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The Use of Self Checks and Voting in Software Error 
Detection: An Empirical Study 

NANCY G. LEVESON. STEPHEN S. CHA, JOHN C.  KNIGHT, A N D  TIMOTHY J .  SHIMEALL 

Abstract-This paper presents the results of a n  empirical study of 
software e r r o r  detection using self checks and  N-version voting. A total 
of 24 graduate  students in computer science a t  the  University of Vir- 
ginia and  the  University of California,  Irvine,  were hired a s  program- 
mers. Working independently, each first prepared a set of self checks 
using just  the  requirements specification of a n  aerospace application, 
and  then each added self checks to  a n  existing implementation of tha t  
specification. The  modified programs were executed to measure the e r -  
ror-detection performance of the  checks and  to compare  this with e r -  
r o r  detection using simple voting among multiple versions. 

The  goal of this study w'as to learn more about the effectiveness of 
such checks. The  analysis of the  checks revealed tha t  there a r e  great 
differences in the ability of individual programmers to design effective 
checks. We found that some checks that might have been effective failed 
to  detect a n  e r r o r  because they were badly placed, a n d  there  were nu- 
merous instances of checks signaling nonexistent e r rors .  In  general, 
specification-based checks alone were not a s  effective a s  combining them 
with code-based checks. Using self checks, faults were identified that 
had not been detected previously by voting 28 versions of the  program 
over a million randomly-generated inputs. This appeared to  result from 
the fact that  the  self checks could examine the internal state of the 
executing program whereas voting examines only final results of com- 
putations. If internal states had to  be identical in N-version voting sys- 
tems, then there would be no reason to write multiple versions. 

The  programs were executed on  100 000 new randomly-generated 
input cases in order  to compare  e r r o r  detection by self checks and  by 
2-version and  3-version voting. Both self checks and  voting techniques 
led to the identification of the same number  of faults for  this input,  
although the identified faults were not the  same. Fur thermore ,  whereas 
the self checks were always effective a t  detecting a n  e r r o r  caused by a 
particular fault (if they ever did),  N-version voting triples a n d  pairs 
were only partially effective at  detecting the failures caused by partic- 
ular faults. Finally, checking the  internal s ta te  with self checks also 
resulted in finding faults tha t  did not cause failures for the particular 
input cases executed. This has important implications for the use of 
back-to-back testing. 

Index Terms-Acceptance tests, assertions, e r r o r  detection, N-ver- 
sion programming, software fault  tolerance, software reliability. 

I .  INTRODUCTION 
RUCIAL digital systems can fail because of faults in C either software or hardware. A great deal of research 
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in hardware design has yielded computer architectures of 
potentially very high reliability, such as SIFT [29] and 
FTMP [ 141. In addition, distributed systems (incorporat- 
ing fail-stop processors [24]) can provide graceful deg- 
radation and safe operation even when individual com- 
puters fail or are physically damaged. 

The state of the art in software development is not as 
advanced. Current production methods do not yield soft- 
ware with the required reliability for critical systems, and 
advanced methods of formal verification [ 131 and pro- 
gram synthesis [20] are not yet able to deal with software 
of the size and complexity of many of these systems. Fault 
tolerance [22] has been proposed as a technique to allow 
software to cope with its own faults in a manner reminis- 
cent of the techniques employed in hardware fault toler- 
ance. Many detailed proposals have been made in the lit- 
erature, but there is little empirical evidence to judge 
which techniques are most effective or even whether they 
can be applied successfully to real problems. This study 
is part of an on-going effort by the authors to collect and 
examine empirical data on software fault tolerance meth- 
ods in order to focus future research efforts and to allow 
decisions to be made about real projects. 

Previous studies by the authors have looked at N-ver- 
sion programming in terms of independence of failures, 
reliability improvement, and error detection [ 161, [ 171. 
Other empirical studies of N-version programming have 
been reported [4], [6], [ l o ] ,  [ 111, [12], [25]. A study by 
Anderson et al. [ l ]  showed promise for recovery blocks 
but concluded that acceptance tests are difficult to write. 
Acceptance tests, a subset of the more general run-time 
assertion or self check used in exception-handling and 
testing schemes, are evaluated after execution of a pro- 
gram or subprogram and are essentially external checks 
that cannot access any local state. One of our goals was 
to compare the effectiveness of checks that examine only 
the external state with those that can check intermediate 
states to see if there was any advantage of one approach 
over the other. This type of information is needed in order 
to make informed choices between different types of fault 
tolerance techniques and to design better, more effective 
techniques than currently available. 

In order to eliminate as many independent variables 
from this experiment as possible, it was decided to focus 
on error detection apart from other issues such as recov- 
ery. This also means that the results have implications 
beyond software fault tolerance alone, for example in the 
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use of embedded assertions to detect software errors dur- 
ing testing [3], 151, [28]. Furthermore. in some safety- 
critical systems (e.g., avionics systems in the Boeing 737- 
300 and the Airbus A3 IO), error detection is the only ob- 
jective. In these systems. software recovery is not at- 
tempted and, instead, a nondigital backup system such as 
an analog or human alternative is immediately given con- 
trol in the event of a computer system failure. The results 
of this study may have immediate applicability in these 
applications. The next section describes the design of the 
study. Following this, the results are described for the self 
checks alone and then compared with the results obtained 
by voting. 

11. EXPERIMENTAL DESIGN 
This study uses the programs developed for a previous 

experiment by Knight and Leveson [ 161. In the previous 
experiment, 27 Pascal programs to read radar data and 
determine whether an interceptor should be launched to 
shoot down the object (hereafter referred to as the Launch 
Interceptor program, or LIP) were prepared from a com- 
mon specification by graduate students and seniors at the 
University of Virginia and the University of California, 
Irvine. Extensive efforts were made to ensure that indi- 
vidual students did not cooperate or exchange information 
about their program designs during the development 
phase. The 27 LIP programs (along with a “gold” ver- 
sion written by the experimenters to be used as an oracle) 
have been analyzed by running one million randomly- 
generated inputs on each program and locating the indi- 
vidual program failures by comparing each program out- 
put with that of the gold program. 

Care was taken to ensure that the detected faults in the 
programs are correctly identified [SI. The gold program 
was extensively tested prior to the experiment. When the 
version output was different from that of the gold pro- 
gram, the experimenters identified the portion of the pro- 
gram suspected to be erroneous (i.e.,  the fault). They then 
modified the program to correct the suspected fault. The 
fault was considered to be correctly identified when the 
modified program produced the same output as the gold 
program. However, the gold program output was not 
blindly assumed to be correct. Two faults were found in 
the gold program during the process of fault identifica- 
tion. Although neither self checks nor voting can actually 
detect a fault (i.e.,  they detect the errors and failures 
caused by the fault), in this paper we loosely say that a 
technique has “detected a fault” if it detects an error that 
was caused by that fault. Obviously, fault detection itself 
requires human intervention. 

In the present study, 8 students from UCI and 16 stu- 
dents from UVA were hired to instrument the programs 
with self-checking code in an attempt to detect errors. The 
participants were all employed for 40 hours although they 
spent differing amounts of time on the project. The par- 
ticipants were all graduate students in computer science 
with an average of 2.35 years of graduate study. Profes- 
sional experience ranged from 0 to 9 years with an aver- 

age of 1.7 years. None of the participants had prior 
knowledge of the LIP programs nor were they familiar 
with the results of the previous experiment. We found no 
significant correlation between the length of a partici- 
pant’s graduate or industrial experience and their success 
at writing self checks. 

Eight programs were selected from the 27 LIP versions, 
and each was randomly assigned to three students (one 
from UCI and two from UVA). The eight programs used 
were randomly selected from the 14 existing programs that 
were known to contain two or more faults. This was done 
to ensure that there would be faults to detect. 

Participants were provided with a brief explanation of 
the study along with an introduction to writing self checks. 
They also were provided with a chapter on error detection 
from a textbook on fault tolerance [2]. I n  this chapter, the 
general concept of self checking is described, and checks 
are classified into the following categories: 

1) Replication-checks that involve some replication of 
an activity and comparison of outputs. 

2) Timing-checks that determine whether the opera- 
tion of a component meets timing constraints. 

3) Reversal-checks that take the output(s) from a sys- 
tem and calculate what the input(s) should have been in 
order to produce those output(s). 

4) Coding-checks that maintain redundant data in the 
representation of an object or set of objects in some fixed 
relationship with the (nonredundant) data and ensure that 
the relationship holds. 

5 )  Reasonab/eness-checks that determine whether the 
states of various (abstract) objects in the system are “rea- 
sonable” given the intended usage and purpose of those 
objects using knowledge of the system’s design. 

6) Structural-checks on the semantic and structural 
integrity of data structures. 

7) Diagnostic-checks on the performance of the com- 
ponents from which the system is constructed rather than 
checks on the behavior of the system itself. Such checks 
involve exercising a component with a set of inputs for 
which the correct outputs are known. 

We did not require that the participants use these or any 
other particular types of checks because we had no a priori 
knowledge of which checks might be relevant to the soft- 
ware at hand and because we wanted to allow the maxi- 
mum flexibility and opportunity for creativity on the part 
of the participants. To the best of our knowledge, this was 
the first experiment of its kind and we did not want to 
restrict the participants in  any way since any restrictions 
might limit the effectiveness of the checks unintention- 
ally. Our goal was to determine whether self checks, in 
general, can be an effective means of error detection, to 
provide some preliminary comparisons with simple voting 
schemes, and to gather information that could be used to 
design and focus future experiments both by ourselves and 
others. Often the most important information derived from 
the early experiments in a particular area is to determine 
what are the most important variables on which to focus 
in future studies. Overconstraining the first empirical 
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studies can mean that important information is inadver- 
tently missed. 

The participants were first asked to study the LIP spec- 
ification and to write checks using only the specification, 
the training materials, and any additional references the 
participants desired. When they had submitted their initial 
specification-based checks, they were randomly assigned 
a program to instrument. Self-checking code was written 
in Pascal, and no limitations were placed on the types of 
checking code that could be written. 

The participants were asked to write checks first with- 
out access to the source code and then with the source 
code available in  order to determine if there was a differ- 
ence in effectiveness between self checks designed by a 
person working from the requirements alone and those de- 
signed with knowledge of the program source code. It has 
been suggested in the literature that ideal self checks 
should treat the system as a black-box and that they should 
be based solely on the specification without being influ- 
enced by the internal design and implementation [2]. 
However, it could also be argued that looking at the code 
will suggest different and perhaps better ways to design 
self checks. Because we anticipated that the process of 
examining the code might result in the participants de- 
tecting faults through code reading alone, participants 
were asked to report any faults they thought they detected 
by code reading and then to attempt to write a self check 
to detect errors caused by these faults during execution 
anyway. 

The participants submitted the instrumented programs 
along with time sheets, background profile question- 
naires, and descriptions of all faults they thought they had 
detected through code reading. The instrumented pro- 
grams were executed on the same 200 input cases that 
were used as an acceptance procedure in the previous ex- 
periment. The original versions were known to run cor- 
rectly on that data, and we wanted to remove obvious 
faults introduced by the self checks. If during the accep- 
tance procedure a program raised a false alarm, i.e., re- 
ported an error that did not exist, or if new faults were 
detected in the instrumentation itself, the program was re- 
turned to the participant for correction. 

After the instrumented programs had satisfied the ac- 
ceptance procedure, they were executed using all the in- 
puts on which the original programs had failed in the pre- 
vious experiment. The participants were instructed to 
write an output message if they thought that an error had 
been detected by their checking code. These messages 
were analyzed to determine their validity (i.e.,  error de- 
tection versus false alarm) and to identify the faults re- 
lated to the errors that were detected. The same method 
for identifying faults was used as had been used in the 
original LIP program, i.e.,  a hypothesis about the fault 
was made, the code was corrected, and the program was 
executed again on the same input data to ensure that the 
output was now correct and that the self-check error mes- 
sage was no longer triggered. 

In order to compare self checks and N-version voting 

(i.e.. detecting errors through voting by N versions on the 
results and taking the majority result as correct), the in- 
strumented programs were then run on a new, randomly- 
generated set of 100 000 inputs. The input cases from the 
original experiment (that had been used up to this point) 
could not be used for this comparison since that data had 
already been determined to cause detectable failures 
through voting, and any comparison would be biased to- 
ward voting. 

111. RESULTS 
The results are presented in two parts. The first part 

looks at the effectiveness of self checks in detecting er- 
rors. The second part compares self checks and voting in 
terms of fault detection. 

A.  Error Detection Usirig Secf Checks 

During the first phase of the experiment in which self 
checks were based on the program requirements specifi- 
cation alone. a total of 477 checks were written. The par- 
ticipants were then given a particular implementation of 
that specification, i.e., one of the programs, to instrument 
with self checks. Each of the eight programs were given 
to three participants so that individual differences could 
be partially factored out of the experiment. No limitations 
were placed on the participants as to how much time could 
be spent (although they were paid only for a 40 hour week, 
which effectively limited the amount of time spent') or 
how much code could be added. Table I shows the change 
in length in each program during instrumentation. In or- 
der to aid the reader in referring to previously published 
descriptions of the faults found in the original LIP pro- 
grams [SI. the programs are referred to in this paper by 
the numbers previously assigned in the original experi- 
ment. A single letter suffix is added (a, b, or c) to distin- 
guish the three independent instrumentations of the pro- 
grams. 

There was a great deal of variation in the amount of 
code added, ranging from 48 lines to 835 lines. Partici- 
pants added an average of 37 self checks, varying from 
1 I to 99. Despite this variation, we found no obvious cor- 
relation between the total number of checks inserted by a 
participant and the number of those checks that were ef- 
fective at finding errors. That is, more checks did not nec- 
essarily mean better error detection. 

There is also no significant relationship between the 
number of hours claimed to have been spent (as reported 
on the timesheets) by the participants and whether or not 
they detected any errors. Fig. 1 shows the amount of time 
each participant spent reading the specification to under- 
stand the problem, developing self checks based only on 
the specification, reading the source code and adding pro- 
gram-based self checks. and debugging the instrumented 
programs. - 

7 

'Several reported spending more than 40 hours o n  the project. 
'Three participants ( 14a. ?Oa. and ?Sa) did not  \ubmit  a timcaheet and 

are excluded from Fig. I .  
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TABLE 1 
LlVF5OF CODF AI)DtL) D L R I W  ~ 4 5 1 K L h 1 t \ 1 4 T 1 0 2  

V e F  ri ?mkar of knes 1 a~ncgeasec 

909 1152 805 152 395 48 
859 887 700 216 244 57 

600 1046 1356 824 446 756 224 
12 573 1121 696 806 548 123 233 
14 605 905 1342 712 300 737 107 
20 533 611 1368 596 78 835 63 

349 1065 417 544 716 68 195 
906 1644 1016 1022 738 110 116 

Version otal 
3a 
Ib  42 i 
I C  40 
6a 
6h 
6c  
8a 
8b 
8c 

12a 
12b 
12c 
14b 
14c 
20b 
20c 
23a 
23b 
2 3 C  
25b 
25c 

1 6 5 1 6 1  1 3 5  14.5 1 30 i 

Fig. I .  Summary of participant timesheets. 

Table I1 presents the performance of the program-based 
self checks. For each instrumented version, the number 
of checks that were effective, ineffective, false alarms, 
and unknown arc shown. 

Checks were classified as effective if they correctly re- 
port the presence of an error stemming from a fault in the 
code. Ineffective checks are those that did not signal an 
error when one occurred during execution of the module 
being checked (based on the known faults in the program 
and using data for which we knew already that they would 
fail). False alarms signal an error when no error is pres- 
ent. The rest of the checks arc classified as unknown be- 
cause their effectiveness cannot be determined based on 
the input cases that have been executed to date. Executed 
with other data, it is possible that these checks could sig- 
nal false alarms or be ineffective or effective with respect 
to currently unknown faults in the programs. 

Two partially effective checks by participant 23a that 
detect an error most (but not all) of the time are counted 
as effective (but marked with an asterisk). All other self 
checks that we classified as effective always detected an 
error if it occurred. The checks inserted by participant 23a 
differed from the other participants in that he used N-ver- 
sion programming to implement the self checking. That 
is, he rewrote the entire program using a different algo- 
rithm, and his self check became a comparison of the final 

TABLE I1 
SELb-CHtCh C L A S S l k l C 4 1  104 

*These tWo checks were only partially effective. 

results of the original program and his new program. This 
approach was not expected but was not precluded by the 
instructions given to the participants. His self check was 
only partially effective because of coincident failures be- 
tween his version and the version he was checking. This 
is significant because he had the original version and was 
attempting to write a completely different algorithm, i.e., 
he had the chance to plan diversity. This still resulted in 
a large percentage of correlated failures. His voting self 
check was effective only 16% of the time, i.e.,  the voting 
check detected 13 failures out of a total of 80 failures that 
occurred. In the other 67 cases, both versions failed iden- 
tically. 

We could find no unique characteristics of the effective 
checks. As explained in the previous section, we pur- 
posely did not restrict the participants to any particular 
types of self checks, and we found we were unable to 
classify the self checks actually used. Classification of 
checks is, in general, extremely imprecise, which makes 
enforcement of the required use of a particular type of 
check virtually impossible and precludes any meaningful 
postexperiment classification by us. As an example of the 
difficulty, consider a check that computes an approxima- 
tion of a required result. If the approximation is coarse, 
this might be classified either as a replication check or as 
a reasonableness check. Similarly, one might classify 
branch checks as a separate type of check or they could 
be considered as a type of consistency check. If branch 
checks attempt to detect errors through redundant com- 
putation of the branch conditions, they could even be 
classified as replication checks. Our attempts to classify 
the more than 800 checks led to hopeless inconsistency 
among the classifiers. 

Our problems are compounded by the fact that some of 



436 I tEP, I R A N S A C T I O N S  O N  SOFTWARE E N G I N E E R I N G .  VOL. 16. N O  4. A P R I L  IY90 

the effective checks were written for faults that were de- 
tected by the participants during code reading. Table 111 
shows the fault identifiers for those faults found by code 
reading along with the participant who found them. It is, 
of course, quite easy to write a check to detect an error 
caused by a known fault. In the majority of cases. the 
participant merely corrected the code and then compared 
the relevant variables at execution time. When there was 
a difference, the checking code wrote out an error mes- 
sage that an erroneous state had been detected. We sepa- 
rate the two cases in the rest of this section into faults 
detected through code reading (CR) and faults detected 
through code-based design checks (CD). 

Even if we could have classified the checks, it would 
be misleading to attempt to draw conclusions from this 
data about the types of checks that are effective since the 
checks were in different programs with different types of 
errors. It would be inappropriate (and even misleading) to 
claim that checks of one type are more effective than oth- 
ers based on our data. The types of effective checks for a 
particular program probably will vary widely depending 
on the type of application and the type of errors in the 
program. For example, if the program is computation-in- 
tensive and if there exist several algorithms to compute 
the answer, replication checks might be effective. If, on 
the other hand, the application involves the manipulation 
of complicated data structures using relatively simple 
computations, structural checks might be the most effec- 
tive. The algorithms and errors were different in the dif- 
ferent LIP programs, and therefore the effective checks 
would also be expected to be different. 

We examined the ineffective self checks to determine 
why they did not signal errors when one occurred during 
execution of the module being checked. They appear to 
be ineffective for one or more of the following reasons: 

Wrong self-check strategy-The participant failed to 
check the erroneous variables or checked them for prop- 
erties unrelated to the error. The majority of the ineffec- 
tive self checks failed to detect errors for this reason. 

Wrong checkplacement-The self check is not on the 
particular path in which the fault is located. Had the self 
check been correctly placed, it would have been effective. 

Use of the original faulty code in the self check-the 
participant falsely assumes a portion of the code is correct 
and calls that code as part of the self check. 

It should be noted that the placement of the checks may 
be as crucial as the content. This has important implica- 
tions for future research in this area and for the use of self 
checks in  real applications. 

It should not be assumed that a false alarm involved a 
fault in the self checks. In fact, there were cases where 
an error message was printed even though both the self 
check and the original code were correct. This was a man- 
ifestation of the Consistent Comparison Problem [9]. The 
self check made a calculation using a different algorithm 
than the original code. Because of the inaccuracies intro- 
duced by finite precision arithmetic compounded by the 
difference in order of operations, the self-check algorithm 

TABLE 111 
F A L  LTS DFTFCTI-I) THROI GH  con^ RFAIIINC; 

Version 1 Ra 1 Ga I 12c j 20b 1 2 0 ~  1 25a 
Fault 1 3.3 16.1.6.2 1 12.1 1 20.2 1 20.2 125.1.25.2,25.3 

sometimes produced a result that differed from the origi- 
nal by more than the allowed tolerance. Increasing the 
tolerance does not necessarily solve this problem in a de- 
sirable way. 

Table IV summarizes the detected faults by how they 
were found. Nineteen % of the detected faults were de- 
tected by specification-based checks, 43 % by code read- 
ing, and 38% by code-based checks. For code-based de- 
sign checks, the number of effective checks is not identical 
to the number of faults detected because often more than 
one check detected errors caused by the same fault. Only 
12% (4 out of 34) of the effective checks were formulated 
by the participants after looking at the requirements spec- 
ification alone. The remaining 88% of the effective checks 
were designed after the participants had a chance to ex- 
amine the code and write checks based on the internal 
state of the program. 

Although it has been hypothesized that acceptance tests 
in the recovery block structure should be based on the 
specification alone in order to avoid biasing the formula- 
tor of the test, our results indicate that the effectiveness 
of self checks can be improved when the specification- 
based checks are refined and expanded by source code 
reading and a thorough and systematic instrumentation of 
the program. It appears that it is very useful for the in- 
strumentor to actually see the code when writing self 
checks and to be able to examine internal states of com- 
putations in the checks. 

Previously unknown faults were detected during instru- 
mentation, and new faults were added. Table V presents, 
for each participant, the number of known and previously- 
unknown faults that were detected and the number of new 
faults that were introduced. This data makes very clear 
the difficulty of writing effective self checks. Of 20 pre- 
viously known faults in the programs, only 12 were de- 
tected (the 15 detected known faults in Table V include 
some double detections of the same fault), and 6 of these 
were found by code reading alone. It should be noted, 
however, that the versions used in the experiment are 
highly reliable (an average of better than 99.9% success 
rate on the previous one million executions), and many of 
the faults are quite subtle. We could find no particular 
types of faults that were easier to detect than others. Only 
3 of the 18 detected faults were found by more than one 
of the three participants instrumenting the same program. 
Individual differences in ability appear to be important 
here. 

One rather unusual case occurred. One of the new faults 
detected by participant 8c was detected quite by accident. 
There is a previously unknown fault in the program. 
However, the checking code contains the same fault. An 
error message is printed because the self-checking code 
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SP CR CD 
1 3a 

311 i 4 

TABLE IV particular. the use of Heron's formula: 
F\L 1.r D F T t C I I O \  C l . A 5 S l k l t , l )  B Y  I \SlKIIMt. l , rATIO\I  Tk.CH\IQUt 

Due To area = J s * ( s  - a ) *  ( s  - b)*  ( s  - c )  

where a ,  b ,  and c are the distances between the three 
points and s is ( U  + b + c ) / 2 ,  fails to provide a correct 
answer in the rare case when all the following conditions 
are met simultaneously. 

Faults Detrctrd 
Effective Checks 34 

S f  CR CD 

! 

TABLE V 
S L M M A R Y  O F  F , 4 L L r  Dt:ItCTI(l\: 

Already I i r m v n  Faults ' Other Faults ' 1 Present 1 Det(,cted ~ tktected 1 Added Faiilts 

'zoc 
23a 
23b 

I 1 
9 i 4 

2 

uses a different algorithm than the original, and the Con- 
sistent Comparison Problem arises causing the self check 
to differ from the original by more than the allowed real- 
number tolerance. We discovered the new fault while 
evaluating the error messages printed, but it was entirely 
by chance. We were unsure whether to classify this seem- 
ingly accidental error signal as the result of an effective 
check since both the original program computation and 
the self check are erroneous and contain the same fault. 
We decided to classify this unusual case as an effective 
self check because it does signal an error when a fault 
does exist. 

It should be noted that the self checks detected 6 faults 
not previously detected by comparison of 28 versions of 
the program over a million inputs. The fact that the self 
checks uncovered errors caused by new faults even though 
the programs were run on the same inputs that did not 
reveal the errors through voting implies that self checking 
may have advantages over voting alone. A detailed ex- 
amination of one of the previously undetected faults helps 
to illustrate why this is true. 

Some algorithms are unstable under a few conditions. 
More specifically, several mathematically valid formulas 
to compute the area of a triangle are not equally reliable 
when implemented using finite precision arithmetic. In 

The three points are almost collinear (but not ex- 
actly). s will then be extremely close to one of the dis- 
tances, say a, so that ( s  - a )  will be very small. The 
computer value of ( s  - a )  will then be of relatively poor 
accuracy because of roundoff errors (around lo-'' in the 
hardware employed in this experiment). 

The product of the rest of the terms, s* (s - b)* ( s  
- c ) ,  is large enough (approximately lo4) to make round- 
ing errors significant through multiplication (approxi- 
mately lo-"). 

The area formed by taking the square root is slightly 
larger than the real number comparison tolerance ( l o p 6  in 
our example) so that the area is not considered zero. 

Other formulas, for example 

where x, and yI are the coordinates of the three points, 
provide the correct answer under these circumstances; the 
potential roundoff errors cannot become "significant" due 
to the order of operations. Two of the six previously un- 
known faults detected involved the use of Heron's for- 
mula. Because the source of the unreliability is in the or- 
der of computation and inherent in the formula, relaxing 
the real number comparison tolerance will not prevent this 
problem. The faults involving the use of Heron's formula 
were not detected during the previous executions because 
the voting procedure compared the final result only, 
whereas the self checks verified the validity of the inter- 
mediate results as well. For the few input cases in which 
it  arose, the faults did not affect the correctness of the 
final output. However, under different circumstances (i.e., 
different inputs) the final output would have been incor- 
rect. We did not categorize anything as a fault unless we 
could find legitimate inputs that will make the programs 
fail due to this fault. 

Although new faults were introduced through the self 
checks, this is not surprising. It is known that changing 
someone else's program is difficult: whenever new code 
is added to a program there is a possibility of introducing 
faults. All software fault tolerance methods involve add- 
ing additional code of one kind or another to the basic 
application program. Examples of new faults introduced 
by the self checks are the use of an uninitialized variable 
during instrumentation, algorithmic errors in computa- 
tions, infinite loops added during instrumentation, an out- 
of-bounds array reference. etc. 

The use of uninitialized variables occurred due to in- 
complete program instrumentation. A participant would 
declare a temporary variable to hold an intermediate value 
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Count Prrctmt Count Percent 

5599414 99 9895 5590414 99 9695 
586 0 0105 262 0 0100 

0 0 0  14 0 0004 

during the computation. but fail to assign a value on some 
path through the computation. A more rigorous testing 
procedure for the self checks may have detected these 
faults earlier. The instrumented versions were not run on 
many test cases before being evaluated. In most realistic 
situations, assertions or self checks would be added be- 
fore rigorous testing of the program was performed in- 
stead of afterward as in our case. It  is significant, how- 
ever, that many of the same types of faults were 
introduced during instrumentation as were added during 
the original coding and thus some presumably might also 
escape detection during testing. 

B.  Comparisons with Voting 
When making a decision about which type of error de- 

tection scheme to use, it is important to have comparison 
data. In this study, we compared the error detection ef- 
fectiveness of general self checks and simple voting 
schemes. The faults detected through code reading are 
counted as detected by self checks; code reading is an 
integral part of the process of instrumenting programs. In 
order to avoid confusion, we refer to the entire process as 
instrumentation of the code. Also, because the self check 
effectiveness had been investigated using the inputs on 
which we knew that voting detected failures, we executed 
the programs using both self checks and voting on an ad- 
ditional 100 000 randomly-generated inputs and did the 
comparisons only for these new inputs. 

There are many different voting schemes and which is 
used may affect the outcome. In the original LIP experi- 
ment [16], each program produced a 15-by-15 boolean 
array, a 15-element boolean vector, and a single boolean 
launch condition (a total of 241 outputs) for each set of 
inputs, and vector voting was used. In vector voting, an 
error is detected if any of the 241 results differ between 
the versions. For example, if three versions provide the 
three results 100, 01 1 ,  and 1 1  1 (where 1 stands for a cor- 
rect partial result and 0 stands for an incorrect partial re- 
sult), this is counted as three different answers and the 
triplet fails with no answer. 

It has been suggested that bit-by-bit voting, where the 
answer is formed by determining the majority of each in- 
dividual result. would have improved the voting system 
reliability of our programs 1151. In the example above, 
each of the three partial results has a majority of correct 
answers so the final answer would be correct. In bit-by- 
bit 3-way voting, it is impossible for the voting system to 
fail to produce an answer, i .e . ,  a majority always exists 
among three boolean results. This is possible, obviously, 
only because of the boolean nature of the data. 

To determine whether there was a significant difference 
between vector voting and bit-by-bit voting for our appli- 
cation, we performed each and compared the results. One 
hundred thousand input cases were executed, and voting 
was performed on the results for each of the 56 possible 
3-version combinations of the 8 programs. Therefore. a 
total of 5,600,000 votes were taken. 

The results are shown in Table V I  where a result was 

TABLE VI 
T I I R I  t - V t  WO\ V o i  I\<; 

I Bit-bv-Bit / /  \'r,ctoi 

classified as Wrong if a majority of the three versions 
agreed on a wrong answer. and i t  was classified as No 
Answer if there was no majority. For this data there is no 
difference in the resulting probability of correct answer 
between bit-by-bit and vector voting. The 24 cases where 
there had previously been no agreement all became wrong 
answers using bit-by-bit voting. Vector voting is safer be- 
cause it is less likely to allow a wrong answer to go un- 
detected at execution time (i.e.,  some systems may have 
fail-safe mechanisms to recover when the computer fails 
to produce a result), and we use majority vector voting 
for the rest of this paper. 

A total of 2 800 000 2-version votes were taken (28 
combinations of 2 programs executing 100 000 input 
cases), and the results are shown in Table VII. A wrong 
answer was recorded if both versions were identically 
wrong. and no answer was recorded if the two versions 
disagreed.j Wrong answers were identified by using 
9-version voting (the 8 versions plus the gold version). 
Faults that cause common failures in all 9 versions will, 
of course, not have been detected. As expected, the prob- 
ability of a correct answer for 2-version voting is lower 
than for either a 3-version system or a single version run 
alone (see below). 

The probability of producing a correct answer for the 
individual programs is shown in Table VIII. The aver- 
age probability of success for individual programs is 
99.933 5%. 

Table IX contains the comparison data for fault detec- 
tion using voting and instrumentation.4 The previously 
unknown faults detected by instrumentation are labeled 
6.4, 8.3, 12.3, 12.4, 20.3, and 25.4. In Table IX. a fault 
is counted as detected by voting if an erroneous result 
caused by that fault is detected at least once (but not nec- 
essarily every time it  occurs) and by at least one of the 
voting triples or pairs (but not necessarily by all of them). 
In  fact, as discussed below, voting was only partially ef- 
fective at detecting (and tolerating) erroneous results for 
the majority of faults and for the majority of triples and 
pairs. The instrumentation is considered to have detected 
a fault if at least one of the three instrumentations detected 
an error resulting from the fault. With this definition of 
fault detection, voting led to the detection of 8 faults that 
were not detected through instrumentation. the instrumen- 
tation led to the detection of 8 faults that were not de- 
tected by voting, and 10 faults were detected by both. 

'In 6 out of the 3519 N o  A n \ a e r  case\ in Table VII .  the \ e n i o n \  rc- 

'The data here dilfers slight11 troni that i n  Table V because a ditfcrent 
turned two distinct wrong an\wers. 

\et of input cases was used. 
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TABLE IX 
COMPAKISOZ OF F Z L L r  DI- I I-C’I I O X  

6.2 
6.3 
6.4 J 
6.1 J d 
8.2 J 

-. . ~ 

I Count 1 Percent 
Correct 1 2796359 I 99.8700 
Wrong 1 112 1 0.0040 
No Answer I 3529 1 0.1260 

Version Cases Failed 
223 

25 

14 140 
20 25 
23 
25 10 

Success Percentage 
99.777 
99.939 
99.973 
99.951 
99.860 
99 975 
99.996 
99.990 

Voting and instrumentation led to the detection of the 
same number of faults in total. 

There are some inherent problems in comparing these 
two techniques. Self checks are capable of detecting er- 
rors caused by faults that may not actually result in a fail- 
ure for that particular execution. In the area of testing, 
this is extremely valuable since the goal is to find all faults 
that could possibly cause failures and remove them. It 
could be argued, however, that for run-time fault toler- 
ance, error detection in nonfailing programs is of lesser 
importance and could actually be a hindrance. The above 
8 faults detected by self checks and not by voting include 
two faults that were not detected by voting because they 
did not cause failures during the execution of the pro- 
grams. However, these two faults did cause failures and 
were detected during the previous execution of one mil- 
lion inputs for these same programs. The self checks found 
errors caused by one previously-unknown fault that did 
cause a failure in the 100 000 input cases that was not 
detected by voting. The other five faults detected by self 
checks alone did not cause failures for the 100 000 input 
cases or for the previous one million input cases. 

Another problem comparing the techniques involves the 
differences in effectiveness or “coverage” of the fault de- 
tection. The effectiveness or coverage of the technique in 
detecting faults is defined as how often an error was de- 
tected given that it occurred and a potentially effective 
check was made. Table IX credits a technique with de- 
tecting an error even if it  does not detect the error every 
time it occurs. 

Tables X(a) and X(b) show the fault-detection coverage 
for each of the voted triples and pairs. The only faults 
included in the tables are those that were detected by vot- 
ing on the original one million input cases; the additional 
faults detected by self checks alone are not included as 
they would not generate any entries in the table. The sec- 
ond row shows the number of failures caused by each fault 
for the 100 000 input cases executed. Each row in the 
table below this row then shows the number of times the 
triple and the pair detected these failures. Two faults (i.e., 
20.2 and 25. I )  that caused failures on the original one- 

23.2 
25 1 

J 
J 

million input cases did not cause failures for these 100 000 
input cases (although the self checks detected them be- 
cause they did cause errors in the internal state of the pro- 
gram). A dot in the table means that that position is irrel- 
evant, i .e.,  the fault was in a program that was not one of 
the members of the triple and the pair. An asterisk next 
to a number indicates that not all of the failures were de- 
tected. The bottom line gives the percentage of time any 
triple or pair detected that particular fault given that it  
caused an erroneous result. For triples, this ranged from 
29 to loo%, with an average of 0.72 and a standard de- 
viation of 0.29. For 2-version voting, the results are a 
little better (as would be expected) but the coverage still 
averaged only 0.84 (standard deviation of 0.18) with a 
couple of pairs as low as 0.57. 

The partial detection of faults by voting contrasts with 
instrumented self checks where if there was a check in 
place that ever detected an error caused by a fault, then it  
ul\vuys detected the errors caused by that fault. This was 
true for both the 100 000 input cases executed in this part 
of the experiment and for the previous one million input 
cases except for version 23a where, as discussed earlier, 
the participant used N-version voting to implement the self 
checking. For these particular 100 000 input cases, ver- 
sion 23 failed only twice and both were detected by the 
voting-check inserted by participant 23a. However. on the 
previous one million input cases, the voting-check by 23a 
was effective for only 13 out of SO failures. 

It appears that the self checks are highly etfective be- 
cause they check the internal state and, therefore, con- 
sistently find the errors they are capable of detecting. The 
voting procedure only checks the results of computations 
and not the internal consistency of the intermediate results 
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and other parts of the internal state. As a result, simulta- 
neous failures of multiple versions sometimes caused vot- 
ing to fail to detect erroneous results. 

Using cross-check points in voting to compare the re- 
sults of computations internal to the program (and not just 
the final output) cannot be used to solve the problem as 
long as truly diverse algorithms are used in the indepen- 
dent versions. Diversity implies that the internal states of 
the programs will not be identical. If they are identical, 
then there is no diversity and no potential fault tolerance. 
Some comparison of intermediate results is, of course, 
possible, but the only way to guarantee this comparability 
is to decrease the diversity by requiring the programmers 
to use similar designs, variables, and algorithms and thus 
decreasing the amount of error detection and fault toler- 
ance possible. At the extreme, this results in totally spec- 
ified and thus identical versions. 

Simultaneous failure does not explain all the faults 
missed by voting. Notice that faults 20.2 and 25.1 did not 
cause failure during execution of any of the 100 000 input 
cases (although they did on the previous million input 
cases). The self checks detected the errors caused by these 
faults (and six other faults that voting did not detect even 
on the million input cases) again due to the fact that they 
could check the internal state of intermediate computa- 
tions. Voting could not detect these faults for this partic- 
ular input data because there were no erroneous outputs. 
In a testing environment, self checks may find errors 
caused by faults that back-to-back testing (i.e., using the 
comparison of the results of multiple versions as a test 
oracle) [6], [ 7 ] ,  [21], [ 2 3 ]  does not find. This is consistent 
with our results for another empirical study that included 
a comparison of standard testing methods and back-to- 
back testing [26]. 

On the other hand, placement of the self checks is crit- 
ical (as noted above) because they are not placed just at 
the end or in synchronized locations, as in voting, where 
all paths are guaranteed to reach them. So potentially ef- 
fective checks may be bypassed. Furthermore, although 
the effective checks were 100% effective, only 3 of the 
18 faults found were detected by more than one of the 
three instrumentations that could have found it. Of course, 
more than one person could instrument the same program. 
From our data, it  appears that this team approach would 
be profitable. 

IV. CONCLUSIONS 
Almost no empirical data exists on the effectiveness of 

using self checks to detect errors, and no previous studies 
have compared error and fault detection using N-version 
voting with self checks. Several results were obtained 
from this study that should guide us and others in the eval- 
uation of current proposals for error detection and fault 
tolerance, in the design of new techniques, and in the de- 
sign of further experiments. 

The first goal of this experiment was to instrument the 
programs with self checks and determine how effective 
these checks were in detecting errors when the programs 

were run on data that was known to make them fail. We 
found that detecting errors is quite difficult in programs 
whose reliability is already relatively high and the faults 
are very subtle. Out of a possible 60 known faults (i.e., 
20 known faults in the 8 versions with each version given 
to three people) that could have been detected, the partic- 
ipants detected only 6 by specification-based and code- 
based checks and another 9 by code reading while writing 
the code-based checks. Only 1 1  of the 24 participants 
wrote checks that detected faults, and there was little 
overlap in the faults detected by the three programmers 
working on the same initial version, which implies that 
there are great individual differences in  the ability of in- 
dividuals to design effective checks. This suggests that 
more training or experience might be helpful. Our partic- 
ipants had little of either although all were familiar with 
the use of pre- and postconditions and assertions to for- 
mally verify programs. The data suggests that it might 
also be interesting to investigate the use of teams to in- 
st rument code. 

Placement of self checks appeared to cause problems. 
Some checks that might have been effective failed to de- 
tect the errors caused by the fault because they were badly 
placed. This implies either a need for better decision- 
making and rules for placing checks or perhaps different 
software design techniques to make placement easier. 

Surprisingly, the self checks detected errors caused by 
6 faults that had not been detected by 28-version voting 
on one million randomly-generated input cases. This 
should give pause to those with high confidence that all 
faults have been eliminated from a complex program. The 
fact that the self checks uncovered new faults that were 
not detected by voting on the same input cases implies 
that self checking may have important advantages over 
voting. In particular, comparing only the final results of 
a program may be less effective in finding faults than ver- 
ifying the validity of the intermediate results and struc- 
tures of the program. 

Specification-based checks alone were not as effective 
as using them together with code-based checks. This sug- 
gests that fault tolerance may be enhanced if the alternate 
blocks in a recovery block scheme, for example, are also 
augmented with self checks along with the usual accep- 
tance test. This appears to be true also for pure voting 
systems. A combination of fault-tolerance techniques may 
be more effective than any one alone. More information 
is needed on how best to integrate these different propos- 
als. In most situations, it  will be impractical to attempt to 
completely implement multiple fault tolerance schemes 
given the relatively large cost of most of these techniques. 
Therefore, there needs to be some determination of what 
are the most costieffective techniques to use. 

The comparison data between self checking and voting 
needs to be treated with care. However, the results are 
interesting and suggest that further study might be fruit- 
ful. Although there were only three attempts to write self 
checks to detect errors caused by a particular fault com- 
pared to the 2 1 voting triples and 7 voting pairs that could 
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possibly find each fault, self checking led to the detection 
of as many faults as voting. When comparing coverage, 
self checks were much more effective at finding errors 
given that the error occurred and a potentially effective 
check was in place for it.  For our data, effective self 
checks were 100% effective whereas voting was found to 
be only partially effective a large percentage of the time. 
The fact that each found faults that were not detected by 
the other suggests that they are not substitutes for each 
other. 

Finally, faults were detected by self checks that did not 
cause failures for the individual versions (and thus were 
not detected by voting even though two had been detected 
by voting on different input data). This has important im- 
plications for testing. Back-to-back testing has been sug- 
gested as a method for executing large amounts of test 
data by using voting as the test oracle. However, our data 
implies that back-to-back testing alone may not find the 
same faults as other types of testing that involve instru- 
menting the code with checks on the internal state. This 
result has been replicated by two of the authors in a sub- 
sequent experiment using different programs and a variety 
of testing techniques [27]. 

Further empirical studies and experiments are needed 
before it will be possible to make informed choices among 
fault detection techniques. Very little empirical evidence 
is available. This experiment, besides substantiating some 
anticipated results and casting doubt on some previously- 
suggested hypotheses, provides information that can help 
to focus future efforts to improve fault tolerance and error 
detection techniques and to design future experiments. 

Potentially useful future directions include the follow- 
ing: 

1 )  The programs were instrumented with self checks in 
our study by participants who did not write the original 
code. It would be interesting to compare this with instru- 
mentation by the original programmer. A reasonable ar- 
gument could be made both ways. The original program- 
mer, who presumably understands the code better, might 
introduce fewer new faults and might be better able to 
place the checks. On the other hand, separate instrumen- 
tors might be more likely to detect errors since they pro- 
vide a new view of the problem. More comparative data 
is needed here. It is interesting that the original program- 
mers, in a questionnaire they submitted with their pro- 
grams, were asked what was the probability of residual 
errors in their programs, and if there were errors, what 
parts of the program might contain them. Most were con- 
fident that there were no residual errors and were almost 
always wrong when guessing about where any errors 
might be located. 

2) Another interesting question is whether the effec- 
tiveness of the code reading was influenced by the fact 
that the participants read the code with the goal of writing 
self checks. I t  would be interesting to compare this with 
more standard code-reading strategies. 

3) The process of writing self checks is obviously dif- 
ficult. However. there may be ways to provide help with 
this process. For example. Leveson and Shimeall 1191 

suggest that safety analysis using software fault trees [IS] 
can be used to determine the content and the placement 
of the most important self checks. Other types of appli- 
cation or program analysis may also be of assistance in- 
cluding deriving the assertions or self checks from formal 
specifications. Finally, empirical data about common fault 
types may be important in learning how to instrument code 
with self checks. All of these different strategies need to 
be experimentally validated and compared. 
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