the way in which
the SDPs limit system functionality in order to satisfy any
applicable constraint could also affect the ease and cost associated
with system changes and evolution.

Figure 2 also shows a SDP linked to an EA but no FR, i.e., the
link between SDP3 and EA2. This situation can occur when a
level of the intent specification adds design features or design
decisions that are useful or necessary at that level to complete the
design or model but are not part of the functional requirements.
These SDPS may be related to environmental assumptions or to
design constraints or may simply be added by the designers for
other reasons.

4. CASE STUDY: MAPS
The software chosen for the case study is the Mobility and
Positioning Software (MAPS), part of the control software for a
CMU/NASA robot [1]. The robot was designed to inspect and
waterproof between flights each of the 17,000 silica tiles that
protect the Space Shuttle underside. Because there are so many
tiles, the robot divides its work area into uniform work spaces,

inspecting tiles in each area with as little overlap between work
spaces as possible.

Before each inspection shift, a supervisor enters instructions and
information about shuttle position and inspection sequence via an
off-board computer, the Workcell Controller. The Workcell
Controller workstation is used to create jobs and update other
NASA databases after the robot uploads data gathered during the
course of the shift. This data includes tile images, records of tiles
injected and inspected, and other pertinent job data. In addition,
robot status data is used to monitor robot operation.

At the beginning of the shift, a job is downloaded to the robot. A
job consists of a series of files describing the locations, sequences,
target IDs, orbiter parking measurements, etc. The robot then uses
a rotating laser to position itself under the shuttle, and the robot's
camera locates the exact tile to be inspected. Because the shuttle's
belly is not flat, the robot must customize its upward movement to
each tile: Two vertical beams on either side of the robot raise the
manipulator arm, which holds the injection tools and camera. A
smaller lifting device raises the arm the rest of the way. By
comparing the current state of each tile with the state of the tile at
previous inspections, the robot characterizes anomalies in tiles as
cracks, scratches, gouges, discoloring, or erosion. The robot also
indicates when it is unsure what is wrong with a tile, so the
supervisor can reanalyze the tile on the screen of the Workcell
Controller. At the end of a shift, the robot's updated tile
information is entered into existing NASA databases.

On board the robot, a computer controls the robot's high-level
processing tasks while a low-level controller and amplifiers direct
arm and wheel motions. Two more computers control the robot's
vision and injection systems. If anything goes wrong, such as
rising compartment temperatures or low battery level, safety
circuits will shut down the robot.

MAPS is in charge of issuing low-level commands to the Motor
Controller based on the inputs received either from the Planner
(AI-based software) or a human operator. The Planner controls
robot movement and positioning by providing MAPS with a
specification of the destination and route. The operator controls
robot movement and positioning using a hand-held joystick. The
robot is unstable when the manipulator arm is extended, so
stabilizer legs are used to provide stability. These legs must be
retracted when the robot is in motion. MAPS is responsible for
controlling the stabilizer legs. MAPS also monitors and controls
several other robot subsystems and is responsible for most safety-
related functions.

Level 1 of the MAPS intent specification contains the system
goals, high-level functional requirements, limitations, constraints,
and hazard analysis. It also includes the assumptions MAPS
makes about the other robot subsystems and relevant external
factors. Level 2 contains the MAPS design principles. While we
have completed the top three levels of the MAPS intent
specification as well as the traceability matrices, they are too large
to include here. Instead, we describe in detail two parts of the
specification to illustrate how the concept of semantic coupling
can be applied to a real system. The information is the actual
system requirements and design principles have been simplified
for space and conciseness purposes. Downward links are also
omitted as they are not relevant for the examples.

4.1 MAPS High-level Functionality
The first example focuses on the definition of the different modes
under which MAPS can function. Following an initial assessment
of the system goals and safety concerns, the designers identified
the need to make the robot controllable both manually or
automatically. These requirements originate in the need to provide
a balance between the performance goals and the safety
constraints. The FRs that correspond to these requirements
follow:

MAPS Level 1 High-level Functional Requirements

MAPS-1.1.1: Computer-Controlled Operations

MAPS shall be able to operate automatically through control of
the Planner alone. Rationale: Human control of MAPS
throughout the long and tedious tile servicing process (which
takes several weeks) is impractical.

MAPS-1.1.2: Operator-Controlled Operations

MAPS shall be able to be operated under direct manual control.
Rationale: Sufficient confidence cannot be obtained in the
automated implementation of some safety-related robot
operations (like detecting a passerby or an unexpected obstacle in
the path of the robot), and therefore human movement control
will be used during some limited but particularly hazardous
operations.

These FRs result in the definition of a series of modes and
associated transitions in level 2 of the intent specification.
However, these FRs are not adequate to produce a complete
design. Assumptions about the robot’s other components and
about the way in which MAPS is supposed to interact with them
must be known. For this example, the engineers need some basic
assumptions about the Planner (PL), the Motor Controller (MC),
and the operator joystick interface (JOY):

MAPS Level 1 Environmental Assumptions

PL1.2: The Planner will provide both a route of travel and a
destination to MAPS in world coordinates.

MC3: The Motor Controller can be operated in position (relative
displacement) mode.

MC4: The Motor Controller can be operated in velocity mode.

MC6: The Motor Controller is able to stop the motion of the
robot within 0.2 seconds of receiving a ‘stop’ command.

JOY1: The operator will be able to drive the robot by deflecting a
joystick in the direction the operator would like the robot to travel

Level 1 of the intent specification also includes a preliminary
hazard analysis from which a set of safety constraints (SC) is
derived. The SCs limit the way in which the functionality required
by the FRs can be implemented. Two SCs related to the example
are:

MAPS Level 1 Safety Constraints

SC1: The robot mobile base must move only when commanded.

SC2: The robot mobile base must stop when commanded.

During the design process, system engineers must define a
functional structure out of all the Level 1information. This

synthesis process is quite challenging; it requires from the
designers a multi-disciplinary approach where the optimization of
functional requirements may conflict with the safety constraints.

The level 2 Design Principles corresponding to the current
example are:

MAPS Level 2 Design Principles

MAPS-2.2.1: Initialization Precondition

MAPS does not accept any motion commands until system
initialization mode is complete [↑SC1]. Rationale: The normal
operation of the system relies on the correct performance of the
subsystems initialized during startup.

MAPS-2.2.2: Control Mode Selection Principles

At any time, MAPS is in one and only one of the following three
modes: safety mode, computer mode, or joystick mode. Mode
selection is based on the following principles: […]. [↑MAPS 1.1,
↑MAPS 1.1.1, ↑MAPS 1.1.2,↑SC2]

MAPS-2.2.3: Safety Mode

In Safety Mode, MAPS stops the robot, prevents further motions,
notifies the operator of the problem that has occurred, and
executes a set of recovery procedures. [↑SC2, ↑MC6] Rationale:
This mode provides MAPS with the ability to handle unsafe
conditions and to return the robot to a safe state if possible.

MAPS-2.2.4: Computer-Controlled Operations

When operating in Computer mode, MAPS accepts routes from
the Planner and generates all the necessary movement commands
for the motor controller to move the robot along that route.
Relative displacement mode is used. Motor controller commands
are generated by calculating […] [↑MAPS-1.1.1, ↑MAPS-1.1.1.1,
↑MC3, ↑PL1.2, ↑SC1] Rationale: This mode permits MAPS to
position the robot very precisely and allows the optimization of
the waterproofing operations.

MAPS-2.2.5: Operator-Controlled Operations

When operating in joystick mode, MAPS accepts movement
commands from the operator via the joystick and issues all
necessary motor controller commands to move the robot as
commanded by the operator. Velocity mode is used when
operating in joystick mode. In velocity mode, the kinematics on
the body relative velocity are computed, and the appropriate
wheel velocities are set. The computations used for the kinematics
are […] [↑MAPS-1.1.2, ↑MC4, ↑Joystick1, ↑SC1] Rationale:
Velocity commands best match an operator’s mental model of
how robot base motions are controlled, i.e., they are the easiest
for humans to understand and therefore monitor.

Note how most of the level 2 design principles include the
rationale behind design decisions as well as traceability
information. This information can prove extremely useful in
system redesigns and during maintenance by providing insight
into the reasoning and assumptions of the original designers. The
traceability links are denoted by up-arrows (↑), providing an
explicit way to indicate a dependency or satisfying relationship
between different items of an intent specification. Our automated
tools to support intent specifications use hyperlinks.

Creation of the traceability matrix for this example is immediate
from the links:

























=









5.2.2

4.2.2

2.2.2

2.1.1

1.1.1

0

0**

SDP

SDP

SDP

FR

FR

(6)

As expected, the traceability matrix is not square. Equation (6)
provides important information regarding the coupling in the
system. FR1.1.1 is only satisfied by DP2.2.2 and DP2.2.4. Similarly,
FR1.1.2 is satisfied by DP2.2.2 and DP2.2.5. This means that the
implementation of each type of operation is accomplished by
separate control modes, each independent of each other. The only
DP that is common to both functional requirements is the one
defining the mode selection logic. This is clearly a case of a
loosely coupled design. This point can be seen easily bu
expanding the matrix:

 FR1.1.1 = SDP2.2.2 + SDP2.2.4

 FR1.1.2 = SDP2.2.2 + SDP2.2.5
(7)

If the designer can fix DP2.2.2 before the other DPs, then DP2.2.4

and DP2.2.5 can be adjusted independently to satisfy their
corresponding functional requirements. In practice, this means
that the mode transitions should be defined apart from the mode
functionality itself. In addition, the implementation of each mode
must be unaware of the existence of other modes. In this way, if
one of the two modes needs to be changed or removed altogether,
the remaining mode can be left unchanged. The traceability
matrices can be used to identify subtle interactions and
dependencies between the modes.

The environment assumptions and safety constraints affecting the
DPs are shown in Figure 3. Note how the environmental
assumptions corresponding to SDP2.2.4 and SDP2.2.5 were

successfully encapsulated: they do not have any common
assumptions.

Figure 3 also contains DPs that are not linked to any level 1 FR.
For example, the establishment of a Safety Mode (DP2.2.3) does
not answer the needs defined by any of the system goals but
ensures that certain safety properties are preserved during the
operation of the robot. This is a case of a SC that results directly
in the establishment of a level 2 function. DP2.2.3 also serves to
isolate the assumption MC6 that would otherwise affect DP2.2.4
and DP2.2.5.

4.2 Computer-Controlled Operations
This example analyzes part of the functionality of the Computer
mode. Rather than again providing a walkthrough of the design
process, the relevant semantic coupling issues are presented
directly.

 The high-level functional requirements corresponding to this
mode are:

MAPS-1.1.1.1: MAPS shall generate appropriate commands to
the Motor Controller to traverse the route provided by the
Planner.

MAPS-1.1.1.1.1: MAPS shall inform the Planner of the success
or failure of the route traversal and the reason for any failure.

MAPS-1.1.1.1.2: While in Computer Mode, all joystick
deflections shall be ignored and the operator shall be informed
when this occurs.

MAPS-1.1.1.2: While in Computer Mode, MAPS shall maintain
information about the position of the robot. Rationale: MAPS will
use the position information to correct the robot trajectory and to
determine when the final position has been reached.

MAPS-1.1.1.3: In Computer Mode, MAPS shall determine when
the stabilizer legs should be deployed (or retracted) and issue the
appropriate commands.

Figure 3. MAPS Traceability Matrix.

System Design Principles
2.
2.
1

2.
2.
2

2.
2.
3

2.
2.
4

2.
2.
5

MAPS High-level FRs
1.1.1
1.1.2
Environmental Assumptions
PL1.2
MC3
MC4
MC6
JOY1
Safety Constraints
SC1
SC2

4.2.1 Position Determination
The first example analyzes the coupling created between the robot
base motion control function and the position finding function.
The level 2 SDPs that define the latter function are:

MAPS-2.2.4.6: Scanner Query. MAPS obtains position
information from the laser scanner. Position is calculated by […]
[↑MAPS-1.1.1.2, ↑LS2]

MAPS-2.2.4.6.1: Position determination occurs prior to the
beginning of each route segment when operating in Computer
Mode. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.2, ↑LS2, ↑LS2.1, ↑LS3]
Rationale: MAPS must know the robot position before it can send
a new relative displacement command to the Motor Controller.

MAPS-2.2.4.6.2: Position determination occurs following the
completion of each route segment when operating in Computer
Mode. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.2, ↑LS2, ↑LS2.1, ↑LS3]
Rationale: MAPS must know where the previous position
command took the robot base. This information is used to detect
errors and to provide feedback on previous actions in order to
detect errors in carrying them out.

The location system environmental assumptions used for the
previous SDPs are:

LS 2: Upon request, the laser scanner will provide the current
position of the robot in the form of global location coordinates
with an accuracy of TBD.

LS 2.1: The laser scanner can only take position readings while
the robot base is immobile.

LS3: The bar code targets remain within the line of sight of the
scanner at all times.

The traceability matrix is derived from the FR-SDP links:

























=









2.6.4.2.2

1.6.4.2.2

6.4.2.2

2.1.1.1

1.1.1.1

**0

SDP

SDP

SDP

FR

FR

(8)

Equation (8) clearly represents the case of a coupled design. The
origin of this coupling can be traced back to LS2.1. Because the
scanner can only take position readings after the robot base has
stopped, the motion and position finding functions are
interdependent. Changes in some of the environmental
assumptions can make the situation worse. For example, assume
that LS3 does not hold anymore. This change would mean that in
some cases, the scanner would not be able to find the bar code
targets needed to perform its function. MAPS software engineers
might be tempted to include additional motion controlling
functionality to tackle this shortcoming. Unfortunately, the
problem is nontrivial because it is hard to direct the robot to
another position if there is a high degree of uncertainty about its
current position. Despite having successfully isolated the LS
environmental assumptions from the rest of the design (see Figure
4), the semantic coupling identified in equation (8) makes the
entire system susceptible to changes in them. A possible solution
to this problem is the substitution of the laser scanner by a Local
Positioning System (LPS). This change would uncoupled the
design and thus create a more robust system. It is unlikely that the
decision to modify the robot would be based solely on this

consideration; other factors (cost, equipment availability) are
likely to play an important role as well. The key is to provide
engineers with the information necessary to identify and evaluate
those trade-offs of crucial importance to the long-term success of
their system.

4.2.2 Robot Base Stabilization
The final example involves the responsibilities of MAPS for robot
base stabilization. The related part of the MAPS intent
specification follows:

MC1: When commanded to do so, the motor controller will
provide power to the motor, which will drive the robot wheels.

GUI1: The GUI will provide the operator with enough
information about the status of the robot and the work area that
the operator is able to avoid hazards. This information includes
movements commanded by the Planner.

PL1: All automatic robot operations will be directed and
coordinated by the Planner.

SL1: The stiff legs provide the robot base with the stability
needed to perform all the currently anticipated robot arm
operations. The stiff legs will be able to stabilize the robot during
tile servicing (manipulator motion).

SL2: The stiff legs are not able to stabilize the robot while in
motion..

MA2: The manipulator arm controller will provide information
about the position of the arm directly to MAPS.

SC6: The mobile base must not move when the stabilizer legs are
extended. Rationale: Damage can occur to the robot if movement
is attempted with the legs extended.

SC7: The manipulator arm must not be extended when the
stabilizers are retracted

SC8: Stabilizer legs must not be retracted until the manipulator
arm is fully stowed.

MAPS-2.2.4.9: Leg Deployment and Retraction. Upon reaching
the final destination, MAPS deploys the stabilizer legs and later
retracts them (upon the Planner’s request) once the manipulator
arm is stowed. [↑MAPS-1.1.1.3, ↑SL1, ↑MA2, ↑SC7, ↑SC8]

MAPS-2.2.4.9.1: After a move that has correctly positioned the
robot base in the work area, MAPS turns off the wheel motors and
then deploys the legs. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.3, ↑SL1,
↑SL2, ↑MC1, ↑SC6] Rationale: The motor is turned off so no
accidental motion command sets the base in motion with the
stabilizers legs deployed.

MAPS-2.2.4.9.2: When a move is commanded, MAPS retracts
the stabilizer legs before turning on the wheel motors. [↑MAPS-
1.1.1.1, ↑MAPS-1.1.1.3, ↑SL2, ↑MC1, ↑SC6, ↑SC8] Rationale:
see MAPS-2-2.4.9.1

MAPS-2.2.4.9.3: In the event the stabilizer retraction or
deployment fails, MAPS notifies the operator and the Planner of
the failure. [↑GUI1, ↑PL1, ↑SC7] Intent: The Planner is
informed about the error so it does not send any arm motion
commands. The operator is informed about the error so the
failure can be diagnosed and repaired.

System Design Principles

2.
2.
4.
2

2.
2.
4.
3

2.
2.
4.
4

2.
2.
4.
5

2.
2.
4.
6

2.
2.
4.
7

2.
2.
4.
8

2.
2.
4.
9

2.
2.
4.
10

2.
2.
4.
11

2.
2.
4.
12

2.
2.
4.
13

2.
2.
4.
2.
1

2.
2.
4.
2.
2

2.
2.
4.
2.
3

2.
2.
4.
6.
1

2.
2.
4.
6.
2

2.
2.
4.
7.
1

2.
2.
4.
7.
2

2.
2.
4.
8.
1

2.
2.
4.
8.
2

2.
2.
4.
9.
1

2.
2.
4.
9.
2

2.
2.
4.
9.
3

MAPS High-level FRs
1.1.1.1

1.1.1.1.1
1.1.1.1.2

1.1.1.2
1.1.1.3
Environmental Assumptions
PL1
LS2

LS2.1
LS3
MC1
MC2
MC3

MC3.1
MC3.2

SL1
SL2
SF1
MA2
OP2
OP4
GUI1
GUI3
JOY1
JOY4
Safety Constraints
SC1
SC2
SC3
SC6
SC7
SC8
SC9
SC10

Legend
PL: Planner SL: Stiff Legs OP: Operator
LS: Location System SF: Safety Circuit GUI: Graphical User Interface
MC: Motor Controller MA: Manipulator Arm JOY: Joystick

Figure 4. Computer Control Mode Traceability Matrix.

As before, the traceability matrix can be derived directly from the
FR-SDP links:

























=









2.9.4.2.2

1.9.4.2.2

9.4.2.2

3.1.1.1

1.1.1.1

**0

SDP

SDP

SDP

FR

FR

(9)

As in the previous case, equation (9) indicates the design is
coupled. The origin of this coupling is the need to satisfy safety
constraints related to the instability of the robot base. Although on
the surface the software logic appears to be relatively simple here,
it can become quite complex due to the need to keep track of and
control several unrelated subsystems and the related timing and
fault tolerance issues. Changes to this logic could cause major
disruptions to a project or rippling effects that delay deliverables
or lead to budget overruns. Changes in this early system design
phase could prevent these problems, and the semantic coupling
information can assist the engineers in making the necessary
tradeoff decisions. For example, a first step in decoupling this
design might be to use a power interlock so the energy supply to
the Motor Controller is shut off automatically whenever the
manipulator arm power is turned on, thus reducing the safety
responsibilities of the software.

5. CONCLUSIONS
The need for software engineering derives from the need to
manage complexity. Complexity can be managed intellectually by
partitioning, establishing hierarchies, and maximizing
independence among components. Intent specifications
(introduced previously) are a way of increasing intellectual
manageability by using partitioning and hierarchical abstractions
found by cognitive psychologists to be key to success in complex
problem-solving activities. This paper has introduced and defined
a concept of semantic coupling and shown how it can be
operationalized using traceability matrices. Semantic coupling is
related to the difficulty of changing system requirements and
reducing coupling should reduce the rippling effects associated
with requirements changes.

Semantic coupling at the higher system levels translates to
structural coupling and cohesion at the software design and
implementation levels and should also ease the structural
decoupling process by decoupling functions or identifying
coupled functionality at the higher levels. Any such decoupling
involves design tradeoffs, but making these tradeoffs and their
implications clear will be helpful to those generating system and
software designs.

For small projects, the advantage of the approach lies in the
intellectual processes that the domain experts must follow to
produce the traceability matrices. For larger and more complex
projects, the traceability matrices themselves play an important
role. As the number of developers increases, creating a common
convention to communicate coupling characteristics becomes
increasingly important. During maintenance the need is even

greater. Used in the Intent Specification framework, traceability
matrices provide traditional functional traceability, but they also
assist in system design and tradeoff evaluation, designing for
safety and safety evaluation and assessment, support interface
design, etc.

Providing techniques and tools to support the creation and
navigation of large traceability matrices is a future research goal
as is the more general goal of increasing our understanding of
how to structure complex systems to allow us to stretch the limits
of complexity of the systems we can build and maintain
successfully.

6. REFERENCES
[1] Dowling, K.R., Bennett, R., Blackwell, M.,Graham, T.,

Gatrall, S., O’Toole, R., and Schempf, H. A Mobile
Robot System for Ground Servicing Operations on the
Space Shuttle. Cooperative intelligent robotics in space
III, Proceedings of the Meeting, Boston, MA, Nov. 16-
18, 1992 (A93-29101 10-54). Bellingham, WA,
Society of Photo-Optical Instrumentation Engineers,
1992, p. 298-309.

[2] Glaser, R., Chi, M.T.H., and Farr, M.J. The Nature of
Expertise. Erlbaum, Hillsdale, New Jersey, 1988.

[3] Jaffe, M.S., Completeness, Robustness, and Safety in
Real-Time Software. Ph.D. Dissertation, University of
California Irvine, 1988.

[4] Leveson, N. G. Intent Specifications: An Approach to
Building Human-Centered Specifications. IEEE
Transactions on Software Engineering, Vol. 26, No. 1,
pp. 15-35, January 2000.

[5] Leveson N.G. Completeness in Formal Specification
Language Design for Process-Control Systems. ACM
Formal Methods in Software Practice, Portland, August
2000.

[6] Leveson, N.G., Reese, J.D. TCAS II Intent
Specification. http://sunnyday.mit.edu/papers/intent.pdf

[7] Myers, G. J. Composite/Structured Design. Van
Nostrand Reinhold Company, New York, NY, 1978.

[8] Rasmussen, J. The Role of hierarchical knowledge
representation in decision making and system
management. IEEE Transactions on Systems, Man, and
Cybernetics, vol. SMC-15, no. 2, March/April 1985.

[9] Vicente, K.J., Christoffersen, K., and Pereklit,
A..Supporting operator problem solving through
ecological interface design. IEEE Transactions on
Systems, Man, and Cybernetics, 25(4):529--545, 1995.

[10] Yourdon, E., and Constantine, L..Structured Design.
Prentice Hall, Englewood Cliffs, N.J., 1979.

