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Abstract-We have identified a difficulty in the implementation of 
N-version programming. The problem, which we call the Consistent 
Comparison Problem, arises for applications in which decisions are 
based on the results of comparisons of finite-precision numbers. We 
show that when versions make comparisons involving the results of 
finite-precision calculations, it is impossible to guarantee the consis- 
tency of their results. It is therefore possible that correct versions may 
arrive at completely different outputs for an application that does not 
apparently have multiple correct solutions. If this problem is not dealt 
with explicitly, an N-version system may be unable to reach a consen- 
sus even when none of its component versions fails. 

Index Terms-Design diversity, fault-tolerant software, multiver- 
sion programming, N-version programming, software reliability. 

I. INTRODUCTION 
Multiversion or N-version programming [I]  has been proposed 

as a method of providing fault tolerance in software. The approach 
requires the separate, independent preparation of multiple (i .e. ,  
“ N ” )  versions of a piece of software for some application. These 
versions are executed in parallel in the application environment; 
each receives identical inputs and each produces its version of the 
required outputs. The outputs are collected and submitted to a de- 
cision algorithm that selects the output to be used by the system. 
If all of the outputs are expected to be the same, the decision al- 
gorithm might, for example, select the majority value, thereby tol- 
erating faults in the minority. Where numeric outputs are expected 
to differ slightly because of computational differences between the 
versions, the decision algorithm might select the median value. 

It is possible, of course, that no decision is possible because of 
multiple version failures. In most practical systems, this possibility 
is handled by designing a “backup” or failsafe system that takes 
over in case of failure to tolerate a fault (or faults). In simple sys- 
tems, this may involve shutting down the computer system grace- 
fully. In other more complex and critical applications, more so- 
phisticated failsafe designs may be required. In any case, the 
N-version system has failed, resulting in at least a partial degra- 
dation in service and perhaps more serious consequences. 

In the process of performing a large-scale experiment in N-ver- 
sion programming [2]-[4], a significant difficulty in the implemen- 
tation of such systems has come to light that affects the ability of 
an N-version system to reach a consensus. The problem derives 
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from the use of finite-precision arithmetic and the uncertainty that 
arises in making comparisons to finite-precision numbers. We refer 
to this problem as the Consistent Comparison Problem. 

11. THE CONSISTENT COMPARISON PROBLEM 
When finite-precision arithmetic is used, the result of a sequence 

of computations depends on the order of the computations and the 
particular arithmetic algorithms used by the hardware. The issue 
that this raises for N-version systems is best illustrated by an ex- 
ample. 

Any realistic application will require various comparisons to be 
made during the computation, and some of these will be based on 
parameters of the application as defined in the specification. For 
example, in a control system, the specification may require that the 
actions of the system depend upon quantities such as temperature 
and pressure that are measured by sensors. The values of temper- 
ature and pressure used by a program may be the result of extensive 
computation on sensor measurements. Once these values are com- 
puted, however, the actions required at temperatures below, say, 
100°C may be very different from actions required at temperatures 
above 100°C, and, similarly, the actions required may differ ac- 
cording to whether the pressure is above or below 15 psi. 

Now consider such an application implemented using a three- 
version software system. Suppose that at some point within the 
computation, an intermediate quantity has to be compared to some 
application-specific constant C ,  in order to determine the required 
processing. As a result of the various limitations of finite-precision 
arithmetic, it is quite likely that the three versions will have slightly 
different values for the computed intermediate quantity, say, R , ,  
R2, and R 3 .  If the R, are very close to C,, then it possible that their 
relationships to C, are different. Suppose that R ,  and R2 are greater 
than C ,  and R3 is less than C,. If the versions base their execution 
flow on these relationships, then two will follow one path and the 
third a different path. The differences in the R, cannot be eliminated 
with rounding, and might cause the third version to send to the 
decision algorithm a final output that differs radically from the other 
two. 

It could be argued that this slight difference is irrelevant because 
at least two versions will agree, and since the R, are very close to 
C,, either of the two possible outputs that would result from the 
use of the R, would be satisfactory for the application. If only a 
single comparison is involved, then this is correct. However, sup- 
pose that a second decision point is required by the application and 
that the constant involved is C2. Only two versions will arrive at 
the decision point involving C, having made the same decision 
about C,. Now suppose that the values produced by these two ver- 
sions are on opposite sides of C,. If the versions base their control 
flow on this comparison to C2, then again their behavior will differ. 
The effect of the two comparisons, one with C, and one with C,, 
is that the three versions might obtain three different final outputs, 
all of which may well have been acceptable to the application, but 
a result by the decision algorithm might not be possible. The sit- 
uation is shown graphically in Fig. 1.  Despite the fact that this 
example is expressed in terms of comparison to C, and Cz, the 
order is irrelevant. In fact, since the versions were prepared inde- 
pendently, different orders are likely. 

Although an application may seem to have only a single solu- 
tion, the inconsistency in comparisons leads to the possibility that 
multiple correct outputs may be produced for a given input. This 
is an unexpected variant of the well-known “multiple correct re- 
sults” problem in N-version programming [ 5 ] .  The problem does 
not lie in the application itself, however, but in the specification. 
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Version 1 Version 2 Version 3 

Fig. 1. Three-version disagreement. 

Specifications do not (and probably cannot) describe required out- 
puts in terms of the exact bit pattern required for every computation 
and every input to every computation. This level of detail is nec- 
essary, however, if the specification is to describe a function, i.e., 
one and only one output is valid for every input. 

In summary, the issue is that multiple software versions might 
arrive at different conclusions because they take different paths 
based on comparisons that are required by the specification. The 
reason for the different paths is the inevitable difference in com- 
puted values within the versions due to finite-precision arithmetic 
and the diversity in the algorithms. In the example based on tem- 
peratures and pressures, the effect may be that the temperatures 
computed internally by the versions straddle 100°C and the com- 
puted pressures straddle 15 psi. The Consistent Comparison Prob- 
lem is to avoid this situation. 

Consistent Comparison Problem: Suppose that N programs have 
been written to implement the same specification and each has 
computed a value. Assuming that the computed values differ by 
less than t ( E  > 0)  and that the programs do not communicate, 
each correct program must obtain the same order relationship when 
comparing its computed value to any given constant. 

It is important to understand that the Consistent Comparison 
Problem is not related to the well-known problem in which the 
decision algorithm in an N-version system has to deal with slightly 
different numeric values due to finite-precision arithmetic. This lat- 
ter problem has received considerable attention, and there have been 
a number of proposed solutions such as inexact voting [ I ] .  The 
Consistent Comparison Problem derives from the need for versions 
to make isolated comparisons, and it can lead to output values that 
are completely different rather than values that differ merely by a 
small tolerance. 

A solution to the Consistent Comparison Problem requires that 
all correct versions make the same decisions when performing 
comparisons given their individual computational differences. This 
must occur no matter in what order each version chooses to make 
the comparisons. In fact, to guarantee that two versions obtain the 
same order relationship when comparing their computed values to 
a constant requires that the two computed values be identical. It is 
not sufficient that the values computed by the various versions be 
very close to each other since, no matter how close they are, their 
relationships to the constant may still be different. To solve the 
Consistent Comparison Problem, an algorithm is needed that can 
be applied independently by each correct version to transform its 
computed value to the same representation as all other correct ver- 
sions. It is important to keep in mind that the algorithm must op- 
erate with a single value. No communication between versions to 
exchange values can occur since the value to be used in the com- 
parison by each version is the product of intermediate computation; 
it is not the final output. Unfortunately, as the following theorem 
shows, there is no such algorithm, and so there is no solution to 
the Consistent Comparison Problem. 

Theorem: Other than the trivial mapping to a predefined con- 
stant, no algorithm exists which, when applied independently to 
each of two n-bit integers that differ by less than 2k ,  will map them 
to the same m-bit representation (m + k I n) .  

Proof: Suppose such an algorithm exists. Consider the case 
k = 1 and the set of values that can be represented in n bits, i .e.,  
the integers in the range 0 to 2" - 1. The algorithm, when applied 
to each of two integers that differ by one, i.e., adjacent integers, 
will cause them to be reduced to the same m-bit representation. 
Thus, 0 and 1 must be mapped to the same representation. How- 
ever, 1 must also be reduced to the same representation as 2 ,  2 to 
the same representation as 3, and in general, i to the same repre- 
sentation as i + 1. Thus, the algorithm must reduce all of the val- 
ues to the same representation, i.e., the algorithm can only be the 
trivial mapping to any fixed binary representation, and the infor- 
mation content of the values is lost. A similar argument can be 
made for any k ,  and so the original assumption is wrong. 0 

We note that this problem is not limited to comparison to con- 
stants. It arises with any comparison involving computed numeric 
values. For example, if two computed quantities F ,  and F2 have to 
be compared, this is equivalent to comparing their difference to 
zero, a constant. 

111. INEFFECTIVE OR IMPRACTICAL AVOIDANCE TECHNIQUES 

Since no solution exists to the Consistent Comparison Problem, 
we turn our attention to the problem of avoiding its effects. In this 
section, we discuss avoidance techniques that are generally inef- 
fective or impractical, although they might be used successfully in 
specific applications. In Section V, we discuss a more general ap- 
proach to reducing the frequency of inconsistent comparisons, and 
in Section VI, we discuss the implications for real-time system de- 
sign. 

Approximate Comparison 
An approach that has been proposed as a solution is to use ap- 

proximate rather than exact comparison within each version. An 
approximate comparison algorithm regards two numbers as equal 
if they differ by less than some tolerance 6 [6]. Approximate com- 
parison is used frequently in order to make computer arithmetic 
adhere somewhat more closely to the normal rules of arithmetic. 

If a computed value is to be compared to a constant C, approx- 
imate comparison requires performing comparisons to numbers that 
differ from C by the tolerance, 6. For example, it can be concluded 
that the computed value is greater than C only if it is greater than 
C + 6. Unfortunately, approximate comparison is not a solution 
because the Consistent Comparison Problem immediately arises 
again, this time with C + 6 rather than C .  Two programs may 
compute values that are arbitrarily close to each other, but have 
different order relationships with C + 6, just as with C. 

Exact Arithmetic 
Since the difficulty seems to arise from finite-precision arith- 

metic, a tempting approach is to require some form of exact arith- 
metic in the versions. However, in addition to being impractical to 
use for most applications, exact arithmetic will not work in general 
because many algorithms are themselves capable of producing only 
approximate solutions. For example, consider the numerical solu- 
tion of a differential equation that has no closed-form solution. The 
solution that is obtained is based on a discrete approximation to the 
equation and different algorithms will very likely use different dis- 
cretizations. Different solutions may be obtained even though exact 
arithmetic is used in the calculations. 

Random Selection 
When an N-version system fails to reach a consensus because of 

inconsistent comparison, all N outputs are, in principle, acceptable 
to the application, and it might seem that the decision algorithm 
could be modified to select one of the outputs at random. However, 
an N-version system may also be unable to reach a consensus be- 
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cause, for example, a majority of the versions fail. These two cases 
are indistinguishable, and so modifying the decision algorithm in 
an attempt to deal with inconsistent comparison will also operate 
when the disagreement is due to failures. This approach is not al- 
ways satisfactory and could be very dangerous since the selected 
output could lead to an unsafe course of action. 

Conjidence Signals 

An approach using “confidence signals” has been suggested by 
Bishop [7]. Although any particular version cannot have access to 
the results of comparisons performed by other versions, it can de- 
termine that the values it used for comparison were sufficiently close 
that a problem might have arisen. As an example of how this might 
be done, the system could be modified to provide comparisons with 
three possible outcomes, rather than just two, i.e.,  “less than” if 
R < C - 6, “greater than” if R > C + 6, and “no confidence” 
if C - 6 5 R 5 C + 6. The third result would imply that an 
inconsistency could have occurred. In that case, the version might 
simply signal failure because it knows that its outputs might not be 
suitable for voting. The possibility then arises that each version 
will signal failure at some point, and the system may fail to arrive 
at an output because an insufficient number of versions (perhaps 
none) have generated results. Another approach is to require that 
each version pass to the final decision algorithm both its result and 
a confidence signal. 

There are two ways that confidence signals might be used by the 
decision algorithm. First, if it finds a majority of the versions sig- 
naling a possible inconsistency in their results, the decision algo- 
rithm could choose any one of these results. The problem with this 
approach is that there is no way to distinguish between multiple 
correct results caused by the Consistent Comparison Problem and 
incorrect results where inconsistent comparison occurred along with 
a fault or faults in some other part of the algorithm(s). All fault 
tolerance is lost and the decision algorithm is reduced to random 
selection, the drawbacks of which were described previously. 

A second use of confidence signals would be for the decision 
algorithm to ignore the outputs of all versions signaling a lack of 
confidence in their results since, as argued above, it will be unable 
to distinguish between the occurrence of an inconsistent compari- 
son and a failed version. The versions indicating confidence in their 
outputs are then used normally. This may mean that fault tolerance 
is reduced or even eliminated. Note that if the computed value truly 
is close to the comparison parameter, it is likely that the only ver- 
sions with confidence in their outputs will be those that are incor- 
rect. 

Cross-Check Points 

It might be argued that a way to avoid inconsistency in compar- 
isons would be to establish “cross-check’’ points [8] to force 
agreement among the versions on their floating-point values before 
any comparisons are made that involve these values. At each cross- 
check point, each version would supply its computed result to a 
cross-check decision algorithm. The cross-check decision algo- 
rithm would select a single value (perhaps the median of the indi- 
vidual results) which would then be used by all of the versions in 
making the required comparisons. We note that this is not the pur- 
pose for which cross-check points were originally intended. They 
were introduced to allow recovery from software faults at the sub- 
system level, and were not intended to be applied at this micro 
level. 

Clearly, in principle, this avoids the problem, but various prac- 
tical difficulties arise. First, if cross-check points are needed to 
avoid inconsistent comparison, they must be completely described 
in the requirements specification. This means that the order of 
cross-check points must be specified also since otherwise the ver- 
sions will deadlock. Requiring that the order of events in  each pro- 
gram version be specified is a serious limitation on diversity in a 
situation where diversity is being sought, and it may result in sim- 

ilar faults in different versions that are induced by the requirements 
specification. Ideally, no information about the design should be 
included in the requirements. 

In fact, in many applications, this requirement would reduce di- 
versity among versions to the point where the cost of producing 
multiple versions is not justified by the limited degree of diversity 
between the versions. For example, the launch interceptor problem 
used in our N-version experiment [ 2 ]  requires that the program de- 
termine whether 15 “launch conditions” are satisifed. Each launch 
condition requires the determination of the existence of certain 
geometric relationships among subsets of up to 100 data points rep- 
resenting points in the plane. One of the launch conditions, for 
example, is satisfied if three data points can be contained within a 
circle of radius R where R is a parameter of the application. 

Some of the versions written for the experiment were structured 
to consider each of the 15 launch conditions in turn, and during the 
evaluation of each condition, the individual data points were con- 
sidered. Others were structured to work through the sets of data 
points, considering for each the launch conditions that could be 
satisfied by the data points. If cross-check points were used to avoid 
inconsistent comparison, it would be necessary to require one of 
these two basic program structures. The order in which the launch 
conditions are considered and the order in which the individual data 
points are examined would have to be established as well. 

Finally, we note the inefficiency that cross-check points intro- 
duce. In highly reliable systems, it is important to take account of 
Byzantine faults [9]. If the different versions are executing on dif- 
ferent processors, it will be necessary for the cross-check points to 
establish the values to be used by Byzantine agreement. In addi- 
tion, since all versions must reach a cross-check point before a 
decision is possible, a decision cannot be made until the slowest 
version has arrived. Thus, the execution time of the system will be 
the sum of the execution times of the slowest version between each 
pair of cross-check points, which is likely to be slower than any of 
the individual versions and increase the execution time over 
N-version systems without cross-check points. For these reasons, 
using cross-check points may very well be impractical for systems 
with hard real-time limits. 

There may be a class of applications that can use cross-check 
points to deal with the Consistent Comparison Problem. However, 
there is the serious potential problem of overspecification leading 
to reduced design diversity, and hence a reduced level of fault tol- 
erance. This is unfortunate since achieving fault tolerance was the 
purpose of writing multiple versions in the first place. There may 
be an unacceptable increase in response time also. 

IV. REDUCING THE FREQUENCY OF INCONSISTENT COMPARISON 

Rounding and truncation are not solutions to the Consistent 
Comparison Problem, but they can be used to reduce its frequency 
of occurrence. For simplicity, we consider only truncation and in- 
teger arithmetic in  this discussion. Rounding and truncation are 
essentially equivalent, and the extension to fixed- and floating-point 
quantities is straightforward. We show informally that the proba- 
bility of inconsistent comparison is reduced as the number of digits 
truncated increases, and it is also reduced as the accuracy of the 
computed values increases. 

Truncation to a specified precision after a computation but be- 
fore performing comparisons seems promising because examples 
are easily constructed for which it provides consistent compari- 
sons. However, counterexamples can always be found for any al- 
gorithm based on truncation. 

Applying any truncation algorithm to the set of quantities that 
are representable by a given fixed length computer format divides 
the set of representable quantities into equivalence classes. To solve 
the Consistent Comparison Problem using truncation, it is neces- 
sary to ensure that the N independently computed values end up in 
the same equivalence class. 

There is always a representable quantity, say V , ,  that is the larg- 
est in any given equivalence class. The next representable number, 
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say V z .  is the smallest in the adjacent equivalence class. If a real- 
world value of interest has to be computed (in effect, estimated) by 
a computer using finite-precision arithmetic, i t  is possible (ac- 
tually, very likely) that the real-world value lies between two rep- 
resentable values such as V ,  and V?. If two versions compute their 
estimate of this quantity to any precision whatsoever, they may 
compute the values V ,  and V?,  respectively, because they are esti- 
mating an unrepresentable quantity. These values will then be as- 
signed to different equivalence classes by the rounding algorithm, 
and the Consistent Comparison Problem arises. This occurs even 
if the specification requires that the computed result be in error by 
no more than some tolerance. Also, changing the starting point for 
rounding or  the number of digits used will not solve the problem 
in general. 

In practice, the probability of inconsistent comparison depends 
on a number of factors that are application specific. However. in 
general, the probability of occurrence decreases as the number of 
digits truncated increases. This occurs because the equivalence 
classes generated by truncation increase in size as the number of 
digits truncated increases, and so the chances of two computed val- 
ues being in the same equivalence class also increases. Similarly, 
as the required accuracy increases, the difference between the val- 
ues computed by two different versions decreases, and once again, 
this reduces the chances of the two values being in different equiv- 
alence classes. 

The effects of the Consistent Comparison Problem must be in- 
cluded in the reliability analysis of any application using N-version 
programming. The specific probability of its occurrence can only 
be computed when details of the application are known. However, 
truncation (or, equivalently, rounding) might be used deliberately 
to reduce the effects of the problem to acceptable levels. 

V.  IMPLICATIONS FOR SYSTEM DESIGN 

The immediate effect of inconsistent comparison is that a con- 
sensus might not be possible. The extent of the damage varies with 
the application and has a substantial impact on the effectiveness of 
measures designed to cope with the damage. The major character- 
istic that needs to be considered is whether or  not the application 
has state information that is maintained from frame to frame, i.e., 
‘ ’history ’ ’ . 

Some simple control systems have no history. They compute 
their outputs for any given frame solely from constants and the 
inputs for that frame. If the inputs are changing, i t  is extremely 
unlikely that a situation in which no consensus is possible would 
last for more than a short time. After a brief period, the inputs will 
change and leave the region of difficulty. Subsequent comparisons 
will be consistent among the versions because the values used for 
comparison will be sufficiently different. The effects of the Con- 
sistent Comparison Problem in such systems are transient. How the 
system should recover (and even ifi t  can recover) from such tran- 
sient failures is application-dependent, but i t  may be possible to 
treat the situation as a single-cycle failure by just not producing 
any results for this particular cycle or  providing results consistent 
with the last cycle. 

For systems with history, the situation is much more complex. 
Since such systems maintain internal state information over time, 
an unfortunate consequence of inconsistent comparison is that fail- 
ure to reach a consensus might be accompanied by differences in 
the internal state information among the versions. The duration of 
internal state differences varies among applications. 

In some applications, the state information is revised as time 
passes, and once the inputs have changed so that comparisons are 
again consistent, the versions may revise their states to be consis- 
tent as well. In this case, the entire system is once again consistent 
and operation can proceed safely. An example of this type of ap- 
plication is an avionics system in which the mode of flight is main- 
tained as internal state information. If this flight mode is deter- 
mined by height above ground, for example, then if a measurement 
is taken that is close to the value at which the mode is changed, 

different versions might reach different conclusions about which 
mode to enter, along with having different values for various other 
related version-specific variables. However, it is likely that this 
situation will be corrected rapidly if the versions continue to mon- 
itor the height sensor. We will refer to such systems as having 
convergenf states. 

For systems having convergent states, inconsistent comparisons 
may cause a temporary discrepancy among the internal states of the 
versions that could last for more than one cycle. A confidence sig- 
nal approach in which each version maintains confidence infor- 
mation as part of its state might be used in this case. This approach 
requires fairly extensive modifications and additions to the system 
structure. Not only would the individual versions need to include 
confidence information on every comparison and each component 
of its internal state, but outputs would have to be supplemented by 
the required confidence signal and the decision algorithm would 
have to be modified to take these signals into account. If a part of 
its state information is based on a comparison that is subject to 
doubt, then the version must indicate “no confidence” in all of the 
results it sends to the decision algorithm until the state is reeval- 
uated. The decision algorithm will then treat this as a failed com- 
ponent until the version indicates confidence in its results. The time 
required to reevaluate the state is application-dependent and may 
be unacceptably long in many cases, requiring the use of failsafe 
and backup procedures. 

Recovery [lo] is not a practical solution here. Recovery involves 
modifying the internal states of the incorrect versions based on that 
of a correct version. However, in this case, the lack of information 
about which version is correct is the whole problem. Furthermore, 
the recovery process may require restricting the algorithmic and 
data-structure diversity between versions. 

For some applications, state information is determined and then 
never reevaluated. An example of this is sensor processing where 
one version may determine that a sensor has failed and subse- 
quently ignore it. Other versions may not make the same decision 
at the same point in time, and depending on subsequent sensor be- 
havior, may never conclude that the sensor has failed. In this case, 
although the inputs change, versions may continue to arrive at dif- 
ferent outputs long after comparisons become consistent because 
the sets of state information maintained by the individual versions 
are not the same. We will refer to these systems as having noncon- 
vergenr states. 

Once the versions in a system with nonconvergent states acquire 
different states, the inconsistency may persist indefinitely. Al- 
though no version has failed, the versions may continue to produce 
different outputs, and in the worst case, the N-version system may 
never again reach a consensus on a decision. We see no simple 
avoidance technique that can be used in this case. Recovery is again 
not a practical o r  safe solution. The only practical approach in sys- 
tems of this type seems to be to design the system to be failsafe. 

VI. CONCLUSION 

The Consistent Comparison Problem arises whenever a quantity 
used in a comparison is the product of inexact arithmetic. The 
problem occurs even when all software versions are correct. It re- 
sults from rounding errors, not software faults, and so an N-version 
system built from “perfect” versions may have a nonzero proba- 
bility of being unable to reach a consensus. 

This paper has presented some possible solutions for particular 
types of simple applications, but has also shown that no general, 
practical solution to the Consistent Comparison Problem exists. 
This result is important because if no steps are taken to avoid it, 
the Consistent Comparison Problem may cause failures to occur 
that would not have occurred in nonfault-tolerant systems. Al- 
though the authors have observed the phenomenon in several dif- 
ferent multiversion programming experiments, there is, in general, 
no way of estimating the probability of such failures. The failure 
probability will depend heavily on the application and its imple- 
mentation. Although this failure probability may be small, such 
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causes of failure need to be taken into account in estimating the 
reliability of N-version software, particularly for critical applica- 
tions. 
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Statistical Inference for General-Order-Statistics and 
Nonhomogeneous-Poisson-Process Software 

Reliability Models 

HARRY JOE 

Abstract-There are many software reliability models that are based 
on the times of occurrences of errors in the debugging of software. It 
is shown that it is possible to do (asymptotic) likelihood inference for 
software reliability models based on order statistics or nonhomoge- 
neous Poisson processes, with (asymptotic) confidence levels for inter- 
val estimates of parameters. In particular, interval estimates from these 
models are obtained for the conditional failure rate of the software 
given the data from the debugging process. The data can be grouped 
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or ungrouped. For someone making a decision about when to market 
a software, the conditional failure rate is an important parameter. The 
use of the interval estimates is demonstrated on two data sets that have 
appeared in the literature. 

Index Terms-Failure rate of a process, maximum likelihood, non- 
homogeneous Poisson process, order statistic, profile likelihood, soft- 
ware reliability model. 

I. INTRODUCTION 

Many software reliability models for times to occurrences of bugs 
or errors during the debugging process have been proposed (see 
Miller [IS] and Abdel-Ghaly et al. [ l ]  and references therein), but 
there is comparatively less work on statistical inferences from these 
models. Some authors have mentioned the possibility of using 
maximum likelihood estimation and some have mentioned that 
maximum likelihood estimates behave poorly for some models, but 
this has not been qualified. One purpose of this paper is to make 
clear when maximum likelihood estimation can be good. Standard 
asymptotic likelihood theory cannot be applied to get approximate 
confidence limits of interval estimates of parameters because the 
setting here is not one of independently and identically distributed 
(i.i.d.) random variables. However, some authors, for example, 
Forman and Singpunvalla [4] and Yamada and Osaki [20], have 
misused this theory to get confidence intervals of estimates for soft- 
ware reliability models; while their interval estimates may be sen- 
sible in some cases, they have not justified when the confidence 
level is meaningful. This paper shows that there is an asymptotic 
sense (debugging process sufficiently long, number of original er- 
rors sufficiently large) in which asymptotic normality results (and 
hence asymptotic confidence levels) hold for the classes of soft- 
ware reliability models based on order statistics and on nonhomo- 
geneous Poisson processes (NHPP). The asymptotics is similar to 
that of Lindsay and Roeder [ 131. Both grouped and ungrouped data 
can be dealt with. 

One important quantity, especially for someone who must de- 
cide on when to begin marketing a software, that one might want 
inferences on is the conditional failure rate of the software given 
the results of the debugging process so far. The use of software 
reliability models is a means of obtaining inferences on the con- 
ditional failure rate or other similar quantities. 

In Section 11, the conditional failure rate is derived for several 
software reliability models, including the general order statistics 
(COS) models and the NHPP models. In Section 111, asymptotic 
results are stated for these classes of models. These models essen- 
tially assume that all bugs are of a similar type, but there are data 
sets in the literature for which these models are applicable and the 
asymptotic results can be used. The methodology can be applied 
to more general situations such as described by Adams [ 2 ] .  In Sec- 
tion IV, some computational details concerning likelihoods are dis- 
cussed, and the results of a small simulation study are given to give 
an indication of what may be considered “asymptotic” in practice. 
In Section V ,  the results are applied to get interval estimates of the 
conditional failure rate for two data sets, one from Musa with un- 
grouped data and one from Forman and Singpunvalla [4] with 
grouped data. 

11. CONDITIONAL FAILURE RATE 

In this section, we define the conditional failure rate of a process 
and determine it for Ross’ [18] model, COS models, and NHPP 
models. Note that in this paper, time will usually mean (cumula- 
tive) execution time. Suppose that in the interval of time [0, T I .  
there have been n failures (or discovery of errors) in the software 
at the times 0 < Z ,  < . . . < Z,, < T. Then the conditional failure 
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