
432 IEEE TRANSACTIONS O K SOFTWARE E N G l N E t K I N C i . VOL 16. N O 4. A P K l L I990

The Use of Self Checks and Voting in Software Error
Detection: An Empirical Study

NANCY G. LEVESON. STEPHEN S. CHA, JOHN C. KNIGHT, A N D TIMOTHY J . SHIMEALL

Abstract-This paper presents the results of a n empirical study of
software e r r o r detection using self checks and N-version voting. A total
of 24 graduate students in computer science a t the University of Vir-
ginia and the University of California, Irvine, were hired a s program-
mers. Working independently, each first prepared a set of self checks
using just the requirements specification of a n aerospace application,
and then each added self checks to a n existing implementation of tha t
specification. The modified programs were executed to measure the e r -
ror-detection performance of the checks and to compare this with e r -
r o r detection using simple voting among multiple versions.

The goal of this study w'as to learn more about the effectiveness of
such checks. The analysis of the checks revealed tha t there a r e great
differences in the ability of individual programmers to design effective
checks. We found that some checks that might have been effective failed
to detect a n e r r o r because they were badly placed, a n d there were nu-
merous instances of checks signaling nonexistent e r rors . In general,
specification-based checks alone were not a s effective a s combining them
with code-based checks. Using self checks, faults were identified that
had not been detected previously by voting 28 versions of the program
over a million randomly-generated inputs. This appeared to result from
the fact that the self checks could examine the internal state of the
executing program whereas voting examines only final results of com-
putations. If internal states had to be identical in N-version voting sys-
tems, then there would be no reason to write multiple versions.

The programs were executed on 100 000 new randomly-generated
input cases in order to compare e r r o r detection by self checks and by
2-version and 3-version voting. Both self checks and voting techniques
led to the identification of the same number of faults for this input,
although the identified faults were not the same. Fur thermore , whereas
the self checks were always effective a t detecting a n e r r o r caused by a
particular fault (if they ever did), N-version voting triples a n d pairs
were only partially effective at detecting the failures caused by partic-
ular faults. Finally, checking the internal s ta te with self checks also
resulted in finding faults tha t did not cause failures for the particular
input cases executed. This has important implications for the use of
back-to-back testing.

Index Terms-Acceptance tests, assertions, e r r o r detection, N-ver-
sion programming, software fault tolerance, software reliability.

I . INTRODUCTION
RUCIAL digital systems can fail because of faults in C either software or hardware. A great deal of research

Manuscript received August 22. 1988: revised November 8. 1989. Rec-
ommended by Y . Matsumoto. This work was supported in part by NASA
under Grants NAG- 1-5 I I and NAG- 1-668. by the National Science Foun-
dation under CER Grant DCR-8521398. and by a MICRO grant cofunded
by the state of California and TRW.

N. G. Lebeson and S . S . Cha are with the Department of Information
and Computer Science. Univerait) of California. Irvine. CA 92717.

J . C. Knight is with the Department of Computer Science. University
of Virginia. Charlottesville. VA 22903.

T . J . Shimeall is with the Department of Computer Science. Naval Post-
graduate School. Monterey. CA 93943.

IEEE Log Number 8933743.

in hardware design has yielded computer architectures of
potentially very high reliability, such as SIFT [29] and
FTMP [141. In addition, distributed systems (incorporat-
ing fail-stop processors [24]) can provide graceful deg-
radation and safe operation even when individual com-
puters fail or are physically damaged.

The state of the art in software development is not as
advanced. Current production methods do not yield soft-
ware with the required reliability for critical systems, and
advanced methods of formal verification [131 and pro-
gram synthesis [20] are not yet able to deal with software
of the size and complexity of many of these systems. Fault
tolerance [22] has been proposed as a technique to allow
software to cope with its own faults in a manner reminis-
cent of the techniques employed in hardware fault toler-
ance. Many detailed proposals have been made in the lit-
erature, but there is little empirical evidence to judge
which techniques are most effective or even whether they
can be applied successfully to real problems. This study
is part of an on-going effort by the authors to collect and
examine empirical data on software fault tolerance meth-
ods in order to focus future research efforts and to allow
decisions to be made about real projects.

Previous studies by the authors have looked at N-ver-
sion programming in terms of independence of failures,
reliability improvement, and error detection [161, [171.
Other empirical studies of N-version programming have
been reported [4], [6], [l o] , [111, [12], [25]. A study by
Anderson et al. [l] showed promise for recovery blocks
but concluded that acceptance tests are difficult to write.
Acceptance tests, a subset of the more general run-time
assertion or self check used in exception-handling and
testing schemes, are evaluated after execution of a pro-
gram or subprogram and are essentially external checks
that cannot access any local state. One of our goals was
to compare the effectiveness of checks that examine only
the external state with those that can check intermediate
states to see if there was any advantage of one approach
over the other. This type of information is needed in order
to make informed choices between different types of fault
tolerance techniques and to design better, more effective
techniques than currently available.

In order to eliminate as many independent variables
from this experiment as possible, it was decided to focus
on error detection apart from other issues such as recov-
ery. This also means that the results have implications
beyond software fault tolerance alone, for example in the

0098-5589/90/0400-0432$01 .OO 0 1990 IEEE

LEVF.SON ?I SOFTWARE ERROR IXTK 1 . 1 0 ~ 433

use of embedded assertions to detect software errors dur-
ing testing [3], 151, [28]. Furthermore. in some safety-
critical systems (e.g., avionics systems in the Boeing 737-
300 and the Airbus A3 IO), error detection is the only ob-
jective. In these systems. software recovery is not at-
tempted and, instead, a nondigital backup system such as
an analog or human alternative is immediately given con-
trol in the event of a computer system failure. The results
of this study may have immediate applicability in these
applications. The next section describes the design of the
study. Following this, the results are described for the self
checks alone and then compared with the results obtained
by voting.

11. EXPERIMENTAL DESIGN
This study uses the programs developed for a previous

experiment by Knight and Leveson [161. In the previous
experiment, 27 Pascal programs to read radar data and
determine whether an interceptor should be launched to
shoot down the object (hereafter referred to as the Launch
Interceptor program, or LIP) were prepared from a com-
mon specification by graduate students and seniors at the
University of Virginia and the University of California,
Irvine. Extensive efforts were made to ensure that indi-
vidual students did not cooperate or exchange information
about their program designs during the development
phase. The 27 LIP programs (along with a “gold” ver-
sion written by the experimenters to be used as an oracle)
have been analyzed by running one million randomly-
generated inputs on each program and locating the indi-
vidual program failures by comparing each program out-
put with that of the gold program.

Care was taken to ensure that the detected faults in the
programs are correctly identified [SI. The gold program
was extensively tested prior to the experiment. When the
version output was different from that of the gold pro-
gram, the experimenters identified the portion of the pro-
gram suspected to be erroneous (i.e., the fault). They then
modified the program to correct the suspected fault. The
fault was considered to be correctly identified when the
modified program produced the same output as the gold
program. However, the gold program output was not
blindly assumed to be correct. Two faults were found in
the gold program during the process of fault identifica-
tion. Although neither self checks nor voting can actually
detect a fault (i.e., they detect the errors and failures
caused by the fault), in this paper we loosely say that a
technique has “detected a fault” if it detects an error that
was caused by that fault. Obviously, fault detection itself
requires human intervention.

In the present study, 8 students from UCI and 16 stu-
dents from UVA were hired to instrument the programs
with self-checking code in an attempt to detect errors. The
participants were all employed for 40 hours although they
spent differing amounts of time on the project. The par-
ticipants were all graduate students in computer science
with an average of 2.35 years of graduate study. Profes-
sional experience ranged from 0 to 9 years with an aver-

age of 1.7 years. None of the participants had prior
knowledge of the LIP programs nor were they familiar
with the results of the previous experiment. We found no
significant correlation between the length of a partici-
pant’s graduate or industrial experience and their success
at writing self checks.

Eight programs were selected from the 27 LIP versions,
and each was randomly assigned to three students (one
from UCI and two from UVA). The eight programs used
were randomly selected from the 14 existing programs that
were known to contain two or more faults. This was done
to ensure that there would be faults to detect.

Participants were provided with a brief explanation of
the study along with an introduction to writing self checks.
They also were provided with a chapter on error detection
from a textbook on fault tolerance [2]. I n this chapter, the
general concept of self checking is described, and checks
are classified into the following categories:

1) Replication-checks that involve some replication of
an activity and comparison of outputs.

2) Timing-checks that determine whether the opera-
tion of a component meets timing constraints.

3) Reversal-checks that take the output(s) from a sys-
tem and calculate what the input(s) should have been in
order to produce those output(s).

4) Coding-checks that maintain redundant data in the
representation of an object or set of objects in some fixed
relationship with the (nonredundant) data and ensure that
the relationship holds.

5) Reasonab/eness-checks that determine whether the
states of various (abstract) objects in the system are “rea-
sonable” given the intended usage and purpose of those
objects using knowledge of the system’s design.

6) Structural-checks on the semantic and structural
integrity of data structures.

7) Diagnostic-checks on the performance of the com-
ponents from which the system is constructed rather than
checks on the behavior of the system itself. Such checks
involve exercising a component with a set of inputs for
which the correct outputs are known.

We did not require that the participants use these or any
other particular types of checks because we had no a priori
knowledge of which checks might be relevant to the soft-
ware at hand and because we wanted to allow the maxi-
mum flexibility and opportunity for creativity on the part
of the participants. To the best of our knowledge, this was
the first experiment of its kind and we did not want to
restrict the participants in any way since any restrictions
might limit the effectiveness of the checks unintention-
ally. Our goal was to determine whether self checks, in
general, can be an effective means of error detection, to
provide some preliminary comparisons with simple voting
schemes, and to gather information that could be used to
design and focus future experiments both by ourselves and
others. Often the most important information derived from
the early experiments in a particular area is to determine
what are the most important variables on which to focus
in future studies. Overconstraining the first empirical

434 I F k E TRANSACTIONS O N SOFTWARI-, I - N G l K t t K I N G . VOL. Ih. N O . -1. A P R I L 19YO

studies can mean that important information is inadver-
tently missed.

The participants were first asked to study the LIP spec-
ification and to write checks using only the specification,
the training materials, and any additional references the
participants desired. When they had submitted their initial
specification-based checks, they were randomly assigned
a program to instrument. Self-checking code was written
in Pascal, and no limitations were placed on the types of
checking code that could be written.

The participants were asked to write checks first with-
out access to the source code and then with the source
code available in order to determine if there was a differ-
ence in effectiveness between self checks designed by a
person working from the requirements alone and those de-
signed with knowledge of the program source code. It has
been suggested in the literature that ideal self checks
should treat the system as a black-box and that they should
be based solely on the specification without being influ-
enced by the internal design and implementation [2].
However, it could also be argued that looking at the code
will suggest different and perhaps better ways to design
self checks. Because we anticipated that the process of
examining the code might result in the participants de-
tecting faults through code reading alone, participants
were asked to report any faults they thought they detected
by code reading and then to attempt to write a self check
to detect errors caused by these faults during execution
anyway.

The participants submitted the instrumented programs
along with time sheets, background profile question-
naires, and descriptions of all faults they thought they had
detected through code reading. The instrumented pro-
grams were executed on the same 200 input cases that
were used as an acceptance procedure in the previous ex-
periment. The original versions were known to run cor-
rectly on that data, and we wanted to remove obvious
faults introduced by the self checks. If during the accep-
tance procedure a program raised a false alarm, i.e., re-
ported an error that did not exist, or if new faults were
detected in the instrumentation itself, the program was re-
turned to the participant for correction.

After the instrumented programs had satisfied the ac-
ceptance procedure, they were executed using all the in-
puts on which the original programs had failed in the pre-
vious experiment. The participants were instructed to
write an output message if they thought that an error had
been detected by their checking code. These messages
were analyzed to determine their validity (i.e., error de-
tection versus false alarm) and to identify the faults re-
lated to the errors that were detected. The same method
for identifying faults was used as had been used in the
original LIP program, i.e., a hypothesis about the fault
was made, the code was corrected, and the program was
executed again on the same input data to ensure that the
output was now correct and that the self-check error mes-
sage was no longer triggered.

In order to compare self checks and N-version voting

(i.e.. detecting errors through voting by N versions on the
results and taking the majority result as correct), the in-
strumented programs were then run on a new, randomly-
generated set of 100 000 inputs. The input cases from the
original experiment (that had been used up to this point)
could not be used for this comparison since that data had
already been determined to cause detectable failures
through voting, and any comparison would be biased to-
ward voting.

111. RESULTS
The results are presented in two parts. The first part

looks at the effectiveness of self checks in detecting er-
rors. The second part compares self checks and voting in
terms of fault detection.

A. Error Detection Usirig Secf Checks

During the first phase of the experiment in which self
checks were based on the program requirements specifi-
cation alone. a total of 477 checks were written. The par-
ticipants were then given a particular implementation of
that specification, i.e., one of the programs, to instrument
with self checks. Each of the eight programs were given
to three participants so that individual differences could
be partially factored out of the experiment. No limitations
were placed on the participants as to how much time could
be spent (although they were paid only for a 40 hour week,
which effectively limited the amount of time spent') or
how much code could be added. Table I shows the change
in length in each program during instrumentation. In or-
der to aid the reader in referring to previously published
descriptions of the faults found in the original LIP pro-
grams [SI. the programs are referred to in this paper by
the numbers previously assigned in the original experi-
ment. A single letter suffix is added (a, b, or c) to distin-
guish the three independent instrumentations of the pro-
grams.

There was a great deal of variation in the amount of
code added, ranging from 48 lines to 835 lines. Partici-
pants added an average of 37 self checks, varying from
1 I to 99. Despite this variation, we found no obvious cor-
relation between the total number of checks inserted by a
participant and the number of those checks that were ef-
fective at finding errors. That is, more checks did not nec-
essarily mean better error detection.

There is also no significant relationship between the
number of hours claimed to have been spent (as reported
on the timesheets) by the participants and whether or not
they detected any errors. Fig. 1 shows the amount of time
each participant spent reading the specification to under-
stand the problem, developing self checks based only on
the specification, reading the source code and adding pro-
gram-based self checks. and debugging the instrumented
programs. -

7

'Several reported spending more than 40 hours o n the project.
'Three participants (14a. ?Oa. and ?Sa) did not \ubmit a timcaheet and

are excluded from Fig. I .

LFVFSON CI (I / SOFTVvARF ERROR DETECTION

23
25

TABLE 1
LlVF5OF CODF AI)DtL) D L R I W ~ 4 5 1 K L h 1 t \ 1 4 T 1 0 2

V e F ri ?mkar of knes 1 a~ncgeasec

909 1152 805 152 395 48
859 887 700 216 244 57

600 1046 1356 824 446 756 224
12 573 1121 696 806 548 123 233
14 605 905 1342 712 300 737 107
20 533 611 1368 596 78 835 63

349 1065 417 544 716 68 195
906 1644 1016 1022 738 110 116

Version otal
3a
Ib 42 i
I C 40
6a
6h
6c
8a
8b
8c

12a
12b
12c
14b
14c
20b
20c
23a
23b
2 3 C
25b
25c

1 6 5 1 6 1 1 3 5 14.5 1 30 i

Fig. I . Summary of participant timesheets.

Table I1 presents the performance of the program-based
self checks. For each instrumented version, the number
of checks that were effective, ineffective, false alarms,
and unknown arc shown.

Checks were classified as effective if they correctly re-
port the presence of an error stemming from a fault in the
code. Ineffective checks are those that did not signal an
error when one occurred during execution of the module
being checked (based on the known faults in the program
and using data for which we knew already that they would
fail). False alarms signal an error when no error is pres-
ent. The rest of the checks arc classified as unknown be-
cause their effectiveness cannot be determined based on
the input cases that have been executed to date. Executed
with other data, it is possible that these checks could sig-
nal false alarms or be ineffective or effective with respect
to currently unknown faults in the programs.

Two partially effective checks by participant 23a that
detect an error most (but not all) of the time are counted
as effective (but marked with an asterisk). All other self
checks that we classified as effective always detected an
error if it occurred. The checks inserted by participant 23a
differed from the other participants in that he used N-ver-
sion programming to implement the self checking. That
is, he rewrote the entire program using a different algo-
rithm, and his self check became a comparison of the final

TABLE I1
SELb-CHtCh C L A S S l k l C 4 1 104

*These tWo checks were only partially effective.

results of the original program and his new program. This
approach was not expected but was not precluded by the
instructions given to the participants. His self check was
only partially effective because of coincident failures be-
tween his version and the version he was checking. This
is significant because he had the original version and was
attempting to write a completely different algorithm, i.e.,
he had the chance to plan diversity. This still resulted in
a large percentage of correlated failures. His voting self
check was effective only 16% of the time, i.e., the voting
check detected 13 failures out of a total of 80 failures that
occurred. In the other 67 cases, both versions failed iden-
tically.

We could find no unique characteristics of the effective
checks. As explained in the previous section, we pur-
posely did not restrict the participants to any particular
types of self checks, and we found we were unable to
classify the self checks actually used. Classification of
checks is, in general, extremely imprecise, which makes
enforcement of the required use of a particular type of
check virtually impossible and precludes any meaningful
postexperiment classification by us. As an example of the
difficulty, consider a check that computes an approxima-
tion of a required result. If the approximation is coarse,
this might be classified either as a replication check or as
a reasonableness check. Similarly, one might classify
branch checks as a separate type of check or they could
be considered as a type of consistency check. If branch
checks attempt to detect errors through redundant com-
putation of the branch conditions, they could even be
classified as replication checks. Our attempts to classify
the more than 800 checks led to hopeless inconsistency
among the classifiers.

Our problems are compounded by the fact that some of

436 I tEP, I R A N S A C T I O N S O N SOFTWARE E N G I N E E R I N G . VOL. 16. N O 4. A P R I L IY90

the effective checks were written for faults that were de-
tected by the participants during code reading. Table 111
shows the fault identifiers for those faults found by code
reading along with the participant who found them. It is,
of course, quite easy to write a check to detect an error
caused by a known fault. In the majority of cases. the
participant merely corrected the code and then compared
the relevant variables at execution time. When there was
a difference, the checking code wrote out an error mes-
sage that an erroneous state had been detected. We sepa-
rate the two cases in the rest of this section into faults
detected through code reading (CR) and faults detected
through code-based design checks (CD).

Even if we could have classified the checks, it would
be misleading to attempt to draw conclusions from this
data about the types of checks that are effective since the
checks were in different programs with different types of
errors. It would be inappropriate (and even misleading) to
claim that checks of one type are more effective than oth-
ers based on our data. The types of effective checks for a
particular program probably will vary widely depending
on the type of application and the type of errors in the
program. For example, if the program is computation-in-
tensive and if there exist several algorithms to compute
the answer, replication checks might be effective. If, on
the other hand, the application involves the manipulation
of complicated data structures using relatively simple
computations, structural checks might be the most effec-
tive. The algorithms and errors were different in the dif-
ferent LIP programs, and therefore the effective checks
would also be expected to be different.

We examined the ineffective self checks to determine
why they did not signal errors when one occurred during
execution of the module being checked. They appear to
be ineffective for one or more of the following reasons:

Wrong self-check strategy-The participant failed to
check the erroneous variables or checked them for prop-
erties unrelated to the error. The majority of the ineffec-
tive self checks failed to detect errors for this reason.

Wrong checkplacement-The self check is not on the
particular path in which the fault is located. Had the self
check been correctly placed, it would have been effective.

Use of the original faulty code in the self check-the
participant falsely assumes a portion of the code is correct
and calls that code as part of the self check.

It should be noted that the placement of the checks may
be as crucial as the content. This has important implica-
tions for future research in this area and for the use of self
checks in real applications.

It should not be assumed that a false alarm involved a
fault in the self checks. In fact, there were cases where
an error message was printed even though both the self
check and the original code were correct. This was a man-
ifestation of the Consistent Comparison Problem [9]. The
self check made a calculation using a different algorithm
than the original code. Because of the inaccuracies intro-
duced by finite precision arithmetic compounded by the
difference in order of operations, the self-check algorithm

TABLE 111
F A L LTS DFTFCTI-I) THROI GH con^ RFAIIINC;

Version 1 Ra 1 Ga I 12c j 20b 1 2 0 ~ 1 25a
Fault 1 3.3 16.1.6.2 1 12.1 1 20.2 1 20.2 125.1.25.2,25.3

sometimes produced a result that differed from the origi-
nal by more than the allowed tolerance. Increasing the
tolerance does not necessarily solve this problem in a de-
sirable way.

Table IV summarizes the detected faults by how they
were found. Nineteen % of the detected faults were de-
tected by specification-based checks, 43 % by code read-
ing, and 38% by code-based checks. For code-based de-
sign checks, the number of effective checks is not identical
to the number of faults detected because often more than
one check detected errors caused by the same fault. Only
12% (4 out of 34) of the effective checks were formulated
by the participants after looking at the requirements spec-
ification alone. The remaining 88% of the effective checks
were designed after the participants had a chance to ex-
amine the code and write checks based on the internal
state of the program.

Although it has been hypothesized that acceptance tests
in the recovery block structure should be based on the
specification alone in order to avoid biasing the formula-
tor of the test, our results indicate that the effectiveness
of self checks can be improved when the specification-
based checks are refined and expanded by source code
reading and a thorough and systematic instrumentation of
the program. It appears that it is very useful for the in-
strumentor to actually see the code when writing self
checks and to be able to examine internal states of com-
putations in the checks.

Previously unknown faults were detected during instru-
mentation, and new faults were added. Table V presents,
for each participant, the number of known and previously-
unknown faults that were detected and the number of new
faults that were introduced. This data makes very clear
the difficulty of writing effective self checks. Of 20 pre-
viously known faults in the programs, only 12 were de-
tected (the 15 detected known faults in Table V include
some double detections of the same fault), and 6 of these
were found by code reading alone. It should be noted,
however, that the versions used in the experiment are
highly reliable (an average of better than 99.9% success
rate on the previous one million executions), and many of
the faults are quite subtle. We could find no particular
types of faults that were easier to detect than others. Only
3 of the 18 detected faults were found by more than one
of the three participants instrumenting the same program.
Individual differences in ability appear to be important
here.

One rather unusual case occurred. One of the new faults
detected by participant 8c was detected quite by accident.
There is a previously unknown fault in the program.
However, the checking code contains the same fault. An
error message is printed because the self-checking code

LEVESON v f <I / . SOFTWARE kKKOR DETECTION 127

SP CR CD
1 3a

311 i 4

TABLE IV particular. the use of Heron's formula:
F\L 1.r D F T t C I I O \ C l . A 5 S l k l t , l) B Y I \SlKIIMt. l , rATIO\I Tk.CH\IQUt

Due To area = J s * (s - a) * (s - b)* (s - c)

where a , b , and c are the distances between the three
points and s is (U + b + c) / 2 , fails to provide a correct
answer in the rare case when all the following conditions
are met simultaneously.

Faults Detrctrd
Effective Checks 34

S f CR CD

!

TABLE V
S L M M A R Y O F F , 4 L L r Dt:ItCTI(l\:

Already I i r m v n Faults ' Other Faults ' 1 Present 1 Det(,cted ~ tktected 1 Added Faiilts

'zoc
23a
23b

I 1
9 i 4

2

uses a different algorithm than the original, and the Con-
sistent Comparison Problem arises causing the self check
to differ from the original by more than the allowed real-
number tolerance. We discovered the new fault while
evaluating the error messages printed, but it was entirely
by chance. We were unsure whether to classify this seem-
ingly accidental error signal as the result of an effective
check since both the original program computation and
the self check are erroneous and contain the same fault.
We decided to classify this unusual case as an effective
self check because it does signal an error when a fault
does exist.

It should be noted that the self checks detected 6 faults
not previously detected by comparison of 28 versions of
the program over a million inputs. The fact that the self
checks uncovered errors caused by new faults even though
the programs were run on the same inputs that did not
reveal the errors through voting implies that self checking
may have advantages over voting alone. A detailed ex-
amination of one of the previously undetected faults helps
to illustrate why this is true.

Some algorithms are unstable under a few conditions.
More specifically, several mathematically valid formulas
to compute the area of a triangle are not equally reliable
when implemented using finite precision arithmetic. In

The three points are almost collinear (but not ex-
actly). s will then be extremely close to one of the dis-
tances, say a, so that (s - a) will be very small. The
computer value of (s - a) will then be of relatively poor
accuracy because of roundoff errors (around lo-'' in the
hardware employed in this experiment).

The product of the rest of the terms, s* (s - b)* (s
- c) , is large enough (approximately lo4) to make round-
ing errors significant through multiplication (approxi-
mately lo-").

The area formed by taking the square root is slightly
larger than the real number comparison tolerance (l o p 6 in
our example) so that the area is not considered zero.

Other formulas, for example

where x, and yI are the coordinates of the three points,
provide the correct answer under these circumstances; the
potential roundoff errors cannot become "significant" due
to the order of operations. Two of the six previously un-
known faults detected involved the use of Heron's for-
mula. Because the source of the unreliability is in the or-
der of computation and inherent in the formula, relaxing
the real number comparison tolerance will not prevent this
problem. The faults involving the use of Heron's formula
were not detected during the previous executions because
the voting procedure compared the final result only,
whereas the self checks verified the validity of the inter-
mediate results as well. For the few input cases in which
it arose, the faults did not affect the correctness of the
final output. However, under different circumstances (i.e.,
different inputs) the final output would have been incor-
rect. We did not categorize anything as a fault unless we
could find legitimate inputs that will make the programs
fail due to this fault.

Although new faults were introduced through the self
checks, this is not surprising. It is known that changing
someone else's program is difficult: whenever new code
is added to a program there is a possibility of introducing
faults. All software fault tolerance methods involve add-
ing additional code of one kind or another to the basic
application program. Examples of new faults introduced
by the self checks are the use of an uninitialized variable
during instrumentation, algorithmic errors in computa-
tions, infinite loops added during instrumentation, an out-
of-bounds array reference. etc.

The use of uninitialized variables occurred due to in-
complete program instrumentation. A participant would
declare a temporary variable to hold an intermediate value

438

Correct
Wrong
N o h s w e r

l t E E TRANSACTIONS OK SOFTWAKF. ENGIKEEKIKG. VOI. 16. K O 4. APKIL 19YO

Count Prrctmt Count Percent

5599414 99 9895 5590414 99 9695
586 0 0105 262 0 0100

0 0 0 14 0 0004

during the computation. but fail to assign a value on some
path through the computation. A more rigorous testing
procedure for the self checks may have detected these
faults earlier. The instrumented versions were not run on
many test cases before being evaluated. In most realistic
situations, assertions or self checks would be added be-
fore rigorous testing of the program was performed in-
stead of afterward as in our case. It is significant, how-
ever, that many of the same types of faults were
introduced during instrumentation as were added during
the original coding and thus some presumably might also
escape detection during testing.

B. Comparisons with Voting
When making a decision about which type of error de-

tection scheme to use, it is important to have comparison
data. In this study, we compared the error detection ef-
fectiveness of general self checks and simple voting
schemes. The faults detected through code reading are
counted as detected by self checks; code reading is an
integral part of the process of instrumenting programs. In
order to avoid confusion, we refer to the entire process as
instrumentation of the code. Also, because the self check
effectiveness had been investigated using the inputs on
which we knew that voting detected failures, we executed
the programs using both self checks and voting on an ad-
ditional 100 000 randomly-generated inputs and did the
comparisons only for these new inputs.

There are many different voting schemes and which is
used may affect the outcome. In the original LIP experi-
ment [16], each program produced a 15-by-15 boolean
array, a 15-element boolean vector, and a single boolean
launch condition (a total of 241 outputs) for each set of
inputs, and vector voting was used. In vector voting, an
error is detected if any of the 241 results differ between
the versions. For example, if three versions provide the
three results 100, 01 1 , and 1 1 1 (where 1 stands for a cor-
rect partial result and 0 stands for an incorrect partial re-
sult), this is counted as three different answers and the
triplet fails with no answer.

It has been suggested that bit-by-bit voting, where the
answer is formed by determining the majority of each in-
dividual result. would have improved the voting system
reliability of our programs 1151. In the example above,
each of the three partial results has a majority of correct
answers so the final answer would be correct. In bit-by-
bit 3-way voting, it is impossible for the voting system to
fail to produce an answer, i .e . , a majority always exists
among three boolean results. This is possible, obviously,
only because of the boolean nature of the data.

To determine whether there was a significant difference
between vector voting and bit-by-bit voting for our appli-
cation, we performed each and compared the results. One
hundred thousand input cases were executed, and voting
was performed on the results for each of the 56 possible
3-version combinations of the 8 programs. Therefore. a
total of 5,600,000 votes were taken.

The results are shown in Table V I where a result was

TABLE VI
T I I R I t - V t WO\ V o i I\<;

I Bit-bv-Bit / / \'r,ctoi

classified as Wrong if a majority of the three versions
agreed on a wrong answer. and i t was classified as No
Answer if there was no majority. For this data there is no
difference in the resulting probability of correct answer
between bit-by-bit and vector voting. The 24 cases where
there had previously been no agreement all became wrong
answers using bit-by-bit voting. Vector voting is safer be-
cause it is less likely to allow a wrong answer to go un-
detected at execution time (i.e., some systems may have
fail-safe mechanisms to recover when the computer fails
to produce a result), and we use majority vector voting
for the rest of this paper.

A total of 2 800 000 2-version votes were taken (28
combinations of 2 programs executing 100 000 input
cases), and the results are shown in Table VII. A wrong
answer was recorded if both versions were identically
wrong. and no answer was recorded if the two versions
disagreed.j Wrong answers were identified by using
9-version voting (the 8 versions plus the gold version).
Faults that cause common failures in all 9 versions will,
of course, not have been detected. As expected, the prob-
ability of a correct answer for 2-version voting is lower
than for either a 3-version system or a single version run
alone (see below).

The probability of producing a correct answer for the
individual programs is shown in Table VIII. The aver-
age probability of success for individual programs is
99.933 5%.

Table IX contains the comparison data for fault detec-
tion using voting and instrumentation.4 The previously
unknown faults detected by instrumentation are labeled
6.4, 8.3, 12.3, 12.4, 20.3, and 25.4. In Table IX. a fault
is counted as detected by voting if an erroneous result
caused by that fault is detected at least once (but not nec-
essarily every time it occurs) and by at least one of the
voting triples or pairs (but not necessarily by all of them).
In fact, as discussed below, voting was only partially ef-
fective at detecting (and tolerating) erroneous results for
the majority of faults and for the majority of triples and
pairs. The instrumentation is considered to have detected
a fault if at least one of the three instrumentations detected
an error resulting from the fault. With this definition of
fault detection, voting led to the detection of 8 faults that
were not detected through instrumentation. the instrumen-
tation led to the detection of 8 faults that were not de-
tected by voting, and 10 faults were detected by both.

'In 6 out of the 3519 N o A n \ a e r case\ in Table VII . the \ e n i o n \ rc-

'The data here dilfers slight11 troni that i n Table V because a ditfcrent
turned two distinct wrong an\wers.

\et of input cases was used.

LEVESOK (’1 U / ’ SOF T W A R F E R R O R DETECTION

25.4 I

439

J

TABLE IX
COMPAKISOZ OF F Z L L r DI- I I-C’I I O X

6.2
6.3
6.4 J
6.1 J d
8.2 J

-. . ~

I Count 1 Percent
Correct 1 2796359 I 99.8700
Wrong 1 112 1 0.0040
No Answer I 3529 1 0.1260

Version Cases Failed
223

25

14 140
20 25
23
25 10

Success Percentage
99.777
99.939
99.973
99.951
99.860
99 975
99.996
99.990

Voting and instrumentation led to the detection of the
same number of faults in total.

There are some inherent problems in comparing these
two techniques. Self checks are capable of detecting er-
rors caused by faults that may not actually result in a fail-
ure for that particular execution. In the area of testing,
this is extremely valuable since the goal is to find all faults
that could possibly cause failures and remove them. It
could be argued, however, that for run-time fault toler-
ance, error detection in nonfailing programs is of lesser
importance and could actually be a hindrance. The above
8 faults detected by self checks and not by voting include
two faults that were not detected by voting because they
did not cause failures during the execution of the pro-
grams. However, these two faults did cause failures and
were detected during the previous execution of one mil-
lion inputs for these same programs. The self checks found
errors caused by one previously-unknown fault that did
cause a failure in the 100 000 input cases that was not
detected by voting. The other five faults detected by self
checks alone did not cause failures for the 100 000 input
cases or for the previous one million input cases.

Another problem comparing the techniques involves the
differences in effectiveness or “coverage” of the fault de-
tection. The effectiveness or coverage of the technique in
detecting faults is defined as how often an error was de-
tected given that it occurred and a potentially effective
check was made. Table IX credits a technique with de-
tecting an error even if it does not detect the error every
time it occurs.

Tables X(a) and X(b) show the fault-detection coverage
for each of the voted triples and pairs. The only faults
included in the tables are those that were detected by vot-
ing on the original one million input cases; the additional
faults detected by self checks alone are not included as
they would not generate any entries in the table. The sec-
ond row shows the number of failures caused by each fault
for the 100 000 input cases executed. Each row in the
table below this row then shows the number of times the
triple and the pair detected these failures. Two faults (i.e.,
20.2 and 25. I) that caused failures on the original one-

23.2
25 1

J
J

million input cases did not cause failures for these 100 000
input cases (although the self checks detected them be-
cause they did cause errors in the internal state of the pro-
gram). A dot in the table means that that position is irrel-
evant, i .e., the fault was in a program that was not one of
the members of the triple and the pair. An asterisk next
to a number indicates that not all of the failures were de-
tected. The bottom line gives the percentage of time any
triple or pair detected that particular fault given that it
caused an erroneous result. For triples, this ranged from
29 to loo%, with an average of 0.72 and a standard de-
viation of 0.29. For 2-version voting, the results are a
little better (as would be expected) but the coverage still
averaged only 0.84 (standard deviation of 0.18) with a
couple of pairs as low as 0.57.

The partial detection of faults by voting contrasts with
instrumented self checks where if there was a check in
place that ever detected an error caused by a fault, then it
ul\vuys detected the errors caused by that fault. This was
true for both the 100 000 input cases executed in this part
of the experiment and for the previous one million input
cases except for version 23a where, as discussed earlier,
the participant used N-version voting to implement the self
checking. For these particular 100 000 input cases, ver-
sion 23 failed only twice and both were detected by the
voting-check inserted by participant 23a. However. on the
previous one million input cases, the voting-check by 23a
was effective for only 13 out of SO failures.

It appears that the self checks are highly etfective be-
cause they check the internal state and, therefore, con-
sistently find the errors they are capable of detecting. The
voting procedure only checks the results of computations
and not the internal consistency of the intermediate results

440 lEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL 16. NO. 1. A P R I L 1990

1'
10
1 I1

10
1'

U' 6 I* O* .
6 . . 4 2

. . .
1 . .

1J1+ i . .

i* i

. .

. .

. .

. .

1' 2
. .
. .
. .

iJ* z

1 5
1 I *

/ I * 1'
1 4 =
1 2 '

0'
0:
0+
O *
0'

13*
n*

6 -
1-
1'
0:
0'
1'

1*

6 *
1'

6'
O+
1'
6 *

1 0

1 0

10

i :
IJ I* i . .

n *
. .
. .
. .
1*
. .
. .
1' .
. .
. .
0* .
11 .
. .
. .

0*
. .
. .
. .

2 5 .
. .
. .

23' .

. .
0' 2 :
. .
. .

o* .3
. .

0. i
. .
0 + 2*

O f 3

. .
08 1 3 1 ' 0*
1 . .
7 . .

. .
i * i 1 4 *

1 2 ' I . .
. 131' 7

131' I
131* 7

"t

1 2 '
10*

n t
1 1 2

o= 2
1' 2

. . .

. . . 0*
11' . . .

7 . .
. 131+ 1

. .
6 2 0 4;
6 2 0 3* .
6 O* 0 * .
6 1 8 8 5 .
6 1 4 - 4 + .
6 . . 4 2
6 . . 4 2
6 . . 4 2
b . . 4 2
b . .
6 . .
6 . .

. . .

. . .
. .
0' 2'
. .

l i
. .
1 3

1+ 2
. .
. .

8 2

6 2

. .

. .
0' 133 0 *
7 . .
I . .
7 . .
. 1 3 1 * 7

1 3 3 7
113 I

6/14/2.!
6 / 1 4 / 2 5
6/20/2J
6/20/25
6 / 2 3 / 2 5
8 / 1 2 / 1 4
8/12/20
8 / 1 2 / 2 3
8 / 1 2 / 2 5
8 / 1 4 / 2 0
8 / 1 4 / 2 3
8 / 1 4 / 2 5
8 / 2 0 / 2 3
8 / 2 0 / 2 5
8 / 2 3 / 2 5
1 2 / 1 4 / 2 0
1 2 / 1 4 / 2 3
1 2 / 1 4 / 2 ' 1
12/20/1!
1 % / 2 0 / 2 ,
1 2 / 2 1 / 2 5
14/2 lJ /2J
14/20/2',
14/2J/2 ' ,
2 0 / 2 3 / 2 5

. . 5

. . 5

. . 5

. . .

. . .

. . .

. . .

. . .

. . .

5 0 6
5 0 6
5 0 6

. 2 3 * . o + 2 + . .

. I S - . I * 2

. 1 3 . 8 2
1* 4 1 o * I l l * 0'
0, 4 2 7 . . o *
5 4 2 1 0* ?* . .

0* . . 1 3 l * 7 0*
3+ . . 131" 1 . . O f 2 * . .
0" 0' . U * 2*
0 ' 0 1 0'
4 *
. 4 2 o * 1 3 1 * 0' 2 3 *

. 4 2 U' 1 3 1 0* U 2

. 4 2 I . . 211 U * 2 7
4 2 -1 . . i n * . . I * 2

1 3 . H 2 . 4 2 I

I<]* 1 1 6 ' I + 2
1 3 1 I . . I i . H 2

(I * i' . 1' 2

. . .

4 ' 4 2 1 1 * 2

2' . . 131' 7 I * i

0' 2' . I * 2
. .

. 4 2 o * l i 3 0' 1 3 . .

. . . .

131. j 2;* : o* 2' . .
.

. 16'

i 6 8 I U O % i l % 99% I 1 8 4 0 % 2 9 % 83% 3 0 % i u o ' b (n l i ~ d " .

2 0
O+

1 4 *
U *

1 8 +
14 '

0:
0'

1 2 '

i n *

. .

. .

. .

. .

. .

. .

. .

. . .

00% 1 0 0 % 10, 1 1 I m , 4 4 % 4 0 % 1 l u l l % 1 0 0 % 4 1 %

5 5 0 6 . . .
. 1 * o* .
. . . 4 2

0* i . .
1' . . .

1' 2
5 5 0
5 50
5 50
5 5 0
5 50

6 2 0 5 :
6 . . 42
6 . . .
6 . . .
6 . . .
6 .

. 20 3* .

. 2 0 i 4 2

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.
I
. 1 3 3 7 . .
. . . 2 5 .

i i
8 2 5 5 0

8 j l 2
8 / 1 4
8/20
8/23
8/25
1 2 / 1 4
12/20
12/23
1 2 / 2 5
1 4 / 2 0
1 4 / 2 3
1 4 / 2 5
20/23
2 0 / 2 5
2 3 / 2 5

7 .

. . . 0 1 .
131+ ; : :

.
. .
. .
. .
. .

0' 2 +
. .
. .
. .
1 3

1' 2
. .

.
n * 133 O* . .

. i 3 i * i 2 i = :
1 . . 2 5 .
7
1 .

. 133 7 . .

. 133 1 . .

. . . 2 3 +

. . , 18 ' .

.

. .
8 2

. . .

. . .

. . .

. . .

. . .

. . .

l 3

i i

. .
0' 2 +

. .
8 2

1' 2
8 2

. .

...

67% 6 7 % 1 0 0 % 100% 100% 1 0 0 % 100% 66% 63% 1 0 0 % 86% 99% 8 6 % 66% 5 7 % 90% 5 7 % 1 0 0 % (m e a n : 8 3 . 6 8 , sd. 1-1 5 1

LEVESON C I [i / SOFTWARE ERROR DETECTION 43 I

and other parts of the internal state. As a result, simulta-
neous failures of multiple versions sometimes caused vot-
ing to fail to detect erroneous results.

Using cross-check points in voting to compare the re-
sults of computations internal to the program (and not just
the final output) cannot be used to solve the problem as
long as truly diverse algorithms are used in the indepen-
dent versions. Diversity implies that the internal states of
the programs will not be identical. If they are identical,
then there is no diversity and no potential fault tolerance.
Some comparison of intermediate results is, of course,
possible, but the only way to guarantee this comparability
is to decrease the diversity by requiring the programmers
to use similar designs, variables, and algorithms and thus
decreasing the amount of error detection and fault toler-
ance possible. At the extreme, this results in totally spec-
ified and thus identical versions.

Simultaneous failure does not explain all the faults
missed by voting. Notice that faults 20.2 and 25.1 did not
cause failure during execution of any of the 100 000 input
cases (although they did on the previous million input
cases). The self checks detected the errors caused by these
faults (and six other faults that voting did not detect even
on the million input cases) again due to the fact that they
could check the internal state of intermediate computa-
tions. Voting could not detect these faults for this partic-
ular input data because there were no erroneous outputs.
In a testing environment, self checks may find errors
caused by faults that back-to-back testing (i.e., using the
comparison of the results of multiple versions as a test
oracle) [6], [7] , [21], [2 3] does not find. This is consistent
with our results for another empirical study that included
a comparison of standard testing methods and back-to-
back testing [26].

On the other hand, placement of the self checks is crit-
ical (as noted above) because they are not placed just at
the end or in synchronized locations, as in voting, where
all paths are guaranteed to reach them. So potentially ef-
fective checks may be bypassed. Furthermore, although
the effective checks were 100% effective, only 3 of the
18 faults found were detected by more than one of the
three instrumentations that could have found it. Of course,
more than one person could instrument the same program.
From our data, it appears that this team approach would
be profitable.

IV. CONCLUSIONS
Almost no empirical data exists on the effectiveness of

using self checks to detect errors, and no previous studies
have compared error and fault detection using N-version
voting with self checks. Several results were obtained
from this study that should guide us and others in the eval-
uation of current proposals for error detection and fault
tolerance, in the design of new techniques, and in the de-
sign of further experiments.

The first goal of this experiment was to instrument the
programs with self checks and determine how effective
these checks were in detecting errors when the programs

were run on data that was known to make them fail. We
found that detecting errors is quite difficult in programs
whose reliability is already relatively high and the faults
are very subtle. Out of a possible 60 known faults (i.e.,
20 known faults in the 8 versions with each version given
to three people) that could have been detected, the partic-
ipants detected only 6 by specification-based and code-
based checks and another 9 by code reading while writing
the code-based checks. Only 1 1 of the 24 participants
wrote checks that detected faults, and there was little
overlap in the faults detected by the three programmers
working on the same initial version, which implies that
there are great individual differences in the ability of in-
dividuals to design effective checks. This suggests that
more training or experience might be helpful. Our partic-
ipants had little of either although all were familiar with
the use of pre- and postconditions and assertions to for-
mally verify programs. The data suggests that it might
also be interesting to investigate the use of teams to in-
st rument code.

Placement of self checks appeared to cause problems.
Some checks that might have been effective failed to de-
tect the errors caused by the fault because they were badly
placed. This implies either a need for better decision-
making and rules for placing checks or perhaps different
software design techniques to make placement easier.

Surprisingly, the self checks detected errors caused by
6 faults that had not been detected by 28-version voting
on one million randomly-generated input cases. This
should give pause to those with high confidence that all
faults have been eliminated from a complex program. The
fact that the self checks uncovered new faults that were
not detected by voting on the same input cases implies
that self checking may have important advantages over
voting. In particular, comparing only the final results of
a program may be less effective in finding faults than ver-
ifying the validity of the intermediate results and struc-
tures of the program.

Specification-based checks alone were not as effective
as using them together with code-based checks. This sug-
gests that fault tolerance may be enhanced if the alternate
blocks in a recovery block scheme, for example, are also
augmented with self checks along with the usual accep-
tance test. This appears to be true also for pure voting
systems. A combination of fault-tolerance techniques may
be more effective than any one alone. More information
is needed on how best to integrate these different propos-
als. In most situations, it will be impractical to attempt to
completely implement multiple fault tolerance schemes
given the relatively large cost of most of these techniques.
Therefore, there needs to be some determination of what
are the most costieffective techniques to use.

The comparison data between self checking and voting
needs to be treated with care. However, the results are
interesting and suggest that further study might be fruit-
ful. Although there were only three attempts to write self
checks to detect errors caused by a particular fault com-
pared to the 2 1 voting triples and 7 voting pairs that could

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO 1. APRIL 1990

possibly find each fault, self checking led to the detection
of as many faults as voting. When comparing coverage,
self checks were much more effective at finding errors
given that the error occurred and a potentially effective
check was in place for it. For our data, effective self
checks were 100% effective whereas voting was found to
be only partially effective a large percentage of the time.
The fact that each found faults that were not detected by
the other suggests that they are not substitutes for each
other.

Finally, faults were detected by self checks that did not
cause failures for the individual versions (and thus were
not detected by voting even though two had been detected
by voting on different input data). This has important im-
plications for testing. Back-to-back testing has been sug-
gested as a method for executing large amounts of test
data by using voting as the test oracle. However, our data
implies that back-to-back testing alone may not find the
same faults as other types of testing that involve instru-
menting the code with checks on the internal state. This
result has been replicated by two of the authors in a sub-
sequent experiment using different programs and a variety
of testing techniques [27].

Further empirical studies and experiments are needed
before it will be possible to make informed choices among
fault detection techniques. Very little empirical evidence
is available. This experiment, besides substantiating some
anticipated results and casting doubt on some previously-
suggested hypotheses, provides information that can help
to focus future efforts to improve fault tolerance and error
detection techniques and to design future experiments.

Potentially useful future directions include the follow-
ing:

1) The programs were instrumented with self checks in
our study by participants who did not write the original
code. It would be interesting to compare this with instru-
mentation by the original programmer. A reasonable ar-
gument could be made both ways. The original program-
mer, who presumably understands the code better, might
introduce fewer new faults and might be better able to
place the checks. On the other hand, separate instrumen-
tors might be more likely to detect errors since they pro-
vide a new view of the problem. More comparative data
is needed here. It is interesting that the original program-
mers, in a questionnaire they submitted with their pro-
grams, were asked what was the probability of residual
errors in their programs, and if there were errors, what
parts of the program might contain them. Most were con-
fident that there were no residual errors and were almost
always wrong when guessing about where any errors
might be located.

2) Another interesting question is whether the effec-
tiveness of the code reading was influenced by the fact
that the participants read the code with the goal of writing
self checks. I t would be interesting to compare this with
more standard code-reading strategies.

3) The process of writing self checks is obviously dif-
ficult. However. there may be ways to provide help with
this process. For example. Leveson and Shimeall 1191

suggest that safety analysis using software fault trees [IS]
can be used to determine the content and the placement
of the most important self checks. Other types of appli-
cation or program analysis may also be of assistance in-
cluding deriving the assertions or self checks from formal
specifications. Finally, empirical data about common fault
types may be important in learning how to instrument code
with self checks. All of these different strategies need to
be experimentally validated and compared.

ACKNOWLEDGMENT
The authors are pleased to acknowledge the efforts of

the experiment participants: D. W. Aha, T. Bair, J . Beus-
mans, B. Catron, H. S . Delugach, S . Emadi, L. Fitch,
W. A. Frye, J . Gresh, R. Jones, J. R. Kipps, F . Leifman,
C. Livadas, J . Marco, D. A. Montuori, J . Palesis, N .
Pomicter, M. T. Roberson, K. Ruhleder, B. Gates Spiel-
man, Y. Venkata Srinivas, T . Strayer, G . R. Taylor 111,
and R. R. Wagner, Jr.

REFERENCES
[I] T. Anderson. P. A. Barrett, D. N. Halliwell, and M. R . Moulding,

"An evaluation of software fault tolerance in a practical system." in
Dig. Papers FTCS-15: Fiftcwith Annu. Swnp. Fciii/t-To/ereint Coni-
putiris?. A n n Arbor, MI. June 1985. pp. 140-145.

[?I T . Anderson and P. A. Lee. Ftiirlr Tderci t lw: Pririciplrs t i n t / Prcic-
rice.

131 D. M. Andrews, "Using executable assertions for testing and fault
tolerance." in Proc. Nitirk h i t . S m p . Fciu/t-To/ertirir Cornpurcr SL-
r e m . June 1979. pp. 102-105.

141 A . Avizienis and J . P. J . Kelly. "Fault tolerance by design diversity:
concepts and experiments." Conlputrr. vol. 17. no. 8. pp. 67-80.
Aug. 1984.

[5] J . P. Benson and S . H. Saib. "A software quality assurance experi-
ment," in Proc. S o j h i r P Q u u / ~ I \ urid Ascumrice Workshop. Nov.
1978. pp. 87-91.

[6] P. Bishop. D. Esp, M . Barnes. P. Humphreys, G . Dahll. J . Lahti.
and S . Yoshimura. "PODS-A project on diverse software." lEEE
Treiris. Sofrwarr Eng. . vol. SE-12. no. 9. pp. 929-940. Scpt. 1986.

171 S . S . Brilliant. "Testing software using multiple versions," Ph.D.
dissertation, Univ. Virginia. Sept. 1987.

181 S . S . Brilliant, J . C. Knight. and N . G. Leveson, "Analysis of faults
in an N-version software experiment." 1EEE Trcin.5. Sqfrwurc G i g . .
vol. 16. no. 2. pp. 238-247. Feb. 1990.

191 -. "The consistent comparison problem in N-version software."
l E E E Trcrns. Sofrivure E n g . . vol. 15, n o . 1 1 . pp. 1481-1485. Nov.
1989.

I 101 L. Chen and A . Avizienis. "N-version programming: A fault-toler-
ance approach to reliability of software operation.'' in Di,?. Piiper.5
FTCS-8: Eighth Atii iu. Synip. Fcrulr To/ercrnr Computing. Toulouse.
France, June 1978. pp. 3-9.

[I I] J. R . Dunham. "Softwarc errors in cxperiniental systems having ul-
t ra-re1 iab i I it y requ I re men t s . ' ' in Dig. P upcrs FTCS- I 6: Si.v/eerith
A rinu . S v n p . Fciir / r - Tdercirit Cornprrtiri,g. V ienna . Austria. J u I y I 9 86.
pp. 158-164.

[121 L. Gmeiner and U. Voges. "Software diversity in reactor protection
system: An experiment." in Proc. lFAC W o r h h o p SAFECOMP '79.
1979. pp. 75-79.

[131 D. Gries. The S ~ i c ~ r i c r OfPro,?rtrrrrri?iri~. New York: Springer-Ver-
lag. 1981.

[141 A . L. Hopkins. et U / . . "FTMP-A highly reliable tault-tolerant iiiul-

tiprocessor tor aircraft." PIW. IEEE. vol. 66. pp. 1221-1239. Oct.
1978.

[151 J . P. J . Kelly ('I e r / . . "Multi-\ersion software development." i n P r i ~ .
lFAC Workshop Serj2v~nnp '86. Sarlat. France. Oct. 1986. pp. 43-49.

[161 J . C . Knight and N . G . Levcson. "An experimental evaluation of the
assumption of independence in multi-version programming." lEEE
Trum. Siftwurc, E n g . , vol. SE-12. pp. 96-109. Jan. 1986.

[171 -. "An empirical study of failure probabilities in multi-venion
softuare." in Di,g. Peipc,r.\ FTCS-16: Si.\rrwnt/i Ann i r . S ~ n i p . FUU/I-
Tderunt Conipii/i/i,q, Vienna. Au\tr ia . July 1986. pp. 165- 170.

Englewood Cliffs. NJ: Prentice-Hall International. I98 I .

LEVESON e r < I / S O F T W A R E F R R O R D E T E C T I O N 443

I 181 N. G . Leveson and P. R . Harvey. "Analyzing software safety," I f
Trms. Sofrwcrrr Erig.. vol. SE-9. no. 5 . pp. 569-579. Sept. 1983.

1191 N. G. Leveson. and T. J . Shimeall, "Safety assertions for proccss-
control systems." in Dig. Papers FTCS-13: Thirreerirh Aririrr. Syrrrp.
F~ru/t-To/emiit Coniputi/i!:. Milan. Italy. June 1983. pp. 236-240.

1201 H . Partsch and R. Steinbruggen. "Program transformation \ystenis,"
ACM Cornput. Suri,ry.s. vol. 15. no. 3. pp. 199-236. Sept. 1983.

1211 C . V. Ramamoorthy. Y . K. Mok. E. B. Bastani. G. H . Chin. and K .
Suzuki. "Application of a methodology for the development and val-
idation of reliable process control software." IEEE 7ruri.\. Sofrwtrrc.
Eng. . vol. SE-7. no. 6. pp. 537-555. Nov. 1981.

1221 B. Randell, "System structure tor software fault-tolerance." lEEE
Trotis. Sofittare Erix . , YoI. S E -] , no. 2 . pp. 220-232, June 1975.

1231 F. Saglietti and W . Ehrenberger. "Software diversity-Some consid-
erations about its benefits and its limitations." in Proc. S[!fi.c,orrip '86.
Sarlat. France. Oct. 1986, pp. 27-34.

1241 R . D . Schlichting and F. B. Schneidcr. "Fail-stop processors: An
approach to designing fault-tolerant computing systems." A C M Troris.
Comnput. Sysr.. vol. 1 . pp. 222-238. Aug. 1983.

125) K. R. Scott. J . W . Gault, D . F. McAllister. and J . Wiggs. "Experi-
mental validation of six fault tnlerant software reliability models." in
Dig. Ptipers FTCS-14; Fourrer/i th Aiii i ir . SJvip. Fmr//-To/c,rurit Corw
puring. Kissemmee. NY. 1984. pp. 102-107.

[26] T. J . Shimeall and N. G. Leveson. "An empirical comparison ofsoft-
ware fault tolerance and fault elimination." i n Proc~. 2rd Wor/,slrop
Sofrwure Tesririg. Vc,rificci/iori, trrid Aricr/ysis. Banff. Alta.. Canada.
July 1988. pp. 180-187.

1271 -. "An empirical comparison of software tault tolerance and fault
elimination." Naval Postgraduate School. Montere). CA. Tech. Rep.

1281 L. G. Stucki, "New directions in automated tools for imprwing soft-
ware quality ." i n Curwrit Treridc i t / Progrmritriiii~q Me//iodo/o,yy-
volume I / : P r o g r m i L'o/;dcrtim. Englewood Cliffs. NJ: Prentice-
Hall. 1977. pp. 80-1 I I

1291 J . H . Wensley P I t i / . . "SIFT. the design and analysis o f a fault-tol-
erant computer for aircraft control." Proc,. IEEE. vol. 66, pp. 1240-
1254. Oct. 1978.

NPS52-89-D47. Ju ly 1989.

specifying, designing. verifying. and asses\ing reliable and safe real-time
software.

Dr. Leveson is a membcr o f the Association for Computing Machinery.
the IEEE Computer Society. and the System Safety Society.

Stephen S. Cha received the B.S. and M.S. degrees in information and
computer science from the University of California. Irvine, in 1983 and
1986, reapectively.

He is currently a Ph.D. candidate at UCI. His research interests include
software safety and aoftware fault-tolerance.

Mr. Cha is a student member of the IEEE Computer Society.

John C. Knight received the B.Sc. degree in
mathematics from the Imperial College of Science
and Technology, London, England, and the Ph.D.
degree in computer science from the University
of Newcastle-upon-Tyne, Newcastle-upon-Tyne,
England, in 1969 and 1973, respectively.

From 1974 to 1981 he was with NASA's Lang-
ley Research Center and he joined the Department
of Computer Science at the University of Vir-
ginia. Charlottesville. in 1981. He spent the pe-
riod from August 1987 to August 1989 on leave

Dr. Knight is a member of the Association for Computing Machinery
at the Software Productivity Consortium in Herndon. VA.

and the IEEE Computer Society.

Uancy G . Lebewn rcceibed the B A deyree i n

mathematic\. the M S destcc in mandgeiiient. and
the Ph D degree in computer science trom the
Uni\er\ity oi Calitorni,i. Lo\ Angele\

She ha\ worked tor IBM m d i \ currentl) an
A\\ociate Prole\\or o f Computer Science at the
Uni\er\it) ot California. I r ~ i n e Her current i n -

tere\t\ dre in sotiware relidbility. wttwdre u t e ty .
and witware tault tolerance She head\ the Soft-
Mare Satet) Project at UCI hhich I\ exploring d

range of \ottudre engineering topic\ in\ol \ed in

Timoth) J . Shimeall received the Ph D degree
in intormation and computer \cience from the
Univcr\ity of California. Irvine. in March 1989

Since September 1988. he hdS been an Assis-
rant Profe\sor at the Naval Postgraduate School in
Monterey. CA Hi\ re\edrch interests are software
te\ting and \oftware safety

