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ABSTRET

This paper presents the results of an empirical study of a@ftarror
detection using self checks andrersion wting. A total of twenty-four
graduate students in computer science at theetsny of Virginia and the
University of California, Irvine, were hired as programmebt&/orking
independently each first prepared a set of self checks using just the
requirements specification of an aerospace application, and then each
added self checks to arigting implementation of that specificatioithe
modified programs werexecuted to measure the entetection perfor
mance of the checks and to compare this with error detection using simple
voting among multiple @rsions.

The goal of this study &s to learn more about thefesftiveness of
such checksThe analysis of the checksvealed that there are great dif-
ferences in the ability of indidual programmers to designfegftive
checks. W found that some checks that mightddeen efective failed
to detect adult because tlyewere badly placed, and there were numerous
instances of checks signaling noxistent errors.In general, specifica-
tion-based checks alone were not d@eative & combining them with
code-based checks-aults were detected by the self checks that had not
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been detected prmusly by wting 28 \ersions of the programver a mil-
lion randomly-generated input§.his appeared to result from thect that
the self checks couldkamine the internal state of thgeeuting program
whereas gting examines only final results of computationl. internal
states had to be identical maversion wting systems, then thereowld be
no reason to write multiplesvsions.

The programs werexecuted on 100,000 merandomly-generated
input cases in order to compare error detection by self-checks and by
2-version and3-version wting. Bothself-checks andoting techniques
found the same number auits (18) for this input, although only 10 of
these &ults were in common, i.e., both foundailts that the other tech-
nique did not find. Furthermore, whereas thefedtive <If checks
detected all occurrences of errors caused by particaldisfOfR-vesion
voting triples and pas were anly partially efective due to coelated fail-
ures. nversion wting triples and duples were only partiallfeetive &
detecting the dilures caused by particulaauits. Finally checking the
internal state with self-checks also resulted in findeagit§ that did not
cause dilures for the particular input caseseuted. Thishas important
implications for the use of back-to-back testing.

Index Terms: software fult tolerance,assertionsp-version program-
ming, error detection, acceptance tests, sofweliability

I ntroduction

Crucial digital systems camif because ofdults in either softare or hardware. A
great deal of research in hamae design has yielded computer architectures of poten-
tially very high reliability such as SIFT [Wnsle (1978)] and FTMP [Hopkins (1978)].

In addition, distrilbted systems (incorporatingilfstop processors [Schlichting and
Schneider (1983)] can prale graceful dgradation and safe operatiomes when indi-
vidual computersdil or are plgsically damaged.

The state of the art in sofare deelopment is not as adwnced. Currenproduction
methods do not yield softwe with the required reliability for critical systems, and
advanced methods of formakrification [Gries (1981)] and program synthesiar{fch
and Steinbruggen (1983)] are not yet able to deal with adétef the size and comgle
ity of mary of these systemsFault tolerance [Randell (1975)] has been proposed as a
technique to ally software to cope with itswen faults in a manner reminiscent of the
techniques emple@d in hardware fult tolerance.Many detailed proposals ka keen
made in the literatureub there is little empiricalvadence to judge which techniques are
most efective a even whether thg can be applied successfully to real probleriis
study is part of an on-goingfeft by the authors to collect angaamine empirical data on
software fult tolerance methods in order to focus future reseafontisefind to aller
decisions to be made about real projects.

*This work was supported in part byA$A under grant numbersAG-1-511, and RG-1-668, by NSF CER
grant DCR-8521398, and by a MIORyant cofunded by the state of California andW'R
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Previous studies by the authorsviealooked atn-version programming in terms of
independence ofaflures, reliability imprgement, and error detection [Knight and
Leveson (1986a,1986hb)]Other empirical studies af-version programming la been
reported [Avizienis and Klly (1984), Bishopet.al. (1985), Chen and Wzienis (1978),
Dunham (1986), Gmeiner anabdyes (1979), Scott.al. (1984)]. Astudy by Anderson
(1985) shaved promise for reaery blocks lut concluded that acceptance tests arfe dif
cult to write. Acceptance tests, a subset of the more general run-time assertion or self
check used imeeption handling and testing schemes, are performed after completion of
a program or subprogram and are essentialtgrmal checks that cannot accesyg lacal
state. Onef our goals was to compare thefettiveness of checks thakamine only the
external state with those that can check intermediate states to see if diseag @wdvan-
tage of one approaclve the other This type of information is needed in order to mak
informed choices between filifent types ofdult tolerance techniques and to design bet-
ter, more efective techniques than currentlyalable.

In order to eliminate as mgnndependentariables from this)@eriment as possi-
ble, it was decided to focus on error detection apart from other issues suchwasyreco
This also means that the resultsdamplications bgond softvare fault tolerance alone,
for example in the use of embedded assertions to detectasef®rors during testing
[Stucki (1977)]. Furthermore, in some safety-critical systems (e.g., the Boeing 737-300
and the Airlus A310) error detection is thanly objectve. In these systems, sofane
recovery is not attempted and, instead, a non-digital backup system such as an analog or
human alternate is immediately gren control in the gent of a computer systenaifure.
The results of this study may Jeimmediate applicability in these applicationshe
next section describes the design of the stuBgllowing this, the results are described
for the self checks alone and then compared with the results obtainetinay v

Experimental Design

This study uses the programsveeped for a preious eperiment by Knight and
Leveson (1986a).The main goal of the pveous eperiment vas to ivestigate whether
or not independently deloped programsdil independently Twenty-seen Pascal pro-
grams to read radar data and determine whether an interceptor should be launched to
shoot davn the object (hereafter referred to as the Launch Interceptor Program, or LIP)
were prepared from a common specification by graduate students and seniors at the Uni-
versity of Virginia and the Umwiersity of California, Irvine. Extensve dforts were made
to ensure that indidual students did not cooperate acleange information about their
program designs during theveopment phaseThe twenty-seen LIP programs (along
with a “gold” version written by thex@erimenters to be used as an oracleehaen
analyzed by running one million randomly-generated inputs on each program and locat-
ing the indvidual program dilures by comparing each program output with that of the
gold program.

Care vas talen to ensure that ath@lts in the programs are correctly identified [Bril-
liant, Knight, and Leeson (1986b)]. The gold program was carefully deeloped and
extensvely tested prior to thex@eriment. Wherthe \ersion output \as diferent from
that of the gold program, thegerimenters identified the portion of the program sus-
pected to be erroneous (i.e., tllf). The then modified the program to include a fix.
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The fault in the program as considered to be correctly identified when the modified pro-
gram produced the same output as the gold progkmmever, the gold program output
was ot blindly assumed to be correciwo faults were found in the gold program during
the process ofault identification.

In the present study sudents from UCI and 16 students from AJWere paid to
instrument the programs with self-checking code in an attempt to detect errors in the pro-
grams. Theparticipants were all paid for 40 hours obnk although the spent difering
amounts of time on the projecthe participants were all graduate students in computer
science with anwerage of 2.35 years of graduate studyofessional gperience ranged
from O to 9 years with arvaerage of 1.7 yearsNone of the participants had prior kme
edge of the LIP programs nor wereytHamiliar with the results of the preus eperi-
ment. W found no significant correlation between the length of a particgpgatiuate
or industrial &perience and their success at writing self checks.

Eight programs were selected from the 27 and eashrandomly assigned to three
students (one from UCI and awfrom UVA). The eight programs used were randomly
selected from the 14xisting programs which were knm to contain tw or more faults.
This was done to ensure that thereuld be &ults to detect.

Paticipants were pnaded with a brief gplanation of the study along with an intro-
duction to writing self checksThey also were proided with a chapter on error detection
from a textbook on &ult tolerance [Anderson and Lee (198I0he participants were first
asled to study the LIP specification and to write checks using only the specification, the
training materials, and gradditional references the participants desiré¢hen thg had
submitted their initial specification-based checksy tivere randomly assigned a pro-
gram to instrumentSelf-checking code as written in Bscal, and no limitations were
placed on the types of checking code that could be wrikeepe that it had to bede
Pascal.

The participants were as#t to write checks with and without looking at the source
code in order to determine if thereasva diference in dectiveness between self checks
designed by a personovking from the requirements alone and those for which the per
son has access to and information about the program sourceltbds.been suggested
in the literature that ideal self-checks should treat the system as a black-box and/that the
should be basedolely on the specification without being influenced by the internal
design and implementation [Anderson and Lee (1981ywever, it could also be gued
that looking at the code will suggestfdient and perhaps betterays to design self
checks. Becausee anticipated that the process shmining the code might result in
the participants detectingults through code reading alone, participants weredagk
report ay faults thg thought thg had detected by code reading and then to attempt to
write a self check to detect theult during &ecution aryway.

The participants submitted the instrumented programs along with time sheets, back-
ground profile questionnaires, and descriptions of alilt$ thg thought thg had
detected through code readinghe instrumented programs wenreeuted on the same
200 input cases that were used as an acceptability criterion in theugrexperiment.

The original ersions were knen to run correctly on that data, and wanted to attempt
to remwe dovious faults introduced by the self checkis.any false alarms (i.e.atilts
reported that did not actuallykist) were raisedby these 200 inputs or if wefaults were
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detected that had been introduced into the program by the instrumentation, the programs
were returned to the participants for correction.

After the instrumented programs had satisfied the acceptability criterignyére
executed using all the inputs on which the original programs haéeldfin the preious
experiment. Theparticipants were instructed to write an output messageyifthoeight
that an error had been detected by their checking cbdese messages were carefully
analyzed to determine theiahdity (i.e., error detectionersus &lse alarm) and to iden-
tify the faults related to the errors that were detecfBae same method for identifying
faults was used as had been used in the original LIP program, iyppthbsis about the
fault was made, the codeaw corrected, and the prograrasaxecuted agin on the same
input data to ensure that the outp@aswaev correct and that the self-check error message
was o longer triggered.As described bels, new faults (i.e., preiously unidentified
faults) were found by this process.

In order to compare self checks andersion wting, the programs were then run on
a rew, randomly-generated set of 100,000 inpuldie input cases from the original
experiment (that had been used up to this point) could not be used for this comparison
since that data had already been determined to cause deteataiés fthrough eting,
and aly comparison wuld be biased teard voting.

Results

In order to simulate the use of acceptance tests, participants were Bibt@askad
through the program requirements specification and to design self checks based solely on
that specification.They wrote a total of 477 checks using the specification aldre
participants were then\gn a particular implementation of that specification to instru-
ment with self checksNo limitations were placed on the participants as w hwch
time could be spent (although,yhevere paid only for a 40 hour week whiclieetively
limited the amount of time speiljtor how much code coulﬂg be addedable 1 describes
the change in length in each program during instrumentation

There is a greatariation in the amount of code added, ranging from 48 lines to 835
lines. Rarticipants added arverage of 37 self checksarying from 11 to 99.Despite
this variation, we found no straight line correlation between the total number of checks
inserted by a participant and the number of those checks that iertvefd finding
faults. Thatis, more checks did not necessarily mean bedidt fletection.

There is also no statistically significant relationship between the number of hours
claimed to hae been spent (as reported on the timesheets) by the participants and
whether or not thedetected ay program aults. Figurel shows the amount of time each
participant spent reading the specification to understand the probleagpiey self
checks based only on the specification, reading the source code and adding program-
based self checks, and deglging the instrumented programs$hree participants (14a,
20a, and 25a) did not submit a time-sheet andxaledaed from this figure.

iSa/eraI reported spending more than 40 hours on the project.

In order to aid the reader in referring to\poeisly published descriptions of thaults found in the original
LIP programs [Brilliant, Knight, and lveson (1986b)], the programs are referred to in this paper by the num-
bers preiously assigned in the originakgeriment. Asingle letter suix is added (a, b, or c) to distinguish the
three independent instrumentations of the programs.
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Version Numbewof Lines Increase
# |original a b c|la b c

3 77 9091152 803152 395 48
6 643 859 887 700216 244 57
8 600 10461356 824446 756 224
12 573 1121 696 806548 123 233
14 605 905 1342 712 300 737 107
20 533 611 1368 596| 78835 63
23 349 1065 417 544716 68195
25 906 1644 1016 102 738 110 116

Table 1: Lines of Code Added During Instrumentation

Table 2 classifies the program-based self checks in termseatiedness by giing
the number of checks for each instrumentersion that were &dctive, inefiective, false
alarms, and unkmaen. Checksare classified as fetctive if they correctly report the pres-
ence of an error stemming fromautft in the code.Two partially efective checks by par
ticipant 23a that detect an error mosit(bot all) of the time are counted ateefive (out
marked with an asterisk)All the other efective slf checks written by the participants
were 100% déctive (.e., they always detect an error when it occurs ifyhever do).

The checks inserted by participant 23deddd from the other participants in that he
usedn-version programming to implement the self checkiddnat is, he rerote the
entire program using a fi#rent algorithm, and his self check became a comparison of the
final results of the original program and hisvi@ogram (i.e., aete). His self check as
only partially efective because of correlatedifures between hisevsion and theersion
he was checking.This is interesting because he had the origieadion and \&s attempt-
ing to write a completely diérent algorithm, i.e., he had the chance to plaersity.
This still resulted in a lge percentage of correlateailfires. Hisvoting self check \as
effective mly 16% of the time (theating-check detected 1aifures out of a total of 80
failures that occurred)In the other 67 cases, botkrsions &iled identically Later in
this paper we compare thdetiveness of instrumentation amelersion programming in
general.

Ineffective checks are those that do not signal an error when one occurs during
execution of the module being chestk (based on the kwm faults in the program -- the
programs were»@cuted on data for which we already wnéhey would fail). False
alarms signal an error when no error is pres@ihie rest of the checks are classified as
unknovn because their fefctiveness cannot be determined based on the input cases that
have keen eecuted to date.Executed with other data, it is possible that these checks
could signal &lse alarms or be iffettive a effective with respect to currently unkam
faults in the programs.
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Version | Efectives | Ineffectives | False Alarms| Unknowns | Total
3a 1 3 0 29 33
3b 0 2 0 34 36
3c 0 3 0 11 14
6a 3 5 0 26 34
6b 0 28 1 53 82
6C 0 9 0 10 19
8a 2 0 0 13 15
8b 0 5 1 62 68
8¢ 1 1 3 14 19

12a 2 2 0 36 40
12b 0 5 0 17 22
12¢c 9 0 2 24 35
14a 0 5 0 58 63
14b 0 3 0 62 65
14c 0 1 0 16 17
20a 0 0 1 10 11
20b 2 3 2 92 99
20c 1 1 0 27 29
23a 2% 0 0 20 22
23b 0 5 0 24 29
23c 0 2 0 30 32
25a 10 0 0 30 40
25b 1 0 0 10 11
25c¢ 0 5 0 36 41
Total 34 78 10 734 867

Table 2: Self-Check Classification

We oould find no unique characteristics of théeefive dhecks. Oumproblems are
compounded by thea€t that mawy of the efective dhecks were written foralilts that
were detected by the participants during code readiagle 3 shavs the &ults detected
by code reading along with the participant who found th#rms, of course, quite easy to
write a check to detect an error caused by avknfault. Inthe majority of cases, the
participant merely corrected the code and then compared thantelariables at xecu-
tion time. When there &s a diference, the checking code wrote out an error message
that an erroneous state had been detedté¢el eparate the tav cases in the rest of this
section into &ults detected by code reading (CR) aadlté detected by code-based
design checks (CD).

The inefective lIf checks (i.e., checks on code that contairedts ut did not
detect thedults) were alsoxamined in detail. They appear to &il due to one or more of
the folloving reasons:

*These tvo checks were only partially fefctive.
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*  Wrong self-check stragy — the participant uses a type of self check inappropriate
to detect thedult present in the codelhe majority of the indéctive slIf checks
failed to detectdults for this reason.

*  Wrong check placement the self check is not on the particular path in which the
fault is located.Had the self check been correctly placed,auld have keen efec-
tive.

*  Use of the originaldulty code in the self checkthe participantdisely assumes a
portion of the code is correct and calls that code as part of the self check.

It should be noted that the placement of the checks may be as crucial as the dtmgent.
has important implications for future research in this area and for the use of self checks in
real applications.

It should not be assumed thatadsté alarm imolved a &ult in the self checksln
fact, there were cases where an error message pnnted een though both the self
check and the original code were correthis was a manifestation of the Consistent
Comparison Problem [Brilliant, Knight, and \eson (1988)]. The self check made a cal-
culation using a diérent algorithm than the original codBecause of the inaccuracies
introduced by finite precision arithmetic compounded by tHerdifice in order of opera-
tions, the self-check algorithm sometimes produced a result tfexedifrom the original
by more than the aleed tolerance.Increasing the tolerance does not necessarilyesolv
this problem in a desirableay

Paticipant 3a 6a 12c | 20b 20c 25a
Fault 33| 6.1,6.2| 121 | 20.2| 20.2 | 25.125.2,25.3

Table 3: FRaults Detected Through Code Reading

Table 4 summarizes the detectedilts by hav they were found.19% (4 out of 21)
of the detectedalults were detected by specification-based checks, 43% (9 out of 21) by
code reading, and 38% (8 out of 21) by code-based chdaitscode-based design
checks, the number offettive dhecks is not identical to the number afilts detected
because often more than one check detected the saifhe ®nly12% (4 out of 34) of
the efective dhecks were formulated by the participants after looking at the requirements
specification aloneThe remaining 88% of the fettive checks were designed after the
participants had a chance taenine the code and write checks based on the internal state
of the program.

Although it might be ¥ipothesized that acceptance tests in thevieegdlock struc-
ture should be based on the specification alone in ordepi Eiasing the formulator of
the test, our results indicate that théeetiveness of self checks can be inyed when
the specification-based checks are refined apareled by source code reading and a
thorough and systematic instrumentation of the progriarappears that it isary useful
for the instrumentor to actually see the code when writing self checks and to be able to
examine internal states of computations in the checks.
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Due To
Object Spec-pased Cogie Coo!e-based.btal
Design Reading Design
(SP) (CR) (CD)
Faults Detected 4 9 8 21
Effective Checks 4 9 21 A

Table 4: FRault Detection Classified by Instrumentaticechnique

Another vay of looking at the results of this study is to consider the number of
faults detected and introduced by the participamthle 5 shavs this information.

Already Knavn Faults OthefFaults
Present Detected Detected Added Fults
SP CR CD SP CR CD
3a 1
3b 4
3c
6a 2 1 1
6b 3 1
6c
8a 2
8b 2 1
8c 1 3
12a 1 1
12b 2 2
12¢c 1 1 2
14a
14b 2 4
14c
20a 1
20b 2 1 1 2
20c 1
23a 2 4
23b 2
23c
25a 3 1
25b 3 1 1
25¢
total 20 3 9 3 1 0 5 2

Table 5: Summary of &ult Detection

This data maés \ery clear the difculty of writing efective If checks. Of 20 previ-
ously knavn faults in the programs, only 12 were detected (the 15 detectaah Kaolts
in Table 5 include some multiple detections of the saau#)f and 6 of these were found
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by code reading alondt should be noted, lever, that the ersions used in thexperi-

ment are highly reliable (arverage of better than 99.9% success rate on theopieone

million executions), and manof the faults are quite subtleVe could find no particular

types of &ults that were easier to detect than oth€@sly 3 of the 18 detectedudlts

were found by more than one of the three participants instrumenting the same program.
Individual differences in ability appear to be important here.

One rather unusual case occurr€he of the ne faults detected by participant 8c
was detected quite by accideniThereis a previously unknavn fault in the program.
However, the checking code contains the samdtf Anerror message is printed because
the self-checking code uses afeliént algorithm than the original, and the Consistent
Comparison Problem arises causing the self check ter dibm the original by more
than the allwed real-number toleranceWe dscovered the ne fault while ealuating
the error messages printedjtht was entirely by chanceErroneous triggering of self
checks due to the Consistent Comparison Problem occurred in modules that did not con-
tain a Ault, and in that case the error message glassified as alse alarm (as discussed
above). We were unsure whether to classify this seemingly accidental error signal as the
result of an déctive dheck or not since both the original program computation and the
self check are erroneous and contain the samuk. fOurdecision vas to classify this
unusual case as arfegftive ®If check because it does signalaallt when adult does
exist, hut a reasonable gument could be made for the altermatiecision.

It is very interesting that the self checks detectedufts not preiously detected by
comparison of twenty-eightevsions of the programver a million inputs. The fact that
the self checks unegered nev faults &en though the programs were run on the same
inputs that did not reeal the fults through eting implies that self checking mayJea
adwantages er voting alone.To understand wi it is instructve © examine an xample
of one of the prdously undetectedalults.

Some algorithms are unstable under & @®nditions. Morespecifically seveal
mathematically alid formulae to compute the area of a triangle are not equally reliable
when implemented using finite precision arithmetit particular the use of Heros'for-
mula:

area=v/s*(s—a)*(s-b)*(s—c¢)
wherea, b, and c are the distances between the three points &@ + b + ¢)/2, fails in the
rare case when all the folling conditions are met simultaneously:

*  Three points are almost co-lineaut{mot eactly). s will then be a&tremely close to
one of the distances, sayso that(s- a) will be very small. The computer alue of
(s-a) will then be of relatiely poor accurag because of round-berrors (around
10'®in the hardware emplged in this &periment).

e The product of the rest of the terms(s-b)*(s-c), is large enough (approximately
10") to make rounding errors significant through multiplication (approximately
10712).

 The area formed by taking the square root is slightlgelathan the real number
comparison tolerance?® in our xample) so that the area is not considered zero.

Other formulas, for>ample
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X1Y2 + Xo¥3 + Xg¥Y1 ~ Y1 X2 ~ Yo X3 ~ Y3X1
2

wherex; andy; are the coordinates of the three points, did abtbiecause the potential
roundof errors cannot becomésignificant” due to the order of operationgwo of the
six previously unknavn faults detected uolved the use of Heromformula. Becausthe
source of the unreliability is in the order of computation and inherent in the formula,
relaxing the real number comparison tolerance will notgortethis problem.The fault in
Heron's formula was not detected during the pi@us executions because theting pro-
cedure compared the final resatily, whereas the self checlenfied the walidity of the
intermediate results as wellofFthe fev cases in which it arose, thaults did not déct
the correctness of the final outpuwiowever, under diferent circumstances the final out-
put would hare keen incorrectWe dd not include in this analysis phault for which we
could not find lgitimate inputs that auld have made the programsil.

Although nev faults were introduced through the self checks, this is &gt sur
prising. Itis knowvn that changing someone etsgogram is dificult and wheneer new
code is added to a program there is a possibility of introduaun¢sf All software fault
tolerance methods wolve ading additional code of one kind or another to the basic
application program.The major causes of thewdaults were an algorithmic error in a
redundant computation, use of an uninitializediable during instrumentation, a logic
error, use of Herors formula, infinite loops added during instrumentation, an out of
bounds array reference, etc.

The use of uninitializedariables occurred due to incomplete program instrumenta-
tion. A participant wuld declare a temporaranable to hold an intermediatalue dur
ing the computation, Ui fail to assign aailue on some path through the computatian.
more rigorous testing procedure for the assertions may diected theseatilts earlier
The instrumentedersions were not run on matest cases before beingakiated. In
most realistic situations, assertions or self cheaksldavbe added before rigorous testing
of the program was performed instead of afteawd as in our casdt is significant, hw-
eva, that may of the same types ofdlts were introduced during instrumentation as
were added during the original coding and thus presumably might also escape detection
during testing in the sameay the other ones did.

area=

Comparisons with afing

When making decisions about what type of error detection scheme to use, it is important
to have sme comparison dataln this study we compared the error detectionfef-
tiveness of general self checks and simpléng schemesThe faults detected through
code reading are counted as detected by self checks; code reading igrah pate of

the process of instrumenting progranidie faults detected through code readinguid
probably be fird in a realistic setting (instead of writing a check for it},the fult has

still been detectedIn order to &oid confusion, we refer to the entire process as instru-
mentation of the codeAlso, because the self-checKesftiveness had beenvestigated
using the inputs on which we kmehat \oting detecteddilures, weran the programs
using both self checks anating on an additional 100,000 randomly-generated inputs
and did the comparisons only for thesa/meputs.
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Care must be tah in ealuating the resulting data since thissvnot part of the
original experimental design, and th&periment as designed has limitations in the com-
parability of the data.For example, there are 3 instrumentations of eaaision whereas
there are 21 diérent \oting triples and 7 ating pairs that could possibly detect thelfs
in a particular ersion. Furthermoregs discussed belp “coverage’ (the probability of
detecting adult given that it produces an error and that there is a check in place for that
error) is dificult to factor out so that comparing the absolute numbeaudts detected is
somevhat misleading.However, the data does suggest sonmgdtheses that might be
explored either theoretically or through further controlled empiricauation.

There are mantypes of wting schemes possible andfelient decisions will dct
the outcome We mnsidered the alternaés and selected the one that appeared most rea-
sonable to us.The original LIP &periment [Knight and Leeson (1986a)] usedegtor
voting. Eachprogram produces a 15 by 15 Boolean areehs element Booleanector
and a single Boolean launch condition (a total of 241 outputs) for each set of ilmputs.
vector woting, an error is detected if yaiof the 241 results dér between theersions.
For example, if three &rsions preide the three results 110, 011, and 111 (where 1 stands
for a correct partial result and 0 stands for an incorrect partial result), this is counted as
three diferent answers and the triplailé with no answer

It has been suggested that bit-by-titing, where the answer is formed by deter
mining the majority of each indidual result, would hare improved the woting system
reliability of our programs [Elly et.al. (1986)]. Inthe abee example, each of the three
partial results has a majority of correct answers so the final answd e correct. In
bit-by-bit 3-way woting, it is impossible for theoting system to dil to produce an
answeyi.e., a majority alays eists among three Boolean resul#his is possible, ob-
ously, only because of the Boolean nature of each launch condilibe.launch condi-
tions were of the sort! There &ists at least one set of three conseeuthta points that
cannot all be contained within or on a circle of radius X.

In order to determine whether therasia significant diérence betweenector \ot-
ing and bit-by-bit wting for our problem, we performed each and compared the results.
There were 100,000 input case®aited, and there are 56 possiBlgersion combina-
tions of 8 programsTherefore, a total of 5,600,00@tes were tadn. Theresults are
shavn in Table 6 where a result is classified as Wrong if a majority of the tlersers
agree on a wrong answer and it is classified as No Answer if the #mssens all dis-
agree.

Bit-by-Bit Vector
Count Percent Count Percent
Correct 5599414 99.9895| 5599414  99.9895
Wrong 586 | 0.0105 562| 0.0100
No Answer 0 0.0 24 0.0004

Table 6. Three-\érsion \bting

For this data there is no @&rence in the resulting probability of correct answer between
bit-by-bit and ector wting. The24 cases where there hadypoesly been no agreement
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all became wrong answers using bit-by-lmting. \ector wting is safer because it is less
likely to allov a wrong answer to go undetected aéaition time (no answer is usually
safer than a wrong answer), and we use majoeityor \oting for the rest of this paper

There were 2,800,002-version wtes (28 combinations of 2 programse@uting
100,000 input cases)lable 7 shavs the results where a wrong answer resylts if bekh v
sions are identically wrong and no answer results if tleevevsions disagree Wrong
answers are identified by usi®gversion wting (the 8 ersions plus the goldevsion).
Faults that cause commorailures in all 9 ersions will, of course, not fa been
detected. Asxpected, the probability of a correct answer Zerersion wting is lover
than for either 8-version system or a singlension run alone (sealle 8).

Count Percent
Correct 2796359 99.8700
Wrong 112 | 0.0040
No Answer 3529 0.1260

Table 7. Two-Version \6ting

The probability of producing a correct answer for theviadial programs is sk
in the Table 8 belar. The mean success probability for midual programs is 99.933%.

Version | Casefadled | Succes®ercentage
3 223 99.777
6 61 99.939
8 25 99.975
12 49 99.951
14 140 99.860
20 25 99.975
23 4 99.996
25 10 99.990

Table 8. Individual \ersion Performance

Table 9 contains the comparison data fault detection using oting and
instrumentation. The preiously unknevn faults detected by instrumentation are
labelled 6.4, 8.3, 12.3, 12.4, 20.3, and 25.4.

Tln 6 out of the 3529 No Answer cases able 7, the grsions returned twdistinct answers which were both
wrong.

iThe data here dirs slightly from that in @ble 5 because a f#ifent set of input casesaw used.
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Faults | \Wting | Instrumentatiorn
3.1 v no
3.2 yes no
3.3 yes yes
3.4 yes no
6.1 yes yes
6.2 yes yes
6.3 yes no
6.4 no yes
8.1 yes yes
8.2 yes yes
8.3 no yes
12.1 yes yes
12.2 yes no
12.3 no yes
12.4 no yes
14.1 yes no
14.2 yes no
20.1 yes no
20.2 no yes
20.3 no yes
23.1 yes yes
23.2 yes yes
25.1 no yes
25.2 yes yes
25.3 yes yes
254 no yes
total 18 18

Table 9: Comparison ofdult Detection

In Table 9, adult is counted as detected byting if an error caused by thault is
detected at least onceuf(mot necessarilyvery time it occurs) and by at least one of the
voting triples or duples (X not necessarily by all of them)n fact, as discussed balp
voting was only partially déctive & detecting and tolerating errors for the majority of
faults and for the majority of triples and dupleBhe instrumentation is considered to
have detected adult if at least one of the three instrumentations detected an error result-
ing from the &ult. Wth this definition of &ult detection, eting detected 8alults that
were not detected through instrumentation, the instrumentation detectgits&Hat were
not detected byating, and 10dults were detected by botNoting and instrumentation
detected the same number afdilts in total.

Another type of comparison is to consider thieaiveness or ‘toverage’ of the
technique in detectingatilts in terms of he often a ault was detected gen that it
caused an error and a potentiallieefive dheck was made.Tables 10a and 10b siWwahe
rates of detection for each of thetwg triples and duplesThe only fults included in
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the tables are those that were detecteddbyg on the original one million input cases;
the additional dults detected by assertions alone are not included yasvthed not gen-
erate ay entries in the table.The second m shows the number ofdilures caused by
each &ult for the 100,000 input caseseeuted. Eaclrow in the table belv this rav
then shaws the number of times the triple detected thedarés. o faults (i.e., 20.2
and 25.1) that causedilures on the original 1,000,000 input cases did not caiiseeis
for these 100,000 input cases (although the assertions detected them begadgk the
cause errors in the internal state of the prograijiot in the table means that that posi-
tion is irrelevant, i.e., the &ult was in a program thatas not one of the members of the
triple. An asterisk net to a number indicates that not all of tlures were detected.
The bottom line gies the percentage of time warriple or duple detected that particular
fault given that it caused an errofFor triples, this ranged from 29% to 100%, with an
aveaage of 0.68 and a standard/@gion of 0.32. For 2-version wting, the results are a
little better (as wuld be e@pected) ht the coerage still aeraged only 0.82 (standard
deviation of 0.19) with seeral versions as l@ as 0.57.

This contrasts with instrumented self checks where if thasearxcheck in place that
eve detected an error caused byaallf, then italwaysdetected the errors caused by that
fault. Thiswas true for both the one hundred thousand input casesiged in this part of
the periment and for the pveus one million test casesaept for \ersion 23a where
the participant used-version wting to implement the self checking as discussed earlier
For these particular 100,000 input casestsion 23 &iled only twice and both were
detected by theoting-check inserted by participant 23dowever, on the pr@ious one
million input cases, theoting-check by 23a as efective for only 13 out of 80dilures.

It appears that the self checks are highfeaive because thecheck the internal
state and, therefore, consistently find the errong éhe capable of detectinglhe \oting
procedure only checks the results of computations and not the internal cogsitidrec
intermediate results and other parts of the internal stHterefore wting is subject to
correlated ilures in the multiple ersions.

Using cross-check points iroting to compare the results of computations internal
to the program (and not just the final output) cannot be used ®telproblem as long
as truly dverse algorithms are used in the independemnsions. Diersity implies that
the internal states of the programs will not be identitfahey are identical, then there is
no diversity and no potentialllt tolerance.Some comparison of intermediate results is,
of course, possible,ub the only vay to guarantee this comparability is to decrease the
diversity by requiring the programmers to use similar desigasaimes, and algorithms.
At the treme, this results in totally specified and thus identieedions.

On the other hand, placement of the self checks is critical (as noteg) bboause
they are not placed just at the end or in synchronized locations, astimgywhere all
paths are guaranteed to reach the®a. potentially dkctive checks may be bypassed.
Furthermore, although thefeftive dhecks were 100% fefctive, only 3 of the 18 &ults
found were detected by more than one of the three instrumentations that ceulolina
it. Of course, more than one person could instrument the same program.our data,
it appears thab@mining a team approach to instrumentatiauld be vorthwhile.

Another interesting thing to notice is thaufts 20.2 and 25.1 did not causdure
during eecution of aly of the 100,000 input cases (althoughytlidd on the preious
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million input cases).The self checks detected theaalfs (and six others thabdting did

not detect een on the million input cases) due to thect that thg could check the inter

nal state of intermediate computationgting could not detect thesaults for this par

ticular input data because there were no erroneous outpugstesting evironment, self
checks may finddults that back-to-back testing (i.e., using the comparison of the results
of multiple \versions as a test oracle) [Bishetpal. (1985), Brilliant (1987), Ramamoosth
et.al.(1981), Saglietti and Ehrenlger (1986)] does not findThis is consistent with our
results for another empirical study that included a comparison of standard testing meth-
ods and back-to-back testing [Shimeall anddsen (1988)].

Conclusions

Almost no empirical dataxests on the déctiveness of using self-checks to detect
errors at run-time, and no pieus studies hae mmpared error detection usmgersion
voting with self-checks.Several interesting results were obtained from this study that
should guide us and others in thaleation of current proposals foadilt tolerance and
error detection, in the design ofmenethodologies, and in the design of furtheperi-
ments.

The first goal of this>geriment vas to instrument the programs with self-checks
and determine o effective these checks were in detecting errors when the programs
were run on data thatas knevn to male them fil. We found that detecting errors is
quite dificult in programs whose reliability is already relaly high and thedults \ery
subtle. Outbf a possible 60 kvan faults that could hee been detected, the participants
detected only 6 by specification-based and code-based checks and another 9 by code
reading while writing the code-based checl@nly 11 of the 24 participants wrote
checks that detecteddlts and there &s little averlap in the &ults detected which implies
that there are great inddlual differences in the ability of indiduals to design é&ctive
checks. Thissuggests that more training atperience might be helpfulOur partici-
pants had little of either although all weeariliar with the use of pre- and post-condi-
tions and assertions to formallgnfy programs.The data suggests that it might also be
interesting to ivestigate the use of teams to instrument code.

Placement of self checks appeared to cause probl8ome checks that mightve
been diective failed to detect aalult because tlyavere badly placedThis implies either
a reed for better decision-making and rules for placing checks or perhégremtifsoft-
ware design technigues to neagacement easier

Surprisingly the self-checks detected 6 yiisly unknaevn faults that had not been
detected by28-version wting on one million randomly-generated input casé&his
should gve pause to those with high confidence that alils hae been eliminated from
a oomplex program. Thefact that the self checks unawed nev faults that were not
detected by eting on the same input cases implies that self-checking nvayirhportant
adwantages er voting. In particulay comparing only the final results of a program or
even the final results of a computation within a program may be Iésstieé in finding
errors than erifying the \alidity of the intermediate results and structures of the program.
That is, self-checks aloverification of more than just the final results of computations.
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Specification-based checks alone were not festefe & wsing them together with
code-based checksThis agin was surprising as it conflicts with preus typotheses,
and it implies thatdult tolerance may be enhanced if the alternate blocks in @ergco
block scheme, forxample, are also augmented with self checks along with the usual
acceptance tesfThis appears to be true also for puotig systems.A combination of
fault-tolerance techniques may be morkeetive than ay one alone.More information
is needed on o best to intgrate these diérent proposalsin most situations, it will be
impractical to attempt to completely implement multipdelf tolerance schemesvgn
the relatvely large cost of most of these techniqu@herefore, there needs to be some
determination of what are the most coséetive techniques to use.

The comparison data between self checking astthy needs to be treated with
some care.However, the results are interesting and suggest that further study might be
fruitful. Although there were only three attempts to write self checks to detect a particu-
lar fault compared to the 2loting triples and 7 oting duples that could possibly find
each &ult, self checking found as mafaults as oting. Whencomparing ceerage, self
checks were much morefedtive & finding errors gien that the error occurred and a
potentially efective check was in place for it.For our data, dective lf checks were
100% efective whereas wting was found to be only partiallyfettive a hrge percentage
of the time. The same number o&dlts were detected by each of these techniques that
were not detected by the other implying thaytae not substitutes for each other

Finally, faults were detected by self-checks that did not caikeds for the indi-
vidual versions (and thus were not detected bing even though two had been detected
by woting on diferent input data).This has important implications for testinBack-to-
back testing has been suggested as a methoddoutang lage amounts of test data by
using wting as the test oraclédowever, our data implies that back-to-back testing alone
may not find the samaudlts as other types of testing thatdlwve instrumenting the code
with checks on the internal state.

Further empirical studies anaperiments are needed before it will be possible to
make informed choices amongudlt detection techniqued/ery little empirical eidence
is available. Thisexperiment, besides substantiating some anticipated results and casting
doubt on some pw@usly-suggestedypotheses, prades information that can help to
focus future dbrts to improve fault tolerance and error detection techniques and to
design future xperiments. Potentiallyseful future directions include the foNmg:

[1] Theprograms were instrumented with self checks in our study by participants who
did not write the original codelt would be interesting to compare this with instru-
mentation by the original programmehk reasonable gument could be made both
ways. The original programmerwho presumably understands the code hetter
might introduce ferer nev faults and might be better able to place the cheCks.
the other hand, separate instrumentors might be maely lik detect dults since
they provide a nev view of the problem.More comparatie data is needed herdt
is interesting that the original programmers, in a questionnaiyestioenitted with
their programs, were as#t what vas the probability of residual errors in their pro-
grams, and if there were errors, what parts of the program might contain them.
Most were confident that there were no residual errors and were alwagst al
wrong when guessing about wherg arrors might be located.



-21-

[2] Anotherinteresting question is whether thdeetiveness of the code readingasv
influenced by thedct that the participants read the code with the goal of writing self

checks. Itwould be interesting to compare this with more standard code reading
stratgies.

[3] The process of writing self checks iswbusly difficult. However, there may be
ways to pravide help with this procesd-or example, Le&eson and Shimeall (1983)
suggest that safety analysis using safevhult trees [Leeson and Harmey (1983)]
can be used to determine the content and the placement of the most important self
checks. Othetypes of application or program analysis may also be of assistance
including dewing the assertions or self-checks from formal specifications. Finally
empirical data about commomuit types may be important in learningwh®o
instrument code with self checkall of these diferent stratgies need to bexperi-
mentally \alidated and compared.
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