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1 Introduction

Risk is a broadrangingand multidimensionatopic, in-
cludingbothmanagementsksandtechnicarisks. Man-
agementisksfor COTS arewell known, suchaslossof
market control, rapid obsolescencendthe shift from a
buyer's market to a sellers market. Technicalrisk fac-
torsarelesswell understood Thesefactorsincludein-
teroperabilityandperformancessuesaswell assafety
This paperconcentratesnrisksrelatedto safety where
safetyis definedbroadlyasrelatedto a significantloss
(accident)nvolving humariife or health ervironmental
damagemoney, or systemmission. Therisk becomes
a safetyissuewhenthelossis significantenoughthatit
becomesecessargr worthwhileto devoteresource$o
reducingtherisk.

Oneof themajordriversfor usingCOT S softwareis
to save mong/. Much, if notall, of the savings, how-
ever, may be offset by the activities neededto ensure
an acceptabldevel of risk. This assurancenight in-
volve additionaltestingor analysisproceduresln some
highly critical systemsCOT S mayraisethe costof cer
tification or ensuringsafetyto the point wherethe use
of COTSproductss nolongerfeasibleor cost-efective;
ary potentialsavingsareeliminatedby additionalassur
ancecosts.

Beforeary conclusionganbereachedboutthecost
of achieving acceptablesafetyrisk using productsor
componentsnvolving COTS software, we needto de-
fine whatis meantby safetyandthe type of accidents
being consideredthe processrequiredto achieve ac-
ceptablerisk for thoseaccidentypes,andthe potential
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effectof usingCOTS onthatprocess.

2 System Safety Engineering Overview

The approachone takesto assuringacceptablesafety
is driven by the underlyingmodel of accidentcausa-
tion used: How oneviews the etiology of accidentsn
turnsdrivesary preventionstratgy. Theincreasinguse
of softwareto control potentiallydangerousystemss
complicatinghingsfurtherby changinghebasicnature
of theaccidentghatareoccurringin thesesystems.

2.1 Types of Accidents

Becauseonsideringhetypesor generatause®f acci-
dentsis critical in determiningheappropriateapproach
to preventingthem,ary answerto the COTS risk ques-
tion mustfirst startfrom a basicunderstandingf ac-
cidentcausatiorand prevention. Engineershave long
dealtwith componenfailure accidentsvherethe acci-
dentarisesfrom componenfailure, i.e., behaior that
doesnot satisfy specifiedor expectedbehaior. The
eventsassociatedvith the accidentmay involve mul-
tiple failuresor cascadingailures,but in all caseshe
initiating causds thefailure of a componento achiere
its goals.

The mostcommonapproachto preventingsuchac-
cidentsinvolvesoneor bothof thefollowing:

1. Reducingor preventingthe componentailure by
increasinghe reliability or life of the component
or reducingthe stressunderwhich the component
operates,

2. Protectingthe overall systemoperationfrom be-
ing adwerselyaffectedby thefailureof thecompo-
nent(s).



The secondapproactis often achievedthroughthe use
of redundang—thefailure of a components offsetby
the useof a redundantomponento achieve the same
missionor purpose.

The introductionof new technology especiallydig-
ital technology and the increasingcompleity of sys-
tem designs(most of it made possibleby the use of
computers)s startingto producean importantchange
in the natureof accidents. While accidentselatedto
hardwarefailure arebeingreducedsystem accidents (a
term coinedby Perrav [Per84), areincreasingin im-
portance.

Systenaccidentarisein theinteractionamong com-
ponents(electromechanicaligital, and human)rather
thanfrom thefailureof individual componentsln these
accidentsthe componentsnayall operateaccordingto
theirspecificationthatis, thereis no“failure; but unex-
pectedor desiredinteractionsamongcomponentseads
to the loss. For example,recentlythe FAA issuedan
Advisory Directive (AD) relatedto an accidentwhere
the stallwarningon a particularaircraftcanbe delayed
if the stall conditionsoccurwhile the flapsaremoving.
In this case(asis true for mostsystemaccidents)each
componentworked accordingto its specification(i.e.,
the stall warning softwareandthe control surfacesoft-
ware), but subtlecomponeninteractionsat the system
level allowedthe stallwarningto be delayed.

Systemaccidentsn generalarerelatedto (1) inter
active compleity and(2) tight coupling.

Theunderlyingfactorin interactive compleity isin-
tellectual manageability. A “simple” systemhasasmall
numberof unknovnsin its interactionswithin the sys-
temandwith its ervironment.A systembecomesnter-
actively comple or intellectuallyunmanageablashen
the level of interactionsreacheghe point where they
cannotbe thoroughlyplanned,understoodanticipated,
and guardedagainst. Introducingnew technologyin-
creasegheproblemsy introducingmoreunknowvnsinto
thedesignand,in the caseof digital technologypoten-
tially moreinteractions. Systemaccidentsarisewhen
interactve compleity reacheghe pointwhereit is dif-
ficult for designergo considerall the potentialsystem
statesor for humanoperatorgo handleall normaland
abnormalsituationsand disturbancesafely and effec-
tively.

Thesecondactorin systemaccidentstight coupling,
allows disturbancesn one part of a systemto spread
quickly to otherparts. We areusingcomputergo build
systemswith moreintegratedmulti-loop controlof large

numbersof dynamicallyinteractingcomponentsWhen
almostary part of a systemcan potentially affect ary
other part, the problemsof predictingand controlling
thoseinteractiongjuickly overwhelmsour currentengi-
neeringtechniquesandmentalabilities.

As the interactve compleity and couplingin our
systemdesignshasincreasedso too have systemac-
cidents.

For componentailureaccidentstherisk involvedin
theuseof COTS productscanoftenbehandledhrough
specialsystemdesignfeatures All componentganpo-
tentially fail andsoftwareis no differentin this respect,
where software failure is definedas not satisfyingits
specifiedrequiredbehaior. Traditional systemdesign
techniquesare usually applicablewhetherthe compo-
nent providing the requiredfunctionality is analogor
digital. The only difference from a systemdesignper
spectve,isthatthefailuremodesnaydiffer. Theunique
failure modesfor software may or may not make deal-
ing with thempracticalat the systemdesignlevel, but
all suchfailure modesneedto be considered.Digital
systemommonlyhave a larger possiblesetof failure
modesthananalogsystemsandthis setmayor maynot
be ableto be handledeffectively, dependingon the par
ticular system.

Systenaccidentpresenagreaterchallengeandneed
to be consideredn moredetail.

2.2 System Safety

Systensafetyis thepartof systenengineeringhatdeals
with the challengeof preventingor reducingbothcom-
ponenfailureandsystemaccidentsn complex systems.
It wasdevelopedasaresponsédo safetyconcernsabout
thefirst ICBM (Inter-ContinentaBallistic Missile) sys-
temsin the 19505s. Although greatemphasisn engi-
neeringthesesystemswvason safety(asthey carry nu-
clearweaponsandare highly explosive anddangerous
in themseles),an unacceptabléevel of accidentsand
incidentsresulted.Thelackof pilots meanthumanoper
atorscouldnotbe blamedfor theaccidentsashadbeen
standardpracticefor military aircraft accidents. The
root causeof the ICBM safetyproblemsstemmedrom
the unprecedentedompleity in thesesystemsandthe
integrationof new, advancedechnology
Systemsafety engineeringwas developedto cope
with thesenew factorsandwaspartof therelatedemer
genceof systemengineeringasan identifiedengineer
ing disciplineat the sametime. It becamehe rationale



behindthe U.S. military standardMil-Std-882 and its
variousversionsoverthepast30years.

Systensafetyinvolvesapplyingspeciaimanagement,
hazardanalysisanddesignapproacheto preventacci-
dentsin comple systems.lt is a planneddisciplined,
and systematicapproacho preventingor reducingac-
cidentsthroughoutthe life cycle of a system. Rather
thanrelying only on learningfrom pastaccidentsor in-
creasingcomponenintegrity or reliability, anattemptis
madeto predictaccidentdeforethey occurandto build
safetyinto the systemandcomponentesignsby elimi-
natingor preventinghazardousystenstates.

The primary concernin systemsafetyis the man-
agemenbf systemhazards.A hazard is a systemstate
thatwill leadto anaccidengivencertainervironmental
conditionsbeyond the control of the systemdesigner
An uncommandedbehaior of an automobilesteering
system,for example,may or may not leadto an acci-
dent,dependingntheconditionsunderwhichit occurs
andthe skill of the driver. However, if worst caseen-
vironmentalconditionscould occur, theneliminatingor
controlling the hazard(i.e., the uncommandedteering
behaior) will increasesafety

In systemsafetyengineeringasdefinedin Mil-Std-
882,hazardaresystematicallydentified,evaluatedelim-
inated andcontrolledthroughhazardanalysigechniques,
specialdesigntechniquesand a focusedmanagement
process.n this approacho safety hazardanalysisand
controlis acontinuousiterative processhroughousys-
tem developmentand use. Startingin the earliestcon-
ceptdevelopmentstage,systemhazardsare identified
andprioritizedby a procesknown asPreliminaryHaz-
ardAnalysis(PHA). Safety-relatedystenrequirements
anddesignconstraintsaarederived from theseidentified
hazards.

DuringsystendesignsystenhazardanalysigSHA)
is appliedto the designalternatves (1) to determinef
andhow the systemcangetinto hazardoustates(2) to
eliminatehazard$rom thesystendesignf possiblepr
to controlthe hazardghroughthe designif they cannot
be eliminated,and (3) to identify andresohe conflicts
betweerdesigngoalsandthe safety-relatediesigncon-
straints.

The differencebetweenthis approachand standard
reliability engineeringapproachess that consideration
of safetyat the systemdesignstagegoesbeyond com-
ponentfailure; the analysisalso considersthe role in
reachinghazardousystenstategplayedby components
operatingwithout failure. SHA considerghe systemas

awhole andidentifieshow possibleinteractionsamong
subsystemandcomponentgincludinghumanshswell
as the normal and degradedoperationof the subsys-
temsandcomponentgancontributeto systemhazards.
For example,not only would the effect of normaland
degradedor incorrectoperationof the steeringsubsys-
tem of an automobilebe consideredput also potential
hazard-producinmteractionsvith othercomponentsuch
asthebrakingsubsystem.

If hazardscannotbe eliminatedor controlledsatis-
factorilyin the overall systemdesign thenthey mustbe
controlledatthe subsystenor componentevel. In sub-
systemhazardanalysis(SSHA), the allocatedsubsys-
temfunctionalityis examinedto determinehow normal
performance operationaldegradation,functional fail-
ure,unintendedunction,andinadwertentfunction(proper
function but at the wrong time or in the wrong order)
could contritute to systemhazards. Subsystemsand
componentsare then designedto eliminate or control
theidentifiedhazardoudehaior.

Theresultsof systemandsubsystenmazardanalysis
arealsousedin verifying the safetyof the constructed
systemandin evaluatingproposedchangesandopera-
tional feedbackhroughouthelife of thesystem.

While this systemsafetyapproacthasprovento be
extremelyeffectivein reducingaccident$n complex sys-
tems,changesrerequiredfor thenew software-intensie
systemawve arenow building. And in the context of this
meeting,the information necessaryo performsystem
hazardanalysismay not be availablefor COTS compo-
nents.

2.3 The Role of Software in System Accidents

Theincreasinguseof softwareis closelyrelatedto the
increasingoccurrenceof systemaccidents. Software
usuallycontrolstheinteractionsamongcomponentand
allows almostunlimited compleity in componentn-
teractionsand couplingcomparedo the physicalcon-
straintamposeddy themechanicalinkagesreplacey
computers.The constraintson compleity imposedby
naturein physicalsystemsio notexist for softwareand
mustbeimposedby humanson their designanddevel-
opmentprocess.
Indeed,computersarebeingintroducednto the de-
signof virtually every systenprimarily to overcomethe
physicalconstraintsof electromechanicaiomponents.
Theproblemis thatwe have difficulty reiningin ouren-
thusiasnfor building increasinglycomplex andcoupled



systems.Without physicalconstraintsthereis no sim-
ple way to determinethe point wherecompleity starts
to becomaunmanageable.

This featureof software might be calledthe “curse
of flexibility”: It is as easy—andorobably easier—to
build complex softwaredesignsasit is to build simple,
cleandesigns. And it is difficult to determinethe line
whereaddingfunctionality or designcomplexity makes
it impossibleto have high confidencen software cor
rectness.The enormousstatespaceof digital systems
meansthat only a small part can be exercisedbefore
the systemis put into operationaluse; thus the confi-
dencetraditionally obtainedthroughtestingis sererely
limited. In addition,humansarenot very goodat self-
imposedliscipline(versughedisciplineimposeddy na-
ture in physicalsystems):“And they looked upon the
software, and saw that it was good. But they just had to
add this one other feature...” [McC92)].

Computersarealsointroducingnew typesof failure
modesghatcannotbe handledby traditionalapproaches
to designingfor reliability and safety (suchas redun-

dang) andby standardnalysidechniqueg¢suchasFMEA).

Thesetechniquesvork bestfor failurescausedoy ran-
dom, wearout phenomenandfor accidentsarisingin
the individual systemcomponentgatherthanin their
interactions.

We are even witnessingnew typesof humanerrors
wheninteractingwith or within highly-automatedys-
tems.Althoughmary of theaccidentsn high-techsys-
temssuchasaircraft are beingblamedon the pilots or
controllers thetruth is that thesesystemsareoften de-
signedin sucha way thatthey areinducingnew types
of humanbehaior andhumanerror: The problemsare
notsimplyin thehumanbut in the systemdesign.A re-
centreporton pilot errorsin high-techaircraftdescribes
someof thesesystendesignproblemgBAS9g ashave
others,e.g., [Lev95, LRK97, SWB9Y. The situation
is evenmoreseriousandpotentiallydifficult to solve in
industriegsuchasautomobilesyvhereoperatorarenot
ashighly trainedandcarefully selectecasarecommer
cial pilots.

Using the traditional approachto safety we would
simply try to increasehereliability of the softwareand
introducesoftware fault tolerancetechniques. This is
theapproactembodiedn thenew IEC 61508standard.
Unfortunatelythis approactwill notwork for software
becauseccidentselatedto software are almostnever
relatedo softwareunreliability or failureof thesoftware
to satisfyits specificatiorfLev95, Lut92]. Ratherthese

accidentsnvolve softwarethatcorrectlyimplementghe
specifiedbehaior but a misunderstandingxists about
what that behaior shouldbe. Software-relatedacci-
dentsare usually relatedto flawed requirements—not
codingerrorsor softwaredesignproblems.

In the pasttwo decadesalmostall software-related
accidentscan be tracedto flawed requirementsn the
form of (1) incompleteor wrongassumptionaboutthe
operationof the controlled systemor requiredopera-
tion of the computeror (2) unhandledcontrol-system
statesand ervironmentalconditions. For example,an
aircraft weaponsnanagemensystemwas designedo
keepthe load even and the planeflying level by bal-
ancingthe dispersalof weaponsand emptyfuel tanks.
Evenif theplanewasflying upsidedown, thecomputer
wouldstill dropabombor afueltank,whichthendented
the wing androlled off. In an F-16 accident,an air-
craftwasdamagedvhenthecomputeraisedhelanding
gearin respons¢o atestpilot’'s commandwvhile theair-
craft wason the runway (the software shouldhave had
a weight-on-wheelsheck). One F-18 was lost when
theaircraftgotinto anattitudethatthe softwarewasnot
programmedo handle. AnotherF-18 crashedvhena
mechanicafailure causedheinputsto the computerto
arrivefasterthanwasexpectedandthesoftwarewasnot
designedo handlethatload or to fail gracefullyif the
original load assumptiorwas not satisfied. Accidents
in the mosthighly automateccommercialaircraft, the
A320, have all beenblamedon pilot error, but aneven
strongelargumenicanbemadethatthedesignof theau-
tomationwastheprimaryculpritandinducedhehuman
errors.

Merelyassuringhatthesoftwaresatisfiests require-
mentsspecificationor attemptingto make it morereli-
ablewill not make it saferwhenthe primary causeof
software-relatedaccidentss flawed requirementspec-
ifications.In particular softwaremaybe highly reliable
andcorrectandstill be unsafewhen:

¢ Thesoftwarecorrectlyimplementsts requirements
but the specifiedbehaior is unsafefrom a system
perspectie;

e The requirementglo not specify someparticular
behaior requiredfor thesafetyof thesystem(i.e.,
therequirementareincomplete)pr

¢ The software hasunintendedandunsafe)beha-
ior beyondwhatis specifiedn therequirements.

As noted,almostall accidentselatedto software have
involvedoneof theserequirementflaws. Ensuringthat



the software satisfiesits requirementsill not prevent
theseaccidents.

This facthasvery importantimplicationsfor COTS
andrisk. Safetyis a systemproperty—nota compo-
nent property Using a COTS product, even if it has
very high reliability (or SIL level), doesnotimply that
the productis safewhenit interactswith othersystem
componentsThe problemis exacerbatedvith software
becauseoftwareusuallycontrolsmary if notall of the
interactionsbetweensystemcomponents. Techniques
for dealingwith COTS by simply equatingsoftwarere-
liability or correctnesgconsisteng with specifications)
will not prevent systemaccidents.To understandvhat
isnecessansomebackgroundibouthow systemsafety
dealswith softwareis required.

2.4 System Safety and Software

Becauseof the uniquefeaturesof digital systemsand

softwarein particulartraditionalsystensafetyapproaches

must be extendedto deal with systemshaving digital
componentsin particular to handlethe new levels of
compleity, new typesof failure modesandnew types
of problemsarisingin the interactionbetweencompo-
nentsin computesintensve systemdesigngLev95].

In the systemsafety approachto building systems
containingsafety-criticakoftwareinsteadf simplytry-
ing to getthe software correctand assuminghat will
ensuresystemsafety attentionis focusedon eliminat-
ing or controlling the specificsoftware behaiors that
couldleadto accidents Potentiallyhazardousoftware
behaior is identifiedin the systemandsubsystenhaz-
ardanalyses.Theinformationderived from theseanal-
ysesis usedto ensurehat(1) thesoftwarerequirements
arecompleteandspecifyonly safebehaior and(2) the
entire software developmentand maintenancerocess
eliminatesor reduceghe possibility of the unsafebe-
havior.

The software safety actwities in this approachare
all integratedinto and a subsetof the overall system
safetyactvities. Emphasigs on building requiredsys-
tem safety propertiesinto the designfrom the begin-
ning ratherthanrelyingonassessmettterin thedevel-
opmentprocessvheneffective responsas limited and
costly

Building safetyinto softwarerequireschangeso the
entiresoftwarelife cycle:

¢ Project Management: Specialproject manage-
mentstructuresmustbe establishedincluding as-

signing responsibilityfor software safetyandin-
corporatingit into the software developmentpro-
cess. The Software SafetyEngineer(sill inter-
act with both the software developersand main-
tainersandwith the systemengineersesponsible
for safetyatthe systemlevel.

SoftwareHazard Analysis: Softwarehazardanal-
ysisis aform of subsystenhazarcanalysiausedto
identify safety-criticalsoftwarebehaior, i.e.,how
the software could contritute to systemhazards.
The informationderived from this processalong
with the systemsafetydesignconstraintsandin-
formationfrom thesystemhazardanalysisjs used
to: (a) developsoftwaresafetydesignconstraints,
(b) identify specificsoftwaresafetyrequirements,
(c) devise software and systemsafety test plans
and testingrequirements(d) trace safety-related
requirementgo code, (e) designand analyzethe
human—computemnterface, (f) evaluatewhether
potentialchangeso thesoftwarecouldaffectsafety
and(g) develop safety-relatednformationfor op-
erationsmaintenancegndtrainingmanuals.

Software RequirementsSpecificationand Anal-
ysis: Becausesoftwarerequirementdlaws, andin
particular incompletenessare so importantwith
respecto softwaresafety it is critical that black-
box softwarerequirementgrequiredfunctionality,
including performancebe validatedwith respect
to enforcingsystemsafetydesignconstraintsand
to satisfyingcompleteneseriteria.

Software Designand Analysis: Thesoftwarede-
sign mustreflect systemsafety designcontraints
(1) by eliminatingor controllingsoftwarebehaior
that hasbeenidentified as potentially hazardous
and (2) by enforcing systemsafety designcon-
straintson the behaior and interactionsamong
the component®eingcontrolledby the software.
Notethatevenif thespecifiedsoftwarebehaior is
safe, simply implementingthe requirementsor-
rectly is not enough—thesoftware can do more
thanis specifiedn therequirements,e.,thereis a
potentialproblemwith unintended softwarefunc-
tion or behaior in additionto specifiecbehaior.

Designand Analysis of Human—Machine Inter -
action: Systemhazardsandsafety-relatediesign
constraintsnustbereflectedn thedesignof human—
machineinteractionandinterfaces. The software



behaior mustnotinducehumanerrorandshould
reducet whenpossible.

e Software Verification: The software designand
implementatiormustbe verifiedto meetthe soft-
ware safety designconstraintsand safety-related
functionalandperformanceequirements.

e Feedbackfrom Operational Experience: Feed-
backsourceanustbe establishedind operational
experiencausedo ensureboth (1) theanalysisand
designwereeffectivein eliminatingsoftware-related
hazardsand(2) changes$n theervironmentor use
of the systemhave not degradedsafetyovertime.
The assumption®f the systemandsoftwarehaz-
ard analysiscan be usedaspreconditionson and
metricsfor the operationaliseof the system.

e Change Control and Analysis: All changego
the software mustbe evaluatedfor their potential
effecton safety Usually someoneesponsibldor
safetywill sit on the software configurationcon-
trol board. Changesnustalsobereflectedin up-
datedo all safety-relatedlocumentation.

With this methodologythe informationprovidedby
systemengineeraboutpotentialsystemhazardss used
to build safetyinto the softwarestartingfrom the earli-
esttasksandcontinuingthroughouthe softwaredevel-
opmentandevolution processAs anexample,consider
a simpleaircraftaltitude switch thatissuesa command
to anotherdevice (perhapgo turn it on) whenthe air-
craft descenddelow a thresholdaltitude. Assumethat
thealtitudeis determinedy the useof multiple altime-
ters on boardthe aircraft, eachof which sendsthe al-
titude it sensego the altitude switch software. When
the outputcommandf thealtitudeswitchis potentially
hazard-reducinge.qg.,the pilot is beingalertedthatthe
aircrafthasdescendetlelow its minimumsafealtitude),
the safestdesignwill beto issuethe outputcommandf
ary oneof thealtimeterandicateghethresholdaltitude
hasbeencrossed Alternatively, if the outputis hazard-
increasinge.g. theinformationis usedto releasea mis-
sile), the safestsoftware functionaldesignmight be to
requireagreemenby all the altimetersbeforeissuing
thecommand.

Note thatthe safetyof the designof the component
(thealtitude switch)is dependentn the useof the out-
put from the switch within the overall systemdesign.
The particularsystemhazardbeing eliminatedor miti-
gatedwill determinavhetherary particularaltitudeswitch
behaior is safeor not.

3 Implications for Systems using COTS Soft-
ware

All COTS software is not alike, and we first needto
differentiatebetweerapplication software thatprovides
a direct systemfunction and system software that pro-
vides a platform on which applicationsoftware is ex-
ecuted. Eachof theseprovides unique challengedor
systenmsafetyandCOTS.

3.1 System Software

Systemsoftwarehasalmostalwaysbeenspeciallycon-
structedfor very dangeroussystemsin orderto allow
thethoroughanalysisandhigh confidenceequired.The
overall goalsfor thetwo maintypesof systemsoftware
areatpolaropposites:

¢ Platforms for hobbyists, businessproductivity
tools, and homeuse Be first to market with the
mostfeatureandassumehatconsumeraremore
interestedn featureghanreliability or quality

e Platforms for critical, real-time systems Pro-
vide the minimum featuresrequiredto do the ba-
sic taskin sucha way thathigh confidencecanbe
assured.

The shrinkwrapsystemsoftware industry assumeshat
userswill adaptto ary problemswith the softwareand
thatlimitations of liability (throughwaiversor through
laws limiting liability) will indemnifythemagainstary
damage®r legal actionresultingfrom the useof their
product.

In thismarketatmospherandbecausef thedifficulty—

indeedusually impossibility—of providing high assur
anceof acceptabldehaior for a productthat hasnot
beendesignedto be amenableto suchassurancethe
only feasibleapproachis to buy and use systemsoft-
warethathasbeenspeciallyconstructedor critical sys-
tems. Thekey hereis simplicity andfeaturedimited to
thosethatareneededandcanbe verified. Suchsystem
softwareexistsandis usedfor critical avionicsandother
systemdoday Because¢hemarketfor suchsystensoft-
wareis limited, we needto ensurethat theseproducts
and companiessurvive. Any additionalcostsinvolved
in usinglimited-market productswill be well madeup
for by thereductionin analysigequiredto ensuresafety

Marny of thenon-technicabenefitoof COTS, suchas
distributing costsover a larger userbase are presered
by theuseof thesespeciaproductsalthoughthesavings



may be reducedn the shortterm by a smallermarket-
place. The long-termsavings, which needto include
suchfactorsasthe costsinvolved in accidentsshould
actuallyincrease.

Thereis onespecialcasewith a somavhatlesspes-
simistic conclusion:The useof COTS systemsoftware
with acceptableisk may be feasibleif the systemcan
be protectedfrom ary potentialunsafebehaior of the
COTS componenasawhole. In this case systemsoft-
wareis handledin muchthe sameway thatapplication
softwareis treatedasdescribedn the next section.

3.2 Application Software

The use of COTS applicationsoftware or specialized
componentssuchasdevice driversor GPSrecevers,is
morefeasiblebut still presentglifficultiesandhassome
prerequisite$o achieving acceptableisk.

Asdiscussea@bove,safetyis asystenproperty nota
componenproperty It is notpossibleto determineor a
componenin isolationif its usewill besafefor any sys-
temin whichit mightbeemployed,asillustratedby the
altitudeswitch exampleearlier Eachsystemdesignre-
quiresa completesafetyanalysisof the interactionof
the componentsand the hazardsthat may arise from
suchan interaction. Therefore a systemthat contains
COTScomponentsvill needto undegoacompletesys-
tem hazardanalysis. The questionis whatinformation
is requiredto accomplishthatand canthatinformation
be obtainedor digital COTS products.

If the componentr function is not critical from a
systemsafetystandpointj.e., it canbe shovn thatary
behaior of thatcomponentannotaffecta systemhaz-
ard, then COTS presentsio problems. The only issue
becomeoneof beingableto make that determination
atthesystemievel.

If the componentor functionis critical but system
engineersare ableto createa systemdesignin which
ary failure or untowvard behaior of that componenis
mitigated,i.e., cannotcontributeto a hazardthenagain
theproblemis relatively simpleandsolvableusingstan-
dardsystenmengineerindechniquesuchasredundany,
monitoring,faulttolerancepr new forms of thesetech-
niguessuchaswrappers.The analysisinvolvedis non-
trivial but no differentthanthatrequiredfor non-CO'S
components.

ThemostseriougproblemsarisewhentheCOTS com-
ponentis performinga critical function (with respect
to safety)andadequatgrotectionagainstary potential

behaior of this componentannotbe providedin the
overall systemdesign. In this case,thoseperforming
thesystemhazardanalysisnusthave adequaténforma-
tion aboutthe potentialbehaior of thecomponento be
ableto determinewhetherits usewithin the systembe-
ing designedorovidesacceptablesafety For hardware
componentsthatinformationcaneitherbe provided by
obsenationor by testingandanalysisof obsenablefea-
tures.For software,suchobsenationis notpossibleand
executionor testingunderdiverseconditionsdoesnot
suffice to provide enoughinformationdueto the enor
mousstatespacenvolved(e.g.,our modelof the black-
box behaior of TCAS Il, anairbornecollision avoid-
ancesystemgcontainsl 040 states).

Let's considerwhat information might sufiice for a
systemhazardanalysisof COTS software. If, asis ar
guedabove,almostall software-relateéccidentsnvolve
requirementdlaws and the systemhazardanalysisis
concernednly with the externalbehaior of the com-
ponent,a blackboxspecificationof componentehar-
ior is all thatis theoreticallyrequired. The internalde-
sign of the components irrelevant aslong asthat in-
ternal designresultsin the blackboxrequirementde-
ing satisfied. Therefore a blackboxbehaioral specifi-
cationof the COT S componengbehaior will allow the
systemsafetyengineeto determinewhetherthe useof
that componentvill have acceptableisk. This black-
box specificatiormustspecifyall importantor relevant
externallyvisible behaior includingtiming.

The next questionis whethersucha specification
is possible. For the past12 years,my studentsand |
have beenidentifying completenessriteria for black-
boxsoftwarerequirementspecificationgJLH91, Lev99|
creatingspecificationanguageshat enforcecomplete-
ness[LHR99, Lev0(Q], and demonstratinghe feasibil-
ity of producingsuch specificationson comple sys-
tems[LHH94, RE97, LRZ0Q]. The costof producing
suchspecificationshowever, is non-trivial. Much more
important,COTS produceranustbe willing to provide
suchspecifications And analysisproceduresandtools
arerequiredthatcannavigateandevaluatetheenormous
statespaceghat may beinvolved. Many suchtoolsal-
readyexist andmoreare beingcreatedwithin research
labssuchasmy own.

Theoretically blackboxsoftwarebehaior specifica-
tions are obtainablethroughtestingand obsenation by
ary purchasenpf the box sincethe behaior is, by def-
inition, externally visible. However, the cost(andeven
feasibility) of the purchasecreatingsuchspecifications



throughtestingandobsenration makesthis impractical.
Therefore,the developersand sellersof the software
mustbewilling to provide theinformation,whichis es-
sentiallywhat shouldbe provided in an adequatauser
manual.No proprietaryinformationaboutthe software
needbedivulged—onlyexternallyobsenablebehaior.

Practically becausenary (if not most)softwarede-
velopersnever createsuchspecificationgalthoughthey
should), providing themwould require extra effort on
their part. If the market is small or the profit mamgins
small,they maybe unwilling to make this effort. If this
case,the only hopeof obtainingthe information nec-
essaryto perform an adequatesystemhazardanalysis
is to pay for it. Again, this reducesary potentialsa-
ingsfrom COT S products However, thecostof produc-
ing such specificationscan theoreticallybe sharedby
all customersf the componentandthe producerswill
have a market advantageovertheir competitors.

4 Conclusions

In mary casesusingCOT S componentf safety-critical
systemswith acceptableisk will simply be infeasible.
In thesecases,t will be cheaperand saferto provide
special-purpossoftware—usingCOTSamountgo false
economythatwill costmorein theend. Thereare,how-
ever, situationsin which COTS component&anbe as-
suredto have adequatesystemsafety In thesecases,
eitherthe systemdesignmustallow protectionagainst
ary possiblehazardousoftwarebehaior or acomplete
blackboxbehaior specificatiormustbeprovidedby the
producenf thatcomponenin orderto performasystem
hazardanalysis.For complex software, specialsystem
hazardanalysistechniquesandtools may be neededo
assisthe systemengineeiin this task.
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