
Design

Design

Design should incorporate basic safety design principles

What Went Wrong?

Before a wise man ventures into a pit, he lowers a
ladder so he can climb out.

Rabbi Samuel Ha−Levi Ben Joseph Ibm Nagrela

Design for Safety

cc

Leveson − 230

Leveson − 229

c

Trevor Kletz

c

Software design must enforce safety constraints

Should be able to trace from requirements to code (vice versa)

Design for Safety

Unfortunately, everyone had forgotten why the branch
came off the top of the main and nobody realized that
this was important.

Design

Design

Passive tend to be more restrictive in terms of design
freedom and not always feasible to implement.

BUT

Safe Design Precedence

DAMAGE REDUCTION

HAZARD CONTROL

HAZARD REDUCTION

HAZARD ELIMINATION

Leveson − 231

Leveson − 232

Passive vs. Active Protection

Active depend on less reliable detection and recovery
mechanisms.

Passive rely on physical principles

Tradeoffs:

Active safeguards:
Require hazard or condition to be detected and corrected

Fail into safe states

Passive safeguards:
Maintain safety by their presence

c

cc

c

Protection systems and fail−safe design
Isolation and containment
Reducing exposure

Redundancy
Safety Factors and Margins

Failure Minimization
Lockins, Lockouts, Interlocks

Barriers
Design for controllability

Reduction of hazardous materials or conditions
Elimination of human errors
Decoupling
Simplification
Substitution

Decreasing cost

Increasing effectiveness

Design

Design

A system is intellectually unmanageable when the level of
interactions reaches point where they cannot be thoroughly

System accidents occur when systems become intellectually
unmanageable.

SUBSTITUTION

computer.
Simple hardware devices may be safer than using a

computers to control dangerous devices.

Use safe or safer materials.

No technological imperative that says we MUST use

and even unk−unks.
Introducing new technology introduces unknowns

Hazard Elimination
Leveson − 233

Leveson − 234

c

A simple system has a small number of unknowns in the

c

cc

Number of parts
Functional Modes
Interfaces

planned

anticipated
understood

guarded against

SIMPLIFICATION

? A simple design minimizes:

interactions within the system and with its environment.

Design

Design

decomposition.
Design so that structural decomposition matches functional

determinism vs. nondeterminism
single tasking vs. multitasking
polling over interrupts

features or unused executable code.
Should not contain unnecessary or undocumented

Criteria for a simple software design:

1. Testable: Number of states limited

2. Easily understood and readable

3. Interactions between components are limited and
straightforward.

4. Code includes only minimum features and capability
required by system.

5. Worst case timing is determinable by looking at code.

SIMPLIFICATION
Leveson − 235

Leveson − 236

cc

cc

and make designs more testable.

Easy to add functions to software, hard to practice restraint.

Constructing a simple design requires discipline, creativity,
restraint, and time.

SIMPLIFICATION (con’t)

Reducing and simplifying interfaces will eliminate errors

Design

Design

Tightly coupled system is one that is highly interdependent:

System accidents caused by unplanned interactions.

Coupling creates increased number of interfaces and
potential interactions.

Each part linked to many other parts.

Processes are time−dependent and cannot wait.

Sequences are invariant.

Only one way to reach a goal.

Failure or unplanned behavior in one can rapidly
affect status of others.

Little slack in system

DECOUPLING
Leveson − 237

Leveson − 238

cc

cc

Firewalls

Read−only or restricted write memories

Applying principles of decoupling to software design:

Modularization: How split up is crucial to determining effects.

DECOUPLING (con’t)

Computers tend to increase system coupling unless very careful.

Eliminatinc hazardous effects of common hardware failures

Design

Design

error prone.

ELIMINATION OF HUMAN ERRORS

Design so few opportunities for errors.

production of simple and understandable programs.
Not only simple itself (masterable), but should encourage the

.

Software should contain only code that is absolutely
necessary to achieve required functionality.

Memory not used should be initialized to a pattern that will
revert to a safe state.

Extra code may lead to hazards and may make

Implications for COTS

software analysis more difficult.

REDUCTION OF HAZARDOUS MATERIALS OR CONDITIONS

Leveson − 239

Leveson − 240

c

Some language features have been found to be particularly

c

cc

Lots of ways to increase safety of human−machine interaction.

Programming language design:

Make impossible or possible to detect immediately.

Making status of component clear.
Designing software to be error tolerant
etc. (will cover separately)

Design

Design

whatever the nature of internal or external fault.
2. Under no circumstances can steam valves open spuriously,

hundred milliseconds.
1. Must always be able to close steam valves within a few

Divided into two parts (decoupled) on separate processors:

Safety requirements:

Turbine−Generator Example

Turbine−Generator Example (2)

Self−check criteria appropriate under particular conditions

Scheduling of tasks

Whether processor functioning correctly

Sensibility of incoming signals

1. Non−critical functions: loss cannot endanger turbine
nor cause it to shutdown.

2. Small number of critical functions.

less important governing functions
supervisory, coordination, and management functions

cc

Leveson − 242

Leveson − 241

c

Higher level of predictability

c

Uses polling : No interrupts except for fatal store fault (nonmaskable)

All messages unidirectional

Self−checks of

Failure of self−check leads to reversion to safe state through
fail−safe hardware.

State table defines:

Timing and sequencing thus defined

More rigorous and exhaustive testing possible.

No recovery or contention protocols required

Design

Design

Perform critical steps incrementally rather than in one step.
Provide feedback

Provide various types of fallback or intermediate states

in design of monitor and devices being monitored.
Common incorrect assumptions may be reflected both

May be incorrect under certain conditions

Monitoring

about errors that may or may not occur
Depends on assumptions about structure of system and

usually involves possibility of corrupting that information.
Checks require access to information being monitored but

Difficult to make monitors independent:

Leveson − 244

Leveson − 243

c

Use monitoring

c

cc

To test validity of assumptions and models upon which decisions made

To allow taking corrective action before significant damage done.

Design for Controllability

Make system easier to control, both for humans and computers.

Use incremental control:

Lower time pressures

Provide decision aids

Design

Design

Used to detect hardware failures and individual instruction errors.

not detected

Fail

Often built into hardware or checks included in operating system.

Checksums
e.g., memory protection violation, divide by zero

e.g. range checks, state checks, reasonableness checks
about expected value of parameters passed to module.

Use assertions: statements (boolean expressions on system state)
about expected state of module at different points in execution or

Can detect coding errors and implementation errors.

expected timing of modules or processes
consistency of global data structures
data being passed between modules

May check:
Independent monitoring by process separate from that being checked.

Often observe both controlled system and controller.
Use additional hardware or completely separate hardware.

not detected

Leveson − 246

Leveson − 245

cc

ccA Hierarchy of Software Checking

Supervisory Checks

Audit Checks

Code−Level Checks

Hardware Checks

Observe system externally to provide independent view

not detected

not detected

Software Monitoring (Checking)

Use hazard analysis to determine check contents and location

Limit to safety−critical states

Added monitoring and checks can cause failures themselves.

time and memory.
Writing effective self−checks very hard and number usually limited by

Detect the error closer to the time it occurred and before

In general, farther down the hierarchy check can be made, the better:

More likely to be able to fix erroneous state rather than recover to safe state.

Easier to isolate and diagnose the problem

erroneous data used.

Design

Design

LOCKOUTS

Make access to dangerous state difficult or impossible.

Implications for software:

Avoiding EMI

Authority limiting

Controlling access to and modification of critical variables

Can adapt some security techniques

Barriers

Leveson − 248

Leveson − 247

LOCKIN

cc

cc

e.g.,

Make it difficult or impossible to leave a safe state.

Need to protect software against environmental conditions.

operator errors

data arriving in wrong order or at unexpected speed

Completeness criteria ensure specified behavior robust
against mistaken environmental conditions.

Design

Design

Safety depends on NOT working

Three basic techniques (called ‘‘positive measures’’)

Separate critical elements (barriers)

Keep in inoperable state, e.g., remove ignition device or
arming pin

Detonation requires an unambiguous indication of human
intent be communicated to weapon.

Protecting entire communication system against all credible
abnormal environments (including sabotage) not practical.

Instead, use unique signal of sufficient information complexity

1. Isolation

that unlikely to be generated by an abnormal environment.

2. Inoperability

3. Incompatibility

Example: Nuclear Detonation

cc
Leveson − 249

Leveson − 250
cc

2. Event A does not occur while condition C exists
3. Event A occurs before event D.

Batons
Critical sections
Synchronization mechanisms

INTERLOCK

Examples:

1. Event A does not occur inadvertently

Used to enforce a sequence of actions or events.

Remember, the more complex the design, the more likely errors
will be introduced by the protection facilities themselves.

Design

Design

Arming
and firing
voltages

intent

Barrier Removable
barrier

Human

Isolated

Example: Nuclear Detonation (3)

1. Accept proper unique signal while rejecting spurious inputs

2. Have rejection logic that is highly immune to abnormal environments

3. Provide predictably safe response to abnormal environments

4. Be analyzable and testable

Unique signal discriminators must:

Protect unique signal sources by barriers.

channels.
Removable barrier between these sources and communication

Example: Nuclear Detonation (2)

Leveson − 251

Leveson − 252

Driver

Inclusion
Region

component

Unique Signal
Source Exclusion Region

Isolated element

Communications channel
incompatible − Unique Signal

Inoperable in abnormal
environments

UQS
UQS

Reader
Stored Discriminator/

cc

cc

Design

Design

Intended
human

Intended
human

human

action

action

action

Intended

Stimuli
source

no. 2

communication channels, using different types of signals (energy and information)
to ensure proper intent.

Unique

system

signal
no. 1

Safing and firing

signal

system

Unique

Arming
signals

Leveson − 253
cc

Leveson − 254
cc

Example: Nuclear Detonation (4)

AABABBB

fusing system
Arming and

interface
Human−machine

Communication

Appropriate for continuous and non−action systems.

Some ways to minimize problem, but cannot eliminate it.

Used to cope with uncertainties in engineering:

SAFETY FACTORS AND SAFETY MARGINS

Failure Minimization

handling, environment, or usage.
differences in composition, manufacturing, assembly,
Variation in strength of a specific material due to

Limitations in knowledge

Inaccurate calculations or models

May require multiple unique signals from different individuals along various

Design

Safety factor

Safety factor

failure strength

Expected
load

Expected

Expected Expected
strengthload

Margin
of safety

strength

Safety Margins and Safety Factors

Leveson − 255

Stress

Expected

(a) Probability density function of failure for two parts

(b) A relatively safe case.

with same expected failure strength.

(c) A dangerous overlap but the safety factor is the same as in (b)

occurrence

Probability
of

of

Stress

occurrence

Probability

Probability

occurrence
of

Stress

cc

Design

Design

REDUNDANCY

Goal is to increase reliability and reduce failures.

Common−cause and common−mode failures

May add so much complexity that causes failures.

Useful to reduce hardware failures. But what about software?

Design redundancy vs. design diversity

Bottom Line: claims that multiple version software will

More likely to operate spuriously.

May lead to false confidence (Challenger)

achieve ultra−high reliability levels are not supported
by empirical data or theoretical models.

Leveson − 256

Leveson − 257
cc

cc

REDUNDANCY (con’t.)

Standby spares vs. concurrent use of multiple devices (with voting)

Identical designs or intentionally different ones (diversity).

Diversity must be carefully planned to reduce dependencies.

Can also introduce dependencies in maintenance, testing, repair

Redundancy most effective against random failures not design errors.

Design

Design

Fault Tolerance vs. Fault Elimination

Embedded assertions vs. N−version programming

(con’t.)REDUNDANCY

Software errors are design errors.

Data redundancy: extra data for detecting errors

Algorithmic redundancy:

e.g. parity bit and other codes
checksums
message sequence numbers
duplicate pointers and other structural information

1. Acceptance tests (hard to write)

2. Multiple versions with voting on results

Leveson − 258

Leveson − 259

Failure independence in N−version programming

cc

cc

Probability of correlated failures is very low for independently
developed software.

Multi (or N) Version Programming

Software errors occur at random and are unrelated.

Assumptions:

Even small probabilities of correlated failures cause a
substantial reduction in expected reliability gains.

Conducted a series of experiments with John Knight

Design

Design

Using different programming languages and compilers won’t help

27 programs, one requirements specification
Graduate students and seniors from two universities
Simulation of a production environment: 1,000,000 input cases
Individual programs were high quality

must include effect of dependent errors.

Statistically correlated failures result from:

"Hard" cases in input space
Nature of application

very different.

Failure Independence
Experimental Design:

Results:

Rejected independence hypothesis: Analysis of reliability gains

not due to tools used or languages used or even algorithms used.
Conclusion: Correlations due to fact that working on same problem,

Programs with correlated failures were structurally and algorithmically

Leveson − 261

Consistent Comparison Problem

Arises from use of finite−precision real numbers (rounding errors)

Correct versions may arrive a completely different correct outputs
and thus be unable to reach a consensus even when none of
components "fail.".

May cause failures that would not have occurred with single versions.

No general practical solution to the problem .

cc

cc
Leveson − 260

Design

Design

Launch Interceptor Programs (LIP) from previous study.

Students treated this as a competition among themselves.

Fault Tolerance vs. Fault Elimination

Executable lines of code from 1200 to 2400

Number of modules from 28 to 75

Attempted to hold resources constant for each technique.

were given a program to instrument.
Checks written using specifications only at first and then participants

Provided with identical training materials.

24 graduate students from UCI and UVA employed to instrument

found errors).
8 programs (chosen randomly from subset of 27 in which we had

Allowed to make any number or type of check.

Self−Checking Software

Experimental Design:

Leveson − 262

Leveson − 263

Eight version produced with 2 person teams

cc

cc

Techniques compared:

Multi−version voting
Functional testing augmented with structural testing
Code reading by stepwise abstraction
Static data−flow analysis

Run−time assertions (self−checks)

Experimental Design:

Combat Simulation Problem (from TRW)
Programmers separate from fault detectors

Design

2
2

12a
12b
12c

1 0 5 2238360Total

Spec Read Chks Read

1

6a
6b
6c

1
1

2
28a

8b
8c 1

1
3

1
2

1

1

Chks

1
2

20a
20b
20c

2 4
14a
14b
14c

KNOWN NEWLY FOUND ADDED

1

Self−Checking Software (2)

Leveson − 264

1

Spec

3 1
25c
25b

2 125a

2
2

423a
23b
23c

2 1
1

1

cc

Detected

SP

Already Known Errors Other Errors

CDCR SP CR CD

1

Added
Detected Errors

3a
3b
3c

3
2

4

#

Design

Design

problems arise anyway.

Results:

Multi−version programming is not a substitute for testing.

Unreliable in tolerating the faults it was capable of tolerating.

Did not tolerate most of faults detected by fault−elimination
techniques.

Testing failed to detect errors causing coincident failures.

Cast doubt on effectiveness of voting as a test oracle.

Intersection of sets of faults found by each method was
relatively small.

Instrumenting the code to examine internal states was
much more effective.

Fault Tolerance vs. Fault Elimination (2) Leveson − 265

Leveson − 266

Requirements flaws not handled, which is where most safety

cc

cc

Cross Checks
Overspecification

of benefits to be gained and costs involved:
Doesn’t mean shouldn’t use, but should have realistic expectations

N−Version Programming (Summary)

Costs very high (more than N times)

In practice, end up with lots of similarity in designs (more than
in our experiments)

So safety of system dependent on quality that has been
systematically eliminated.

And no way to tell how different 2 software designs are in
their failure behavior.

Design

Design

Hazard Control

PROTECTION SYSTEMS AND FAIL−SAFE DESIGN

Forward

Backward

Assume can detect error before does any damage.

Robust data structures.

Assume alternative will be more effective.

Dynamically altering flow of control.

Ignoring single cycle errors.

But real problem is detecting erroneous states.

Recovery

Leveson − 267

Leveson − 268

ISOLATION AND CONTAINMENT

cc

cc

Start out in safe state and require deliberate change to unsafe state.

Set critical flags and conditions as close to code they protect as possible.

Critical conditions should not be complementary, e.g., absence of an
arm condition should not be used to indicate system is unarmed.

LIMITING EXPOSURE

Design

Design

General rule is hazardous states should be hard to get into and

May have multiple safe states, depending upon process conditions.

safe states should be easy.

Panic button

Watchdog timer: Software it is protecting should not be responsible

Protection Systems and Fail−Safe Design

for setting it.

Damage Reduction

May need to determine a ‘‘point of no return’’ where recovery no
longer possible or likely and should just try to minimize damage.

Design Modification and Maintenance

Need to reanalyze for every proposed/implemented change

Recording design rational from beginning and traceability
will help.

Leveson − 269

Leveson − 270

Depends upon existence of a safe state and availability of

cc

cc

likely protection system is to be purposely bypassed or turned off.
The easier and faster is return of system to operational state, the less

actions and status to operators or bystanders.
Protection system should provide information about its control

Sanity checks (I’m alive signals)

adequate warning time.

