
THE USE OF SELF CHECKS AND VOTING IN SOFT-
WARE ERROR DETECTION: AN EMPIRICAL STUDY*

Nancy G. Leveson
Stephen S. Cha

Information & Computer Science Dept.
University of California, Irvine

Irvine, CA 92717

John C. Knight

Computer Science Dept.
University of Virginia

Charlottesville, VA 22903

Timothy Shimeall

Computer Science Dept.
Naval Postgraduate School

Monterey, CA 93943

ABSTRACT

This paper presents the results of an empirical study of software error
detection using self checks andn-version voting. A total of twenty-four
graduate students in computer science at the University of Virginia and the
University of California, Irvine, were hired as programmers.Working
independently, each first prepared a set of self checks using just the
requirements specification of an aerospace application, and then each
added self checks to an existing implementation of that specification.The
modified programs were executed to measure the error-detection perfor-
mance of the checks and to compare this with error detection using simple
voting among multiple versions.

The goal of this study was to learn more about the effectiveness of
such checks.The analysis of the checks revealed that there are great dif-
ferences in the ability of individual programmers to design effective
checks. We found that some checks that might have been effective failed
to detect a fault because they were badly placed, and there were numerous
instances of checks signaling non-existent errors. In general, specifica-
tion-based checks alone were not as effective as combining them with
code-based checks.Faults were detected by the self checks that had not

-2-

been detected previously by voting 28 versions of the program over a mil-
lion randomly-generated inputs.This appeared to result from the fact that
the self checks could examine the internal state of the executing program
whereas voting examines only final results of computations.If internal
states had to be identical inn-version voting systems, then there would be
no reason to write multiple versions.

The programs were executed on 100,000 new randomly-generated
input cases in order to compare error detection by self-checks and by
2-version and3-version voting. Bothself-checks and voting techniques
found the same number of faults (18) for this input, although only 10 of
these faults were in common, i.e., both found 8 faults that the other tech-
nique did not find. Furthermore, whereas the effective self checks
detected all occurrences of errors caused by particular faults,0fR-version
voting triples and pairs were only partially effective due to correlated fail-
ures. n-version voting triples and duples were only partially effective at
detecting the failures caused by particular faults. Finally, checking the
internal state with self-checks also resulted in finding faults that did not
cause failures for the particular input cases executed. Thishas important
implications for the use of back-to-back testing.

Index Terms: software fault tolerance,assertions,n-version program-
ming, error detection, acceptance tests, software reliability.

Introduction

Crucial digital systems can fail because of faults in either software or hardware. A
great deal of research in hardware design has yielded computer architectures of poten-
tially very high reliability, such as SIFT [Wensley (1978)] and FTMP [Hopkins (1978)].
In addition, distributed systems (incorporating fail-stop processors [Schlichting and
Schneider (1983)] can provide graceful degradation and safe operation even when indi-
vidual computers fail or are physically damaged.

The state of the art in software development is not as advanced. Currentproduction
methods do not yield software with the required reliability for critical systems, and
advanced methods of formal verification [Gries (1981)] and program synthesis [Partsch
and Steinbruggen (1983)] are not yet able to deal with software of the size and complex-
ity of many of these systems.Fault tolerance [Randell (1975)] has been proposed as a
technique to allow software to cope with its own faults in a manner reminiscent of the
techniques employed in hardware fault tolerance.Many detailed proposals have been
made in the literature, but there is little empirical evidence to judge which techniques are
most effective or even whether they can be applied successfully to real problems.This
study is part of an on-going effort by the authors to collect and examine empirical data on
software fault tolerance methods in order to focus future research efforts and to allow
decisions to be made about real projects.

*This work was supported in part by NASA under grant numbers NAG-1-511, and NAG-1-668, by NSF CER
grant DCR-8521398, and by a MICRO grant cofunded by the state of California and TRW.

-3-

Previous studies by the authors have looked atn-version programming in terms of
independence of failures, reliability improvement, and error detection [Knight and
Leveson (1986a,1986b)].Other empirical studies ofn-version programming have been
reported [Avizienis and Kelly (1984), Bishopet.al. (1985), Chen and Avizienis (1978),
Dunham (1986), Gmeiner and Voges (1979), Scottet.al. (1984)]. A study by Anderson
(1985) showed promise for recovery blocks but concluded that acceptance tests are diffi-
cult to write. Acceptance tests, a subset of the more general run-time assertion or self
check used in exception handling and testing schemes, are performed after completion of
a program or subprogram and are essentially external checks that cannot access any local
state. Oneof our goals was to compare the effectiveness of checks that examine only the
external state with those that can check intermediate states to see if there was any advan-
tage of one approach over the other. This type of information is needed in order to make
informed choices between different types of fault tolerance techniques and to design bet-
ter, more effective techniques than currently available.

In order to eliminate as many independent variables from this experiment as possi-
ble, it was decided to focus on error detection apart from other issues such as recovery.
This also means that the results have implications beyond software fault tolerance alone,
for example in the use of embedded assertions to detect software errors during testing
[Stucki (1977)]. Furthermore, in some safety-critical systems (e.g., the Boeing 737-300
and the Airbus A310) error detection is theonly objective. In these systems, software
recovery is not attempted and, instead, a non-digital backup system such as an analog or
human alternative is immediately given control in the event of a computer system failure.
The results of this study may have immediate applicability in these applications.The
next section describes the design of the study. Following this, the results are described
for the self checks alone and then compared with the results obtained by voting.

Experimental Design

This study uses the programs developed for a previous experiment by Knight and
Leveson (1986a).The main goal of the previous experiment was to investigate whether
or not independently developed programs fail independently. Twenty-seven Pascal pro-
grams to read radar data and determine whether an interceptor should be launched to
shoot down the object (hereafter referred to as the Launch Interceptor Program, or LIP)
were prepared from a common specification by graduate students and seniors at the Uni-
versity of Virginia and the University of California, Irvine. Extensive efforts were made
to ensure that individual students did not cooperate or exchange information about their
program designs during the development phase.The twenty-seven LIP programs (along
with a ‘‘gold’’ version written by the experimenters to be used as an oracle) have been
analyzed by running one million randomly-generated inputs on each program and locat-
ing the individual program failures by comparing each program output with that of the
gold program.

Care was taken to ensure that all faults in the programs are correctly identified [Bril-
liant, Knight, and Leveson (1986b)]. The gold program was carefully developed and
extensively tested prior to the experiment. Whenthe version output was different from
that of the gold program, the experimenters identified the portion of the program sus-
pected to be erroneous (i.e., the fault). They then modified the program to include a fix.

-4-

The fault in the program was considered to be correctly identified when the modified pro-
gram produced the same output as the gold program.However, the gold program output
was not blindly assumed to be correct.Tw o faults were found in the gold program during
the process of fault identification.

In the present study, 8 students from UCI and 16 students from UVA were paid to
instrument the programs with self-checking code in an attempt to detect errors in the pro-
grams. Theparticipants were all paid for 40 hours of work although they spent differing
amounts of time on the project.The participants were all graduate students in computer
science with an average of 2.35 years of graduate study. Professional experience ranged
from 0 to 9 years with an average of 1.7 years.None of the participants had prior knowl-
edge of the LIP programs nor were they familiar with the results of the previous experi-
ment. We found no significant correlation between the length of a participant’s graduate
or industrial experience and their success at writing self checks.

Eight programs were selected from the 27 and each was randomly assigned to three
students (one from UCI and two from UVA). The eight programs used were randomly
selected from the 14 existing programs which were known to contain two or more faults.
This was done to ensure that there would be faults to detect.

Participants were provided with a brief explanation of the study along with an intro-
duction to writing self checks.They also were provided with a chapter on error detection
from a textbook on fault tolerance [Anderson and Lee (1981)].The participants were first
asked to study the LIP specification and to write checks using only the specification, the
training materials, and any additional references the participants desired.When they had
submitted their initial specification-based checks, they were randomly assigned a pro-
gram to instrument.Self-checking code was written in Pascal, and no limitations were
placed on the types of checking code that could be written except that it had to be legal
Pascal.

The participants were asked to write checks with and without looking at the source
code in order to determine if there was a difference in effectiveness between self checks
designed by a person working from the requirements alone and those for which the per-
son has access to and information about the program source code.It has been suggested
in the literature that ideal self-checks should treat the system as a black-box and that they
should be basedsolely on the specification without being influenced by the internal
design and implementation [Anderson and Lee (1981)].However, it could also be argued
that looking at the code will suggest different and perhaps better ways to design self
checks. Becausewe anticipated that the process of examining the code might result in
the participants detecting faults through code reading alone, participants were asked to
report any faults they thought they had detected by code reading and then to attempt to
write a self check to detect the fault during execution anyway.

The participants submitted the instrumented programs along with time sheets, back-
ground profile questionnaires, and descriptions of all faults they thought they had
detected through code reading.The instrumented programs were executed on the same
200 input cases that were used as an acceptability criterion in the previous experiment.
The original versions were known to run correctly on that data, and we wanted to attempt
to remove obvious faults introduced by the self checks.If any false alarms (i.e., faults
reported that did not actually exist) were raisedby these 200 inputs or if new faults were

-5-

detected that had been introduced into the program by the instrumentation, the programs
were returned to the participants for correction.

After the instrumented programs had satisfied the acceptability criterion, they were
executed using all the inputs on which the original programs had failed in the previous
experiment. Theparticipants were instructed to write an output message if they thought
that an error had been detected by their checking code.These messages were carefully
analyzed to determine their validity (i.e., error detection versus false alarm) and to iden-
tify the faults related to the errors that were detected.The same method for identifying
faults was used as had been used in the original LIP program, i.e., a hypothesis about the
fault was made, the code was corrected, and the program was executed again on the same
input data to ensure that the output was now correct and that the self-check error message
was no longer triggered.As described below, new faults (i.e., previously unidentified
faults) were found by this process.

In order to compare self checks andn-version voting, the programs were then run on
a new, randomly-generated set of 100,000 inputs.The input cases from the original
experiment (that had been used up to this point) could not be used for this comparison
since that data had already been determined to cause detectable failures through voting,
and any comparison would be biased toward voting.

Results

In order to simulate the use of acceptance tests, participants were first asked to read
through the program requirements specification and to design self checks based solely on
that specification.They wrote a total of 477 checks using the specification alone.The
participants were then given a particular implementation of that specification to instru-
ment with self checks.No limitations were placed on the participants as to how much
time could be spent (although they were paid only for a 40 hour week which effectively
limited the amount of time spent‡) or how much code could be added.Table 1 describes
the change in length in each program during instrumentation†.

There is a great variation in the amount of code added, ranging from 48 lines to 835
lines. Participants added an average of 37 self checks, varying from 11 to 99.Despite
this variation, we found no straight line correlation between the total number of checks
inserted by a participant and the number of those checks that were effective at finding
faults. Thatis, more checks did not necessarily mean better fault detection.

There is also no statistically significant relationship between the number of hours
claimed to have been spent (as reported on the timesheets) by the participants and
whether or not they detected any program faults. Figure1 shows the amount of time each
participant spent reading the specification to understand the problem, developing self
checks based only on the specification, reading the source code and adding program-
based self checks, and debugging the instrumented programs.Three participants (14a,
20a, and 25a) did not submit a time-sheet and are excluded from this figure.
‡Several reported spending more than 40 hours on the project.
†In order to aid the reader in referring to previously published descriptions of the faults found in the original
LIP programs [Brilliant, Knight, and Leveson (1986b)], the programs are referred to in this paper by the num-
bers previously assigned in the original experiment. Asingle letter suffix is added (a, b, or c) to distinguish the
three independent instrumentations of the programs.

-7-

Version Numberof Lines Increase
original a b c a b c
3 757 909 1152 805152 395 48
6 643 859 887 700216 244 57
8 600 10461356 824446 756 224

12 573 1121 696 806548 123 233
14 605 905 1342 712 300 737 107
20 533 611 1368 596 78 835 63
23 349 1065 417 544716 68 195
25 906 1644 1016 1022 738 110 116

Table 1: Lines of Code Added During Instrumentation

Table 2 classifies the program-based self checks in terms of effectiveness by giving
the number of checks for each instrumented version that were effective, ineffective, false
alarms, and unknown. Checksare classified as effective if they correctly report the pres-
ence of an error stemming from a fault in the code.Tw o partially effective checks by par-
ticipant 23a that detect an error most (but not all) of the time are counted as effective (but
marked with an asterisk).All the other effective self checks written by the participants
were 100% effective (i.e., they always detect an error when it occurs if they ever do).

The checks inserted by participant 23a differed from the other participants in that he
usedn-version programming to implement the self checking.That is, he rewrote the
entire program using a different algorithm, and his self check became a comparison of the
final results of the original program and his new program (i.e., a vote). His self check was
only partially effective because of correlated failures between his version and the version
he was checking.This is interesting because he had the original version and was attempt-
ing to write a completely different algorithm, i.e., he had the chance to plan diversity.
This still resulted in a large percentage of correlated failures. Hisvoting self check was
effective only 16% of the time (the voting-check detected 13 failures out of a total of 80
failures that occurred).In the other 67 cases, both versions failed identically. Later in
this paper we compare the effectiveness of instrumentation andn-version programming in
general.

Ineffective checks are those that do not signal an error when one occurs during
execution of the module being checked (based on the known faults in the program -- the
programs were executed on data for which we already knew they would fail). False
alarms signal an error when no error is present.The rest of the checks are classified as
unknown because their effectiveness cannot be determined based on the input cases that
have been executed to date.Executed with other data, it is possible that these checks
could signal false alarms or be ineffective or effective with respect to currently unknown
faults in the programs.

-8-

Version Effectives Ineffectives False Alarms Unknowns Total

3a 1 3 0 29 33
3b 0 2 0 34 36
3c 0 3 0 11 14
6a 3 5 0 26 34
6b 0 28 1 53 82
6c 0 9 0 10 19
8a 2 0 0 13 15
8b 0 5 1 62 68
8c 1 1 3 14 19
12a 2 2 0 36 40
12b 0 5 0 17 22
12c 9 0 2 24 35
14a 0 5 0 58 63
14b 0 3 0 62 65
14c 0 1 0 16 17
20a 0 0 1 10 11
20b 2 3 2 92 99
20c 1 1 0 27 29
23a 2* 0 0 20 22
23b 0 5 0 24 29
23c 0 2 0 30 32
25a 10 0 0 30 40
25b 1 0 0 10 11
25c 0 5 0 36 41

Total 34 78 10 734 867

Table 2: Self-Check Classification

We could find no unique characteristics of the effective checks. Ourproblems are
compounded by the fact that many of the effective checks were written for faults that
were detected by the participants during code reading.Table 3 shows the faults detected
by code reading along with the participant who found them.It is, of course, quite easy to
write a check to detect an error caused by a known fault. In the majority of cases, the
participant merely corrected the code and then compared the relevant variables at execu-
tion time. When there was a difference, the checking code wrote out an error message
that an erroneous state had been detected.We separate the two cases in the rest of this
section into faults detected by code reading (CR) and faults detected by code-based
design checks (CD).

The ineffective self checks (i.e., checks on code that contained faults but did not
detect the faults) were also examined in detail.They appear to fail due to one or more of
the following reasons:

*These two checks were only partially effective.

-9-

• Wrong self-check strategy − the participant uses a type of self check inappropriate
to detect the fault present in the code.The majority of the ineffective self checks
failed to detect faults for this reason.

• Wrong check placement− the self check is not on the particular path in which the
fault is located.Had the self check been correctly placed, it would have been effec-
tive.

• Use of the original faulty code in the self check− the participant falsely assumes a
portion of the code is correct and calls that code as part of the self check.

It should be noted that the placement of the checks may be as crucial as the content.This
has important implications for future research in this area and for the use of self checks in
real applications.

It should not be assumed that a false alarm involved a fault in the self checks.In
fact, there were cases where an error message was printed even though both the self
check and the original code were correct.This was a manifestation of the Consistent
Comparison Problem [Brilliant, Knight, and Leveson (1988)].The self check made a cal-
culation using a different algorithm than the original code.Because of the inaccuracies
introduced by finite precision arithmetic compounded by the difference in order of opera-
tions, the self-check algorithm sometimes produced a result that differed from the original
by more than the allowed tolerance.Increasing the tolerance does not necessarily solve
this problem in a desirable way.

Participant 3a 6a 12c 20b 20c 25a
Fault 3.3 6.1, 6.2 12.1 20.2 20.2 25.1,25.2, 25.3

Table 3: Faults Detected Through Code Reading

Table 4 summarizes the detected faults by how they were found.19% (4 out of 21)
of the detected faults were detected by specification-based checks, 43% (9 out of 21) by
code reading, and 38% (8 out of 21) by code-based checks.For code-based design
checks, the number of effective checks is not identical to the number of faults detected
because often more than one check detected the same fault. Only12% (4 out of 34) of
the effective checks were formulated by the participants after looking at the requirements
specification alone.The remaining 88% of the effective checks were designed after the
participants had a chance to examine the code and write checks based on the internal state
of the program.

Although it might be hypothesized that acceptance tests in the recovery block struc-
ture should be based on the specification alone in order to avoid biasing the formulator of
the test, our results indicate that the effectiveness of self checks can be improved when
the specification-based checks are refined and expanded by source code reading and a
thorough and systematic instrumentation of the program.It appears that it is very useful
for the instrumentor to actually see the code when writing self checks and to be able to
examine internal states of computations in the checks.

-10-

Due To
Spec-based Code Code-based

Design Reading Design
(SP) (CR) (CD)

Object Total

Faults Detected 4 9 8 21
Effective Checks 4 9 21 34

Table 4: Fault Detection Classified by Instrumentation Technique

Another way of looking at the results of this study is to consider the number of
faults detected and introduced by the participants.Table 5 shows this information.

Already Known Faults OtherFaults
Present Detected Detected

SP CR CD SP CR CD
Added Faults

3a 1
3b
3c

4

6a 2 1 1
6b 1
6c

3

8a 2
8b 1
8c 1 3

2

12a 1 1
12b 2
12c 1 1 2

2

14a
14b 4
14c

2

20a 1
20b 1 1 2
20c 1

2

23a 2 4
23b
23c

2

25a 3 1
25b 1 1
25c

3

total 20 3 9 3 1 0 5 22

Table 5: Summary of Fault Detection

This data makes very clear the difficulty of writing effective self checks. Of 20 previ-
ously known faults in the programs, only 12 were detected (the 15 detected known faults
in Table 5 include some multiple detections of the same fault), and 6 of these were found

-11-

by code reading alone.It should be noted, however, that the versions used in the experi-
ment are highly reliable (an average of better than 99.9% success rate on the previous one
million executions), and many of the faults are quite subtle.We could find no particular
types of faults that were easier to detect than others.Only 3 of the 18 detected faults
were found by more than one of the three participants instrumenting the same program.
Individual differences in ability appear to be important here.

One rather unusual case occurred.One of the new faults detected by participant 8c
was detected quite by accident.There is a previously unknown fault in the program.
However, the checking code contains the same fault. Anerror message is printed because
the self-checking code uses a different algorithm than the original, and the Consistent
Comparison Problem arises causing the self check to differ from the original by more
than the allowed real-number tolerance.We discovered the new fault while evaluating
the error messages printed, but it was entirely by chance.Erroneous triggering of self
checks due to the Consistent Comparison Problem occurred in modules that did not con-
tain a fault, and in that case the error message was classified as a false alarm (as discussed
above). We were unsure whether to classify this seemingly accidental error signal as the
result of an effective check or not since both the original program computation and the
self check are erroneous and contain the same fault. Ourdecision was to classify this
unusual case as an effective self check because it does signal a fault when a fault does
exist, but a reasonable argument could be made for the alternative decision.

It is very interesting that the self checks detected 6 faults not previously detected by
comparison of twenty-eight versions of the program over a million inputs. The fact that
the self checks uncovered new faults even though the programs were run on the same
inputs that did not reveal the faults through voting implies that self checking may have
advantages over voting alone.To understand why, it is instructive to examine an example
of one of the previously undetected faults.

Some algorithms are unstable under a few conditions. Morespecifically, sev eral
mathematically valid formulae to compute the area of a triangle are not equally reliable
when implemented using finite precision arithmetic.In particular, the use of Heron’s for-
mula:

area = √ s * (s − a) * (s − b) * (s − c)

wherea, b, and c are the distances between the three points ands is (a + b + c)/2, fails in the
rare case when all the following conditions are met simultaneously:

• Three points are almost co-linear (but not exactly). s will then be extremely close to
one of the distances, saya, so that (s − a) will be very small. The computer value of
(s − a) will then be of relatively poor accuracy because of round-off errors (around
10−16 in the hardware employed in this experiment).

• The product of the rest of the terms,s * (s − b) * (s − c), is large enough (approximately
104) to make rounding errors significant through multiplication (approximately
10−12).

• The area formed by taking the square root is slightly larger than the real number
comparison tolerance (10−6 in our example) so that the area is not considered zero.

Other formulas, for example

-12-

area =
x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1

2

wherexi and yi are the coordinates of the three points, did not fail because the potential
roundoff errors cannot become ‘‘significant’’ due to the order of operations.Tw o of the
six previously unknown faults detected involved the use of Heron’s formula. Becausethe
source of the unreliability is in the order of computation and inherent in the formula,
relaxing the real number comparison tolerance will not prevent this problem.The fault in
Heron’s formula was not detected during the previous executions because the voting pro-
cedure compared the final resultonly, whereas the self check verified the validity of the
intermediate results as well. For the few cases in which it arose, the faults did not affect
the correctness of the final output.However, under different circumstances the final out-
put would have been incorrect.We did not include in this analysis any fault for which we
could not find legitimate inputs that would have made the programs fail.

Although new faults were introduced through the self checks, this is not very sur-
prising. It is known that changing someone else’s program is difficult and whenever new
code is added to a program there is a possibility of introducing faults. All software fault
tolerance methods involve adding additional code of one kind or another to the basic
application program.The major causes of the new faults were an algorithmic error in a
redundant computation, use of an uninitialized variable during instrumentation, a logic
error, use of Heron’s formula, infinite loops added during instrumentation, an out of
bounds array reference, etc.

The use of uninitialized variables occurred due to incomplete program instrumenta-
tion. A participant would declare a temporary variable to hold an intermediate value dur-
ing the computation, but fail to assign a value on some path through the computation.A
more rigorous testing procedure for the assertions may have detected these faults earlier.
The instrumented versions were not run on many test cases before being evaluated. In
most realistic situations, assertions or self checks would be added before rigorous testing
of the program was performed instead of afterward as in our case.It is significant, how-
ev er, that many of the same types of faults were introduced during instrumentation as
were added during the original coding and thus presumably might also escape detection
during testing in the same way the other ones did.

Comparisons with Voting

When making decisions about what type of error detection scheme to use, it is important
to have some comparison data.In this study, we compared the error detection effec-
tiveness of general self checks and simple voting schemes.The faults detected through
code reading are counted as detected by self checks; code reading is an integral part of
the process of instrumenting programs.The faults detected through code reading would
probably be fixed in a realistic setting (instead of writing a check for it), but the fault has
still been detected.In order to avoid confusion, we refer to the entire process as instru-
mentation of the code.Also, because the self-check effectiveness had been investigated
using the inputs on which we knew that voting detected failures, weran the programs
using both self checks and voting on an additional 100,000 randomly-generated inputs
and did the comparisons only for these new inputs.

-13-

Care must be taken in evaluating the resulting data since this was not part of the
original experimental design, and the experiment as designed has limitations in the com-
parability of the data.For example, there are 3 instrumentations of each version whereas
there are 21 different voting triples and 7 voting pairs that could possibly detect the faults
in a particular version. Furthermore,as discussed below, ‘‘coverage’’ (the probability of
detecting a fault given that it produces an error and that there is a check in place for that
error) is difficult to factor out so that comparing the absolute number of faults detected is
somewhat misleading.However, the data does suggest some hypotheses that might be
explored either theoretically or through further controlled empirical evaluation.

There are many types of voting schemes possible and different decisions will affect
the outcome.We considered the alternatives and selected the one that appeared most rea-
sonable to us.The original LIP experiment [Knight and Leveson (1986a)] used vector
voting. Eachprogram produces a 15 by 15 Boolean array, a 15 element Boolean vector,
and a single Boolean launch condition (a total of 241 outputs) for each set of inputs.In
vector voting, an error is detected if any of the 241 results differ between the versions.
For example, if three versions provide the three results 110, 011, and 111 (where 1 stands
for a correct partial result and 0 stands for an incorrect partial result), this is counted as
three different answers and the triplet fails with no answer.

It has been suggested that bit-by-bit voting, where the answer is formed by deter-
mining the majority of each individual result, would have improved the voting system
reliability of our programs [Kelly et.al. (1986)]. Inthe above example, each of the three
partial results has a majority of correct answers so the final answer would be correct. In
bit-by-bit 3-way voting, it is impossible for the voting system to fail to produce an
answer, i.e., a majority always exists among three Boolean results.This is possible, obvi-
ously, only because of the Boolean nature of each launch condition.The launch condi-
tions were of the sort:‘‘ There exists at least one set of three consecutive data points that
cannot all be contained within or on a circle of radius X.’’

In order to determine whether there was a significant difference between vector vot-
ing and bit-by-bit voting for our problem, we performed each and compared the results.
There were 100,000 input cases executed, and there are 56 possible3-version combina-
tions of 8 programs.Therefore, a total of 5,600,000 votes were taken. Theresults are
shown in Table 6 where a result is classified as Wrong if a majority of the three versions
agree on a wrong answer and it is classified as No Answer if the three versions all dis-
agree.

Bit-by-Bit Vector
Count Percent Count Percent

Correct 5599414 99.9895 5599414 99.9895
Wrong 586 0.0105 562 0.0100
No Answer 0 0.0 24 0.0004

Table 6. Three-Version Voting

For this data there is no difference in the resulting probability of correct answer between
bit-by-bit and vector voting. The24 cases where there had previously been no agreement

-14-

all became wrong answers using bit-by-bit voting. Vector voting is safer because it is less
likely to allow a wrong answer to go undetected at execution time (no answer is usually
safer than a wrong answer), and we use majority vector voting for the rest of this paper.

There were 2,800,0002-version votes (28 combinations of 2 programs executing
100,000 input cases).Table 7 shows the results where a wrong answer results if both ver-
sions are identically wrong and no answer results if the two versions disagree†. Wrong
answers are identified by using9-version voting (the 8 versions plus the gold version).
Faults that cause common failures in all 9 versions will, of course, not have been
detected. Asexpected, the probability of a correct answer for2-version voting is lower
than for either a3-version system or a single version run alone (see Table 8).

Count Percent

Correct 2796359 99.8700
Wrong 112 0.0040
No Answer 3529 0.1260

Table 7. Tw o-Version Voting

The probability of producing a correct answer for the individual programs is shown
in the Table 8 below. The mean success probability for individual programs is 99.933%.

Version CasesFailed SuccessPercentage
3 223 99.777
6 61 99.939
8 25 99.975

12 49 99.951
14 140 99.860
20 25 99.975
23 4 99.996
25 10 99.990

Table 8. Individual Version Performance

Table 9 contains the comparison data for fault detection using voting and
instrumentation‡. The previously unknown faults detected by instrumentation are
labelled 6.4, 8.3, 12.3, 12.4, 20.3, and 25.4.

†In 6 out of the 3529 No Answer cases in Table 7, the versions returned two distinct answers which were both
wrong.
‡The data here differs slightly from that in Table 5 because a different set of input cases was used.

-15-

Faults Voting Instrumentation

3.1 √ no
3.2 yes no
3.3 yes yes
3.4 yes no
6.1 yes yes
6.2 yes yes
6.3 yes no
6.4 no yes
8.1 yes yes
8.2 yes yes
8.3 no yes
12.1 yes yes
12.2 yes no
12.3 no yes
12.4 no yes
14.1 yes no
14.2 yes no
20.1 yes no
20.2 no yes
20.3 no yes
23.1 yes yes
23.2 yes yes
25.1 no yes
25.2 yes yes
25.3 yes yes
25.4 no yes

total 18 18

Table 9: Comparison of Fault Detection

In Table 9, a fault is counted as detected by voting if an error caused by the fault is
detected at least once (but not necessarily every time it occurs) and by at least one of the
voting triples or duples (but not necessarily by all of them).In fact, as discussed below,
voting was only partially effective at detecting and tolerating errors for the majority of
faults and for the majority of triples and duples.The instrumentation is considered to
have detected a fault if at least one of the three instrumentations detected an error result-
ing from the fault. With this definition of fault detection, voting detected 8 faults that
were not detected through instrumentation, the instrumentation detected 8 faults that were
not detected by voting, and 10 faults were detected by both.Voting and instrumentation
detected the same number of faults in total.

Another type of comparison is to consider the effectiveness or ‘‘coverage’’ of the
technique in detecting faults in terms of how often a fault was detected given that it
caused an error and a potentially effective check was made.Tables 10a and 10b show the
rates of detection for each of the voting triples and duples.The only faults included in

-16-

the tables are those that were detected by voting on the original one million input cases;
the additional faults detected by assertions alone are not included as they would not gen-
erate any entries in the table.The second row shows the number of failures caused by
each fault for the 100,000 input cases executed. Eachrow in the table below this row
then shows the number of times the triple detected these failures. Two faults (i.e., 20.2
and 25.1) that caused failures on the original 1,000,000 input cases did not cause failures
for these 100,000 input cases (although the assertions detected them because they did
cause errors in the internal state of the program).A dot in the table means that that posi-
tion is irrelevant, i.e., the fault was in a program that was not one of the members of the
triple. An asterisk next to a number indicates that not all of the failures were detected.
The bottom line gives the percentage of time any triple or duple detected that particular
fault given that it caused an error. For triples, this ranged from 29% to 100%, with an
av erage of 0.68 and a standard deviation of 0.32. For 2-version voting, the results are a
little better (as would be expected) but the coverage still averaged only 0.82 (standard
deviation of 0.19) with several versions as low as 0.57.

This contrasts with instrumented self checks where if there was a check in place that
ev er detected an error caused by a fault, then italwaysdetected the errors caused by that
fault. Thiswas true for both the one hundred thousand input cases executed in this part of
the experiment and for the previous one million test cases except for version 23a where
the participant usedn-version voting to implement the self checking as discussed earlier.
For these particular 100,000 input cases, version 23 failed only twice and both were
detected by the voting-check inserted by participant 23a.However, on the previous one
million input cases, the voting-check by 23a was effective for only 13 out of 80 failures.

It appears that the self checks are highly effective because they check the internal
state and, therefore, consistently find the errors they are capable of detecting.The voting
procedure only checks the results of computations and not the internal consistency of the
intermediate results and other parts of the internal state.Therefore voting is subject to
correlated failures in the multiple versions.

Using cross-check points in voting to compare the results of computations internal
to the program (and not just the final output) cannot be used to solve the problem as long
as truly diverse algorithms are used in the independent versions. Diversity implies that
the internal states of the programs will not be identical.If they are identical, then there is
no diversity and no potential fault tolerance.Some comparison of intermediate results is,
of course, possible, but the only way to guarantee this comparability is to decrease the
diversity by requiring the programmers to use similar designs, variables, and algorithms.
At the extreme, this results in totally specified and thus identical versions.

On the other hand, placement of the self checks is critical (as noted above) because
they are not placed just at the end or in synchronized locations, as in voting, where all
paths are guaranteed to reach them.So potentially effective checks may be bypassed.
Furthermore, although the effective checks were 100% effective, only 3 of the 18 faults
found were detected by more than one of the three instrumentations that could have found
it. Of course, more than one person could instrument the same program.From our data,
it appears that examining a team approach to instrumentation would be worthwhile.

Another interesting thing to notice is that faults 20.2 and 25.1 did not cause failure
during execution of any of the 100,000 input cases (although they did on the previous

-19-

million input cases).The self checks detected these faults (and six others that voting did
not detect even on the million input cases) due to the fact that they could check the inter-
nal state of intermediate computations.Voting could not detect these faults for this par-
ticular input data because there were no erroneous outputs.In a testing environment, self
checks may find faults that back-to-back testing (i.e., using the comparison of the results
of multiple versions as a test oracle) [Bishopet.al.(1985), Brilliant (1987), Ramamoorthy
et.al. (1981), Saglietti and Ehrenberger (1986)] does not find.This is consistent with our
results for another empirical study that included a comparison of standard testing meth-
ods and back-to-back testing [Shimeall and Leveson (1988)].

Conclusions

Almost no empirical data exists on the effectiveness of using self-checks to detect
errors at run-time, and no previous studies have compared error detection usingn-version
voting with self-checks.Several interesting results were obtained from this study that
should guide us and others in the evaluation of current proposals for fault tolerance and
error detection, in the design of new methodologies, and in the design of further experi-
ments.

The first goal of this experiment was to instrument the programs with self-checks
and determine how effective these checks were in detecting errors when the programs
were run on data that was known to make them fail. We found that detecting errors is
quite difficult in programs whose reliability is already relatively high and the faults very
subtle. Outof a possible 60 known faults that could have been detected, the participants
detected only 6 by specification-based and code-based checks and another 9 by code
reading while writing the code-based checks.Only 11 of the 24 participants wrote
checks that detected faults and there was little overlap in the faults detected which implies
that there are great individual differences in the ability of individuals to design effective
checks. Thissuggests that more training or experience might be helpful.Our partici-
pants had little of either although all were familiar with the use of pre- and post-condi-
tions and assertions to formally verify programs.The data suggests that it might also be
interesting to investigate the use of teams to instrument code.

Placement of self checks appeared to cause problems.Some checks that might have
been effective failed to detect a fault because they were badly placed.This implies either
a need for better decision-making and rules for placing checks or perhaps different soft-
ware design techniques to make placement easier.

Surprisingly, the self-checks detected 6 previously unknown faults that had not been
detected by28-version voting on one million randomly-generated input cases.This
should give pause to those with high confidence that all faults have been eliminated from
a complex program. Thefact that the self checks uncovered new faults that were not
detected by voting on the same input cases implies that self-checking may have important
advantages over voting. In particular, comparing only the final results of a program or
ev en the final results of a computation within a program may be less effective in finding
errors than verifying the validity of the intermediate results and structures of the program.
That is, self-checks allow verification of more than just the final results of computations.

-20-

Specification-based checks alone were not as effective as using them together with
code-based checks.This again was surprising as it conflicts with previous hypotheses,
and it implies that fault tolerance may be enhanced if the alternate blocks in a recovery
block scheme, for example, are also augmented with self checks along with the usual
acceptance test.This appears to be true also for pure voting systems.A combination of
fault-tolerance techniques may be more effective than any one alone.More information
is needed on how best to integrate these different proposals.In most situations, it will be
impractical to attempt to completely implement multiple fault tolerance schemes given
the relatively large cost of most of these techniques.Therefore, there needs to be some
determination of what are the most cost/effective techniques to use.

The comparison data between self checking and voting needs to be treated with
some care.However, the results are interesting and suggest that further study might be
fruitful. Although there were only three attempts to write self checks to detect a particu-
lar fault compared to the 21 voting triples and 7 voting duples that could possibly find
each fault, self checking found as many faults as voting. Whencomparing coverage, self
checks were much more effective at finding errors given that the error occurred and a
potentially effective check was in place for it.For our data, effective self checks were
100% effective whereas voting was found to be only partially effective a large percentage
of the time. The same number of faults were detected by each of these techniques that
were not detected by the other implying that they are not substitutes for each other.

Finally, faults were detected by self-checks that did not cause failures for the indi-
vidual versions (and thus were not detected by voting even though two had been detected
by voting on different input data).This has important implications for testing.Back-to-
back testing has been suggested as a method for executing large amounts of test data by
using voting as the test oracle.However, our data implies that back-to-back testing alone
may not find the same faults as other types of testing that involve instrumenting the code
with checks on the internal state.

Further empirical studies and experiments are needed before it will be possible to
make informed choices among fault detection techniques.Very little empirical evidence
is available. Thisexperiment, besides substantiating some anticipated results and casting
doubt on some previously-suggested hypotheses, provides information that can help to
focus future efforts to improve fault tolerance and error detection techniques and to
design future experiments. Potentiallyuseful future directions include the following:

[1] The programs were instrumented with self checks in our study by participants who
did not write the original code.It would be interesting to compare this with instru-
mentation by the original programmer. A reasonable argument could be made both
ways. The original programmer, who presumably understands the code better,
might introduce fewer new faults and might be better able to place the checks.On
the other hand, separate instrumentors might be more likely to detect faults since
they provide a new view of the problem.More comparative data is needed here.It
is interesting that the original programmers, in a questionnaire they submitted with
their programs, were asked what was the probability of residual errors in their pro-
grams, and if there were errors, what parts of the program might contain them.
Most were confident that there were no residual errors and were almost always
wrong when guessing about where any errors might be located.

-21-

[2] Another interesting question is whether the effectiveness of the code reading was
influenced by the fact that the participants read the code with the goal of writing self
checks. Itwould be interesting to compare this with more standard code reading
strategies.

[3] The process of writing self checks is obviously difficult. However, there may be
ways to provide help with this process.For example, Leveson and Shimeall (1983)
suggest that safety analysis using software fault trees [Leveson and Harvey (1983)]
can be used to determine the content and the placement of the most important self
checks. Othertypes of application or program analysis may also be of assistance
including deriving the assertions or self-checks from formal specifications. Finally,
empirical data about common fault types may be important in learning how to
instrument code with self checks.All of these different strategies need to be experi-
mentally validated and compared.

Acknowledgements

The authors are pleased to acknowledge the efforts of the experiment participants:
David W. Aha, Tom Bair, Jack Beusmans, Bryan Catron, Harry S. Delugach, Siamak
Emadi, Lori Fitch, W. Andrew Frye, Joe Gresh, Randy Jones, James R. Kipps, Faith Leif-
man, Costa Livadas, Jerry Marco, David A. Montuori, John Palesis, Nancy Pomicter,
Mary Theresa Roberson, Karen Ruhleder, Brenda Gates Spielman, Yellamraju Venkata
Srinivas, Tim Strayer, Gerald Reed Taylor III, and Raymond R. Wagner, Jr.

-22-

References

1. T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Moulding, ‘‘A n Evaluation of
Software Fault Tolerance in a Practical System’’, Digest of Papers FTCS-15: Fif-
teenth Annual Symposium on Fault-Tolerant Computing,, Ann Arbor, Michigan, pp.
140-145, June 1985.

2. T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice Englewood
Cliffs, NJ, Prentice-Hall Intl., 1981.

3. D.M. Andrews and J.T. Benson, ‘‘A n Automated Program Testing Methodology and
its Implementation,’’ Proc. 5th Int. Conference on Software Engineering, San
Diego, CA, pp. 254-261, March 1981.

4. A. Avizienis and L. Chen, ‘‘On the Implementation ofN-version Programmingfor
Software Fault-Tolerance During Execution’’, Proceedings of COMPSAC 77 pp.
149-155, November 1977.

5. A. Avizienis and J.P.J. Kelly, ‘‘Fault Tolerance By Design Diversity: Concepts and
Experiments’’, IEEE Computer Magazine ,Vol. 17, No. 8, pp. 67-80, August 1984.

6. P. Bishop, D. Esp, M. Barnes, P. Humphreys, G. Dahll, J. Lahti, and S. Yoshimura,
‘‘ PODS - A Project on Diverse Software’’, IEEE Transactions on Software Engi-
neering, Vol. SE-12, No. 9, pp. 929-940, September 1986.

7. S.S.Brilliant, ‘‘Testing Software Using Multiple Versions,’’ Ph.D. Dissertation,
University of Virginia, September 1987.

8. S.S.Brilliant, J.C. Knight, and N.G. Leveson, ‘‘The Consistent Comparison Problem
in N-Version Software’’, IEEE Trans. on Software Engineering, 1989 (in press).

9. S.S.Brilliant, J.C. Knight, and N.G. Leveson, ‘‘A nalysis of Faults in anN-Version
Software Experiment’’, submitted for publication, 1986b.

10. L. Chen and A. Avizienis, ‘‘N-version programming:A fault-tolerance approach to
reliability of software operation,’’ Digest of Papers FTCS-8: Eighth Annual Sympo-
sium on Fault Tolerant Computing, Toulouse, France, pp. 3-9, June 1978.

11. J.R.Dunham, ‘‘Software Errors in Experimental Systems Having Ultra-Reliability
Requirements’’, Digest of Papers FTCS-16: Sixteenth Annual Symposium on Fault-
Tolerant Computing,, Vienna, Austria, pp 158-164, July 1986

12. L. Gmeiner and U. Voges, ‘‘Software Diversity in Reactor Protection System: An
Experiment’’, Proceedings of IFAC Workshop SAFECOMP ’79pp 75-79, 1979

-23-

13. D.Gries,The Science Of Programming, Springer Verlag, 1981.

14. A.L. Hopkins, et al., ‘‘FTMP - A Highly Reliable Fault-Tolerant Multiprocessor For
Aircraft’’, Proceedings of the IEEE,Vol. 66, pp. 1221-1239, October 1978.

15. J.P.J. Kelly, et.al., ‘‘Multi-V ersion Software Development,’’ Proceedings of IFAC
Workshop Safecomp ’86, Sarlat, France, pp. 43-49, October 1986.

16. J.C.Knight and N.G. Leveson, ‘‘A n Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming’’, IEEE Transaction on Software
Engineering, pp. 96-109, January 1986a.

17. J.C.Knight and N.G. Leveson, ‘‘A n Empirical Study of Failure Probabilities in
Multi-Version Software’’, Digest of Papers FTCS-16: Sixteenth Annual Symposium
on Fault-Tolerant Computing,, Vienna, Austria, pp.165-170, July 1986b.

18. N.G.Leveson, and P.R. Harvey, ‘‘A nalyzing Software Safety’’, IEEE Transactions
on Software Engineering, Vol. SE-9, No. 5, pp 569-579, September, 1983.

19. N.G.Leveson, and T.J. Shimeall, ‘‘Safety Assertions for Process-Control Systems’’,
Digest of Papers FTCS-13: Thirteenth Annual Symposium on Fault-Tolerant Com-
puting, Milan, Italy, pp 236-240, June 1983.

20. H. Partsch and R. Steinbruggen, ‘‘Program Transformation Systems’’, ACM Com-
puting Surveys,Vol. 15, No. 3, pp. 199-236, September 1983.

21. C.V. Ramamoorthy, Y.K Mok, E.B. Bastani, G.H. Chin, K. Suzuki, ‘‘A pplication of
a Methodology for the Development and Validation of Reliable Process Control
Software,’’ IEEE Trans. on Software Engineering, Vol. SE-7, No. 6, November
1981, pp. 537-555.

22. B.Randell, ‘‘System Structure for Software Fault-Tolerance,’’ IEEE Transactions
on Software Engineering, Vol. SE-1, No. 2, pp. 220-232, June 1975.

23. F. Saglietti and W. Ehrenberger, ‘‘Software Diversity — Some Considerations about
its Benefits and its Limitations,’’ Safecomp ’86, Sarlat, France, pp. 27-34, October
1986.

24. R.D. Schlichting and F.B. Schneider, ‘‘Fail-Stop Processors: An Approach To
Designing Fault-Tolerant Computing Systems’’, ACM Transactions On Computer
Systems,Vol. 1, pp. 222-238, August 1983.

25. K.R.Scott, J.W. Gault, D.F. McAllister, and J. Wiggs, ‘‘Experimental Validation of
six Fault Tolerant Software Reliability Models’’, Digest of Papers FTCS-14:

-24-

Fourteenth Annual Symposium on Fault-Tolerant Computing, Kissemmee, NY, pp
102-107, 1984.

26. T.J. Shimeall and N.G. Leveson, ‘‘A n Empirical Comparison of Software Fault Tol-
erance and Fault Elimination,’’ Proc. 2nd Workshop on Software Testing, Verifica-
tion, and Analysis,Banff, pp. 180-187, July 1988.

27. L.G. Stucki, ‘‘New Directions in Automated Tools for Improving Software Qual-
ity’ ’, Current Trends in Programming Methodology - Volume II: Program Valida-
tion, Prentice Hall, pp. 80-111, 1977

28. J.H.Wensley, et al., ‘‘SIFT, The Design and Analysis of a Fault-Tolerant Computer
for Aircraft Control’’, Proceedings of the IEEE,Vol. 66, pp. 1240-1254, October
1978.

