
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 1 1 , NOVEMBER 1989 148 1

Concise Papers

The Consistent Comparison Problem in N-Version
Software

SUSAN S . BRILLIANT, JOHN C. KNIGHT,
A N D NANCY G . LEVESON

Abstract-We have identified a difficulty in the implementation of
N-version programming. The problem, which we call the Consistent
Comparison Problem, arises for applications in which decisions are
based on the results of comparisons of finite-precision numbers. We
show that when versions make comparisons involving the results of
finite-precision calculations, it is impossible to guarantee the consis-
tency of their results. It is therefore possible that correct versions may
arrive at completely different outputs for an application that does not
apparently have multiple correct solutions. If this problem is not dealt
with explicitly, an N-version system may be unable to reach a consen-
sus even when none of its component versions fails.

Index Terms-Design diversity, fault-tolerant software, multiver-
sion programming, N-version programming, software reliability.

I. INTRODUCTION
Multiversion or N-version programming [I] has been proposed

as a method of providing fault tolerance in software. The approach
requires the separate, independent preparation of multiple (i .e. ,
“ N ”) versions of a piece of software for some application. These
versions are executed in parallel in the application environment;
each receives identical inputs and each produces its version of the
required outputs. The outputs are collected and submitted to a de-
cision algorithm that selects the output to be used by the system.
If all of the outputs are expected to be the same, the decision al-
gorithm might, for example, select the majority value, thereby tol-
erating faults in the minority. Where numeric outputs are expected
to differ slightly because of computational differences between the
versions, the decision algorithm might select the median value.

It is possible, of course, that no decision is possible because of
multiple version failures. In most practical systems, this possibility
is handled by designing a “backup” or failsafe system that takes
over in case of failure to tolerate a fault (or faults). In simple sys-
tems, this may involve shutting down the computer system grace-
fully. In other more complex and critical applications, more so-
phisticated failsafe designs may be required. In any case, the
N-version system has failed, resulting in at least a partial degra-
dation in service and perhaps more serious consequences.

In the process of performing a large-scale experiment in N-ver-
sion programming [2]-[4], a significant difficulty in the implemen-
tation of such systems has come to light that affects the ability of
an N-version system to reach a consensus. The problem derives

Manuscript received August 5, 1986; revised May 19, 1989. This work
was supported in part by NASA under Grants NAG-1.242, NAG-1.605,
and NAG-1-606. in part by NSF Grant DCR 8406532, and in part by MI-
CRO grants cofunded by the State of California, Hughes Aircraft Com-
pany, and TRW.

S. S . Brilliant is with the Department of Mathematical Sciences, Vir-
ginia Commonwealth University, Richmond, VA 23284.

J . C. Knight is with the Department of Computer Science, University
of Virginia, Charlottesville, VA 22903.

N. G. Leveson is with the Department of Computer Science, University
of California, Irvine, CA 92717.

IEEE Log Number 8930904.

from the use of finite-precision arithmetic and the uncertainty that
arises in making comparisons to finite-precision numbers. We refer
to this problem as the Consistent Comparison Problem.

11. THE CONSISTENT COMPARISON PROBLEM
When finite-precision arithmetic is used, the result of a sequence

of computations depends on the order of the computations and the
particular arithmetic algorithms used by the hardware. The issue
that this raises for N-version systems is best illustrated by an ex-
ample.

Any realistic application will require various comparisons to be
made during the computation, and some of these will be based on
parameters of the application as defined in the specification. For
example, in a control system, the specification may require that the
actions of the system depend upon quantities such as temperature
and pressure that are measured by sensors. The values of temper-
ature and pressure used by a program may be the result of extensive
computation on sensor measurements. Once these values are com-
puted, however, the actions required at temperatures below, say,
100°C may be very different from actions required at temperatures
above 100°C, and, similarly, the actions required may differ ac-
cording to whether the pressure is above or below 15 psi.

Now consider such an application implemented using a three-
version software system. Suppose that at some point within the
computation, an intermediate quantity has to be compared to some
application-specific constant C , in order to determine the required
processing. As a result of the various limitations of finite-precision
arithmetic, it is quite likely that the three versions will have slightly
different values for the computed intermediate quantity, say, R , ,
R2, and R 3 . If the R, are very close to C,, then it possible that their
relationships to C, are different. Suppose that R , and R2 are greater
than C , and R3 is less than C,. If the versions base their execution
flow on these relationships, then two will follow one path and the
third a different path. The differences in the R, cannot be eliminated
with rounding, and might cause the third version to send to the
decision algorithm a final output that differs radically from the other
two.

It could be argued that this slight difference is irrelevant because
at least two versions will agree, and since the R, are very close to
C,, either of the two possible outputs that would result from the
use of the R, would be satisfactory for the application. If only a
single comparison is involved, then this is correct. However, sup-
pose that a second decision point is required by the application and
that the constant involved is C2. Only two versions will arrive at
the decision point involving C, having made the same decision
about C,. Now suppose that the values produced by these two ver-
sions are on opposite sides of C,. If the versions base their control
flow on this comparison to C2, then again their behavior will differ.
The effect of the two comparisons, one with C, and one with C,,
is that the three versions might obtain three different final outputs,
all of which may well have been acceptable to the application, but
a result by the decision algorithm might not be possible. The sit-
uation is shown graphically in Fig. 1. Despite the fact that this
example is expressed in terms of comparison to C, and Cz, the
order is irrelevant. In fact, since the versions were prepared inde-
pendently, different orders are likely.

Although an application may seem to have only a single solu-
tion, the inconsistency in comparisons leads to the possibility that
multiple correct outputs may be produced for a given input. This
is an unexpected variant of the well-known “multiple correct re-
sults” problem in N-version programming [5] . The problem does
not lie in the application itself, however, but in the specification.

0098-5589/89/1100-1481$01 .OO 0 1989 IEEE

1482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 1 1 . NOVEMBER 1989

Version 1 Version 2 Version 3

Fig. 1. Three-version disagreement.

Specifications do not (and probably cannot) describe required out-
puts in terms of the exact bit pattern required for every computation
and every input to every computation. This level of detail is nec-
essary, however, if the specification is to describe a function, i.e.,
one and only one output is valid for every input.

In summary, the issue is that multiple software versions might
arrive at different conclusions because they take different paths
based on comparisons that are required by the specification. The
reason for the different paths is the inevitable difference in com-
puted values within the versions due to finite-precision arithmetic
and the diversity in the algorithms. In the example based on tem-
peratures and pressures, the effect may be that the temperatures
computed internally by the versions straddle 100°C and the com-
puted pressures straddle 15 psi. The Consistent Comparison Prob-
lem is to avoid this situation.

Consistent Comparison Problem: Suppose that N programs have
been written to implement the same specification and each has
computed a value. Assuming that the computed values differ by
less than t (E > 0) and that the programs do not communicate,
each correct program must obtain the same order relationship when
comparing its computed value to any given constant.

It is important to understand that the Consistent Comparison
Problem is not related to the well-known problem in which the
decision algorithm in an N-version system has to deal with slightly
different numeric values due to finite-precision arithmetic. This lat-
ter problem has received considerable attention, and there have been
a number of proposed solutions such as inexact voting [I] . The
Consistent Comparison Problem derives from the need for versions
to make isolated comparisons, and it can lead to output values that
are completely different rather than values that differ merely by a
small tolerance.

A solution to the Consistent Comparison Problem requires that
all correct versions make the same decisions when performing
comparisons given their individual computational differences. This
must occur no matter in what order each version chooses to make
the comparisons. In fact, to guarantee that two versions obtain the
same order relationship when comparing their computed values to
a constant requires that the two computed values be identical. It is
not sufficient that the values computed by the various versions be
very close to each other since, no matter how close they are, their
relationships to the constant may still be different. To solve the
Consistent Comparison Problem, an algorithm is needed that can
be applied independently by each correct version to transform its
computed value to the same representation as all other correct ver-
sions. It is important to keep in mind that the algorithm must op-
erate with a single value. No communication between versions to
exchange values can occur since the value to be used in the com-
parison by each version is the product of intermediate computation;
it is not the final output. Unfortunately, as the following theorem
shows, there is no such algorithm, and so there is no solution to
the Consistent Comparison Problem.

Theorem: Other than the trivial mapping to a predefined con-
stant, no algorithm exists which, when applied independently to
each of two n-bit integers that differ by less than 2k , will map them
to the same m-bit representation (m + k I n) .

Proof: Suppose such an algorithm exists. Consider the case
k = 1 and the set of values that can be represented in n bits, i .e.,
the integers in the range 0 to 2" - 1. The algorithm, when applied
to each of two integers that differ by one, i.e., adjacent integers,
will cause them to be reduced to the same m-bit representation.
Thus, 0 and 1 must be mapped to the same representation. How-
ever, 1 must also be reduced to the same representation as 2 , 2 to
the same representation as 3, and in general, i to the same repre-
sentation as i + 1. Thus, the algorithm must reduce all of the val-
ues to the same representation, i.e., the algorithm can only be the
trivial mapping to any fixed binary representation, and the infor-
mation content of the values is lost. A similar argument can be
made for any k , and so the original assumption is wrong. 0

We note that this problem is not limited to comparison to con-
stants. It arises with any comparison involving computed numeric
values. For example, if two computed quantities F , and F2 have to
be compared, this is equivalent to comparing their difference to
zero, a constant.

111. INEFFECTIVE OR IMPRACTICAL AVOIDANCE TECHNIQUES

Since no solution exists to the Consistent Comparison Problem,
we turn our attention to the problem of avoiding its effects. In this
section, we discuss avoidance techniques that are generally inef-
fective or impractical, although they might be used successfully in
specific applications. In Section V, we discuss a more general ap-
proach to reducing the frequency of inconsistent comparisons, and
in Section VI, we discuss the implications for real-time system de-
sign.

Approximate Comparison
An approach that has been proposed as a solution is to use ap-

proximate rather than exact comparison within each version. An
approximate comparison algorithm regards two numbers as equal
if they differ by less than some tolerance 6 [6]. Approximate com-
parison is used frequently in order to make computer arithmetic
adhere somewhat more closely to the normal rules of arithmetic.

If a computed value is to be compared to a constant C, approx-
imate comparison requires performing comparisons to numbers that
differ from C by the tolerance, 6. For example, it can be concluded
that the computed value is greater than C only if it is greater than
C + 6. Unfortunately, approximate comparison is not a solution
because the Consistent Comparison Problem immediately arises
again, this time with C + 6 rather than C . Two programs may
compute values that are arbitrarily close to each other, but have
different order relationships with C + 6, just as with C.

Exact Arithmetic
Since the difficulty seems to arise from finite-precision arith-

metic, a tempting approach is to require some form of exact arith-
metic in the versions. However, in addition to being impractical to
use for most applications, exact arithmetic will not work in general
because many algorithms are themselves capable of producing only
approximate solutions. For example, consider the numerical solu-
tion of a differential equation that has no closed-form solution. The
solution that is obtained is based on a discrete approximation to the
equation and different algorithms will very likely use different dis-
cretizations. Different solutions may be obtained even though exact
arithmetic is used in the calculations.

Random Selection
When an N-version system fails to reach a consensus because of

inconsistent comparison, all N outputs are, in principle, acceptable
to the application, and it might seem that the decision algorithm
could be modified to select one of the outputs at random. However,
an N-version system may also be unable to reach a consensus be-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. I I . NOVEMBER 1989 1483

cause, for example, a majority of the versions fail. These two cases
are indistinguishable, and so modifying the decision algorithm in
an attempt to deal with inconsistent comparison will also operate
when the disagreement is due to failures. This approach is not al-
ways satisfactory and could be very dangerous since the selected
output could lead to an unsafe course of action.

Conjidence Signals

An approach using “confidence signals” has been suggested by
Bishop [7]. Although any particular version cannot have access to
the results of comparisons performed by other versions, it can de-
termine that the values it used for comparison were sufficiently close
that a problem might have arisen. As an example of how this might
be done, the system could be modified to provide comparisons with
three possible outcomes, rather than just two, i.e., “less than” if
R < C - 6, “greater than” if R > C + 6, and “no confidence”
if C - 6 5 R 5 C + 6. The third result would imply that an
inconsistency could have occurred. In that case, the version might
simply signal failure because it knows that its outputs might not be
suitable for voting. The possibility then arises that each version
will signal failure at some point, and the system may fail to arrive
at an output because an insufficient number of versions (perhaps
none) have generated results. Another approach is to require that
each version pass to the final decision algorithm both its result and
a confidence signal.

There are two ways that confidence signals might be used by the
decision algorithm. First, if it finds a majority of the versions sig-
naling a possible inconsistency in their results, the decision algo-
rithm could choose any one of these results. The problem with this
approach is that there is no way to distinguish between multiple
correct results caused by the Consistent Comparison Problem and
incorrect results where inconsistent comparison occurred along with
a fault or faults in some other part of the algorithm(s). All fault
tolerance is lost and the decision algorithm is reduced to random
selection, the drawbacks of which were described previously.

A second use of confidence signals would be for the decision
algorithm to ignore the outputs of all versions signaling a lack of
confidence in their results since, as argued above, it will be unable
to distinguish between the occurrence of an inconsistent compari-
son and a failed version. The versions indicating confidence in their
outputs are then used normally. This may mean that fault tolerance
is reduced or even eliminated. Note that if the computed value truly
is close to the comparison parameter, it is likely that the only ver-
sions with confidence in their outputs will be those that are incor-
rect.

Cross-Check Points

It might be argued that a way to avoid inconsistency in compar-
isons would be to establish “cross-check’’ points [8] to force
agreement among the versions on their floating-point values before
any comparisons are made that involve these values. At each cross-
check point, each version would supply its computed result to a
cross-check decision algorithm. The cross-check decision algo-
rithm would select a single value (perhaps the median of the indi-
vidual results) which would then be used by all of the versions in
making the required comparisons. We note that this is not the pur-
pose for which cross-check points were originally intended. They
were introduced to allow recovery from software faults at the sub-
system level, and were not intended to be applied at this micro
level.

Clearly, in principle, this avoids the problem, but various prac-
tical difficulties arise. First, if cross-check points are needed to
avoid inconsistent comparison, they must be completely described
in the requirements specification. This means that the order of
cross-check points must be specified also since otherwise the ver-
sions will deadlock. Requiring that the order of events in each pro-
gram version be specified is a serious limitation on diversity in a
situation where diversity is being sought, and it may result in sim-

ilar faults in different versions that are induced by the requirements
specification. Ideally, no information about the design should be
included in the requirements.

In fact, in many applications, this requirement would reduce di-
versity among versions to the point where the cost of producing
multiple versions is not justified by the limited degree of diversity
between the versions. For example, the launch interceptor problem
used in our N-version experiment [2] requires that the program de-
termine whether 15 “launch conditions” are satisifed. Each launch
condition requires the determination of the existence of certain
geometric relationships among subsets of up to 100 data points rep-
resenting points in the plane. One of the launch conditions, for
example, is satisfied if three data points can be contained within a
circle of radius R where R is a parameter of the application.

Some of the versions written for the experiment were structured
to consider each of the 15 launch conditions in turn, and during the
evaluation of each condition, the individual data points were con-
sidered. Others were structured to work through the sets of data
points, considering for each the launch conditions that could be
satisfied by the data points. If cross-check points were used to avoid
inconsistent comparison, it would be necessary to require one of
these two basic program structures. The order in which the launch
conditions are considered and the order in which the individual data
points are examined would have to be established as well.

Finally, we note the inefficiency that cross-check points intro-
duce. In highly reliable systems, it is important to take account of
Byzantine faults [9]. If the different versions are executing on dif-
ferent processors, it will be necessary for the cross-check points to
establish the values to be used by Byzantine agreement. In addi-
tion, since all versions must reach a cross-check point before a
decision is possible, a decision cannot be made until the slowest
version has arrived. Thus, the execution time of the system will be
the sum of the execution times of the slowest version between each
pair of cross-check points, which is likely to be slower than any of
the individual versions and increase the execution time over
N-version systems without cross-check points. For these reasons,
using cross-check points may very well be impractical for systems
with hard real-time limits.

There may be a class of applications that can use cross-check
points to deal with the Consistent Comparison Problem. However,
there is the serious potential problem of overspecification leading
to reduced design diversity, and hence a reduced level of fault tol-
erance. This is unfortunate since achieving fault tolerance was the
purpose of writing multiple versions in the first place. There may
be an unacceptable increase in response time also.

IV. REDUCING THE FREQUENCY OF INCONSISTENT COMPARISON

Rounding and truncation are not solutions to the Consistent
Comparison Problem, but they can be used to reduce its frequency
of occurrence. For simplicity, we consider only truncation and in-
teger arithmetic in this discussion. Rounding and truncation are
essentially equivalent, and the extension to fixed- and floating-point
quantities is straightforward. We show informally that the proba-
bility of inconsistent comparison is reduced as the number of digits
truncated increases, and it is also reduced as the accuracy of the
computed values increases.

Truncation to a specified precision after a computation but be-
fore performing comparisons seems promising because examples
are easily constructed for which it provides consistent compari-
sons. However, counterexamples can always be found for any al-
gorithm based on truncation.

Applying any truncation algorithm to the set of quantities that
are representable by a given fixed length computer format divides
the set of representable quantities into equivalence classes. To solve
the Consistent Comparison Problem using truncation, it is neces-
sary to ensure that the N independently computed values end up in
the same equivalence class.

There is always a representable quantity, say V , , that is the larg-
est in any given equivalence class. The next representable number,

1484 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 1 1 , NOVEMBER 1989

say V z . is the smallest in the adjacent equivalence class. If a real-
world value of interest has to be computed (in effect, estimated) by
a computer using finite-precision arithmetic, i t is possible (ac-
tually, very likely) that the real-world value lies between two rep-
resentable values such as V , and V?. If two versions compute their
estimate of this quantity to any precision whatsoever, they may
compute the values V , and V?, respectively, because they are esti-
mating an unrepresentable quantity. These values will then be as-
signed to different equivalence classes by the rounding algorithm,
and the Consistent Comparison Problem arises. This occurs even
if the specification requires that the computed result be in error by
no more than some tolerance. Also, changing the starting point for
rounding or the number of digits used will not solve the problem
in general.

In practice, the probability of inconsistent comparison depends
on a number of factors that are application specific. However. in
general, the probability of occurrence decreases as the number of
digits truncated increases. This occurs because the equivalence
classes generated by truncation increase in size as the number of
digits truncated increases, and so the chances of two computed val-
ues being in the same equivalence class also increases. Similarly,
as the required accuracy increases, the difference between the val-
ues computed by two different versions decreases, and once again,
this reduces the chances of the two values being in different equiv-
alence classes.

The effects of the Consistent Comparison Problem must be in-
cluded in the reliability analysis of any application using N-version
programming. The specific probability of its occurrence can only
be computed when details of the application are known. However,
truncation (or, equivalently, rounding) might be used deliberately
to reduce the effects of the problem to acceptable levels.

V. IMPLICATIONS FOR SYSTEM DESIGN

The immediate effect of inconsistent comparison is that a con-
sensus might not be possible. The extent of the damage varies with
the application and has a substantial impact on the effectiveness of
measures designed to cope with the damage. The major character-
istic that needs to be considered is whether or not the application
has state information that is maintained from frame to frame, i.e.,
‘ ’history ’ ’ .

Some simple control systems have no history. They compute
their outputs for any given frame solely from constants and the
inputs for that frame. If the inputs are changing, i t is extremely
unlikely that a situation in which no consensus is possible would
last for more than a short time. After a brief period, the inputs will
change and leave the region of difficulty. Subsequent comparisons
will be consistent among the versions because the values used for
comparison will be sufficiently different. The effects of the Con-
sistent Comparison Problem in such systems are transient. How the
system should recover (and even ifi t can recover) from such tran-
sient failures is application-dependent, but i t may be possible to
treat the situation as a single-cycle failure by just not producing
any results for this particular cycle or providing results consistent
with the last cycle.

For systems with history, the situation is much more complex.
Since such systems maintain internal state information over time,
an unfortunate consequence of inconsistent comparison is that fail-
ure to reach a consensus might be accompanied by differences in
the internal state information among the versions. The duration of
internal state differences varies among applications.

In some applications, the state information is revised as time
passes, and once the inputs have changed so that comparisons are
again consistent, the versions may revise their states to be consis-
tent as well. In this case, the entire system is once again consistent
and operation can proceed safely. An example of this type of ap-
plication is an avionics system in which the mode of flight is main-
tained as internal state information. If this flight mode is deter-
mined by height above ground, for example, then if a measurement
is taken that is close to the value at which the mode is changed,

different versions might reach different conclusions about which
mode to enter, along with having different values for various other
related version-specific variables. However, it is likely that this
situation will be corrected rapidly if the versions continue to mon-
itor the height sensor. We will refer to such systems as having
convergenf states.

For systems having convergent states, inconsistent comparisons
may cause a temporary discrepancy among the internal states of the
versions that could last for more than one cycle. A confidence sig-
nal approach in which each version maintains confidence infor-
mation as part of its state might be used in this case. This approach
requires fairly extensive modifications and additions to the system
structure. Not only would the individual versions need to include
confidence information on every comparison and each component
of its internal state, but outputs would have to be supplemented by
the required confidence signal and the decision algorithm would
have to be modified to take these signals into account. If a part of
its state information is based on a comparison that is subject to
doubt, then the version must indicate “no confidence” in all of the
results it sends to the decision algorithm until the state is reeval-
uated. The decision algorithm will then treat this as a failed com-
ponent until the version indicates confidence in its results. The time
required to reevaluate the state is application-dependent and may
be unacceptably long in many cases, requiring the use of failsafe
and backup procedures.

Recovery [lo] is not a practical solution here. Recovery involves
modifying the internal states of the incorrect versions based on that
of a correct version. However, in this case, the lack of information
about which version is correct is the whole problem. Furthermore,
the recovery process may require restricting the algorithmic and
data-structure diversity between versions.

For some applications, state information is determined and then
never reevaluated. An example of this is sensor processing where
one version may determine that a sensor has failed and subse-
quently ignore it. Other versions may not make the same decision
at the same point in time, and depending on subsequent sensor be-
havior, may never conclude that the sensor has failed. In this case,
although the inputs change, versions may continue to arrive at dif-
ferent outputs long after comparisons become consistent because
the sets of state information maintained by the individual versions
are not the same. We will refer to these systems as having noncon-
vergenr states.

Once the versions in a system with nonconvergent states acquire
different states, the inconsistency may persist indefinitely. Al-
though no version has failed, the versions may continue to produce
different outputs, and in the worst case, the N-version system may
never again reach a consensus on a decision. We see no simple
avoidance technique that can be used in this case. Recovery is again
not a practical o r safe solution. The only practical approach in sys-
tems of this type seems to be to design the system to be failsafe.

VI. CONCLUSION

The Consistent Comparison Problem arises whenever a quantity
used in a comparison is the product of inexact arithmetic. The
problem occurs even when all software versions are correct. It re-
sults from rounding errors, not software faults, and so an N-version
system built from “perfect” versions may have a nonzero proba-
bility of being unable to reach a consensus.

This paper has presented some possible solutions for particular
types of simple applications, but has also shown that no general,
practical solution to the Consistent Comparison Problem exists.
This result is important because if no steps are taken to avoid it,
the Consistent Comparison Problem may cause failures to occur
that would not have occurred in nonfault-tolerant systems. Al-
though the authors have observed the phenomenon in several dif-
ferent multiversion programming experiments, there is, in general,
no way of estimating the probability of such failures. The failure
probability will depend heavily on the application and its imple-
mentation. Although this failure probability may be small, such

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. I I . NOVEMBER 1989 1485

causes of failure need to be taken into account in estimating the
reliability of N-version software, particularly for critical applica-
tions.

ACKNOWLEDGMENT
We are pleased to acknowledge helpful discussions about the

Consistent Comparison Problem with P . Ammann, P . Bishop, B.
Chartres, J . Cordy, T . Hull, J . Ortega, B. Randell, and D. Rich-
ards. We are extremely grateful to J . Goldberg and the referees for
their careful and constructive comments about earlier drafts of this
paper.

Ill

I21

[31

I41

151

171

[91

[61

I81

REFERENCES

L. Chen and A. Avizienis, “N-version programming: A fault-toler-
ance approach to reliability of software operation,” in Dig. FTCS-8:
8th Annu. Int. Syinp. Fault-Tolerant Coinput., Toulouse, France, June
1978, pp. 3-9.
J. C. Knight, N. G . Leveson, and L. D. St. Jean, “A large scale
experiment in N-version programming,” in Dig. FTCS-15: 15th Annu.
Int. Symp. Fault-Tolerant Comput., Ann Arbor, MI, June 1985, pp.
135-139.
J . C. Knight and N. G . Leveson, “An experimental evaluation of the
assumption of independence in multiversion programming,” IEEE
Trans. Software E n g , . pp. 96-109, Jan. 1986. -. “An empirical study of failure probabilities in multi-version
software,’’ in Dig. FTCS-16: 16th Annu. Int. Symp. Fault-Tolerant
Comput., Vienna, Austria, July 1986, pp. 165-170.
T. Anderson and P. A. Lee, Fault Tolerance, Principles arid Prac-
tice.
D. E. Knuth, The Art of Computer Programming, Vol. 2 , Seminu-
merical Algorithms.
P. Bishop, personal communication, June 1986.
A. Avizienis and L. Chen, “On the implementation of N-version pro-
gramming for software fault-tolerance during program execution,” in
Proc. COMPSAC’77, Nov. 1977, pp. 149-155.
L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
problem,” ACM Trans. Programming Languages Syst., pp. 382-401,
July 1982.

Englewood Cliffs, NJ: Prentice-Hall International, 1981.

Reading. MA: Addison-Wesley, 1969.

[I O] K. S . Tso and A. Avizienis, “Community error recovery in N-version
software: A design study with experimentation,” in Dig. FTCS-I 7:
17th Annu. Int. Symp. Fault-Tolerant Coniput., Pittsburgh. PA, July
1987.

Statistical Inference for General-Order-Statistics and
Nonhomogeneous-Poisson-Process Software

Reliability Models

HARRY JOE

Abstract-There are many software reliability models that are based
on the times of occurrences of errors in the debugging of software. It
is shown that it is possible to do (asymptotic) likelihood inference for
software reliability models based on order statistics or nonhomoge-
neous Poisson processes, with (asymptotic) confidence levels for inter-
val estimates of parameters. In particular, interval estimates from these
models are obtained for the conditional failure rate of the software
given the data from the debugging process. The data can be grouped

Manuscript received July 15, 1988; revised April 18, 1989. Recom-
mended by F. B. Bastani. This work was supported by a UBC Killam Re-
search Fellowship and a grant from the National Science and Engineering
Research Council of Canada.

The author was on leave at University College, London, England. He
is with the Department of Statistics, University of British Columbia, Van-
couver, B.C. V6T 1W5. Canada.

IEEE Log Number 8930509.

or ungrouped. For someone making a decision about when to market
a software, the conditional failure rate is an important parameter. The
use of the interval estimates is demonstrated on two data sets that have
appeared in the literature.

Index Terms-Failure rate of a process, maximum likelihood, non-
homogeneous Poisson process, order statistic, profile likelihood, soft-
ware reliability model.

I. INTRODUCTION

Many software reliability models for times to occurrences of bugs
or errors during the debugging process have been proposed (see
Miller [IS] and Abdel-Ghaly et al. [l] and references therein), but
there is comparatively less work on statistical inferences from these
models. Some authors have mentioned the possibility of using
maximum likelihood estimation and some have mentioned that
maximum likelihood estimates behave poorly for some models, but
this has not been qualified. One purpose of this paper is to make
clear when maximum likelihood estimation can be good. Standard
asymptotic likelihood theory cannot be applied to get approximate
confidence limits of interval estimates of parameters because the
setting here is not one of independently and identically distributed
(i.i.d.) random variables. However, some authors, for example,
Forman and Singpunvalla [4] and Yamada and Osaki [20], have
misused this theory to get confidence intervals of estimates for soft-
ware reliability models; while their interval estimates may be sen-
sible in some cases, they have not justified when the confidence
level is meaningful. This paper shows that there is an asymptotic
sense (debugging process sufficiently long, number of original er-
rors sufficiently large) in which asymptotic normality results (and
hence asymptotic confidence levels) hold for the classes of soft-
ware reliability models based on order statistics and on nonhomo-
geneous Poisson processes (NHPP). The asymptotics is similar to
that of Lindsay and Roeder [131. Both grouped and ungrouped data
can be dealt with.

One important quantity, especially for someone who must de-
cide on when to begin marketing a software, that one might want
inferences on is the conditional failure rate of the software given
the results of the debugging process so far. The use of software
reliability models is a means of obtaining inferences on the con-
ditional failure rate or other similar quantities.

In Section 11, the conditional failure rate is derived for several
software reliability models, including the general order statistics
(COS) models and the NHPP models. In Section 111, asymptotic
results are stated for these classes of models. These models essen-
tially assume that all bugs are of a similar type, but there are data
sets in the literature for which these models are applicable and the
asymptotic results can be used. The methodology can be applied
to more general situations such as described by Adams [2] . In Sec-
tion IV, some computational details concerning likelihoods are dis-
cussed, and the results of a small simulation study are given to give
an indication of what may be considered “asymptotic” in practice.
In Section V , the results are applied to get interval estimates of the
conditional failure rate for two data sets, one from Musa with un-
grouped data and one from Forman and Singpunvalla [4] with
grouped data.

11. CONDITIONAL FAILURE RATE

In this section, we define the conditional failure rate of a process
and determine it for Ross’ [18] model, COS models, and NHPP
models. Note that in this paper, time will usually mean (cumula-
tive) execution time. Suppose that in the interval of time [0, T I .
there have been n failures (or discovery of errors) in the software
at the times 0 < Z , < . . . < Z,, < T. Then the conditional failure

0098-5S89/89/1100-148S$01.00 0 1989 IEEE

