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Risk is a broadrangingandmultidimensionaltopic, in-
cludingbothmanagementrisksandtechnicalrisks.Man-
agementrisksfor COTSarewell known,suchaslossof
marketcontrol,rapidobsolescence,andtheshift from a
buyer’s market to a seller’s market. Technicalrisk fac-
torsarelesswell understood.Thesefactorsincludein-
teroperabilityandperformanceissuesaswell assafety.
Thispaperconcentratesonrisksrelatedto safety, where
safetyis definedbroadlyasrelatedto a significantloss
(accident)involvinghumanlife orhealth,environmental
damage,money, or systemmission. The risk becomes
a safetyissuewhenthelossis significantenoughthat it
becomesnecessaryor worthwhileto devoteresourcesto
reducingtherisk.

Oneof themajordriversfor usingCOTSsoftwareis
to save money. Much, if not all, of the savings, how-
ever, may be offset by the activities neededto ensure
an acceptablelevel of risk. This assurancemight in-
volveadditionaltestingor analysisprocedures.In some
highly critical systems,COTSmayraisethecostof cer-
tification or ensuringsafetyto the point wherethe use
of COTSproductsis nolongerfeasibleor cost-effective;
any potentialsavingsareeliminatedby additionalassur-
ancecosts.

Beforeany conclusionscanbereachedaboutthecost
of achieving acceptablesafety risk using productsor
componentsinvolving COTS software,we needto de-
fine what is meantby safetyandthe type of accidents
being considered,the processrequiredto achieve ac-
ceptablerisk for thoseaccidenttypes,andthepotential
�
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effectof usingCOTSon thatprocess.
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The approachone takes to assuringacceptablesafety
is driven by the underlyingmodel of accidentcausa-
tion used:How oneviews the etiology of accidentsin
turnsdrivesany preventionstrategy. Theincreasinguse
of softwareto controlpotentiallydangeroussystemsis
complicatingthingsfurtherby changingthebasicnature
of theaccidentsthatareoccurringin thesesystems.
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Becauseconsideringthetypesor generalcausesof acci-
dentsis critical in determiningtheappropriateapproach
to preventingthem,any answerto theCOTS risk ques-
tion mustfirst start from a basicunderstandingof ac-
cidentcausationand prevention. Engineershave long
dealtwith componentfailureaccidentswherethe acci-
dentarisesfrom componentfailure, i.e., behavior that
doesnot satisfy specifiedor expectedbehavior. The
eventsassociatedwith the accidentmay involve mul-
tiple failuresor cascadingfailures,but in all casesthe
initiating causeis thefailureof a componentto achieve
its goals.

Themostcommonapproachto preventingsuchac-
cidentsinvolvesoneor bothof thefollowing:

1. Reducingor preventingthecomponentfailureby
increasingthe reliability or life of thecomponent
or reducingthestressunderwhich thecomponent
operates,

2. Protectingthe overall systemoperationfrom be-
ing adverselyaffectedby thefailureof thecompo-
nent(s).



Thesecondapproachis oftenachievedthroughtheuse
of redundancy—thefailureof a componentis offsetby
the useof a redundantcomponentto achieve the same
missionor purpose.

The introductionof new technology, especiallydig-
ital technology, and the increasingcomplexity of sys-
tem designs(most of it madepossibleby the use of
computers)is startingto producean importantchange
in the natureof accidents.While accidentsrelatedto
hardwarefailurearebeingreduced,system accidents (a
term coinedby Perrow [Per84]), are increasingin im-
portance.

Systemaccidentsarisein theinteractionsamong com-
ponents(electromechanical,digital, andhuman)rather
thanfrom thefailureof individualcomponents.In these
accidents,thecomponentsmayall operateaccordingto
theirspecification,thatis, thereis no“f ailure,” but unex-
pectedor desiredinteractionsamongcomponentsleads
to the loss. For example,recentlythe FAA issuedan
Advisory Directive (AD) relatedto an accidentwhere
thestall warningon a particularaircraftcanbedelayed
if thestall conditionsoccurwhile theflapsaremoving.
In this case(asis truefor mostsystemaccidents),each
componentworked accordingto its specification(i.e.,
thestall warningsoftwareandthecontrol surfacesoft-
ware),but subtlecomponentinteractionsat the system
level allowedthestallwarningto bedelayed.

Systemaccidentsin generalarerelatedto (1) inter-
activecomplexity and(2) tight coupling.

Theunderlyingfactorin interactivecomplexity is in-
tellectual manageability. A “simple” systemhasasmall
numberof unknowns in its interactionswithin the sys-
temandwith its environment.A systembecomesinter-
actively complex or intellectuallyunmanageablewhen
the level of interactionsreachesthe point where they
cannotbe thoroughlyplanned,understood,anticipated,
and guardedagainst. Introducingnew technologyin-
creasestheproblemsby introducingmoreunknownsinto
thedesign,and,in thecaseof digital technology, poten-
tially more interactions. Systemaccidentsarisewhen
interactive complexity reachesthepoint whereit is dif-
ficult for designersto considerall the potentialsystem
statesor for humanoperatorsto handleall normaland
abnormalsituationsanddisturbancessafelyandeffec-
tively.

Thesecondfactorin systemaccidents,tightcoupling,
allows disturbancesin one part of a systemto spread
quickly to otherparts.We areusingcomputersto build
systemswith moreintegrated,multi-loopcontrolof large

numbersof dynamicallyinteractingcomponents.When
almostany part of a systemcanpotentiallyaffect any
other part, the problemsof predictingand controlling
thoseinteractionsquickly overwhelmsourcurrentengi-
neeringtechniquesandmentalabilities.

As the interactive complexity and coupling in our
systemdesignshasincreased,so too have systemac-
cidents.

For componentfailureaccidents,therisk involvedin
theuseof COTSproductscanoftenbehandledthrough
specialsystemdesignfeatures.All componentscanpo-
tentially fail andsoftwareis no differentin this respect,
wheresoftware failure is definedas not satisfying its
specifiedrequiredbehavior. Traditionalsystemdesign
techniquesare usually applicablewhetherthe compo-
nent providing the requiredfunctionality is analogor
digital. Theonly difference,from a systemdesignper-
spective,is thatthefailuremodesmaydiffer. Theunique
failuremodesfor softwaremayor maynot make deal-
ing with thempracticalat the systemdesignlevel, but
all suchfailure modesneedto be considered.Digital
systemscommonlyhave a largerpossiblesetof failure
modesthananalogsystemsandthissetmayor maynot
beableto behandledeffectively, dependingon thepar-
ticularsystem.

Systemaccidentspresentagreaterchallengeandneed
to beconsideredin moredetail.
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Systemsafetyis thepartof systemengineeringthatdeals
with thechallengeof preventingor reducingbothcom-
ponentfailureandsystemaccidentsin complex systems.
It wasdevelopedasa responseto safetyconcernsabout
thefirst ICBM (Inter-ContinentalBallistic Missile)sys-
temsin the 1950’s. Although greatemphasisin engi-
neeringthesesystemswason safety(asthey carry nu-
clearweaponsandarehighly explosive anddangerous
in themselves),an unacceptablelevel of accidentsand
incidentsresulted.Thelackof pilotsmeanthumanoper-
atorscouldnotbeblamedfor theaccidents,ashadbeen
standardpracticefor military aircraft accidents. The
root causeof theICBM safetyproblemsstemmedfrom
theunprecedentedcomplexity in thesesystemsandthe
integrationof new, advancedtechnology.

Systemsafety engineeringwas developedto cope
with thesenew factorsandwaspartof therelatedemer-
genceof systemengineeringasan identifiedengineer-
ing disciplineat thesametime. It becametherationale



behindthe U.S. military standardMil-Std-882 and its
variousversionsover thepast30years.

Systemsafetyinvolvesapplyingspecialmanagement,
hazardanalysis,anddesignapproachesto preventacci-
dentsin complex systems.It is a planned,disciplined,
andsystematicapproachto preventingor reducingac-
cidentsthroughoutthe life cycle of a system. Rather
thanrelying only on learningfrom pastaccidentsor in-
creasingcomponentintegrity or reliability, anattemptis
madeto predictaccidentsbeforethey occurandto build
safetyinto thesystemandcomponentdesignsby elimi-
natingor preventinghazardoussystemstates.

The primary concernin systemsafety is the man-
agementof systemhazards.A hazard is a systemstate
thatwill leadto anaccidentgivencertainenvironmental
conditionsbeyond the control of the systemdesigner.
An uncommandedbehavior of an automobilesteering
system,for example,may or may not leadto an acci-
dent,dependingontheconditionsunderwhichit occurs
andthe skill of the driver. However, if worst caseen-
vironmentalconditionscouldoccur, theneliminatingor
controlling the hazard(i.e., the uncommandedsteering
behavior) will increasesafety.

In systemsafetyengineering,asdefinedin Mil-Std-
882,hazardsaresystematicallyidentified,evaluated,elim-
inated,andcontrolledthroughhazardanalysistechniques,
specialdesigntechniques,and a focusedmanagement
process.In this approachto safety, hazardanalysisand
controlis acontinuous,iterativeprocessthroughoutsys-
tem developmentanduse. Startingin the earliestcon-
cept developmentstage,systemhazardsare identified
andprioritizedby a processknown asPreliminaryHaz-
ardAnalysis(PHA).Safety-relatedsystemrequirements
anddesignconstraintsarederivedfrom theseidentified
hazards.

Duringsystemdesign,systemhazardanalysis(SHA)
is appliedto the designalternatives(1) to determineif
andhow thesystemcangetinto hazardousstates,(2) to
eliminatehazardsfrom thesystemdesign,if possible,or
to control thehazardsthroughthedesignif they cannot
be eliminated,and(3) to identify andresolve conflicts
betweendesigngoalsandthesafety-relateddesigncon-
straints.

The differencebetweenthis approachandstandard
reliability engineeringapproachesis that consideration
of safetyat thesystemdesignstagegoesbeyondcom-
ponentfailure; the analysisalso considersthe role in
reachinghazardoussystemstatesplayedby components
operatingwithout failure. SHA considersthesystemas

a wholeandidentifieshow possibleinteractionsamong
subsystemsandcomponents(includinghumans)aswell
as the normal and degradedoperationof the subsys-
temsandcomponentscancontributeto systemhazards.
For example,not only would the effect of normaland
degradedor incorrectoperationof the steeringsubsys-
tem of an automobilebe considered,but alsopotential
hazard-producinginteractionswith othercomponentssuch
asthebrakingsubsystem.

If hazardscannotbe eliminatedor controlledsatis-
factorily in theoverallsystemdesign,thenthey mustbe
controlledat thesubsystemor componentlevel. In sub-
systemhazardanalysis(SSHA), the allocatedsubsys-
temfunctionalityis examinedto determinehow normal
performance,operationaldegradation,functional fail-
ure,unintendedfunction,andinadvertentfunction(proper
function but at the wrong time or in the wrong order)
could contribute to systemhazards. Subsystemsand
componentsare then designedto eliminateor control
theidentifiedhazardousbehavior.

Theresultsof systemandsubsystemhazardanalysis
arealsousedin verifying the safetyof the constructed
systemandin evaluatingproposedchangesandopera-
tional feedbackthroughoutthelife of thesystem.

While this systemsafetyapproachhasprovento be
extremelyeffectivein reducingaccidentsin complex sys-
tems,changesarerequiredfor thenew software-intensive
systemswearenow building. And in thecontext of this
meeting,the informationnecessaryto performsystem
hazardanalysismaynot beavailablefor COTS compo-
nents.

��3)A 5CB��EDF	=G��H	�#;��	�#$�+1:!��$�I�)�'����������� 9;�<�����=���*�>�

The increasinguseof softwareis closelyrelatedto the
increasingoccurrenceof systemaccidents. Software
usuallycontrolstheinteractionsamongcomponentsand
allows almostunlimited complexity in componentin-
teractionsandcouplingcomparedto the physicalcon-
straintsimposedby themechanicallinkagesreplacedby
computers.The constraintson complexity imposedby
naturein physicalsystemsdonotexist for softwareand
mustbe imposedby humanson their designanddevel-
opmentprocess.

Indeed,computersarebeingintroducedinto thede-
signof virtually everysystemprimarily to overcomethe
physicalconstraintsof electromechanicalcomponents.
Theproblemis thatwehavedifficulty reiningin ouren-
thusiasmfor building increasinglycomplex andcoupled



systems.Without physicalconstraints,thereis no sim-
ple way to determinethepoint wherecomplexity starts
to becomeunmanageable.

This featureof softwaremight be calledthe “curse
of flexibility”: It is as easy—andprobablyeasier—to
build complex softwaredesignsasit is to build simple,
cleandesigns.And it is difficult to determinethe line
whereaddingfunctionalityor designcomplexity makes
it impossibleto have high confidencein softwarecor-
rectness.Theenormousstatespacesof digital systems
meansthat only a small part can be exercisedbefore
the systemis put into operationaluse; thus the confi-
dencetraditionallyobtainedthroughtestingis severely
limited. In addition,humansarenot very goodat self-
imposeddiscipline(versusthedisciplineimposedbyna-
ture in physicalsystems):“And they looked upon the
software, and saw that it was good. But they just had to
add this one other feature ...” [McC92].

Computersarealsointroducingnew typesof failure
modesthatcannotbehandledby traditionalapproaches
to designingfor reliability and safety(suchas redun-
dancy) andbystandardanalysistechniques(suchasFMEA).
Thesetechniqueswork bestfor failurescausedby ran-
dom, wear-out phenomenaandfor accidentsarisingin
the individual systemcomponentsratherthan in their
interactions.

We areeven witnessingnew typesof humanerrors
wheninteractingwith or within highly-automatedsys-
tems.Althoughmany of theaccidentsin high-techsys-
temssuchasaircraft arebeingblamedon the pilots or
controllers,the truth is that thesesystemsareoftende-
signedin sucha way that they areinducingnew types
of humanbehavior andhumanerror: Theproblemsare
notsimply in thehumanbut in thesystemdesign.A re-
centreportonpilot errorsin high-techaircraftdescribes
someof thesesystemdesignproblems[BAS98] ashave
others,e.g., [Lev95, LRK97, SWB95]. The situation
is evenmoreseriousandpotentiallydifficult to solve in
industries(suchasautomobiles)whereoperatorsarenot
ashighly trainedandcarefullyselectedasarecommer-
cial pilots.

Using the traditionalapproachto safety, we would
simply try to increasethereliability of thesoftwareand
introducesoftware fault tolerancetechniques.This is
theapproachembodiedin thenew IEC 61508standard.
Unfortunately, this approachwill not work for software
becauseaccidentsrelatedto softwarearealmostnever
relatedtosoftwareunreliabilityor failureof thesoftware
to satisfyits specification[Lev95, Lut92]. Rather, these

accidentsinvolvesoftwarethatcorrectlyimplementsthe
specifiedbehavior but a misunderstandingexists about
what that behavior shouldbe. Software-relatedacci-
dentsare usually relatedto flawed requirements—not
codingerrorsor softwaredesignproblems.

In thepasttwo decades,almostall software-related
accidentscan be tracedto flawed requirementsin the
form of (1) incompleteor wrongassumptionsaboutthe
operationof the controlledsystemor requiredopera-
tion of the computeror (2) unhandledcontrol-system
statesandenvironmentalconditions. For example,an
aircraft weaponsmanagementsystemwasdesignedto
keepthe load even and the planeflying level by bal-
ancingthe dispersalof weaponsandemptyfuel tanks.
Evenif theplanewasflying upsidedown, thecomputer
wouldstill dropabomborafuel tank,whichthendented
the wing and rolled off. In an F-16 accident,an air-
craftwasdamagedwhenthecomputerraisedthelanding
gearin responseto a testpilot’scommandwhile theair-
craft wason the runway (thesoftwareshouldhave had
a weight-on-wheelscheck). One F-18 was lost when
theaircraftgot into anattitudethatthesoftwarewasnot
programmedto handle. AnotherF-18 crashedwhena
mechanicalfailurecausedtheinputsto thecomputerto
arrivefasterthanwasexpected,andthesoftwarewasnot
designedto handlethat load or to fail gracefullyif the
original load assumptionwas not satisfied. Accidents
in the mosthighly automatedcommercialaircraft, the
A320, have all beenblamedon pilot error, but aneven
strongerargumentcanbemadethatthedesignof theau-
tomationwastheprimaryculprit andinducedthehuman
errors.

Merelyassuringthatthesoftwaresatisfiesits require-
mentsspecificationor attemptingto make it morereli-
ablewill not make it saferwhenthe primary causeof
software-relatedaccidentsis flawedrequirementsspec-
ifications.In particular, softwaremaybehighly reliable
andcorrectandstill beunsafewhen:
J Thesoftwarecorrectlyimplementsits requirements

but thespecifiedbehavior is unsafefrom a system
perspective;

J The requirementsdo not specifysomeparticular
behavior requiredfor thesafetyof thesystem(i.e.,
therequirementsareincomplete);or

J Thesoftwarehasunintended(andunsafe)behav-
ior beyondwhatis specifiedin therequirements.

As noted,almostall accidentsrelatedto softwarehave
involvedoneof theserequirementsflaws. Ensuringthat



the softwaresatisfiesits requirementswill not prevent
theseaccidents.

This facthasvery importantimplicationsfor COTS
and risk. Safety is a systemproperty—nota compo-
nent property. Using a COTS product,even if it has
very high reliability (or SIL level), doesnot imply that
the productis safewhenit interactswith othersystem
components.Theproblemis exacerbatedwith software
becausesoftwareusuallycontrolsmany if not all of the
interactionsbetweensystemcomponents.Techniques
for dealingwith COTS by simply equatingsoftwarere-
liability or correctness(consistency with specifications)
will not preventsystemaccidents.To understandwhat
is necessary, somebackgroundabouthow systemsafety
dealswith softwareis required.
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Becauseof the uniquefeaturesof digital systems,and
softwarein particular, traditionalsystemsafetyapproaches
must be extendedto deal with systemshaving digital
components,in particular, to handlethe new levels of
complexity, new typesof failuremodes,andnew types
of problemsarisingin the interactionbetweencompo-
nentsin computer-intensivesystemdesigns[Lev95].

In the systemsafetyapproachto building systems
containingsafety-criticalsoftware,insteadof simplytry-
ing to get the softwarecorrectandassumingthat will
ensuresystemsafety, attentionis focusedon eliminat-
ing or controlling the specificsoftware behaviors that
could leadto accidents.Potentiallyhazardoussoftware
behavior is identifiedin thesystemandsubsystemhaz-
ardanalyses.Theinformationderivedfrom theseanal-
ysesis usedto ensurethat(1) thesoftwarerequirements
arecompleteandspecifyonly safebehavior and(2) the
entire software developmentand maintenanceprocess
eliminatesor reducesthe possibility of the unsafebe-
havior.

The software safetyactivities in this approachare
all integratedinto and a subsetof the overall system
safetyactivities. Emphasisis on building requiredsys-
tem safetypropertiesinto the designfrom the begin-
ningratherthanrelyingonassessmentlaterin thedevel-
opmentprocesswheneffective responseis limited and
costly.

Building safetyinto softwarerequireschangesto the
entiresoftwarelife cycle:

J Project Management: Specialproject manage-
mentstructuresmustbeestablished,includingas-

signingresponsibilityfor softwaresafetyand in-
corporatingit into thesoftwaredevelopmentpro-
cess.TheSoftwareSafetyEngineer(s)will inter-
act with both the softwaredevelopersandmain-
tainersandwith thesystemengineersresponsible
for safetyat thesystemlevel.

J SoftwareHazard Analysis: Softwarehazardanal-
ysisis aform of subsystemhazardanalysisusedto
identify safety-criticalsoftwarebehavior, i.e.,how
the software could contribute to systemhazards.
The informationderived from this process,along
with the systemsafetydesignconstraintsandin-
formationfrom thesystemhazardanalysis,is used
to: (a) developsoftwaresafetydesignconstraints,
(b) identify specificsoftwaresafetyrequirements,
(c) devise software and systemsafety test plans
and testingrequirements,(d) tracesafety-related
requirementsto code,(e) designandanalyzethe
human–computerinterface, (f) evaluatewhether
potentialchangesto thesoftwarecouldaffectsafety,
and(g) developsafety-relatedinformationfor op-
erations,maintenance,andtrainingmanuals.

J SoftwareRequirementsSpecificationand Anal-
ysis: Becausesoftwarerequirementsflaws,andin
particular, incompleteness,areso importantwith
respectto softwaresafety, it is critical thatblack-
boxsoftwarerequirements(requiredfunctionality,
including performance)be validatedwith respect
to enforcingsystemsafetydesignconstraintsand
to satisfyingcompletenesscriteria.

J SoftwareDesignand Analysis: Thesoftwarede-
sign must reflectsystemsafetydesigncontraints
(1) byeliminatingorcontrollingsoftwarebehavior
that hasbeenidentified as potentially hazardous
and (2) by enforcing systemsafety designcon-
straintson the behavior and interactionsamong
thecomponentsbeingcontrolledby thesoftware.
Notethatevenif thespecifiedsoftwarebehavior is
safe,simply implementingthe requirementscor-
rectly is not enough—thesoftware can do more
thanis specifiedin therequirements,i.e.,thereis a
potentialproblemwith unintended softwarefunc-
tion or behavior in additionto specifiedbehavior.

J Designand Analysisof Human–MachineInter -
action: Systemhazardsandsafety-relateddesign
constraintsmustbereflectedin thedesignof human–
machineinteractionandinterfaces.The software



behavior mustnot inducehumanerrorandshould
reduceit whenpossible.

J Software Verification: The softwaredesignand
implementationmustbeverifiedto meetthesoft-
ware safetydesignconstraintsand safety-related
functionalandperformancerequirements.

J Feedbackfr om Operational Experience: Feed-
backsourcesmustbeestablishedandoperational
experienceusedto ensureboth(1) theanalysisand
designwereeffectivein eliminatingsoftware-related
hazardsand(2) changesin theenvironmentor use
of thesystemhave not degradedsafetyover time.
Theassumptionsof thesystemandsoftwarehaz-
ard analysiscanbe usedaspreconditionson and
metricsfor theoperationaluseof thesystem.

J Change Control and Analysis: All changesto
thesoftwaremustbe evaluatedfor their potential
effecton safety. Usually, someoneresponsiblefor
safetywill sit on the softwareconfigurationcon-
trol board. Changesmustalsobereflectedin up-
datesto all safety-relateddocumentation.

With this methodology, theinformationprovidedby
systemengineersaboutpotentialsystemhazardsis used
to build safetyinto thesoftwarestartingfrom theearli-
esttasksandcontinuingthroughoutthesoftwaredevel-
opmentandevolutionprocess.As anexample,consider
a simpleaircraftaltitudeswitchthat issuesa command
to anotherdevice (perhapsto turn it on) whenthe air-
craft descendsbelow a thresholdaltitude. Assumethat
thealtitudeis determinedby theuseof multiplealtime-
terson boardthe aircraft, eachof which sendsthe al-
titude it sensesto the altitudeswitch software. When
theoutputcommandof thealtitudeswitchis potentially
hazard-reducing(e.g.,thepilot is beingalertedthat the
aircrafthasdescendedbelow its minimumsafealtitude),
thesafestdesignwill beto issuetheoutputcommandif
any oneof thealtimetersindicatesthethresholdaltitude
hasbeencrossed.Alternatively, if theoutputis hazard-
increasing(e.g.,theinformationis usedto releaseamis-
sile), the safestsoftwarefunctionaldesignmight be to
requireagreementby all the altimetersbeforeissuing
thecommand.

Note that thesafetyof thedesignof thecomponent
(thealtitudeswitch)is dependenton theuseof theout-
put from the switch within the overall systemdesign.
The particularsystemhazardbeingeliminatedor miti-
gatedwill determinewhetherany particularaltitudeswitch
behavior is safeor not.
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All COTS software is not alike, and we first needto
differentiatebetweenapplication software thatprovides
a direct systemfunction and system software that pro-
videsa platform on which applicationsoftware is ex-
ecuted. Eachof theseprovidesuniquechallengesfor
systemsafetyandCOTS.
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Systemsoftwarehasalmostalwaysbeenspeciallycon-
structedfor very dangeroussystemsin order to allow
thethoroughanalysisandhighconfidencerequired.The
overallgoalsfor thetwo maintypesof systemsoftware
areatpolaropposites:

J Platforms for hobbyists, businessproductivity
tools, and homeuse: Be first to market with the
mostfeaturesandassumethatconsumersaremore
interestedin featuresthanreliability or quality

J Platforms for critical, real-time systems: Pro-
vide theminimumfeaturesrequiredto do theba-
sic taskin sucha way thathigh confidencecanbe
assured.

Theshrinkwrapsystemsoftwareindustryassumesthat
userswill adaptto any problemswith thesoftwareand
that limitationsof liability (throughwaiversor through
laws limiting liability) will indemnifythemagainstany
damagesor legal actionresultingfrom the useof their
product.

In thismarketatmosphereandbecauseof thedifficulty—
indeedusually impossibility—ofproviding high assur-
anceof acceptablebehavior for a productthat hasnot
beendesignedto be amenableto suchassurance,the
only feasibleapproachis to buy and usesystemsoft-
warethathasbeenspeciallyconstructedfor critical sys-
tems.Thekey hereis simplicity andfeatureslimited to
thosethatareneededandcanbeverified. Suchsystem
softwareexistsandis usedfor critical avionicsandother
systemstoday. Becausethemarketfor suchsystemsoft-
ware is limited, we needto ensurethat theseproducts
andcompaniessurvive. Any additionalcostsinvolved
in usinglimited-market productswill be well madeup
for by thereductionin analysisrequiredto ensuresafety.

Many of thenon-technicalbenefitsof COTS,suchas
distributing costsover a largeruserbase,arepreserved
by theuseof thesespecialproductsalthoughthesavings



maybe reducedin theshortterm by a smallermarket-
place. The long-termsavings, which needto include
suchfactorsas the costsinvolved in accidents,should
actuallyincrease.

Thereis onespecialcasewith a somewhat lesspes-
simisticconclusion:Theuseof COTS systemsoftware
with acceptablerisk may be feasibleif the systemcan
be protectedfrom any potentialunsafebehavior of the
COTS componentasa whole. In this case,systemsoft-
wareis handledin muchthesameway thatapplication
softwareis treated,asdescribedin thenext section.
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The use of COTS applicationsoftware or specialized
components,suchasdevicedriversor GPSreceivers,is
morefeasiblebut still presentsdifficultiesandhassome
prerequisitesto achieving acceptablerisk.

As discussedabove,safetyis asystemproperty, nota
componentproperty. It is notpossibleto determinefor a
componentin isolationif its usewill besafefor any sys-
temin which it mightbeemployed,asillustratedby the
altitudeswitchexampleearlier. Eachsystemdesignre-
quiresa completesafetyanalysisof the interactionof
the componentsand the hazardsthat may arise from
suchan interaction. Therefore,a systemthat contains
COTScomponentswill needto undergoacompletesys-
temhazardanalysis.Thequestionis what information
is requiredto accomplishthatandcanthat information
beobtainedfor digital COTSproducts.

If the componentor function is not critical from a
systemsafetystandpoint,i.e., it canbeshown that any
behavior of thatcomponentcannotaffect a systemhaz-
ard, thenCOTS presentsno problems.The only issue
becomesoneof beingableto make that determination
at thesystemlevel.

If the componentor function is critical but system
engineersareable to createa systemdesignin which
any failure or untoward behavior of that componentis
mitigated,i.e.,cannotcontributeto a hazard,thenagain
theproblemis relativelysimpleandsolvableusingstan-
dardsystemengineeringtechniquessuchasredundancy,
monitoring,fault tolerance,or new formsof thesetech-
niquessuchaswrappers.Theanalysisinvolvedis non-
trivial but no differentthanthatrequiredfor non-COTS
components.

ThemostseriousproblemsarisewhentheCOTScom-
ponentis performinga critical function (with respect
to safety)andadequateprotectionagainstany potential

behavior of this componentcannotbe provided in the
overall systemdesign. In this case,thoseperforming
thesystemhazardanalysismusthaveadequateinforma-
tion aboutthepotentialbehavior of thecomponentto be
ableto determinewhetherits usewithin thesystembe-
ing designedprovidesacceptablesafety. For hardware
components,thatinformationcaneitherbeprovidedby
observationor by testingandanalysisof observablefea-
tures.For software,suchobservationis notpossibleand
executionor testingunderdiverseconditionsdoesnot
suffice to provide enoughinformationdueto the enor-
mousstatespaceinvolved(e.g.,ourmodelof theblack-
box behavior of TCAS II, an airbornecollision avoid-
ancesystem,contains]_^<`S^ states).

Let’s considerwhat informationmight suffice for a
systemhazardanalysisof COTS software. If, asis ar-
guedabove,almostall software-relatedaccidentsinvolve
requirementsflaws and the systemhazardanalysisis
concernedonly with the externalbehavior of the com-
ponent,a blackboxspecificationof componentbehav-
ior is all that is theoreticallyrequired.The internalde-
sign of the componentis irrelevant as long as that in-
ternaldesignresultsin the blackboxrequirementsbe-
ing satisfied.Therefore,a blackboxbehavioral specifi-
cationof theCOTScomponent’sbehavior will allow the
systemsafetyengineerto determinewhethertheuseof
that componentwill have acceptablerisk. This black-
box specificationmustspecifyall importantor relevant
externallyvisiblebehavior includingtiming.

The next questionis whethersuch a specification
is possible. For the past12 years,my studentsand I
have beenidentifying completenesscriteria for black-
boxsoftwarerequirementsspecifications[JLH91, Lev95]
creatingspecificationlanguagesthatenforcecomplete-
ness[LHR99, Lev00], anddemonstratingthe feasibil-
ity of producingsuch specificationson complex sys-
tems[LHH94, RE97, LRZ00]. The costof producing
suchspecifications,however, is non-trivial. Muchmore
important,COTS producersmustbewilling to provide
suchspecifications.And analysisproceduresandtools
arerequiredthatcannavigateandevaluatetheenormous
statespacesthatmaybe involved. Many suchtoolsal-
readyexist andmorearebeingcreatedwithin research
labssuchasmy own.

Theoretically, blackboxsoftwarebehavior specifica-
tionsareobtainablethroughtestingandobservationby
any purchaserof thebox sincethebehavior is, by def-
inition, externallyvisible. However, thecost(andeven
feasibility)of thepurchasercreatingsuchspecifications



throughtestingandobservationmakesthis impractical.
Therefore,the developersand sellersof the software
mustbewilling to providetheinformation,which is es-
sentiallywhat shouldbe provided in an adequateuser
manual.No proprietaryinformationaboutthesoftware
needbedivulged—onlyexternallyobservablebehavior.

Practically, becausemany (if not most)softwarede-
velopersnevercreatesuchspecifications(althoughthey
should),providing them would requireextra effort on
their part. If the market is small or the profit margins
small,they maybeunwilling to make this effort. If this
case,the only hopeof obtainingthe informationnec-
essaryto perform an adequatesystemhazardanalysis
is to pay for it. Again, this reducesany potentialsav-
ingsfrom COTSproducts.However, thecostof produc-
ing suchspecificationscan theoreticallybe sharedby
all customersof thecomponent,andtheproducerswill
haveamarketadvantageover their competitors.
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In many cases,usingCOTScomponentsin safety-critical
systemswith acceptablerisk will simply be infeasible.
In thesecases,it will be cheaperandsaferto provide
special-purposesoftware—usingCOTSamountsto false
economythatwill costmorein theend.Thereare,how-
ever, situationsin which COTS componentscanbe as-
suredto have adequatesystemsafety. In thesecases,
eitherthe systemdesignmustallow protectionagainst
any possiblehazardoussoftwarebehavior or acomplete
blackboxbehavior specificationmustbeprovidedby the
producerof thatcomponentin ordertoperformasystem
hazardanalysis.For complex software,specialsystem
hazardanalysistechniquesandtoolsmaybeneededto
assistthesystemengineerin this task.
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