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Abstract  –  The flux of radiation particles encountered 
by  a  spacecraft  is  a  phenomenon  that  can  largely  be 
understood statistically.  However, the same cannot be said 
for the interactions of these particles with the spacecraft as 
they are far more challenging to grasp and guard against.    
The  ultimate  impact of  a  radiation  particle’s  interaction 
with  a  spacecraft  depends on  factors  that  often  extend 
beyond  the  purview  of  any  subject  matter  expert  and 
typically  cannot be  represented quantitatively  in  system-
level  trade  studies  without  the  acceptance  of  numerous 
assumptions.   In  this  paper,  many  of  the  assumptions 
associated with the probabilistic assessment of the system-
level effects of a specific type of radiation-induced hazard, a 
Multiple Bit Upset (MBU), are explored in light of MBU 
events  during  the  Gravity  Probe  B,  Cassini,  and  X-ray 
Timing  Explorer  missions.  These  events  highlight  key 
problems  in  using  probabilistic,  quantitative  analysis 
techniques  for  hazards  in  highly  complex  and  unique 
systems such as spacecraft.  As a result, a case is made for 
the use of system-level qualitative techniques for both the 
identification  of  potential  system-level  hazards  and  the 
justification of responses to them in the system design.

I.   INTRODUCTION

The complexity of a system is a major component of the 
overall risk that must be accepted by the system’s stakeholders. 
Systems  that  are  highly  complex  are  said  to  be  subject  to 
accidents that are “normal” not so much for their frequency, but 
for their inevitability (e.g. it is normal for a living thing to die, 
but it only does so once) [1].  Therefore, one might argue that 
the  emphasis  of  analyses for  complex system risk reduction 
should not be placed on determining if/when a system will fail, 
but how it might fail so that actions can be taken to mitigate the 
overall impacts of these failures.  However, the former method 
is widely favored partly because it is, when taken at face value, 
more prone to produce quantitative results that can be used in 
engineering trade studies.  

The  objective  of  this  paper  is  to  link  some  of  the 
difficulties in the statistical comparison of complex systems to 
fundamental principles of systems theory in order to inform the 
future analysis of risk in complex systems.  In the pages that 
follow,  some  of  the  problems  inherent  in  the  quantitative 
analysis  of  expected  incident/accident  frequency  will  be 
explored in case studies of Single Bit Upset (SBU) and Multiple 
Bit  Upset  (MBU) events on three separate  spacecraft:  X-ray 

Timing Explorer (XTE), Cassini, and Gravity Probe B (GP-B). 
These  events  demonstrate  how  the  implications  of  a 
phenomenon best characterized by its frequency when studied 
in isolation, change substantially when applied in the context of 
a complex system.   Accordingly, the lessons learned from these 
events  form the  basis  of  an  argument  presented  here  for  a 
stronger  role  of  qualitative  analysis  methods—aimed  at 
understanding,  preventing,  and/or  mitigating  the  effects  of 
failure modes—in complex system risk reduction. 

II. SYSTEMS THEORY

While  the  analysis  of  physical  and logical  systems  is  a 
fundamental element of engineering and science, many of the 
techniques employed have limited applicability within the full 
range of systems that must be studied.  According to systems 
theory, the applicability of various techniques is driven by the 
tendency of the analyzed system(s)  to exhibit:  1)  Organized 
Simplicity,  2)  Unorganized  Complexity,  or  3)  Organized 
Complexity [2].

In systems that exhibit  Organized Simplicity,  the precise 
nature of system component interactions is known and each can 
be  examined pairwise  so  that  the  number  of  interactions  to 
consider  together  is  limited  [2].   Systems  of  this  type  are 
commonly seen in the homework assignments and exams given 
in subjects such as mechanics because simplifying assumptions 
can be applied to their study to produce analytic solutions that 
approximate observable behavior [2].  For example, while the 
n-body problem in celestial mechanics presents 2n equations to 
solve, there is a structure to the interactions that allow analysts 
to reduce the total number of equations that they must consider 
[2].  Since the interactions between the bodies are similar in 
nature  but  not  necessarily  importance  (e.g.  the  Sun  is  the 
dominant body in our Solar System), it is possible to selectively 
analyze  a  few  bodies  of  interest  to  reduce  the  number  of 
equations to  a  manageable  figure  and produce a  reasonably 
accurate result [2]. The tradeoff in applying these simplifying 
assumptions  is  that  some  of  the  accuracy  of  the  results  is 
sacrificed and the scope of the analysis is narrowed.  In systems 
exhibiting  Organized  Simplicity these  simplifications  do  not 
sufficiently compromise the usefulness of the information to be 
obtained;  the  same,  however,  cannot  be  said  for  systems 
exhibiting Unorganized Complexity and Organized Complexity.

Systems  exhibiting  Unorganized  Complexity lack  an 
underlying structure that allows reductionism to be effective. 
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These systems are complex, but they are regular and random 
enough  in  their  behavior  to  be  studied  statistically  [2]. 
Hypothetically speaking, if one were to analyze a system of air 
molecules  in  a  bottle  as  an  n-body problem,  that  individual 
would be left with 2n equations to solve with n being on the 
order of 1023 before the application of simplifying assumptions 
[2].   This  represents  far  too  many  equations  to  solve  and 
unfortunately,  unlike  in  the  study  of  celestial  bodies,  the 
selective analysis  of a  few bodies  is  not useful  because  the 
molecules  are  all  of  comparable  significance  and  an 
understanding of the behavior of the system as a whole is of 
more practical value than an understanding of the behavior of 
specific molecules [2].  However, while the lack of a substantial 
system structure makes it difficult to reduce analytic equations, 
it  also  makes  deviations  from  observable  averages  less 
substantial as the overall set of observations increases and thus 
statistical  analysis  of  the system is  possible  [2].   Therefore, 
systems that display Unorganized Complexity can be compared 
to other systems if the effect of whatever underlying structure 
that does exist in these systems (e.g. thermal energy in a system 
of gas molecules) is understood and scalable from one system 
to the next.  For example, the behavior of air molecules in one 
bottle can be used to predict the behavior of air molecules in 
another bottle whether they are at the same temperature or not.

Conversely, systems that exhibit Organized Complexity are 
too complex for analytical analysis and contain an underlying 
structure that deranges the averages that might be obtained in 
statistical  analysis  [2].   Ultimately,  these  systems  present  a 
quandary to those who wish to study them quantitatively; they 
have underlying structures that are substantial enough to make 
them too unique for useful  statistical  comparison with other 
systems,  but  not  substantial  enough to  reduce their  analytic 
equations to a manageable number.  Unfortunately, since World 
War  II,  engineered  systems,  including  spacecraft,  have 
increasingly exhibited Organized Complexity and have in turn 
stressed  many  of  the  traditional  quantitative  risk  reduction 
techniques employed in their design and operation [3]. 

III.   BACKGROUND ON SBUs AND MBUs

Whenever  memory  devices  in  digital  computers  are 
exposed to energetic ions and protons, it is possible for bits in 
the computer memory to unexpectedly flip from 1 to 0 or vice 
versa.  Whenever this occurs, the flipped or upset bits no longer 
contain  the  information  they  are  supposed  to  contain  and 
therefore  have  the  potential  to  feed  erroneous and  possibly 
hazardous information to the computer.  Thus, the study of bit 
upsets has far reaching implications in the design and operation 
of systems relying on digital computers.

When a memory board exposed to radiation is considered 
individually (i.e. as a collection of bits rather than a component 
in  a  system),  bit  upsets  provide  prime  examples  of  events 
stemming  from  its  Unorganized  Complexity.   The  board 
contains  millions  of  virtually  identical  memory  cells  and 
experiences a  flux  of  many times  more  numerous  radiation 
particles.   There  is  some  underlying  structure  to  the  upset 

events,  but  it  is  neither  substantial  enough  to  reduce  the 
staggering  number  of  equations  that  must  be  considered  in 
analytic analyses of these events nor skew observable averages. 
While the particles themselves have different energy levels and 
approach the board from different directions, there are so many 
of  them  that  the  board  will  experience  interactions  from 
particles with each of the energy levels and inbound trajectories 
many  times  over.   Additionally,  many  of  physical 
characteristics  that  might  influence  the  frequency  of  upset 
events  on  such  a  board  (e.g.  total  number  of  bits,  energy 
required to flip a bit, etc.) are scaleable to other boards.  

Once a logical structure (i.e. distinct groupings of bits into 
logical  words  that  are  used  for  data  organization  and  upset 
correction) is  added to  the board,  its  behavior moves in the 
direction of  Organized Complexity  and ultimately, comparison 
of its behavior to that of other boards becomes more difficult. 
The addition of the logical structure alters the implications of 
upset  events  by  both  defining two separate  classes  of  upset 
events, SBUs and MBUs, and altering their relative frequencies. 
The  key  difference  between  these  two  classes  of  events 
revolves around the  status  of  other  bits  in  the  logical  word 
where the upset occurs.  If the upset occurs in a word that has 
already been upset in a separate event, or two or more bits in 
the same logical word are upset in the same event, an MBU 
occurs.  On the other hand, if only one bit is upset in the word, 
from the start of the event to its correction, the event is called 
an SBU. Thus, with the addition of the logical structure, the 
factors that determine whether an event will result in an SBU or 
MBU include: the number of bits per word, the time it takes for 
upsets  to  be  corrected  (automatically  or  through  human 
intervention), and the physical position of bits within the same 
logical word.  Each of these factors can vary from one board to 
the next and create problems in the statistical comparison of the 
behavior of various boards.

For MBUs,  it  is  usually  the case that  a  single radiation 
particle follows a trajectory of sufficient incidence to the plane 
of the memory board to strike several cells containing bits for 
the same word [4].  This is illustrated in Figure 1 below.  

Figure 1.  Trajectory of an MBU-inducing radiation particle [5].

In memory devices in which the cells containing the bits of 
a  logical  word  are  physically  adjacent,  there  are  a  greater 
number of particle trajectories that lead to MBUs than there are 
in devices in which such cells are separated.  This concept is 
exemplified  in  Figure  2,  where,  for  simplicity,  two  four-bit 
logical words, 1111 and 0000, are considered in two memory 
devices with different configurations of the bits.  Notice that the 
total number of upset bits for the given particle trajectory is the 
same for both configurations.  However, the device on the left 
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experiences SBUs in each word while the device on the right 
experiences an MBU in one word [5].

      Two upset particles, two SBUs             Two upset particles, one MBU

Figure 2.  Nature of upsets given one particle trajectory and two configurations 
of bits in the words: 1111 and 0000 [5].

Incidentally,  both the  physical  structure  regulating upset 
events  and  the  logical  structures  typically  employed  in 
spacecraft  memory  devices  make  SBUs  occur  far  more 
frequently than MBUs. The upset of multiple bits requires more 
energy than the upset of a single bit and requires the particles to 
approach the boards from specific directions;  this makes the 
overall  number  of  particles  that  can  cause  an  MBU  event 
significantly  lower  than  the  number  that  can  cause  an  SBU 
event.   Additionally,  logical  words  are  typically  extremely 
small  relative  to  board  size  and  SBU  events  are  typically 
corrected with error detection and correction (EDAC) schemes 
such  as  a  Hamming  Code  seconds  after  they  occur.   This 
significantly reduces the likelihood of two or more independent 
upset  events  occurring in  the  same  word  before  the  first  is 
corrected1.  Ultimately, these factors minimize the effect of both 
the logical and physical structure on statistical averages of SBU 
events by substantially reducing the frequency of MBUs, which 
are essentially the only things that prevent all upset events from 
being classified as SBUs.

Consequently,  while  the  logical  structures  mentioned 
above usually have little effect on the statistical  averages of 
SBUs,  they  simultaneously  dominate  statistical  averages  of 
MBU events and render comparisons between boards virtually 
useless in a number of cases.  For instance, if a prediction of 
MBU frequency is  derived from data  collected from boards 
with different logical structures, the predictions could be off by 
orders of magnitude [5], [6].  Thus, the addition of even a small 
degree of underlying structure to a complex system such as a 
memory board exposed to radiation presents a potential pitfall 
in the quantitative analysis of MBU frequency.

In the following sections, the contexts in which memory 
boards will be viewed will expand from those of isolated boards 
exposed to radiation to those of boards operating as components 
of larger, more complex systems.  As a result, the pitfalls in 
quantitative  MBU prediction  will  grow more  numerous  and 
severe.

1 On the GP-B mission, each word was only 72 bits long (64 bits for data and 8 
bits for EDAC), it took as few as 10 seconds to scan each MB of memory, and 
every scanned MB experienced roughly 2 SBUs per day [5]. 

IV.   SBU AND MBU EVENTS ON SPACECRAFT 
MISSIONS

Up to this point in the paper, SBUs and MBUs have been 
examined with little attention paid to the larger issue of why 
SBU  and  MBU  frequency predictions  would  matter  at  all. 
Essentially,  this  issue  is  dominated  by  the  priorities  of  the 
system stakeholders.  As mentioned earlier, SBUs and MBUs 
can feed erroneous and hazardous information to the computer 
if  the  upset  words are  executed.   Fortunately,  if  the  system 
stakeholders decide that  this threat  is  unacceptable,  they can 
implement EDAC schemes that automatically correct SBUs and 
MBUs  and  effectively  relegate  their  frequencies  to  nothing 
more  than  mere  curiosities.   However,  EDAC  schemes  are 
costly  to  implement  in  that  they  occupy  a  portion  of  the 
available  memory,  use  up processor  cycles,  and add  overall 
complexity  to  the  system.   Furthermore,  systems  such  as 
spacecraft are usually subjected to numerous threats in addition 
to SBUs and MBUs. Thus the issues surrounding SBUs and 
MBUs must compete with those of other threats and system 
performance objectives for system stakeholder priority.  As a 
result, there is always the possibility that the priority given to 
mitigation  of  SBU and  MBU  effects  will  be  lower  than  it 
should  be  and  the  appropriate  steps  to  prevent  them  from 
escalating into major system-level events may not be taken.

A  technique  that  is  commonly  used  to  facilitate  the 
competition  of  threat  mitigation  and/or  performance 
enhancement priorities is risk-benefit analysis.  This technique 
is  regarded as one that  can, in addition to quantifying risk2, 
show which risk reduction measures will provide the most risk 
reduction per unit of resource invested.  Typically, it relies on 
the  combination  of  a  deterministic  evaluation  of  outcomes 
related  to  the  threat  and  a  probabilistic  assessment  of  the 
frequency of  events  related  to  the  threat  to  arrive  at  these 
estimates.  Unfortunately, as hinted at earlier, the prediction of 
the frequency of events stemming from Organized Complexity, 
is  complicated  by  the  fact  that  the  underlying  structure  of 
complex  systems  can  induce  system-specific  responses  to 
events that appear stochastic and generalizable when viewed on 
the  component-level.   In  the  remaining  paragraphs  of  this 
section, actual events stemming from SBUs and MBUs on three 
spacecraft will be explored to provide context for the discussion 
to follow on the quantitative and qualitative analysis of risk in 
systems that exhibit Organized Complexity.

A.  SBU and MBU events on X-ray Timing Explorer (XTE)
XTE is  an x-ray observatory that  has  been operating in 

Low Earth  Orbit  (LEO)  since  December  30,  1995 [7].   Its 
orbital  inclination is  roughly 23 degrees and its  altitude has 
ranged from 500 km to 580 km over its lifetime [7].  XTE’s 
science  data  is  recorded  on  a  Solid-State  Recorder  (SSR) 
comprised  of  Hitachi  HM628128  Static  Random  Access 
Memory (SRAM) devices that use a Hamming EDAC Code for 
the correction of SBUs and detection of MBUs [7].  Spacecraft 

2 In this paper, the definition of risk involves the combination of the likelihood 
of an event and the severity of the event [3].
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health and status functions are run on a separate memory device 
that is more hardened to radiation than the Hitachi HM628128 
[8].

The  frequency  of  SBUs  and  MBUs  on  XTE’s  SSR 
throughout its first decade in orbit was affected by the physical 
structure of the radiation environment that it operated in as well 
as  the  logical  structure  of  the  Hitachi  HM628128 memory 
devices it utilized.   First, the inclination of XTE’s orbit allowed 
it to pass through the South Atlantic Anomaly (SAA), which is 
the region in LEO that contains the largest density of upset-
inducing energetic particles [7].  Second, XTE was launched 
shortly after Solar Minimum and thus received its highest SBU 
and MBU rates at the beginning of its mission [7].  However, as 
its orbit decayed and solar activity increased3,  the number of 
energetic  particles  in  the  spacecraft’s  operating environment 
decreased and thus SBU and MBU rates decreased [7].  Finally, 
the  logically  adjacent  bits  in  the  Hitachi  HM628128  are 
physically adjacent, making it significantly more susceptible to 
MBUs than a device in which the logically adjacent bits are 
physically distributed [4], [7].

Ultimately, the SBU and MBU events on XTE had little 
impact on the overall mission.  The Hamming Code corrected 
all SBUs and the MBUs’ corruption of scientific data amounted 
to a worst case Bit Error Rate (BER) of 2x10-9 per day in the 
science data, which is orders of magnitude below the acceptable 
BER for the mission [7].  Moreover, since the spacecraft health 
and status functions were run with a memory board separate 
from the one that used the Hitachi HM628128, the MBUs did 
not affect spacecraft functionality [8].

B. SBU and MBU events on Cassini
The  Cassini  interplanetary  mission  to  Saturn  began  in 

October  of  1997  [6].   The  spacecraft  contains  two  SSRs 
utilizing 4Mb OKI DRAMs as the memory device [6].  This 
device uses a Hamming EDAC Code for SBU correction and 
MBU detection with each logical word consisting of 32 bits 
reserved for data and 7 bits reserved for EDAC [6].

As expected, Cassini encountered both SBUs and MBUs 
during  its  transit  to  Saturn.   However,  while  Cassini 
encountered SBUs at a rate that was in reasonable agreement 
with  preflight  predictions,  the  rate  of  MBUs  exceeded  the 
preflight prediction by orders of magnitude [6].  This was due 
to the fact that the predictions did not account for the physical 
adjacency of logically  adjacent bits  on the OKI DRAM [6]. 
Fortunately, even though the flight software resides on the SSR, 
no  major  system-level  reactions  to  the  MBUs  have  been 
reported.  In fact, mission engineers have even dubbed these 
events (at least in the transit phase) as merely a nuisance [6]. 

C. SBU and MBU events on Gravity Probe B (GP-B)
GP-B  was  launched  on  April  20,  2004  into  a  642  km 

circular,  polar  orbit.   After  an  initialization  and  on-orbit 
checkout period, the spacecraft collected primary science data 
3 Increased solar activity causes the Earth’s atmosphere to expand and absorb 
more energetic particles at the low altitudes of LEO [7]. 

from August 28, 2004 to August 15, 2005 [5].  Its mission was 
to  test  Einstein’s  Theory  of  General  Relativity  by  directly 
measuring relativistic  changes in the spin axis orientation of 
four mechanical gyroscopes [9].   The challenge was that these 
relativistic effects are extremely small and thus the spacecraft 
and payload subsystems had to perform a number of difficult 
tasks concurrently, such as:

1. Pointing of the spacecraft’s on board telescope to within 
200 milli-arc seconds of its guide star, IM Pegasi (HR 
8703), 

2. Electrostatic  suspension  of  the  four  mechanical 
gyroscope rotors above their housings, 

3. Maintenance of six degree of freedom drag-free control 
(i.e.  a  continuous  nullification  of  disturbances  in 
spacecraft  position  so  that  one  of  the  gyro  rotors 
remained in a constant state of free fall), 

4. Recording of miniscule (i.e. on the order of 1 milli-arc 
second)  changes  in  the  spin  axes  orientation  of  the 
gyroscope rotors, 

5. Payload and vehicle data synchronization, and telemetry 
handling.

Six computers, mounted in various locations on the spacecraft, 
were required to properly perform these tasks.  Each computer 
used the memory device that was used on the XTE SSR, the 
Hitachi  HM628128,  and  a  Hamming  EDAC  scheme  was 
employed for SBU mitigation.  This scheme as implemented on 
GP-B used 8 bits out of every 72 bit logical word for EDAC 
[5].   

As was the case on XTE and Cassini,  the frequency of 
SBUs  and  MBUs  on  GP-B  was  affected  by  both  its 
environment and the logical structure of its memory devices. 
GP-B’s orbit  exposed it  to the three geographic areas where 
upset events most commonly occur in LEO: the SAA and the 
two Polar Regions.  Additionally, like XTE and Cassini, GP-B 
used memory devices in which the logically adjacent bits were 
also  physically  adjacent.   This  led,  as  it  did  on Cassini,  to 
predictions for MBUs that were low by orders of magnitude 
while predictions for SBUs were fairly accurate.  

Unfortunately, unlike XTE and Cassini, the occurrence of 
MBUs on GP-B caused considerable operational disruptions on 
GP-B.  Though most of the MBUs (i.e. 33 of ~38) occurred in 
areas of memory that were not read for execution before the 
operations team could react, some managed to either execute or 
trigger  a  safemode  response  that  rebooted  the  afflicted 
computer.  In all, the various computers on the spacecraft were 
rebooted  five  times—three  times  were  due  to  the  safemode 
response and two were due to  execution of the  upset  word. 
These events presented operational challenges for the Gravity 
Probe B mission.  The effects of these events on the mission are 
as follows [5]:
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1. Thousands  of  employee  hours  were  spent  on 
investigative and recovery efforts,

2. The risks associated with the recovery of a  system 
from an anomalous event were incurred six times,

3. As  many  as  eleven  days  worth  of  science  data 
collection opportunities—roughly 3% of the total data 
collection opportunities—were lost4.

Ultimately it was the highly complex requirements of the 
GP-B mission, along with certain subtleties in the underlying 
structure of the spacecraft that allowed these component-level 
anomalies to propagate into system-level disruptions [5].  For 
instance, GP-B’s  mission duration was limited by  cryogenic 
consumables and thus time spent recovering from upset events 
could not be made up as easily as it could be on XTE, which 
has  had  an  operational  lifetime  of  more  than  decade. 
Additionally,  unlike  Cassini,  whose  primary  data  collection 
phase  began  after  a  multi-year  transit  to  Saturn,  it  was 
necessary  for  GP-B to begin data  collection as  close  to  the 
beginning of the mission as possible.  This ultimately meant 
that  the  GP-B operations  team had  to  progress  through the 
learning curve of responding to MBU events while they were 
also trying to configure the spacecraft for data collection.

V.   EVALUATING AND MITIGATING THE RISK OF 
MBU IMPACTS ON SPACECRAFT MISSIONS

The events described in the previous section highlight an 
important point: the differences in the designs and missions of 
these spacecraft led to highly different responses to MBUs.  In 
other words, each had different underlying structures that would 
make statistical comparisons between their reactions to MBUs 
much  less  meaningful  than  statistical  comparisons  of  the 
reactions of individual boards.  In fact, one might even rank the 
importance of the underlying structures of these systems and 
the difficultly in the statistical assessment of upset phenomena 
as they are ranked in Figure 3.  As stated earlier, SBUs and 
MBUs  are  artifacts  of  the  same  design  characteristic  of  a 
memory board: its logical structure.  However, the nature of the 
logical structure tends to make SBUs occur far more frequently 
than MBUs, thus providing more data for a statistical analysis. 
Therefore,  SBUs  are  ranked  as  the  easiest  phenomenon  to 
analyze statistically.  Conversely, GP-B’s reactions to MBUs 
are ranked as the most difficult to analyze statistically because 
they demonstrated the most coupling between high-level system 
requirements and system wide vulnerability  to MBUs.   This 
potential for coupling between system wide vulnerabilities and 
system  requirements  is  also  present  on  Cassini,  though  it 
appears from the reported impacts of the MBUs on that mission 
that it is present to lesser extent.  Finally, XTE’s reactions to 
MBUs are slightly  easier  to  study statistically  than those  of 
Cassini and GP-B because of the utilization of a memory device 
that  is  largely resistant to MBUs for execution of spacecraft 
health functions essentially decouples the effects of MBUs on 
its  SSR  on  the  status  and  functionality  of  the  spacecraft. 

4 Despite the problems encountered with MBUs, GP-B was able to collect more 
data than the requirements specified.  The results of the experiment will be 
released in 2007.

However, with that said, the analysis is still far more complex 
than that which would be required to study the effects of MBUs 
on the memory board itself.

 Figure 3.  A ranking of the Organized Complexity in the reactions of the 
systems described in this paper to SBUs/MBUs. 

In the remaining paragraphs of this section, two strategies 
for mitigating the risks associated with system-level reactions to 
MBUs will  be  presented.   The first  centers  on reducing the 
frequency of MBUs to the point where the threat to the mission 
is perceived to be low enough to not warrant further efforts to 
reduce the frequency.  In this strategy, the decision to cease 
efforts to reduce MBU frequency further is essentially a value 
judgment  informed  by  the  probabilistic  calculation  of  the 
expected losses from MBU events. The second strategy places 
less  emphasis  on  MBU  frequency  and  instead  centers  on 
identifying and implementing methods to control the way that 
the system responds to MBUs.

A. An  example  quantitative,  statistical  assessment  of  MBU 
hazards 
At the heart of most quantitative assessments of the risk 

posed  by  a  hazard  is  an  attempt  to  inform a  decision  (i.e. 
identify the best option) and/or to put a decision into context 
(i.e. compare it to another decision).  Models of rational choice 
or behavior typically include the following elements [10]:

1. A set of behavior alternatives, 
2. The subset of behavior alternatives that are considered 

or perceived by the decision maker,
3. The possible outcomes of a choice,
4. A notion of the payoff of each outcome,
5. Information as to which outcomes will actually occur
6. Information  as  to  the  probability  that  a  particular 

outcome will ensue.

Thus,  probabilistic  assessments  of  the  risk  associated  with 
hazards, such as MBUs, often take on the form of a decision 
tree such as the one in Figure 4.  For simplicity, this tree only 
contains three intermediate events between the decision and the 
outcome of the decision.  The variables in the figure are defined 
as follows:

AX =  Risk Mitigation Alternative X
N    = Total Number of Risk Mitigation Alternatives
EX  =  Occurrence of Event X
EX’ =  Non-occurrence of Event X
Xjk =  Outcome of the kth branch of Risk Mitigation Alternative j
Ujk =  Utility of the Outcome of the kth branch of Risk Mitigation Alternative  j
K = Total Number of outcomes stemming from Risk Mitigation Alternative 1.
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Figure 4.  A generic, three-event deep decision tree for risk 
mitigation alternatives.

In the model of incident/accident causality represented by 
this  tree,  each  risk  mitigation  alternative  leads  to  several 
branches or chains of events that have an outcome in terms of 
several factors of interest to the analyst.  For example, A1 may 
cost $50,000 to implement and result in a computer reboot if 
events E1 through E3 occur.  Thus, X11 would take the following 
value:

X11 =  -$50,000 + 1 computer reboot.

Since X11 is not dimensionally consistent, it is necessary to 
normalize  its  attributes  to  dimensionless  values  or  values 
associated with a common dimension (e.g. dollars) in order to 
assess the value of the outcome to the decision-maker(s).  This 
is done through a multi-attribute utility function, such as the 
one below:

U11 = ƒ(X11).

Utility functions—which can be simple or highly complex
—are subjective in that they are structured entirely around the 
value judgments  of the  decision-maker(s).   The  objective of 
using them in the  analysis  is  to  combine the  utilities  of  all 
outcomes  stemming  from  a  design  alternative  with  the 
probabilities of the events that lead to the outcomes in order to 
determine the expected utility or value of the design alternative. 
For example, for all outcomes stemming from A1:

P(X11) = P(E1|A1) x P(E2|E1,A1) x P(E3|E2,E1,A1)
P(X12) = P(E1|A1) x P(E2|E1,A1) x P(E3’|E2,E1,A1)

:
E(UA1) = P(X11) x U11 + P(X12) x U12 + … + P(X1K) x U1K.

Theoretically,  if  the  expected  utility  of  each  design 
alternative can be determined, the decision-maker can optimize 
the  decision  by  choosing  the  alternative  with  the  largest 
expected  utility.   Unfortunately,  attempts  to  achieve  perfect 
rationality through this kind of analysis will not always work, 
especially  in  systems  exhibiting  Organized  Complexity 
because:

1. People will approach this analysis with varying levels 
of rigor,

2. The  information  necessary  to  perform  these 
calculations  may  not  be  available  or  may  be  too 
difficult to acquire.  

When presented with imperfect information, time limitations, 
and/or complexities that exceed the limits of human cognitive 
abilities,  people  act  with  a  rationality  that  is  said  to  be 
“bounded” [10], [11].  This is not to say that people act in an 
unintelligent manner, rather, it is meant to indicate that the basis 
on which people make decisions is “intendedly” rational, that 
is, that their decisions would produce sensible results if their 
model of the relevant system is correct [11], [12].  When acting 
upon bounded rationality, people rely on heuristics or rules of 
thumb and satisficing—a practice where instead of evaluating 
all  options,  the  analyst  stops  whenever  he  or  she  finds  a 
solution that is “good enough”—for decision-making [10], [11].

With  that  said,  the  concept  of  a  decision  tree  is  not 
inconsistent with bounded rationality—in fact,  attempts have 
been made to  model bounded rationality through event trees 
[12].  Instead, decision trees capture a specific type of intended 
rationality; one that is implicit in basing the choice of a design 
option on questions such as, “Will events associated with the 
hazard  occur  enough  to  warrant  action?”   Even  though 
individuals and organizations may vary in the way that  they 
construct their decision trees, may forgo the formal construction 
of a tree at all, and/or satisfice in their search for the best design 
alternative, their intentions will be similar.  Decision makers 
with this intended rationality will be influenced by some notion 
of a series of events and outcomes that will be triggered by the 
selection of each option and their level of concern over these 
events will be dictated by their perception of the frequency and 
severity of these outcomes.  Consequently, even if the outcomes 
associated with an option are severely negative, the decision 
maker(s) may not be deterred if they are confident that they can 
break the chain of events by making at least one of them so 
infrequent that it will be too unlikely to occur.

Generally, the Organized Complexity of many systems that 
exist today challenges the intended rationality of this decision 
process  by  making  quantitative  models  of  the  system 
immensely complex and subject to various uncertainties.  The 
fundamental assumptions that would have to be made in this 
type of analysis are that all of the branches stemming from each 
chance  event  node  are  mutually  exclusive  (i.e.  they  cannot 
occur together)  and collectively exhaustive (i.e. they account 
for  all  possible  outcomes  given  the  chance  event). 
Unfortunately,  mutual  exclusivity  is  a  slippery  concept  in 
complex systems; many complex systems accidents over the 
last  century have involved the coupled occurrence of  events 
whose concurrence was initially viewed as impossible or highly 
unlikely [1].  Additionally, complex systems have far too many 
states to analyze exhaustively.  One could not analyze every 
state of a typical laptop computer, for instance, even if he/she 
were able to program every atom in the universe to analyze 
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10100 states per second starting at the Big Bang and continuing 
to now [13].

Another  limiting  assumption  in  the  intended  rationality 
captured in Figure 4 is that the system will behave according to 
the law of large numbers.   This law states that the system’s 
performance will converge over time to the average value.  At 
best, those who manage risk around this assumption must be 
prepared to accept some losses as  the system’s performance 
converges to the average success rate (e.g. a system with a 95% 
success rate can have five failures in a row followed by ninety-
five successes).  While there are a number of systems where a 
calculated number of losses will not thwart the objectives of the 
system stakeholders (e.g. 
large constellations of identical spacecraft,  insurance policies 
for motorists in a given geographic area, etc.), there are also a 
number of systems where just one failure is unacceptable for a 
variety  of  reasons (e.g. nuclear  weapons,  crewed spacecraft, 
etc.).

Another key challenge in the modeling of the probability 
and severity of events associated with hazards is capturing the 
dynamic nature of systems exhibiting  Organized Complexity. 
In  these  systems,  the  frequency  and  severity  of  events 
associated with specific hazards may increase or decrease over 
time.  For example, as demonstrated on XTE, SBU and MBU 
rates on LEO spacecraft decrease over their operational lifetime 
if  their  lifetime  starts  during  Solar  Minimum and continues 
through Solar Maximum or if the orbit decays appreciably [7]. 
Additionally,  the  criticality  of  the  spacecraft’s  software  will 
evolve as the spacecraft’s configuration evolves throughout the 
mission (e.g. solar array deployment software may become non-
critical after solar array deployment).  Thus the risk calculated 
from an analysis with static values for MBU rates and software 
criticality  would  almost  always  be  over-  or  underestimated 
depending  on  the  values  selected.   Unfortunately,  dynamic 
modeling of the evolution of system risk is limited as well in 
the precision that it can add to the estimations as it introduces 
further  complexity  and  assumptions  into  the  analysis.   For 
example, one technique in probabilistic risk assessment is  to 
use Markov modeling to evaluate system evolution [14], [15]. 
This  technique  introduces  transition  matrices—and  in  some 
cases,  transition  matrices  embedded  within  other  transition 
matrices—into the analysis.   These  matrices add uncertainty 
into the calculations because they have to be populated with 
esoteric  parameters  (e.g.  the  probability  of  transitioning into 
state Y in a discrete time interval given that the system is in 
state  X)  that  must  be  quantified.   Data on these  parameters 
simply  may  not  exist  and/or  the  concepts  behind  these 
parameters may be too abstract for system experts that deal with 
them  to  properly  encode  them  into  probabilities.   Indeed, 
empirical studies have shown that cognitive biases often lead 
laypeople  and  experienced  researchers  alike  to  severe  and 
systemic errors in the assessment of probabilities [16].

In the specific case of a formal or informal probabilistic 
decision analysis of upset mitigation strategies for a spacecraft 
mission, additional assumptions and complexity are necessary 

in  the  computation  of  the  probabilistic  distribution  of  the 
outcomes of  each event.   In  the next few paragraphs,  these 
assumptions and complexities are discussed for each event in 
the  decision tree  in  Figure  4.   These  events  are  defined as 
follows:

E1 = The system performs an action that will allow harmful 
propagation of the upset event
E2 = A critical logical word in the software is upset
E3 = The upset word executes.

In calculating the probability of the system being in a state that 
would allow harmful propagation of the upset event, P(E1), the 
definition  of  which  outcomes  constitute  a  harmful  system 
response  will  add  additional  uncertainty  to  the  calculations. 
Unfortunately,  in  systems  exhibiting  Organized  Complexity, 
these  definitions will  usually  be  highly context specific.   In 
other  words,  the  transferability  of  data  between  systems 
displaying  Organized Complexity is  limited.   For instance, a 
reboot event leading to several days of missed data collection 
opportunities could have a minor effect on a spacecraft mission 
that is meant to collect data over many years while a spacecraft 
mission with a data collection period on the order of months 
may be seriously affected.   Thus, if  one were to look at the 
successes and failures of previous spacecraft missions to define 
these criteria, he or she may be misled.

In calculating the probability of a critical word being upset, 
given that the system is performing an action that will allow 
harmful propagation of the upset event, P(E2|E1), assumptions 
surrounding  the  transferability  of  data  between  spacecraft 
missions once again play a critical role in the accuracy of the 
calculation.  The software architectures of spacecraft and the 
hardware  architectures that  support  them are  vastly  different 
from spacecraft to spacecraft.  One must first understand how 
the differences in the architectures will affect the rates of MBUs 
in the spacecraft.  This of course assumes that the analyst would 
have prior knowledge of the physical mechanisms relevant to 
MBU frequency.  As demonstrated by the data from XTE, GP-
B,  and Cassini,  one cannot use  the  MBU rates  on memory 
devices  with  logically  adjacent  bits  that  are  physically 
distributed to predict MBU rates on memory devices in which 
the  logically  adjacent  bits  are  also  physically  adjacent. 
Additionally, one must pay attention to how the uniqueness of 
the spacecraft’s software and hardware architecture will dictate 
the potential impact of an MBU in a given word.  One cannot 
look at the minimal impact of MBUs on XTE and conclude that 
in general a small  portion of the software on spacecraft will 
respond poorly to MBUs.  While XTE did not use the portion of 
its onboard memory that was most vulnerable to MBUs to run 
its  flight  software,  GP-B and Cassini did and therefore they 
each  had  a  higher  percentage  of  critical  software  that  was 
vulnerable to MBUs.  Moreover, GP-B’s software architecture 
included  a  safemode  response  that  would  reboot  one  of  its 
computers  if  three or more logical  words—regardless  of the 
function that they served—were detected within 0.3 seconds of 
each other.   This  ultimately had the effect of  increasing the 
criticality of non-critical words.
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Finally, calculating the probability of the execution of 
an upset word, given that it’s  critical and that  the system is 
performing an action that will allow harmful propagation of the 
upset event, P(E3|E1,E2), will require knowledge of how often 
words are accessed for execution or overwritten before they are 
executed and the frequency and efficacy of human and EDAC 
intervention.   While  these  factors  are  largely  dictated  by 
component-level behavior and are thus simpler to quantify than 
the factors affecting the other events in the chain, the analysis 
of  them  is  still  somewhat  complicated  by  system-level 
behavior.  For instance, the frequency and efficacy of human 
intervention over the life of the mission could be reduced by 
factors  such  as  operator/management  complacency,  training, 
and/or staffing.  Additionally, all of the factors can be affected 
by  operational  workarounds  implemented  throughout  the 
mission  as  well  as  the  addition  of  new mission  objectives 
during operations.

In  all,  the  Organized  Complexity exhibited  by  complex 
systems  creates  a  number  of  problems  for  the  quantitative, 
statistical assessment of hazards, such as the MBU hazard to 
spacecraft.   A number of assumptions are often necessary to 
make  this  type  of  analysis  tractable  and  these  assumptions 
introduce  significant  uncertainty  into  the  estimates. 
Additionally, the bounded rationality of both the analysts and 
the actual individuals making the design decisions will play a 
role in both the rigor in which these numbers are generated and 
interpreted.  While the analyst may strive for perfect rationality 
to the extent that it is humanly possible, the actual decision-
maker  may simply wish  to  select  a  particular  design option 
provided that the quantified likelihood of a negative outcome 
associated with it meets a company or industry standard—even 
if, unbeknownst to him/her, that standard is not appropriate for 
the specific application.  Thus, a question is in order for those 
who  would  base  design  decisions  on  the  frequency  or 
probability of events associated with a hazard: “What happens 
if  the  estimates  are  wrong  and/or  interpreted  in  the  wrong 
way?”

B. An example qualitative assessment of MBU hazards 
The  many  subtleties  of  risk  in  systems  that  display 

Organized Complexity cannot be explained fully in quantitative 
terms.    Both  the  derivation  and  interpretation  of  each 
quantitative figure produced in a risk assessment are informed 
by qualitative concepts.  In the selection of radiation-hardened 
parts  for  spacecraft,  for example,  there  are many qualitative 
considerations that effect data integrity and applicability [17]. 
However,  there  is  a  tradeoff  of  sorts  in  the  overall  use  of 
qualitative and quantitative information in decision-making.  In 
the probabilistic assessment of risk, the paradigm is to base the 
decision largely on a quantitative assessment of an expected 
utility of the design alternative derived from a notion of the 
frequency of  events  associated  with  a  hazard.   While  this 
paradigm  is  intendedly  rational,  it  is  subject  to  the 
miscalculation and misinterpretation of the event frequency.  In 
the remaining paragraphs of this section, an approach based on 
the assessment of a qualitative concept, hazard controllability, 
will be explored.

STAMP  (Systems-Theoretic  Accident  Modeling  and 
Process)  is  a  qualitative  approach  to  hazard  analysis  and 
mitigation based on systems theory that stresses the control of 
hazards.  In STAMP, accidents are conceived as resulting not 
from  component  failures,  but  from  inadequate  control  or 
enforcement of safety-related constraints on the development, 
design, and operation of the system.  The most basic concept in 
STAMP is not an event, but a constraint.  Safety is viewed as a 
control  problem:  accidents  occur  when  component  failures, 
external disturbances, and/or dysfunctional interactions among 
system components are not adequately handled [18].

In a STAMP-based Analysis (STPA), systems are viewed 
as interrelated components that are kept in a state of dynamic 
equilibrium by feedback loops of information and control.  A 
system is not treated as a static design, but as a dynamic process 
that is continually adapting to achieve its ends and to react to 
changes in itself and its environment.  The original design must 
not only enforce appropriate constraints on behavior to ensure 
safe operation, but it must continue to operate safely as changes 
and adaptations occur over time.

Thus,  preventing  accidents  requires  designing  a  control 
structure encompassing the entire socio-technical  system that 
will enforce the necessary constraints on system development 
and  operations.   In  a  full  STPA,  this  includes  dynamic 
modeling of the intended rationality of the decision processes of 
the individuals and organizations designing and operating the 
system through System Dynamics.  This modeling discipline is 
commonly used to test the feedback structures embodying the 
bounded rationality of decision-makers in the system [11], [19]. 
However, for the purpose of this paper, the discussion will be 
limited  to  the  direct  analysis  of  technical  hazards  such  as 
MBUs.

The steps for a STPA are as follows:

1. Identify the system hazards,
2. Identify design constraints to control the hazards,
3. Assign control of the constraints to various elements 

of the system,
4. Define the control actions to be employed,
5. Evaluate  the  control  structure  for  possible  changes 

over time and fix potential problems

The relevant hazard for upset events is, “The software executes 
in  an  unintended  manner.”   Thus,  the  constraint  would  be 
something  like,  “All  software  and  all  data  written  by  the 
software must be read for execution as written by the software 
logic  and/or  human  programmers.”   With  this  constraint 
defined,  the  system designers  would then implement one or 
more of the following techniques to enforce the constraint [3]:
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Hazard Elimination
• Substitution
• Simplification
• Decoupling
• Elimination of specific human errors
• Reduction of hazardous materials or conditions

Hazard Reduction
• Design for controllability
• Use of Barriers
• Failure Minimization
• Safety factors and safety margins
• Redundancy

       Hazard Control
• Reducing Exposure
• Isolation and Containment
• Protection Systems and fail-safe design

Damage Reduction.

It  is  important  to  note  that  techniques to  minimize  the 
expected  losses  by  reducing  the  predicted  frequencies  of 
hazardous events are technically ways in which designers can 
attempt to enforce safety constraints.  However if the explicit 
goal in their implementation is a reduction in event frequency 
rather than hazard controllability, they may represent an open-
loop control philosophy.  In other words, they could be control 
actions that are meant to work in accordance with a model of 
the system response that does not take into account feedback 
from the  system.   The  problem  with  an  open-loop  control 
philosophy is that if the model of the system response is wrong, 
the  control  action  will  be  inappropriate  and  potentially 
uncorrectable.  It is sometimes possible for system operators to 
“close the loop” on control actions designed with an open-loop 
control philosophy  through  operational  workarounds. 
However, this is not always the case.  For instance, Cassini and 
GP-B both used memory devices that yielded higher MBU rates 
than what was predicted and these devices, of course, could not 
be  changed  after  launch.   Thus,  control  actions  should  be 
designed with a  closed-loop control philosophy.  Even if the 
nature of the hazard and/or the budget environment in which the 
control action is being implemented make it impossible for the 
control action to be designed for closed-loop control, the system 
stakeholders  should  explicitly  recognize  and prepare  for  the 
open-loop nature of the control action.

After the general control structure has been defined (or a 
candidate  structure  has  been  identified),  the  next  step  is  to 
determine how the controlled system could get into a hazardous 
state.   This  includes  identification  of  potential  inadequate 
control  actions  that  could  lead  to  the  hazardous  state.   In 
general, a safety constraint controller can provide four general 
types of inadequate control:

1. A required control action is not provided.
2. An incorrect or unsafe control action is provided.
3. A  potentially  correct  or  adequate  control  action  is 

provided too late (at the wrong time).
4. A correct control action is stopped too soon.

Control actions may be required to handle component failures, 
environmental  disturbances,  or  dysfunctional  interactions 
among the components.  Incorrect or unsafe control actions may 
cause  dysfunctional  behavior  or  interactions  among 
components.

On GP-B, XTE, and Cassini,  there were various control 
actions  to  enforce  the  constraint  “All  software  and  all  data 
written by the software must be read for execution as written by 
the software logic and/or human programmers,”—though they 
were not implemented with this constraint explicitly in mind. 
Several of the actions were open-loop in nature, such as:

• XTE’s  flight  software  operating  off  of  a  memory 
board that was more radiation hardened than its SSR, 

• Cassini and GP-B using memory devices with what 
were expected to be acceptable MBU rates,

Other control actions on these spacecraft were closed-loop such 
as:

• SBU correction by EDAC on all three spacecraft,
• MBU patching through human intervention on all but 

one of GP-B’s computers,
• The utilization on GP-B of a safemode response on 

one  computer  that  had  an  adjustable  threshold  for 
rebooting the  computer  at  the  detection of  multiple 
MBUs,

• The  allocation  and  utilization  of  margin  in  the 
schedule for data collection.

Improvements that might have been realized with an explicit 
closed-loop control philosophy include:

• The  implementation  of  EDAC  schemes  that  could 
correct MBUs,

• The ability to manually patch MBUs on all computers,
• The implementation of safemode responses to upsets 

in software areas that the operators define as critical.

None of  these  techniques would require  prior  knowledge of 
MBU  frequency  to  be  effective  and  each  would  give  the 
operations  teams  more  flexibility  to  react  to  erroneous 
predictions  of  MBU  frequency.   Furthermore,  the  third 
technique  would  represent  an  upgrade  over  the  safemode 
response  implemented  on  one  of  GP-B’s  computers.   Even 
though the sensitivity of that response could be altered, its focus 
was on MBU frequency rather than criticality and thus it may 
have inadequately enforced the constraint at times by rebooting 
the computer when non-critical words were upset.  Thus, the 
second  and  third  techniques  could  have  allowed  the  GP-B 

9



operations team to prevent up to four of the five reboot events
—one occurred because a computer could not be patched and 
three were due to the safemode response.

VI.   CONCLUSIONS

As demonstrated by occurrences on the XTE, Cassini, and 
GP-B spacecraft  missions,  even a stochastic  event such as  a 
radiation strike on computer memory cells can be difficult to 
evaluate  statistically  in  the  context  of  systems  exhibiting 
Organized  Complexity.   While  system components,  such as 
memory devices can exhibit  Unorganized Complexity in their 
response to phenomena when they are considered individually, 
the same is  not true when they are  integrated into complex 
systems.  The underlying structure of the systems they operate 
in  make  statistical  evaluations  very  difficult  without  the 
introduction  of  assumptions  that  lead  to  high  levels  of 
uncertainty  in  the  final  result.   Furthermore,  the  bounded 
rationality of the individual(s) that use the evaluations to make 
risk reduction design decisions may undermine an analyst’s best 
efforts to produce a perfectly rational solution to the problems 
raised by the hazard.

If  these  components  are  to  be  used  in  unique,  complex 
systems,  strategies  for  their  design  and  integration  into  the 
systems  should  not  be  centered  on  combating  Unorganized 
Complexity.  In other words, designers should not seek to address 
the question, “How can the frequency of events associated with 
the hazard be reduced to point where they do not warrant further 
consideration?” Statistical or probabilistic analyses of the system 
response to these hazards can be wrong/misleading for a number 
of  reasons.   Additionally,  designing  and  implementing  a 
controllable  response  is  more  important  than  estimating  the 
response frequency.  Unpleasant, yet relatively benign events can 
occur multiple times while a critical event may need to occur only 
once to destroy the system.

The design and integration strategies for components—such 
as  memory  devices—to  be  used  in  unique,  complex  systems 
should  center  on  dealing  with  Organized  Complexity.   It  is 
important  for  designers  to  include  mechanisms  for  control  of 
system-level hazards or at the very least to augment the use of 
quantitative metrics in design decisions with a deep, qualitative 
understanding of how the risk can be controlled if the metrics are 
not  representative  of  the  actual  integrated  system’s  behavior. 
Doing so may allow both the analyst  and decision-maker(s)  to 
avoid  the  many pitfalls  in  the  quantitative  analysis  of  risk  in 
systems that display Organized Complexity.
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