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The increase of interacting humans and autonomous components in complex systems necessitates 

rigorous methods to classify domain information pertaining to controllers in the system. Systems-

Theoretic Process Analysis (STPA) was developed at MIT as a method for identifying hazardous 

scenarios from a system design in order to generate functional system requirements to eliminate or 

control those scenarios. An STPA analysis, while systems-based and including human operators 

(e.g., pilots and air-traffic controllers) in the scenarios, is currently limited in the types of human 

contribution to accidents that it can identify (which are primarily related to situation awareness). 

This paper extends STPA in three ways: first, the analysis of the controller mental model was 

updated to include more system features; second, fundamental human-engineering considerations 

were added; and third, types and sources of decision-making influences that transfer from the 

planning cycle to the operations cycle were identified. 
 

Humans play an important role in accidents (both positive and negative) and must be included in any 

hazard analysis performed during the development or field use of the system. Currently, safety investigators discuss 

human contributions in a simplistic way, if they include them at all (e.g., “pilot failed” or “pilot lost situation 

awareness”), and then they assign a probability to this “failure”. Such analyses are not very useful in designing to 

prevent accidents.  

The MIT Systems-Theoretic Accident Model and Processes (STAMP) is a use-centered systems-modeling 

approach to understanding and preventing accidents (Leveson, 2012). Systems-Theoretic Process Analysis (STPA) 

is a hazard-analysis technique based on STAMP that is used to investigate system designs in order to generate 

functional safety requirements. STPA goes beyond the tendency to simply state that a human failed and investigates 

errors in the human’s mental model and errors in decision-making. This method, although advanced in terms of 

safety analysis, still oversimplifies the human’s role in complex systems because it is currently posed similar to 

investigating a machine controller’s model and decision algorithm. Human mental models contain more information 

about the system than a machine’s and develop using more sources of feedback. 

This paper extends STPA methods of generating hazardous scenarios by refining how the human (or 

intelligent controller) is considered in the analysis. The methodology now identifies more system information the 

controller might use to make decisions during the operation, considers human-specific controller characteristics (e.g., 

workspace and human variability), and identifies organizational influences to controller behavior that originate 

before the operation. An overview of STAMP will be presented, followed by STPA extensions for intelligent 

controllers. The new techniques presented are meant to analyze currently existing systems, although some aspects 

may apply similarly in concept development and design. 
 

System Safety Modeling 
 

STAMP was inspired by cybernetics (Wiener, 1965) and systems theory (Von Bertalanffy, 1968), as well as the U.S. 

system-safety standards that evolved during the development of long-range guided missiles (Department of Defense, 

2012). Dekker (2006) describes two types of accident models in existence today. The first considers physical-

component reliabilities (including people and software) and finds failures that chain together in time and/or space 

and lead to accidents. This type of model gives rise to fault-tree analyses and failure mode and effects analyses, for 

example. The second type of accident model, of which STAMP is an example, treats the prevention of undesirable 

losses as a top-level set of system requirements, and then it generates constraints to meet these goals through the 
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functional system behavior. STAMP treats safety as a control problem. The main concepts of STAMP are safety 

constraints, the hierarchical control structure, and process models (Leveson, 2012).  

 

 
 

Figure 1. A basic control loop between functional entities in the safety control structure. Although a horizontal decomposition is 

not shown, disturbances, actions from other controllers, and communications would be modeled when appropriate. 

 

Organizational stakeholders identify accidents1, which are typically domain independent (e.g., 

environmental damage); then hazards2 are identified, which are domain specific (e.g., chemical toxins exposed to the 

environment). The list of hazards is typically short because hazards may not include any engineering assumptions 

from the design (e.g., valve leaks and releases toxin). The prevention of each hazard becomes a safety constraint. 

Each hazard is mapped to one or more accidents. This mapping allows traceability from the findings of an ensuing 

hazard analysis (like STPA) all the way up to accidents. 

The STAMP hierarchical control structure is an abstract model of the system design. It is a decomposition, 

starting at the top with legal/regulatory and organizational entities all the way to the lower-level components of the 

system operations. Higher levels have more responsibility, authority, and accountability than lower levels, and 

control-feedback relationships exist between levels. A general form (not pictured here) can be found in Leveson 

(2012). The control structure is a model of the functional system and not necessarily the physical structure. For 

example, suppose air-traffic control speaks to a drone operator through a UHF radio signal that travels from a 

control tower to the drone, is multiplexed and sent to the operator’s ground control station via datalink band, and 

then demuxed into an audio channel in the operator’s headset. While a physical schematic would detail the intricate 

connections just described, a STAMP control structure would show the tower personnel controlling the drone 

operator, who in turn would be controlling the drone. 

In an STPA analysis, each level of the control structure is explored from the top down, and control 

relationships between entities are examined. A general control-feedback loop is shown in Figure 1. In “Step 1” of 

STPA, functional behaviors of a controller that violate safety constraints are identified as unsafe control actions 

(UCA), along with the system or environmental context in which they are hazardous. In “Step 2,” causal scenarios 

that could produce each UCA are generated. This detailed analysis requires domain subject-matter experts (SME) 

because aspects of the physical design, hardware, software, and humans contribute to scenarios. 

Currently, all the portions of the control loop—as well as any additional external information being used by 

the controller—are investigated to generate causal scenarios, including the controller itself and its process model. 

The process model is the controller’s understanding of the states in the system it is trying to control. If the model 

states do not match the true system states, the controller could execute a UCA. In humans, this is called the mental 

model, although “process model” may be used generally. The following section discusses extensions to STPA that 

include refinements to the process model. 
 

Extended Human Controller Analysis 
 

Stringfellow (2010) and Thornberry (2014) previously elaborated on the human as a controller, with the former 

emphasizing that humans have a model of the organization, not just the controlled process, and the latter introducing 

a sequence for the Step-2 human-controller analysis. This extension will: 1) build on the existing sequence and add 

new sections, 2) refine the inquiries in some sections, and 3) introduce a method for identifying organizational 

influences on the controller. Figure 2 is the updated analysis sequence. It is not meant to be interpreted as an 

                                                           

 
1 Accident: An undesired or unplanned event that results in a loss, including human, property, environmental, mission, etc. 
2 Hazard: A system state or set of conditions that, together with a particular set of environmental conditions, will lead to an accident. 
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information-processing (in-the-head) model of human cognition, but rather as a set of considerations that map the 

controller to the work domain. The structure of parts (a) through (e) is maintained from Thornberry, while (f) 

through (h) are new. Parts (a) through (c) have been refined. 

 

 

 
 

Figure 2. Extended intelligent-controller analysis sequence. Letters (a) through (h) denote areas for investigation. 

 

sequence and add new sections, 2) refine the inquiries in some sections, and 3) introduce a method for identifying 

organizational influences on the controller. Figure 2 is the updated analysis sequence. It is not meant to be 

interpreted as an information-processing (in-the-head) model of human cognition, but rather as a set of 

considerations that map the controller to the work domain. The structure of parts (a) through (e) is maintained from 

Thornberry, while (f) through (h) are new. Parts (a) through (c) have been refined. 

Part (a), the information set, corresponds to Dekker’s “data availability” (2006) and helps identify all the 

information presented to the controller, including controls, feedbacks, and communications. This part has now been 

refined to explicitly differentiate between information available as originally designed to arrive at the controller and 

information outside original design intent that is being used by the controller regardless. An example of the latter 

would be a copilot looking at how the pilot’s hands are displacing a traditional yoke instead of looking at the 

copilot’s own flight displays, or two employees using an informal socio-organizational communication channel. The 

purpose of making the effort to delineate between design and non-design communications is crucial when new 

technologies and system upgrades threaten to change the nature of human-system interactions without properly 

documenting all the connections. Knowing that pilots were using “free” feedback (such as yoke movement) that 

goes away with an upgrade (such as fly-by-wire) is important. 

Additionally, Thornberry (2012) emphasized that feedbacks the controller receives when an affordance is 

acted upon (such as a switch physically moving or a “bug” being set on an airspeed display) should be identified. 

This is important for similar reasons as non-designed information. For example, turning and removing a key from a 

classic (non-electronic) car ignition is sufficient feedback to the driver that the vehicle changed to a shutdown state; 

feedback from the controlled process (the car) was not required for the human to conclude the change had occurred. 

Parts (b)-(e) in Figure 2 are named Observe, Orient, Decide, and Act after Boyd’s O-O-D-A loop (2010). 

Part (b) corresponds to Dekker’s “data observability” (2006) and performs inquiries on if and how data are attended 

to in time-space. A refinement here adds that data can be pushed to or pulled by the controller in several ways 

ranging as follows: the controller requests a controlled component or process for missing data, fetches already 

available data that is not yet displayed, refreshes an obsolete display, attends to a current display, or receives data 

immediately via her currently attended time-space (or through exogenous cueing).  Boyd (2010) emphasized that 

orient—part (c)—is the most vital investigation area for analyzing decisions in a complex adaptive system. This 

section of the analysis maps to the process model in STAMP. The investigation here has been refined to include 
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three levels: behavior, modes, and values. Behavior represents how the controlled process is interacting with the 

mission environment. A behavior state variable might be a direct reading from the information set, or it might first 

be translated into a more useful variable (e.g., altitude and airspeed displayed as energy). A supervisor might be 

monitoring a lower-level controller which is managing the process behavior. In this situation the next level of the 

process model analysis (mode) becomes important. 

 
Table 1. 

Three types of modes (Leveson et al., 1997) and recommended inquiries that were added to the process model analysis. 

 

Supervisory Structure The control relationships and communication links in the system hierarchy. 

 Which controllers currently have or share priority over each controlled component? 

 Which controlled components may apply authority limits and under what circumstances? Can 

those limits be overridden? How will conflicts be decided (i.e., who should have the final 

authority?) 

  

Component Operating 

Mode 

The set of algorithms that components under my control can use to exert control over 

their process(es). 

 What are the physical or logical assumptions and constraints associated with the component's 

current operating mode? 

 What data in the information set is the controlled component using to inform its model? 

 What input/and output format am I using with my controlled component(s)? 

  

Mission Phase The specified set of related behaviors of the controlled system representing its operational 

state. 

 What mission phase is the system in (e.g., takeoff, cruise, etc.) 

 Do all controllers know the current mission phase? 

 Does a change in mission phase mode cause a change in supervisory structure and/or 

component operating modes (including input/output formats)? 

 

 

A mode is a mutually exclusive set of system behaviors (Leveson, Pinnel, Sandys, Koga, & Reese, 1997). 

There are three types of modes: supervisory structure, component operating mode, and mission phase. 

Stringfellow’s (2010) model of the organization, for example, would fall under supervisory structure. Table 1 

presents definitions and a minimum set of recommended inquiries that have been added to investigate modes in the 

process model. Authority limits—worth mentioning—are a type of lockout or interlock that controlled components 

may exercise, by design, to ignore a received control request if they know it to be hazardous to the system. For 

example, a flight-control computer can limit the angle of attack the pilot demands, or a pilot can disregard an air-

traffic control request if she sees visual traffic in the way. These limits must be carefully analyzed to make sure they 

do not prohibit behavior that might be necessary in some situations. In addition, there must be some determination 

of who should have the final authority in case of a conflict. 

Values contains two lines of inquiry. The first is external values, which is an understanding of any values 

the controller personally maintains outside the system. An example would be the personal pressure behind the 

classic “get-there-it is” that might prompt a pilot to ignore system-derived objectives and rush a landing. The second 

is value mapping, which is the controller’s understanding of how values at higher abstractions of the system’s 

means-ends hierarchy (Rasmussen, Pejtersen, & Goodstein, 1994) map to objectives at the controller’s level. 

While STPA investigates control algorithms as part of Step 2, there is no specific methodology prescribed 

for human decision-making (d), and one is not recommended here. Figure 2 highlights that the mental model is 

affiliated with observation (searching-recognizing) as well as decisions (priming-informing), both which a human 

controller cognitively attends to. Part (e), appropriateness of response mappings, is not refined here. 

Workspace inquiries (f) are new to the analysis and include climate, visual and auditory noise, work 

physiology (e.g., “pulling Gs”), anthropometric and ergonomic compatibility, and workload. Controller variability 

inquiries (g) are also new and include age, perceptual acuity, attention capability, natural disposition, health, 

injury/disabilities/disease, psychological/emotional conditions, fatigue/stress/sleep cycles, and drugs/medications. 

Findings in both (f) and (g) are human-specific considerations. In addition to being used to evaluate the operator 
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population for current systems and applications, they could be used to create criteria during design development to 

select a future population. Part (h), called influence, is new and it is discussed next. 

 

 
 

Figure 3. Sources of decision-making influences that evolve prior to the operation cycle. Green sections affect only humans. 

 

Decision-Making Influences to the Operating Process 
 

Influences can affect both human and machine (or software) controllers, although some are specific to only 

humans. The need to identify influences enforces the necessity of SME involvement during Step 2 of STPA. Socio-

technical organizations contain large functional hierarchies, and often the lower levels of operation exhibit a smaller 

time constant (faster cycling) than higher-level managerial processes. Additionally, there may be planning or 

maintenance cycles that precede operating cycles, depending on the industry. Influences to operating controllers 

from these sources evolve before the operating cycle, and they are presented in Figure 3. Influences are controls, but 

because they do not occur in the real time of the operating cycle they are considered static during the operation (and 

thus can be incorporated into a section of the controller analysis). 

Going from left to right in the figure, each consecutive block represents influences that evolve closer in 

time to the operating cycle. Influences can be unintentional. Conflicting policies or outdated procedures are an 

example of the wrong information making its way into the operating cycle. Sources of the influences can be explicit 

(formal, articulated, and codified) or tacit (not easily transferred via media). In a tacit example, operators while on 

their lunch breaks might complain about a certain aspect of a computer interface they use on the job, and those 

sentiments eventually evolve into a proclivity not to use that feature. On the other hand, an explicit influence would 

be a company policy letter stating to discontinue use of the feature based on data gathered from a formal employee 

reporting system. Explicit sources might be the only ones easily available to a safety analyst with little experience in 

the specific domain; SMEs will more readily understand sources of tacit knowledge in the organization. 
 

Examples of Causal Scenarios – Autonomous Cruise Control 
 

Suppose a human driver of a modern car has an option to use an autonomous cruise control (ACC) that 

maintains a set distance from traffic ahead of it. This feature cannot accurately detect position and velocity of other 

traffic during inclement weather. A published warning about this exists in the owner’s manual, and a small icon that 

says “ACC-deg” lights up next to the “ACC-on” icon by the speedometer when the ACC is armed but experiencing 

sensing problems (it will not shut off automatically if this happens). An STPA of the car design begins by 

referencing top-level hazards, one of which says: “Car violates minimum safe velocity/distance separation to another 

vehicle on the road.” In STPA Step 1, a safety analyst examining the control loop between the human and the ACC 

(see Figure 1) would generate several UCAs for that hazard, one of which says: “Driver does not disengage ACC 

during inclement weather.” 

For STPA Step 2, the analysis sequence in Figure 2 begins at the “Information Set” (data availability). 

Design feedback listed here includes “ACC-on” and “ACC-deg” icons, speedometer and engine instruments, and 

visual weather cues. SMEs might offer non-design feedbacks that include engine noise indicative of a struggling 

ACC. Affordance feedback would include the feel of the button that engages or disengages ACC. An example of a 
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causal scenario for the UCA would be: “Driver assumes she has disengaged ACC by pushing the ACC button but 

does not confirm that the ‘ACC-on’ light has extinguished.” A causal scenario informed by the “Observe” section of 

Figure 2 would be: “‘ACC-deg’ icon not noticed by driver for [specific design reason(s)].” 

The process model identifies behavior states, some of which are: velocity, distance to front traffic, and 

weather condition. Some mode states are: ACC on/off and ACC degraded/not. The analysis also investigates human 

mode knowledge, to include that ACC becomes brittle in inclement weather (even cloudy days that might otherwise 

seem safe), and that ACC communicates its status via the icons on the dashboard. An example of a causal scenario 

would be: “Driver does not know that the ACC-deg icon indicates a system limitation and continues to use ACC.” A 

further inquiry into “influences” would look at “Rules and Techniques” and identify causal scenarios such as: “Car 

manual does not sufficiently emphasize the importance of monitoring for an ‘ACC-deg’ icon, even if weather 

appears normal.” A causal scenario from “Behavioral Standards” would be: “Auto industry does not sufficiently 

emphasize that drivers of vehicles with autonomy should read the entire warnings section of their manuals.” These 

scenarios are used by engineers to eliminate them from the system design or to control them. For example, the cruise 

control software could be redesigned or the driver interface might be improved. 
 

Conclusion 
 

This paper extends the generation of hazardous scenarios in STPA by classifying information useful for 

investigating human (or intelligent) controller contributions to system hazards. The analysis of the controller was 

improved by refining several sections, including looking at three levels of the process model that contribute to 

robust and flexible behavior. Fundamental human considerations were also added in the form of adding new sections 

covering workspace and variability, and an emphasis was added to differentiate design, non-design, and affordance 

feedback to the controller. Finally, influence was considered to capture organizational ties to operational behavior. 

These techniques add to the already improved ability of STPA to go beyond targeting humans or software 

for making arbitrary errors. Considerations that contribute to hazardous scenarios have been refined. Ideally, these 

improvements can be used not only to investigate existing systems but to inform system design, particularly as 

software and autonomy capabilities improve. 
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