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ABSTRACT 
The continuous stream of requirements changes that often takes 
place during software development can create major problems in 
the development process.  This paper defines a concept we call 
semantic coupling that along with features of intent specifications 
can be used during system design to reduce the impact of 
changing requirements.  The practicality of using the approach on 
real software is demonstrated using the intent specification of the 
control software for a NASA robot designed to service the heat 
resistant tiles on the Space Shuttle.   

1. INTRODUCTION 
Requirements changes cause havoc in a development process 
when the effects of the changes ripple through a large part of the 
system and software design, which then affects other parts until 
the overall design and conceptual model may be affected and start 
to degrade.  Hopefully, the highest-level, most abstract 
requirements will not change, but sometimes they do, as system 
requirements become better understood.  Reversals in TCAS (an 
airborne collision avoidance system required on almost all 
commercial aircraft in the U.S.) are an example of this problem. 
About four years after the original TCAS requirements 
specification and system design were completed and TCAS 
development was at the point of being tested on commercial 
flights, experts discovered that the design did not adequately 
cover the case where the pilot of an intruder aircraft does not 
follow his or her TCAS advisory, and thus TCAS must alter the 
advisory to its own pilot.  This change in basic requirements (the 
need to reverse advisories) caused extensive changes in the TCAS 
system and software design, some of which introduced additional 
subtle problems and errors that took years to discover and rectify. 

While the highest most abstract and global level requirements, 
such as detecting potential threats in TCAS, are less likely to 
change than lower-level requirements, when they do they have the 
most important (and costly) repercussions.  A change at the 
highest level (or at any level) may require changes and reanalysis 
at all the levels below it.  The impact of change in safety-critical 
systems can be extremely costly as changes can require a new 
system safety analysis.  Any reduction in the effort required to 
accomplish this analysis will have a tremendous impact on cost 

and schedule. 

We believe the reason requirements changes cause so much 
disruption to a project is rooted in the concept of semantic 
coupling. In general, tightly coupled systems are highly 
interdependent:  Each part is linked to many other parts, so that a 
failure or unplanned behavior in one can rapidly affect the others. 

The concept of software module coupling is not new; it has been 
used in software design for over 20 years to make software 
components more composable and reusable and to enhance the 
understandability of individual modules so they are easier to 
modify. Structural coupling characterizes a module’s relationship 
to other modules, that is, it measures the interdependence of two 
modules.  The more connections between modules, the more 
dependent they are.  Modularity and low coupling help confine 
the effects of changes to a single module. 

Yourdon and Constantine [10] and Myers [7] identified three 
factors related to module coupling:  the number of interfaces, the 
complexity of the interfaces, and the type of information flow 
(data or control) along the interfaces.  These factors affect 
visibility outside the interface, the amount of information 
exported through interfaces, and the required interaction among 
programmers.  Five types of module coupling have been 
identified, but in general modules are considered tightly coupled 
if they use shared variables or if they exchange control 
information.  Software engineering attempts to define coupling 
have been limited to software module design and primarily to 
structural rather than semantic dependencies. 

The counterpart to coupling is cohesion.  A module could be said 
to have high cohesion if all the elements have a strong 
relationship to each other. Nine types of cohesion have been 
identified.  Some of these types of cohesion are related to 
functionality, while others are not.  All have been defined rather 
vaguely, usually using examples alone. 

The need for these measures of the “goodness”' of a design stem 
from the more general problem of complexity or intellectual 
manageability of the systems we are trying to build.  Intellectual 
manageability can be enhanced by organizing information in a 
coherent, structured form, by using appropriate abstractions, and 
by reducing the dependencies among system components [7].  At 
the code level, this approach led to the concepts of coupling and 
cohesion.   

In this paper, we show how a new organization of information, 
called an intent specification, along with a concept we call 
semantic coupling, can assist in creating system designs that 
reduce the effects of requirements changes.  Just as module 
coupling has been used to guide the structural decomposition of 
modules, semantic coupling could be used to guide the process of 
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functional decomposition of requirements and high-level system 
design. 

The next section presents the basic concepts of Intent 
Specifications. Then semantic coupling is defined and a process 
outlined for identifying and reducing it. To determine the 
feasibility of applying the concept to real systems, we have 
applied the process to the Mobility and Positioning Software 
(MAPS) of a robot designed for NASA to service the heat-
resistant tiles on the Space Shuttle.  The results of this study are 
described. 

2. INTENT SPECIFICATIONS 
The design of intent specifications applies research in systems 
theory, cognitive psychology, and human-machine interaction to 
specification design in order to support the tasks humans perform 
during system and software development [4].  The structure, 
content, and notation of intent specifications are designed to assist 
software engineering in developing appropriate mental models 
about the system while supporting them in using a wide array of 
problem-solving strategies. 

Intent specifications employ a type of hierarchical abstraction 
based on intent or purpose. In computer science, we have made 
extensive use of hierarchical abstraction to allow both top-down 
and bottom-up reasoning about complex systems. Two types of 
abstraction have been used: (1) part-whole abstractions where 
each level of a hierarchy represents an aggregation of the 
components at a lower level and (2) information hiding 
(refinement) abstractions where higher levels contain the same 
conceptual information but hide some details about the concepts, 
that is, each level is a refinement of the information at a higher 
level.   

Using these hierarchical abstractions, each level of the usual 
software specifications can be thought of as providing “what” 
information while the next lower level describes “how.”  Such 
hierarchies, however, do not provide information about “why.”  
Information about purpose or intent (i.e., design rationale) cannot 
be inferred from what we normally include in such specifications.  
Design errors may result when we either guess incorrectly about 
intent or omit it from our decision-making process. 

Similar problems are faced by cognitive engineers and human 
factors specialists in designing interfaces for operators of complex 
systems. The human-machine interface provides a representation 
of the state of the system that the operator can use to solve 
problems and perform tasks, such as monitoring and diagnosis.  
Software specifications can be thought of as an “interface” 
between the software and the maintainer of that software or 
between the designer and the implementer.  Intent specifications 
apply these ideas in operator-machine interface design to the 
“interface” provided by system and software specifications. 

Intent specifications are organized along three dimensions:  part-
whole, refinement, and intent (see Figure 1).  The vertical 
dimension specifies the level of intent at which the problem is 
being considered, i.e., the language or model that is currently 
being used.  The horizontal decomposition (part-whole) and 
refinement dimensions allow users to change their focus of 
attention to more or less detailed views within each level or 
model.  The information at each level is fully linked to related 
information at the levels above and below it. 

Each level of the intent abstraction contains information about 
goals or purpose for the level below, described using a different 
set of attributes or language. Higher level goals are not 
constructed by integrating information from lower levels; instead 
each level provides different, emergent information with respect 
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to the lower levels.  A change of level represents both a shift in 
concepts and structure for the representation (and not just a 
refinement of them) as well as a change in the type of information 
used to characterize the state of the system at that level. Thus each 
level is a different view or model of the entire system and may use 
a different language. 

Mappings between levels are potentially many-to-many:  
Components of the lower levels can serve several purposes while 
purposes at a higher level may be realized using several 
components of the lower-level model.  These goal-oriented links 
between levels can be followed in either direction. Changes at 
higher levels will propagate downward, i.e., require changes in 
lower levels, while design errors at lower levels can only be 
explained through upward mappings (that is, in terms of the goals 
the design is expected to achieve).  In this paper, we show how 
the structure of these mappings from one intent level to another 
define the semantic coupling between the components at the 
higher level and can be designed to reduce this coupling.. 

Intent specifications assist in identifying intent-related 
dependencies. Because each level is mapped to the appropriate 
parts of the intent levels above and below it, traceability of not 
only requirements but also design rationale and design decisions 
is provided from high-level system goals and constraints down to 
code (or physical form if the function is implemented in 
hardware) and vice versa.  This mapping is not a mathematical 
relationship, but a mapping based on design rationale and intent.  
For example, while one level might describe the logic of TCAS II 
in terms of whether an intruder aircraft is on the ground or not, 
the next higher level might define “on the ground” (which is 
surprisingly complex) and why the engineers chose that particular 
definition [6]. 

Consideration of purpose or reason (top-down analysis in an 
intent hierarchy) has been shown to play a major role in 
understanding the operation of complex systems [8].  Experts and 
successful problem solvers tend to focus first on analyzing the 
functional structure of the problem at a high level of abstraction 
and then narrow their search for a solution by focusing on more 
concrete details [2]. Representations that constrain search in a 
way that is explicitly related to the purpose or intent for which the 
system is designed have been shown to be more effective than 
those that do not because they facilitate the type of goal-directed 
behavior exhibited by experts [9].  Therefore, intent specifications 
should be able to improve the problem solving required in 
software development and evolution tasks by providing a 
representation of the system that facilitates goal-oriented search. 

Our current conception of intent specifications has seven 
hierarchical levels, each level supporting a different type of 
reasoning about the system. The Management level (Level 0) 
provides a bridge from the contractual obligations and the 
management planning needs to the high-level engineering design 
plans. The System Purpose (Level 1) assists system engineers in 
their reasoning about system-level goals, constraints, and 
limitations. It also documents basic hazard analysis and contains a 
hazard log to track the safety engineering activities.  The system 
safety analysis is used to establish safety-related system and 
software requirements and design constraints.  

The System Principles level (Level 2) documents the system in 
terms of the physical principles and laws upon which the design is 
based. Complete functional structures and interfaces between 

components are defined at this point.  This level also documents 
task models and other results of human factors analyses for 
systems containing human operators.  Display and control 
information is defined as well. 

The Blackbox level (Level 3) allows the designers to study the 
logical design of the system using a formal modeling language 
called SpecTRM-RL [5].  The tools associated with this language 
produce executable and analyzable models that engineers can use 
to study the complex interactions between the different 
components of the system.  SpecTRM-RL models can be built for 
the non-software components also, or they can be executed 
together with simulations and prototypes of hardware 
components. 

The Design Representation level (Level 4) presents a detailed 
implementation-dependent software design as well as any 
applicable hardware design specifications. The Physical 
Representation level (Level 5) contains the actual software and 
hardware implementation of the system as well as any necessary 
training and maintenance manuals. Finally, the System Operations 
level (level 6) includes information produced during the actual 
operation of the system, which can be used in operational audits, 
performance analyses, operational safety analyses, and change 
analysis. 

Each level also contains documentation of the plans for and 
results of the verification and validation process for the design 
decisions contained in each level. 

3. SEMANTIC COUPLING 
Intent specifications [4] allow isolating the assumptions that need 
to be considered or reconsidered to make a particular change and 
also provide traceability between requirements and design and 
each level of the intent hierarchy.  Therefore, they may not only 
help in understanding the system and the relationships between 
requirements and design so that changes can be made correctly, 
but may also be helpful in validating any changes to make sure 
that they do not violate the intent of the original designers (and 
thus introduce serious errors in changing something important).    

While recording design rationale in a usable and traceable way 
should reduce the effort involved in responding to changed 
requirements, it is still possible to design intent specifications for 
which changes in requirements will cause extensive changes 
(rippling effects) at each level of the specification.  To assist with 
this problem, we introduce the concept of semantic coupling. 

Semantic coupling or independence is defined in terms of the 
mappings between the levels of the intent specification, that is, 
mappings between the goals and the means for achieving the 
goals.  The emphasis in this paper will be on the first two levels, 
but the same definition applies at each level.  At the lower levels 
of an intent specification, where the logic is mapped to software 
structures and modules, the concept is identical to that of module 
cohesion and coupling, but the functional aspects of these 
concepts can be more carefully defined by tracing the functions 
back up the levels of the intent specification (the functional 
decomposition process). 

Using these mappings, three levels of coupling or independence 
can be identified: 



1. Uncoupled: the mappings or functions from 
requirements to design principles are all one-to-
one. 

2. Loosely coupled: the mappings are one-to-many. 

3. Tightly coupled:  the mappings are many-to-many. 

For any complex control system, a completely uncoupled design, 
while allowing changes to requirements with minimal impact, is 
usually not practical.  A more realistic goal is to design to reduce 
the impact of requirements changes, i.e., to eliminate the rippling 
effects to other requirements and therefore through the system 
design as a whole by designing the mappings to be one-to-many.  
Our design goal then becomes: eliminate (or if not possible, 
reduce) many-to-many mappings and create a design such that the 
one-to-many mappings are reduced.  The latter can be 
accomplished by a careful ordering of design decisions and 
hierarchical ordering of requirements, as illustrated below. For 
ease of manipulation and visualization, we describe the functions 
using Matrix Algebra constructs.  Thus, the relationship between 
the requirements (R) and the system design principles (SDPs) can 
be characterized mathematically by expressing them in terms of 
vectors: 

(1) {FR} = [A] {SDP}                               

where {R} is a vector of m requirements, {SDP} is a vector of n 
system design principles, and [A] is the traceability matrix.  The 
values of the traceability matrix will be either * or 0, where * 
indicates a mapping exists between the corresponding vector 
components while 0 signifies no mapping. 

Consider the case of a square traceability matrix where m=n=3.  
The simplest and most desirable design, an uncoupled design, is 
one in which all the non-diagonal elements of the traceability 
matrix are zero.  That is: 
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In the uncoupled design, each of the FRs can be satisfied 
independently from the others.  If a requirement (R) changes, all 
one needs to do is to adjust the corresponding system design 
principle (SDP).  Note that in software, the traceability matrix will 
almost always not be square, that is, there will be multiple SDPs 
for each requirement. 

A coupled design is one in which elements on both sides of the 
diagonal are non-zero, as in: 
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In this case, a change in any of the requirements is likely to 
produce a cascading effect, forcing all three SDPs to be adjusted.  
In general, any requirements changes in a coupled design can 
require a highly complex, iterative redesign of the system.  This 
process can be extremely expensive, particularly if the changes 
take place far into the detailed design or implementation phase. 

The third case is the loosely coupled design, where the traceability 
matrix is lower or upper triangular: 
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In a loosely coupled design, even though the requirements are not 
strictly independent, the impact of potential changes can be 
reduced by adjusting the SDPs in the proper order.  Thus, as 
stated above, while total independence or uncoupling is almost 
always not achievable for real systems, the effects of changes in a 
loosely coupled design can be reduced by a careful ordering of 
design decisions and hierarchical ordering of requirements.  Our 
goal then, is to create designs that are loosely coupled and to 
order the design decisions such that changes will have minimal 
impact. 

The process above is oversimplified because different types of 
requirements will affect the design in different ways. In an intent 
specification, Level 1 contains three types of “requirements”:  
functional requirements1, environmental assumptions, and design 
constraints.  

System Design Principles
SDP1 SDP2 SDP3

MAPS High-level FRs

FR1
FR2
Environmental Assumptions
EA1
EA2
Design Constraints
C1
SC1  

Figure 2. Example Traceability Matrix. 

Figure 2 shows the general form and simple example of a 
traceability matrix. The three types of requirements are separated 
as they involve tradeoffs with each other or have different 
implications for system design.   

Functional requirements are derived from general system goals, 
i.e., the mission of the system.  The top part of Figure 2 shows an 
example of high-level functional requirements (FR1 and FR2) and 
their mapping to the system design principles (SDP1 and SDP2) 
that is clearly decoupled: SDP1 and SDP2 independently satisfy 
FR1 and FR2, respectively. 

Environmental assumptions lead to a second type of requirement 
that arises as soon as the system boundary is defined and the 
system interface thus becomes bound to (dependent upon) 
assumptions about the components in the environment.  Intent 
specifications include specification of environmental assumptions 
                                                                 
1 We do not separate performance requirements from functional 

requirements.  In a real-time system, this separation is not 
possible and when attempted, as often occurs, leads to many of 
the problems that arise in building such systems.  The reason 
behind this claim is beyond the scope of this paper. See Jaffe [3] 
for an explanation. 



at Level 1 and the mapping of these assumptions to Level 2 
system design principles.  In Figure 2, the links connecting the 
environment assumptions and system design principles indicate 
that those SDPs depend on assumptions about the behavior of 
components in the system environment (the system interface).  
This dependency can be a simple data dependency (format, range, 
or time properties) but can also include behavioral information 
(the external system is expected to accomplish certain tasks, etc.).  
Detailing these data dependencies is important in defining a sound 
system interface.  In addition, some environmental dependencies 
can lead to undesirable semantic couplings.  In Figure 2, both 
SDP1 and SDP2 are dependent on environmental assumption 
EA1 and thus this system is coupled with respect to the 
environmental assumptions; changes in this assumption could 
have a large impact on the design.  Appropriate design changes or 
tradeoff decisions should take this coupling into account in order 
to reduce its effects. 

The third type of requirement, design constraints (DCs), specify 
restrictions on the way the system can satisfy the requirements.  
Constraints may be safety constraints, e.g., the operation of TCAS 
must not interfere with the ground-based air traffic control system, 
or non-safety constraints, e.g., TCAS-generated avoidance 
maneuvers must minimize the impact of the evasive maneuver on 
the aircraft flight path.  Safety constraints are derived from the 
system hazard analysis performed for safety-critical systems.  
Other design constraints (i.e., not safety related) may be imposed 
by the customer or potential users of the system or may result 
from non-mission related requirements imposed on the system 
design. 

The mappings from design constraints (DCs) to SDPs have a 
different meaning than those linking FRs and SDPs.  The SDPs 
must not violate the DCs, but they also do not necessarily 
implement a safety function nor does the function necessarily 
need to be modified to accommodate the constraint.  Thus, two 
SDPs are not coupled just because the same safety constraint 
applies to them.  However, any change to a SDP linked to a DC 
means that an analysis must be triggered if any changes are made 
in the SDP in order to ensure that safety has not been 
compromised.  Thus constraints need not be independent from the 
FRs and they do not necessarily couple DCs, but the way in which 
the SDPs limit system functionality in order to satisfy any 
applicable constraint could also affect the ease and cost associated 
with system changes and evolution. 

Figure 2 also shows a SDP linked to an EA but no FR, i.e., the 
link between SDP3 and EA2.  This situation can occur when a 
level of the intent specification adds design features or design 
decisions that are useful or necessary at that level to complete the 
design or model but are not part of the functional requirements.  
These SDPS may be related to environmental assumptions or to 
design constraints or may simply be added by the designers for 
other reasons.   

4. CASE STUDY: MAPS 
The software chosen for the case study is the Mobility and 
Positioning Software (MAPS), part of the control software for a 
CMU/NASA robot [1]. The robot was designed to inspect and 
waterproof between flights each of the 17,000 silica tiles that 
protect the Space Shuttle underside. Because there are so many 
tiles, the robot divides its work area into uniform work spaces, 

inspecting tiles in each area with as little overlap between work 
spaces as possible. 

Before each inspection shift, a supervisor enters instructions and 
information about shuttle position and inspection sequence via an 
off-board computer, the Workcell Controller. The Workcell 
Controller workstation is used to create jobs and update other 
NASA databases after the robot uploads data gathered during the 
course of the shift. This data includes tile images, records of tiles 
injected and inspected, and other pertinent job data. In addition, 
robot status data is used to monitor robot operation. 

At the beginning of the shift, a job is downloaded to the robot. A  
job consists of a series of files describing the locations, sequences, 
target IDs, orbiter parking measurements, etc. The robot then uses 
a rotating laser to position itself under the shuttle, and the robot's 
camera locates the exact tile to be inspected. Because the shuttle's 
belly is not flat, the robot must customize its upward movement to 
each tile: Two vertical beams on either side of the robot raise the 
manipulator arm, which holds the injection tools and camera. A 
smaller lifting device raises the arm the rest of the way. By 
comparing the current state of each tile with the state of the tile at 
previous inspections, the robot characterizes anomalies in tiles as 
cracks, scratches, gouges, discoloring, or erosion. The robot also 
indicates when it is unsure what is wrong with a tile, so the 
supervisor can reanalyze the tile on the screen of the Workcell 
Controller. At the end of a shift, the robot's updated tile 
information is entered into existing NASA databases. 

On board the robot, a computer controls the robot's high-level 
processing tasks while a low-level controller and amplifiers direct 
arm and wheel motions. Two more computers control the robot's 
vision and injection systems. If anything goes wrong, such as 
rising compartment temperatures or low battery level, safety 
circuits will shut down the robot. 

MAPS is in charge of issuing low-level commands to the Motor 
Controller based on the inputs received either from the Planner 
(AI-based software) or a human operator. The Planner controls 
robot movement and positioning by providing MAPS with a 
specification of the destination and route. The operator controls 
robot movement and positioning using a hand-held joystick. The 
robot is unstable when the manipulator arm is extended, so 
stabilizer legs are used to provide stability. These legs must be 
retracted when the robot is in motion. MAPS is responsible for 
controlling the stabilizer legs. MAPS also monitors and controls 
several other robot subsystems and is responsible for most safety-
related functions. 

Level 1 of the MAPS intent specification contains the system 
goals, high-level functional requirements, limitations, constraints, 
and hazard analysis. It also includes the assumptions MAPS 
makes about the other robot subsystems and relevant external 
factors. Level 2 contains the MAPS design principles. While we 
have completed the top three levels of the MAPS intent 
specification as well as the traceability matrices, they are too large 
to include here.  Instead, we describe in detail two parts of the 
specification to illustrate how the concept of semantic coupling 
can be applied to a real system.  The information is the actual 
system requirements and design principles have been simplified 
for space and conciseness purposes.  Downward links are also 
omitted as they are not relevant for the examples. 



4.1 MAPS High-level Functionality 
The first example focuses on the definition of the different modes 
under which MAPS can function. Following an initial assessment 
of the system goals and safety concerns, the designers identified 
the need to make the robot controllable both manually or 
automatically. These requirements originate in the need to provide 
a balance between the performance goals and the safety 
constraints. The FRs that correspond to these requirements 
follow: 

MAPS Level 1 High-level Functional Requirements 

MAPS-1.1.1: Computer-Controlled Operations 

MAPS shall be able to operate automatically through control of 
the Planner alone.  Rationale: Human control of MAPS 
throughout the long and tedious tile servicing process (which 
takes several weeks) is impractical. 

MAPS-1.1.2: Operator-Controlled Operations 

MAPS shall be able to be operated under direct manual control. 
Rationale: Sufficient confidence cannot be obtained in the 
automated implementation of some safety-related robot 
operations (like detecting a passerby or an unexpected obstacle in 
the path of the robot), and therefore human movement control 
will be used during some limited but particularly hazardous 
operations. 

These FRs result in the definition of a series of modes and 
associated transitions in level 2 of the intent specification. 
However, these FRs are not adequate to produce a complete 
design. Assumptions about the robot’s other components and 
about the way in which MAPS is supposed to interact with them 
must be known. For this example, the engineers need some basic 
assumptions about the Planner (PL), the Motor Controller (MC), 
and the operator joystick interface (JOY):  

MAPS Level 1 Environmental Assumptions 

PL1.2: The Planner will provide both a route of travel and a 
destination to MAPS in world coordinates. 

MC3: The Motor Controller can be operated in position (relative 
displacement) mode. 

MC4: The Motor Controller can be operated in velocity mode. 

MC6: The Motor Controller is able to stop the motion of the 
robot within 0.2 seconds of receiving a ‘stop’ command. 

JOY1: The operator will be able to drive the robot by deflecting a 
joystick in the direction the operator would like the robot to travel 

Level 1 of the intent specification also includes a preliminary 
hazard analysis from which a set of safety constraints (SC) is 
derived. The SCs limit the way in which the functionality required 
by the FRs can be implemented. Two SCs related to the example 
are: 

MAPS Level 1 Safety Constraints 

SC1: The robot mobile base must move only when commanded. 

SC2: The robot mobile base must stop when commanded. 

During the design process, system engineers must define a 
functional structure out of all the Level 1information. This 

synthesis process is quite challenging; it requires from the 
designers a multi-disciplinary approach where the optimization of 
functional requirements may conflict with the safety constraints.  

The level 2 Design Principles corresponding to the current 
example are: 

MAPS Level 2 Design Principles 

MAPS-2.2.1: Initialization Precondition 

MAPS does not accept any motion commands until system 
initialization mode is complete [↑SC1]. Rationale: The normal 
operation of the system relies on the correct performance of the 
subsystems initialized during startup. 

MAPS-2.2.2: Control Mode Selection Principles 

At any time, MAPS is in one and only one of the following three 
modes: safety mode, computer mode, or joystick mode. Mode 
selection is based on the following principles: […]. [↑MAPS 1.1, 
↑MAPS 1.1.1, ↑MAPS 1.1.2,↑SC2] 

MAPS-2.2.3: Safety Mode 

In Safety Mode, MAPS stops the robot, prevents further motions, 
notifies the operator of the problem that has occurred, and 
executes a set of recovery procedures. [↑SC2, ↑MC6] Rationale: 
This mode provides MAPS with the ability to handle unsafe 
conditions and to return the robot to a safe state if possible. 

MAPS-2.2.4: Computer-Controlled Operations 

When operating in Computer mode, MAPS accepts routes  from 
the Planner and generates all the necessary movement commands 
for the motor controller to move the robot along that route. 
Relative displacement mode is used.  Motor controller commands 
are generated by calculating […] [↑MAPS-1.1.1, ↑MAPS-1.1.1.1, 
↑MC3, ↑PL1.2, ↑SC1] Rationale: This mode permits MAPS to 
position the robot very precisely and allows the optimization of 
the waterproofing operations.  

MAPS-2.2.5: Operator-Controlled Operations 

When operating in joystick mode, MAPS accepts movement 
commands from the operator via the joystick and issues all 
necessary motor controller commands to move the robot as 
commanded by the operator.  Velocity mode is used when 
operating in joystick mode.  In velocity mode, the kinematics on 
the body relative velocity are computed, and the appropriate 
wheel velocities are set. The computations used for the kinematics 
are […] [↑MAPS-1.1.2, ↑MC4, ↑Joystick1, ↑SC1] Rationale: 
Velocity commands best match an operator’s mental model of 
how robot base motions are controlled, i.e., they are the easiest 
for humans to understand and therefore monitor. 

Note how most of the level 2 design principles include the 
rationale behind design decisions as well as traceability 
information. This information can prove extremely useful in 
system redesigns and during maintenance by providing insight 
into the reasoning and assumptions of the original designers. The 
traceability links are denoted by up-arrows (↑ ), providing an 
explicit way to indicate a dependency or satisfying relationship 
between different items of an intent specification. Our automated 
tools to support intent specifications use hyperlinks.  



Creation of the traceability matrix for this example is immediate 
from the links:          
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As expected, the traceability matrix is not square. Equation (6) 
provides important information regarding the coupling in the 
system. FR1.1.1 is only satisfied by DP2.2.2 and DP2.2.4. Similarly, 
FR1.1.2 is satisfied by DP2.2.2 and DP2.2.5. This means that the 
implementation of each type of operation is accomplished by 
separate control modes, each independent of each other. The only 
DP that is common to both functional requirements is the one 
defining the mode selection logic. This is clearly a case of a 
loosely coupled design. This point can be seen easily bu 
expanding the matrix:  

          FR1.1.1 = SDP2.2.2 + SDP2.2.4 

                           FR1.1.2 = SDP2.2.2 + SDP2.2.5                                   
(7) 

If the designer can fix DP2.2.2 before the other DPs, then DP2.2.4 

and DP2.2.5 can be adjusted independently to satisfy their 
corresponding functional requirements. In practice, this means 
that the mode transitions should be defined apart from the mode 
functionality itself. In addition, the implementation of each mode 
must be unaware of the existence of other modes. In this way, if 
one of the two modes needs to be changed or removed altogether, 
the remaining mode can be left unchanged. The traceability 
matrices can be used to identify subtle interactions and 
dependencies between the modes.   

The environment assumptions and safety constraints affecting the 
DPs are shown in Figure 3. Note how the environmental 
assumptions corresponding to SDP2.2.4 and SDP2.2.5 were 

successfully encapsulated: they do not have any common 
assumptions.  

Figure 3 also contains DPs that are not linked to any level 1 FR. 
For example, the establishment of a Safety Mode (DP2.2.3) does 
not answer the needs defined by any of the system goals but 
ensures that certain safety properties are preserved during the 
operation of the robot. This is a case of a SC that results directly 
in the establishment of a level 2 function. DP2.2.3 also serves to 
isolate the assumption MC6 that would otherwise affect DP2.2.4 
and DP2.2.5.  

4.2 Computer-Controlled Operations   
This example analyzes part of the functionality of the Computer 
mode.  Rather than again providing a walkthrough of the design 
process, the relevant semantic coupling issues are presented 
directly. 

 The high-level functional requirements corresponding to this 
mode are: 

MAPS-1.1.1.1: MAPS shall generate appropriate commands to 
the Motor Controller to traverse the route provided by the 
Planner. 

MAPS-1.1.1.1.1: MAPS shall inform the Planner of the success 
or failure of the route traversal and the reason for any failure. 

MAPS-1.1.1.1.2: While in Computer Mode, all joystick 
deflections shall be ignored and the operator shall be informed 
when this occurs. 

MAPS-1.1.1.2: While in Computer Mode, MAPS shall maintain 
information about the position of the robot. Rationale: MAPS will 
use the position information to correct the robot trajectory and to 
determine when the final position has been reached. 

MAPS-1.1.1.3: In Computer Mode, MAPS shall determine when 
the stabilizer legs should be deployed (or retracted) and issue the 
appropriate commands. 

Figure 3. MAPS Traceability Matrix. 
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4.2.1 Position Determination 
The first example analyzes the coupling created between the robot 
base motion control function and the position finding function. 
The level 2 SDPs that define the latter function are:  

MAPS-2.2.4.6: Scanner Query. MAPS obtains position 
information from the laser scanner.  Position is calculated by […] 
[↑MAPS-1.1.1.2, ↑LS2]  

MAPS-2.2.4.6.1: Position determination occurs prior to the 
beginning of each route segment when operating in Computer 
Mode. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.2, ↑LS2, ↑LS2.1, ↑LS3] 
Rationale: MAPS must know the robot position before it can send 
a new relative displacement command to the Motor Controller. 

MAPS-2.2.4.6.2: Position determination occurs following the 
completion of each route segment when operating in Computer 
Mode. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.2, ↑LS2, ↑LS2.1, ↑LS3] 
Rationale: MAPS must know where the previous position 
command took the robot base. This information is used to detect 
errors and to provide feedback on previous actions in order to 
detect errors in carrying them out. 

The location system environmental assumptions used for the 
previous SDPs are: 

LS 2: Upon request, the laser scanner will provide the current 
position of the robot in the form of global location coordinates 
with an accuracy of TBD.  

LS 2.1: The laser scanner can only take position readings while 
the robot base is immobile.  

LS3: The bar code targets remain within the line of sight of the 
scanner at all times. 

The traceability matrix  is derived from the FR-SDP links: 
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(8) 

Equation (8) clearly represents the case of a coupled design. The 
origin of this coupling can be traced back to LS2.1. Because the 
scanner can only take position readings after the robot base has 
stopped, the motion and position finding functions are 
interdependent. Changes in some of the environmental 
assumptions can make the situation worse. For example, assume 
that LS3 does not hold anymore. This change would mean that in 
some cases, the scanner would not be able to find the bar code 
targets needed to perform its function. MAPS software engineers 
might be tempted to include additional motion controlling 
functionality to tackle this shortcoming. Unfortunately, the 
problem is nontrivial because it is hard to direct the robot to 
another position if there is a high degree of uncertainty about its 
current position. Despite having successfully isolated the LS 
environmental assumptions from the rest of the design (see Figure 
4), the semantic coupling identified in equation (8) makes the 
entire system susceptible to changes in them. A possible solution 
to this problem is the substitution of the laser scanner by a Local 
Positioning System (LPS). This change would uncoupled the 
design and thus create a more robust system. It is unlikely that the 
decision to modify the robot would be based solely on this 

consideration; other factors (cost, equipment availability) are 
likely to play an important role as well. The key is to provide  
engineers with the information necessary to identify and evaluate 
those trade-offs of crucial importance to the long-term success of 
their system.   

4.2.2 Robot Base Stabilization 
The final example involves the responsibilities of MAPS for robot 
base stabilization. The related part of the MAPS intent 
specification follows: 

MC1: When commanded to do so, the motor controller will 
provide power to the motor, which will drive the robot wheels. 

GUI1: The GUI will provide the operator with enough 
information about the status of the robot and the work area that 
the operator is able to avoid hazards. This information includes 
movements commanded by the Planner. 

PL1: All automatic robot operations will be directed and 
coordinated by the Planner. 

SL1: The stiff legs provide the robot base with the stability 
needed to perform all the currently anticipated robot arm 
operations. The stiff legs will be able to stabilize the robot during 
tile servicing (manipulator motion).  

SL2: The stiff legs are not able to stabilize the robot while in 
motion.. 

MA2: The manipulator arm controller will provide information 
about the position of the arm directly to MAPS. 

SC6:  The mobile base must not move when the stabilizer legs are 
extended. Rationale: Damage can occur to the robot if movement 
is attempted with the legs extended. 

SC7:  The manipulator arm must not be extended when the 
stabilizers are retracted 

SC8: Stabilizer legs must not be retracted until the manipulator 
arm is fully stowed. 

MAPS-2.2.4.9: Leg Deployment and Retraction. Upon reaching 
the final destination, MAPS deploys the stabilizer legs and later 
retracts them (upon the Planner’s request) once the manipulator 
arm is stowed. [↑MAPS-1.1.1.3, ↑SL1, ↑MA2, ↑SC7, ↑SC8]  

 

MAPS-2.2.4.9.1: After a move that has correctly positioned the 
robot base in the work area, MAPS turns off the wheel motors and 
then deploys the legs. [↑MAPS-1.1.1.1, ↑MAPS-1.1.1.3, ↑SL1, 
↑SL2, ↑MC1, ↑SC6] Rationale: The motor is turned off so no 
accidental motion command sets the base in motion with the 
stabilizers legs deployed. 

MAPS-2.2.4.9.2: When a move is commanded, MAPS retracts 
the stabilizer legs before turning on the wheel motors. [↑MAPS-
1.1.1.1, ↑MAPS-1.1.1.3, ↑SL2, ↑MC1, ↑SC6, ↑SC8] Rationale: 
see MAPS-2-2.4.9.1 

MAPS-2.2.4.9.3: In the event the stabilizer retraction or 
deployment fails, MAPS notifies the operator and the Planner of 
the failure. [↑GUI1, ↑PL1, ↑SC7] Intent: The Planner is 
informed about the error so it does not send any arm motion 
commands. The operator is informed about the error so the 
failure can be diagnosed and repaired.  
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Figure 4. Computer Control Mode Traceability Matrix. 



As before, the traceability matrix can be derived directly from the 
FR-SDP links: 
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(9)     

As in the previous case, equation (9) indicates the design is 
coupled. The origin of this coupling is the need to satisfy safety 
constraints related to the instability of the robot base. Although on 
the surface the software logic appears to be relatively simple here, 
it can become quite complex due to the need to keep track of and 
control several unrelated subsystems and the related timing and 
fault tolerance issues. Changes to this logic could cause major 
disruptions to a project or rippling effects that delay deliverables 
or lead to budget overruns. Changes in this early system design 
phase could prevent these problems, and the semantic coupling 
information can assist the engineers in making the necessary 
tradeoff decisions. For example, a first step in decoupling this 
design might be to use a power interlock so the energy supply to 
the Motor Controller is shut off automatically whenever the 
manipulator arm power is turned on, thus reducing the safety 
responsibilities of the software.  

5. CONCLUSIONS 
The need for software engineering derives from the need to 
manage complexity.  Complexity can be managed intellectually by 
partitioning, establishing hierarchies, and maximizing 
independence among components.  Intent specifications 
(introduced previously) are a way of increasing intellectual 
manageability by using partitioning and hierarchical abstractions 
found by cognitive psychologists to be key to success in complex 
problem-solving activities. This paper has introduced and defined 
a concept of semantic coupling and shown how it can be 
operationalized using traceability matrices.  Semantic coupling is 
related to the difficulty of changing system requirements and 
reducing coupling should reduce the rippling effects associated 
with requirements changes.  

Semantic coupling at the higher system levels translates to 
structural coupling and cohesion at the software design and 
implementation levels and should also ease the structural 
decoupling process by decoupling functions or identifying 
coupled functionality at the higher levels.  Any such decoupling 
involves design tradeoffs, but making these tradeoffs and their 
implications clear will be helpful to those generating system and 
software designs. 

For small projects, the advantage of the approach lies in the 
intellectual processes that the domain experts must follow to 
produce the traceability matrices.  For larger and more complex 
projects, the traceability matrices themselves play an important 
role.  As the number of developers increases, creating a common 
convention to communicate coupling characteristics becomes 
increasingly important.  During maintenance the need is even 

greater.  Used in the Intent Specification framework, traceability 
matrices provide traditional functional traceability, but they also 
assist in system design and tradeoff evaluation, designing for 
safety and safety evaluation and assessment, support interface 
design, etc.  

Providing techniques and tools to support the creation and 
navigation of large traceability matrices is a future research goal 
as is the more general goal of increasing our understanding of 
how to structure complex systems to allow us to stretch the limits 
of complexity of the systems we can build and maintain 
successfully. 
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