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Abstract
A limiting factor in the industrial acceptance of formal
specifications is their readability, particularly for large,
complex engineering systems. We hypothesize that
multiple visualizations generated from a common model
will improve the requirements creation, reviewing and
understanding process. Visual representations, when
effective, provide cognitive support by highlighting the
most relevant interactions and aspects of a specification
for a particular use. In this paper, we propose a
taxonomy and some preliminary principles for designing
visual representations of formal specifications. The
taxonomy and principles are illustrated by sample
visualizations we created while trying to understand a
formal specification of the MD-11 Flight Management
System.
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1. Introduction

Formal specification languages have not been widely used
in industry. One limiting factor is their readability,
particularly for large, complex software systems.
Requirements act as a communication medium between
customers, users, and implementers. Promoting a
common understanding of the required functionality of
the system is key to domain experts finding errors and
validating that the specifications describe a system that
will be useful and safe in operation.

Reviewability is especially important in real-time
software used to control some physical system where the
requirements must reflect externally derived properties of
the system being controlled. Validating software
behavioral requirements in such systems is a necessarily
multidisciplinary problem involving a large number of
engineering disciplines. While automated analysis tools
can find some types of errors, detecting many of the most
serious semantic errors (e.g., will the software advance
the throttle under unsafe conditions or will the software
behavior lead to human errors in controlling the aircraft)
requires human expertise.

Size is a critical factor in reviewability. The discrete
mode logic for an aircraft flight management system may
require hundreds (sometimes thousands) of pages of
formal logic to specify in adequate detail. The review of
such specifications by domain experts or even by those
who are expert in the formal notation itself is a daunting
task.

Our experience in trying to build and read very large
specifications for systems such as flight management,
collision avoidance, and air traffic control has shown that
even with a formal notation designed with readability in
mind, the complexity of the behavior being described
overwhelms the reader. Not only is it difficult to provide
notations that can be reviewed by people with different
backgrounds and expertise, but for complex systems,
most users (even the authors of the specification) need
help in navigating and understanding them.

Visualization is often seen as a way to help people gain
insight from large and complex data sets. Indeed, people
have used external aids for centuries to amplify cognition
(e.g. paper, slide rule, diagrams, charts) [CM00]. We
believe that the use of computer supported, interactive,
visual representations of requirements specifications will
help engineers create, review and understand formal
specifications. Although graphical notations are often
used for presenting formal specifications, we describe
how more sophisticated interactive techniques can help
users navigate and comprehend the specifications.

Unfortunately, there are few principles to follow when
designing interactive or even non-interactive graphical
and symbolic notations for formal software requirements
specifications or for visualizations of these specifications.
This paper provides some foundational ideas upon which
further research could be based. The principles were
derived by considering principles developed for other
types of software visualization (such as visual
programming and program comprehension tools) as well
as from our own experiences in creating specification
languages, in building large complex requirements
specifications, and in conducting experiments on
specification language design [ZLL02] and on
visualization [SWF96]. The resulting set of design
principles can be used to guide the design of new



languages and visualization tools and to assist in critically
evaluating them.

We illustrate the taxonomy and principles using an
example specification of the annunciation process of the
vertical guidance module of the MD-11 Flight
Management System. Vertical guidance is usually the
most complex function in a FMS, and our complete
formal SpecTRM-RL [Lev00b] specification of the FMS
logic is over 500 pages long. The principles and examples
presented in this paper derive from the attempts to
understand this system by graduate students who had not
written it (and even by those who had).

2. Background and related research

Research into the impact of visualizations (diagrams) on
cognition was pioneered by Larkin and Simon [LS87].
Their work has become the foundation of most of today's
research efforts on this topic. Although there is a large
literature on visualization, the majority of it involves
visualization of data, usually scientific data, and not
visualization of systems or processes.

The way that information is displayed can facilitate or
distract from learning and understanding. Effective
visualizations will help convey meaning and explain
concepts or designs. Visualizations of complex
requirements specifications can potentially reduce
cognitive load by highlighting the relevant interactions
and behavior of the specified system.

There are many ways that representations can affect and
alter task performance. They can draw attention to certain
aspects of the information that support problem solving.
Good representations can also shift the cognitive load –
balancing the use of mental resources, shifting attention,
and creating perceptual cues. Likewise, poor
representations create additional tasks or make the tasks
more difficult to perform. Casner and Larkin [CL89]
have suggested that good representations reduce the
amount of cognitive processing in two ways: (1) they
allow users to substitute less demanding visual operators
for more complex logical operators, and (2) they reduce
the search time for the information required to perform a
task.

There has been a lot of research in visual programming
languages and on visualizations to support program
comprehension. Fitter and Green [FG79] elucidated five
principles for effective visualization design that are
potentially applicable to formal specifications. For
example, the most usable notations contain both symbolic
and perceptual elements. In some cases they are
independent and in others they are logically redundant.
An example is the use of indenting and other special cues
to make programs more legible or the use of layout

conventions by mathematicians to make algebra and
predicate calculus more readable. These perceptual cues
have been called secondary notation, i.e., they convey
additional meaning above and beyond the “official
semantics” of the specification language or they
disambiguate syntactic structure in order to assist in
interpreting semantics.

Another useful principle from programming language
design research is that of using redundant recoding
[FG79]. An example is specifying the same information
in two different ways, each of which simplifies different
cognitive tasks. Redundant recoding may also be used to
emphasize certain information. For example, when a
piece of information is especially important to a user's
task, or if it is highly critical to the overall structure of the
information, it is helpful to present a high level view in a
perceptual form, while simultaneously presenting the
intricate details in symbolic notation.

Blackwell et al. [BWG99] and Petre [Pet95] have
proposed some cognitive dimensions for visual language
design. Example dimensions are closeness of mapping,
consistency, and visibility. Storey et al. developed a
cognitive framework of design elements to be considered
during the design of a software visualization tool
[SFM99]. This framework contains two sets of factors to
support the variety of comprehension strategies used by
programmers during software exploration and to reduce
cognitive overhead as they explore and try to understand
the software.

Some of the research on human-computer interaction is
also applicable to our problem. Designers of interfaces,
like those of requirements specifications, need to select
the appropriate level of abstraction, determine how to
show relationships, provide context for the individual bits
of information, and build conceptual spaces using frames
of reference [RW95].

In this paper we create a taxonomy for visualizations of
formal requirements specifications and propose a
preliminary set of principles for creating effective
visualizations of formal requirements specifications. The
principles are adapted from what has been learned in
visual programming language and human-machine
interface design, but we have found that effective
visualizations to assist in designing a solution to a
problem (e.g., programming or manipulating a computer
interface to command a desired behavior) are very
different than those useful for specifying the problem. In
other words, describing “how” differs significantly from
describing “what”. As a result, we cannot simply apply
the same principles and research results. Instead, our first
goal is to create an initial framework and some potential
hypotheses upon which research in requirements



visualization can be based. The hypotheses will then need
to be validated using experimentation with human
subjects.

The next section presents a set of dimensions upon which
requirements visualizations can be evaluated and sample
visualizations created using the MD-11 Flight
Management System (FMS) specification. Drawing both
on principles for visualizations in other fields and on what
we learned in our MD-11 case study, Section 4 presents
some principles for evaluating visualizations for formal
requirements specifications. Section 5 concludes the
paper and outlines future work.

3. A taxonomy of visualizations for formal
requirements specifications

We start by presenting a taxonomy or set of six
dimensions upon which visualizations can be classified:

1. Scope
The visualization may focus on the structure of the
model or the goal may be to visualize the behavior
of the specified system.

2. Content
The visualization may include the entire model,
perhaps using a different notation (e.g., symbolic,
tabular, or graphical), or information may be elided.
Elision is the ability to temporarily hide parts of the
specification that are not of immediate interest.
When information is elided, it may still be useful to
retain some of the omitted information as context,
but it is grayed out or somehow denoted as
background rather than foreground. Alternatively,
the visualization may not provide context beyond
the information provided in the visualization itself.

3. Selection Strategy
The visualization may be created through slicing the
basic formal model, i.e., a selection based on
dependences between the parts of the model or by
filtering, i.e., eliding parts of the model based on a
common property or attribute.

4. Annotation Support
The visualization may include only information
provided in the original specification or the user
may be able to add extra domain knowledge through
annotation.

5. Support for Alternative Search Strategies (Flexibility)
A visualization may be provided that supports a
particular search or problem-solving strategy
without any options for the user. Alternatively, the
user may be able to specify the search strategy to be
supported by the visualization. A third option is to
provide interactive visualizations where the user can

change the search strategy while navigating through
the model.

6. Static/Dynamic
A static visualization is a snapshot of the specified
behavior of the system at a particular time or a static
description of all possible behavior. Dynamic
visualizations or animations show the specified
behavior of the system as it changes over time.

Any specific visualization can be categorized with respect
to each of these dimensions. For example, an animation
or dynamic visualization may highlight particular aspects
of the behavior, which is a form of elision that retains
context (i.e., separates the visualization into
foreground/background in order to draw the reviewers
attention to particular parts of the behavior) or it may
completely omit parts of the specified “machine”.

Figures 1 through 6 show some example visualizations
created for a formal specification of the MD-11 FMS.
Two of us (Dulac and Viguier) inherited this SpecTRM-
RL specification written by former students of Leveson.
Dulac and Viguier created several visualizations to help in
understanding this large and complex system.

A state machine model is used in these examples because
we have found this type of formal model easiest for
engineers to use for these types of control systems.
Different underlying models may be more appropriate for
other applications, e.g., models based on set theory may
well be the best for representing information systems. The
same types of visualization dimensions (and the principles
presented in the next section) should apply to these other
types of formal specification languages, but the form of
appropriate visualizations may differ.

Figure 1 shows a visualization created to help understand
the many dependencies between the parts of the
specification. In terms of scope, this visualization
represents only a small part of the functionality of the
FMS (the mode annunciation of the vertical guidance
module) but it depicts all the dependencies for that
subfunction. In this representation, the arrows represent
dependency relationships; an arrow pointing from A to B,
for example, means that the value of element B depends
directly on the value of element A. As can be seen in
Figure 1, there is a high degree of coupling between the
elements of the system. Although the details are hard to
see (the user would have to zoom in to read them), this
picture provides a “gestalt” overview of the size and
complexity of the specification structure. The
visualization also supports different ways to navigate
through the specification by following dependencies and
viewing detail if desired.



With respect to the classification presented above, the
visualization in Figure 1 shows a static snapshot of the
structure (rather than the behavior) of a subfunction. The
entire dependency structure is shown, but it represents
only a small part of the specification. It has not been
annotated with additional information, and the user can
search by following dependencies and zoom in to view
further details.

Figure 2 shows an example of a further slicing on the
dependency relationships that were shown in Figure 1. In
this case, the slice is constructed by displaying only the
input-to-output paths going through a selected element.
The element chosen for Figure 2 is the state variable FMA
Speed Magenta-White discrete. All the elements that
have no effect on the value or that are not affected by the
value of the selected element are hidden. The fact that
details have been elided is indicated by the light gray
input-output-mappings shown on the right hand side of
the visualization. This perceptual cue serves to remind
the user that details have been hidden from the view and
also provides some context for the visible parts.

Figure 3 provides a different type of overview: all the
state variables and the modes in the specification. This
overview spans the entire specification, but provides no
information about dependencies. In this visualization, all
details about transition conditions are elided based on
filtering rather than slicing. The filtering here is done by
type but other kinds of filtering are possible.

Figure 4 is an example of a visualization in which the
information in the original specification language is
redundantly recoded to assist in answering different types
of questions. Like many of the modern specification
languages utilizing state machines, SpecTRM-RL uses a
metalanguage to describe the states and transitions---
writing down the entire state machine would be infeasible
for complex systems (our model of an aircraft collision
avoidance system has 1040 states). Users of such
specifications, however, find it very helpful if they can
see at least part of the flattened state machine (diagram of
states and transitions using the traditional circles and
arrows). Figure 4a shows an example for the state
variable Vertical Cruise Sequence. Clicking on one of the
arrows displays the corresponding transition condition
(which for the most part are too large to write on the
arrows themselves).

The information in this visualization is the same as that in
the original notation, but recoded to make it easier for the
user to process. Note, however, the difference in scope
from Figure 1, which focuses on the structure of the
model. Figure 4 instead provides information about the
behavior described by the specification.

Figure 4b shows a recoding of the same information in a
form more suitable to answer a different type of question.
This visualization is essentially the inverse of 4a, i.e., the
impossible transitions. For many real systems, every state
is connected to almost every other state, and providing
information about the transitions that do not exist is more
relevant. In addition, this visualization is useful in
checking whether undesired transitions have been
correctly omitted from the specified behavior.

The final two visualization examples were created to help
us understand the logic behind the most complex
transitions in the part of the MD-11 specification being
considered. We found that it was easier to answer
particular questions if the set of conditions in the
transitions (which can be very large) are shown in
sequence rather than in parallel. A decision tree for each
state variable seemed most natural for us to accomplish
this goal. Each node of the decision tree is a question and
each branch is a decision (see Figure 5).

From left to right in Figure 5, each column represents one
of the decisions that must be made to determine whether
the transition will be taken, based on the state or value of
the component of the model shown at the top of the
column. The final states to which transitions can be made
appear at the right end of each path.

Although this basic recoding does not by itself bring
much insight compared to the original AND/OR tables
from which it was generated, we found that adding
annotations or informal questions at the top of each
column was very useful. The annotations helped the users
of the visualization to understand the reasoning involved
in the decisions underlying the contents of the transition
conditions. This tree is equivalent to five pages of text
and six AND/OR tables. Showing the information
together in one concise notation helped us to see
similarities and differences (that is, to make comparisons)
and to detect omissions.

Another important issue is the ordering of the questions
(nodes in the tree). Although algorithms exist to
minimize the size of the tree, the resulting ordering may
interfere with the cognitive processing of the information
in the tree. For example, it may be important to answer
one question before another because it is the most
important for a certain task or for answering specific
questions about the specification of the state transitions.
Thus, the user should be able to specify the ordering or to
change it dynamically. The latter is an example of
dimension 5 above labeled Supporting Alternative
Problem Solving Strategies.
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Figure 1. Visualization environment of the MD-11 vertical guidance annunciation process based on 
dependency relationships between specification elements. 
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Vertical Cruise Sequence Vertical Cruise Sequence

Figure 3. Overview visualization of the MD-11 vertical guidance system based on model behavior.  
The state variables and modes are displayed. 

Figure 4. An example of state machine a) transition diagram and b) inverse transition diagram 
taken from the MD-11 vertical guidance specification. This state variable describes the vertical 

attitude of the aircraft during cruise. 
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Figure 5. An example of Questions-based Decision Tree taken from the MD-11 Vertical Guidance 
Specification. This state variable indicates which one of the five possible scenarios for extending 

airbrakes is active. 
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Figure 6. An example of sliced Decision Tree taken from the MD-11 Vertical Guidance Specification. 
This state variable indicates whether the pilot should add or remove drag by extending or retracting 

airbrakes. The reduction scenario considers only the case when the aircraft is above its nominal 
descent path (darkened column). 



This visualization becomes particularly interesting when
combined with Heimdahl and Whalen’s behavioral
specification slicing [HW97]. In many cases, applying a
selection strategy dramatically reduces the size of the tree.
Figure 6 shows an example of this recoding into a
decision tree using annotation and slicing.

The visualization might also maintain context information
by providing perceptual cues where some of the
information is foreground while the rest is context.
Figure 6 shows a slice on the question of what happens
when the aircraft is above its normal trajectory. The
column involved is darkened and the many branches of
the tree that are now inaccessible are grayed out and
compressed. Questions that become irrelevant are also
moved to the background shading. Thus the context is
preserved while the focus is put on the paths that are still
possible under the given scenario.

4. Principles for evaluating requirements
visualizations

Not all visualizations are useful – sometimes they may
even be misleading. We need criteria for evaluating
potential visualizations and for creating effective ones.
We adapted principles from visual programming and
human-computer interaction research, and added some
others based on our experiences and previous
experiments. Of course, these principles will have to be
evaluated formally, but they can serve as a starting place.

1) Minimize semantic distance

Semantic distance is a concept devised for human-
computer interface design to describe the distance
between the user’s model of how the system works and
the model of the system presented by the user interface
[HHN86]. In the context of visualizing formal
specifications, semantic distance is the distance between
the model in the system specification and the mental
model of the system in the mind of the users of the
specification. We hypothesize that readability,
reviewability, and writeability will be enhanced if
visualizations are provided that minimize semantic
distance. Leveson has found informally that reducing the
semantic distance between standard engineering models
of complex systems and formal specification notations
can increase acceptability and usability of formal
specification languages among people in industry who
previously rejected out of hand the use of such
specification languages. As an example, the formal model
of TCAS II (a collision avoidance system for commercial
aircraft), written with Leveson’s modeling language, has
become the official specification of this system [Lev00a].

In our experiment on readability of various notational
features, we compared the specification of the conditions
on state transitions using text, tables, graphical logic
gates, and propositional logic. Every computer science
student in the experiment commented on the difficulty of
using the logic gate notation while the engineering
students were mixed [ZLL02]. But similarity to standard
notations is not the only relevant criterion, as every
participant in the experiment preferred the tables and
made the fewest errors in using them. The propositional
logic notation ranked at the bottom for both of these
criteria. These results confirm our industrial experiences.

2) Match the task being performed

Gilmore and Green's basic match/mismatch hypothesis
states that problem-solving performance depends on
whether the structure of a problem is matched by the
structure of a notation [Gre77]. Applying this hypothesis
to visualization implies that the most effective
visualizations of requirements specifications will be those
that most closely match the problem being solved or task
of the specification user. The goal is to match the task to
be performed with a visualization that minimizes the
amount of cognitive processing required to perform the
task.

3) Support the most difficult mental tasks [FG79]

Some tasks that use formal specifications will be more
difficult than others in terms of the number and difficulty
of the cognitive processing necessary to perform those
tasks. The most useful visualizations in this context will
obviously support the hardest tasks and not simply those
that are easiest to create or are appealing to the
visualization tool builder. This principle implies that the
first step in creating useful visualizations is to determine
who the users will be, to perform a task analysis of their
potential uses of the visualization, and to analyze the
difficulty of performing the task without a special
visualization of the formal model.

4) Highlight hidden dependencies and provide context
when needed [GB98]

Any notation makes some dependencies clear while
obscuring others. These hidden dependencies may or
may not be important in performing a particular task. If
the dependencies are relevant to a user, then
visualizations should be provided that perceptually
highlight those dependencies. For example, some formal
specification languages based on state machines organize
the specification in such a way that it is easy to determine
the previous states but not the potential states that follow
the current state and vice versa. A good representation



will in general point out dependencies or show causal
relationships between different automation behaviors. In
addition, if only one small part of a specification is being
displayed, then context for the rest of the specification
may have to be provided (if the context is required for the
task at hand).

5) Support top-down review

Graphical overviews of the entire specification can be
very powerful. During the periodic reviews by domain
experts of a formal specification of a collision avoidance
system Leveson provided for the FAA, the reviewers
would spend hours reviewing and discussing the graphical
overview of the state variables and state values used in the
specification without referring to any information about
the conditions under which the state values were selected
(the conditions on the transitions between the states),
which were not visible in the graphical overview. They
preferred starting the review using that overview before
delving down into the details of the transitions even
though all the information in the overview could be
deduced from the structure and content of the rest of the
specification. This is an example of the gestalt effect in
cognitive psychology in which providing an overview
makes overall structure or relationships visible or clearer
[Pet95].

6) Support alternative problem-solving strategies

A principle of cognitive psychology is that the reasoning
paradigm is distinct from the representation paradigm.
"The cost of reasoning about a particular representation
may vary, depending on how the programmer's reasoning
shifts" [BWG99]. Therefore, the representation may need
to change as the user’s reasoning process shifts. In
addition, different people will employ different problem-
solving strategies for the same problem. Experts are more
likely than novices to change strategies while problem
solving and to exhibit flexibility in their strategies [Pet95,
SWF96]. Supporting expert use of formal requirements
specifications with visualization will require supporting
flexible search strategies and the ability to navigate
between abstract and detailed views, as well as within
detailed views. This principle emphasizes the fact that
there will not be a fixed set of visualizations that are best
for all people solving the same problem or performing the
same tasks.

7) Show roles being played

Visualizations should provide insight into the role being
played by a specific part of the specification. As an
example, consider the use of modes in control system
requirements specifications such as those used in
SpecTRM-RL [Lev00b].

Modes are a common way of abstracting and grouping
important subsets of behaviors of the overall system
behavior in control systems1. That is, modes divide the
overall system behavior into a set of disjoint behaviors,
e.g., the behavior of the flight management system during
landing mode or cruise mode. Modes are useful in
simplifying (reducing) the amount of specified behavior
that must be considered at any time. If there are multiple
independent mode classes, the system behavior may be
described in terms of the cross product of the individual
mode values. Basically modes allow us to divide the
behavior of the system into non-overlapping chunks that
are easier to process cognitively. Multiple modes allow
chunking on different dimensions. Visualizations for
control system requirements specifications should allow
identifying and highlighting the role of each mode in the
overall system behavior being described and the role
played by each of the components of the specification in a
particular mode. Similar advantages accrue to expressing
other important roles in requirements specifications.

8) Provide redundant encoding

Any representation makes some questions easier to
answer while making others harder [FG79]. For example,
a list or table showing classes taught, time, and professor
that is ordered by class number will make it easy to
answer questions about who is teaching a particular class,
but much more difficult to answer a question about which
classes a particular professor is teaching. A different
ordering will make the latter question easier to answer
than the former. By providing redundant but different
encoding of the same information about the required
behavior of the software, support can be provided for a
variety of user tasks.

9) Show side effects of changes

Visualizations should allow investigating the impact of a
change in one part of a specification on other parts
(showing the indirect effects of changes).

5. Discussion and future work

The principles above have been adapted from other fields
or introduced on the basis of our specification experience.
They should not be considered as a rigid and exhaustive
set of rules but as a starting point. They will need to be
refined and evaluated against a variety of visualizations.

1 Some designers of state-based software specification languages have
used the term “mode” as a synonym for state; therefore all states are
modes. We instead use the term mode in the engineering sense and as
originally defined by Ashby in systems theory [Ash56]



Although the visualizations described in the previous
section were useful in understanding the MD-11
specification, this anecdotal evidence does not prove their
usefulness to a broad class of users and specifications. We
are designing experiments with human subjects to
validate the application of the principles to formal
specifications.

Four of the visualizations presented in this paper have
already been partially evaluated through a limited pilot
user study. Although this evaluation was not specifically
focused on the principles of the previous section, the
purpose was to assess the hypotheses upon which the
design of the visualizations was based. This pilot study
will serve as a starting point for a more formal evaluation
of the principles.

A longer term research goal is to investigate how the use
of visualizations can assist in the synthesis of formal
specifications, not just understanding those that have
already been created. A third goal involves the use of
specifications in training those about a system design
(such as training air traffic controllers or pilots to interact
with and use advanced automation effectively). In
training, the goal is to provide visualizations that help
users create accurate and useful mental models of the
designed system behavior. Research will be required to
effectively achieve these goals.

6. Acknowledgements

This work has been supported by NSF ITR grant CCR-
0085829 and by a grant from the NASA Intelligent
Systems program (Human-Centered Computing) NCC2-
1223.

References

[Ash56] W.R. Ashby, “An Introduction to Cybernetics”, John
Wiley, 1956.

[BWG99]A.F. Blackwell, K.N. Whitley, J. Good, and M. Petre,
“Cognitive Factors in Programming with Diagrams”,
accepted for publication in Artificial Intelligence
Review.

[BG92] K. Brade, M. Guzdial, M. Steckel, and E. Soloway,
“Whorf: A Visualization Tool for Software
Maintenance”, presented at 1992 IEEE Workshop on
Visual Languages, Seattle, WA, 1992.

[Cas91] S. Casner, “A Task-Analytic Approach to the
Automated Design of Graphic Presentations”, ACM
Trans. on Graphics, 10:111-151, April 1991.

[CL89] S. Casner and J.H. Larkin, “Cognitive Efficiency
Considerations for Good Graphic Design”, 11th

Annual Conf. of the Cognitive Science Society,
August 1989.

[CM00] Readings in Information visualization, Using
Vision to Think, Edited by Card, MacKinlay and
Shneiderman, Morgan Kaufmann, 2000.

[FG79] M. Fitter and T.R.G. Green, “When do Diagrams
Make Good Programming Languages”, Int. Journal of
Man-Machine Studies, 11(2):235-261, March 1979.

[Gre77] T.R.G Green, “Conditional Programs Statements and
their Comprehensibility to Professional
Programmers”, Journal of Occupational Psychology,
50, 93-109, 1977

[HHN86] Edwin Hutchins, James Hollan, and Donald Norman,
Direct Manipulation Interfaces, in Donald Norman
and Stephen Draper, User Centered System Design,
1986, pp. 87-124

[HW97] M.P.E Heimdahl and M.W. Whalen, “Reduction and
Slicing of Hierarchical State Machines”, 5th ACM
SIGSOFT Symposium on the Foundations of
Software Engineering, September 1997.

[LS87] J.H. Larkin and H.A. Simon, “Why a Diagram is
(Sometimes) Worth Ten Thousand Words”, Cognitive
Science, 11(1):65-99, Jan-Mar 1987.

[Lev00a] N.G. Leveson, “Intent Specifications: An Approach to
Building Human-Centered Specifications”, IEEE
Trans. on Software Engineering, 2000.

[Lev00b] N.G. Leveson, "Completeness in Formal Specification
Language Design for Process Control Systems'',
Formal Methods in Software Practice, Portland, 2000.

[Pet95] M Petre, "Why Looking Isn't Always Seeing:
Readership Skills and Graphical Programming",
Comm. of the ACM, 38(6):33-44, June 1995.

[RW95] D.S. Ranson and D.D. Woods, "Making Automation
Activity Visible'', Technical Report 1995-03, Ohio-
State University, December 1995.

[SFM99] M.-A. Storey, F.D. Fracchia, and H.A. Muller,
"Cognitive Design Elements to Support the
Construction of a Mental Model during Software
Exploration", Journal of Software Systems, 44:171-
185, 1999.

[SWF96] M.-A. Storey, K. Wong, P. Fong, D. Hooper, K.
Hopkins, and H. A. Muller, “On Designing an
Experiment to Evaluate a Reverse Engineering Tool”,
Working Conference on Reverse Engineering,
Monterey, CA, 1996.

[GB98] Green T.R.G. and Blackwell, A.F., (1998) A tutorial
on cognitive dimensions,
http://www.cl.cam.ac.uk/users/afb21/publications/CDt
utSep98.pdf

[ZJ96] P. Zave and M. Jackson, "Where do Operations Come
From? A Multiparadigm Specification Technique",
IEEE Trans. on Software Engineering,,SE-22(7), July
1996.

[ZLL02] M.K. Zimmerman, K. Lundqvist, N.G. Leveson,
“Investigating the Readability of Formal
Requirements Specification Languages”, International
Conference on Software Engineering, May 2002.


