
Requirements

Requirements

system safety design criteria.

Trace requirements into code.

Validate the subsystem design satisfies safety design constraints

Determine how to satisfy design constraints in subsystem design.

and does not introduce previously unidentified hazardous system
behavior.

Must perform on ALL software, including COTS.

Software Hazard Analysis

satisfies the system safety design constraints.
Validate that specified software blackbox behavior (requirements)

Check specified software behavior satisfies general software

A form of subsystem hazard analysis.

Leveson − 185

Leveson − 186

Subsystem Hazard Analysis (SSHA)
c

c

c

c

Examine subsystems to determine how their

Normal performance

Operational degradation

Functional failure

Unintended function

Inadvertent function (proper function but at wrong time or in wrong order)

could contribute to system hazards.

Provide traceability from requirements to design to code

Capture domain knowledge and design rationale

Enhance communication and review

Basic principles of system engineering

Research in how experts solve problems

Goals

Intent Specifications

Based on

Requirements

Requirements

Requirements Topics

To support change and upgrade process

For verification and validation

Intent Specifications

environment
Integrate safety information into decision−making

State Machine Models

Analyzing Requirements

Completeness Criteria for Requirements

Leveson − 188

Leveson − 187
c

c

c

c

(Component Implementer View)

(Component Designer View)

(System Engineering View)

(Customer View)

(Interface between System and Component Engineers)

(Operations View)

Requirements

Requirements

(Management View)

From different perspectives

To support different types of reasoning

Represent different views of system (not refinement)

7 levels:

Differs in structure, not content from other specifications

Traceability between models (levels)

Describe system from different viewpoints

Hierarchy of models

Intent Specifications (2)

Management

Level 4: Design
Representation

Level 0: Program

Design Principles
Level 2: System

Level 1: System
Purpose

Leveson − 190

Representation
Level 5: Physical

Refinement

Level 6: System
Operations

Level 3: System
Architecture

Leveson − 189

Environment

c

c

c

c

Intent

Part−Whole

Validation
Verification

Operator System

Level 1

Level 6

Level 0

Subsystem
Hazard Analysis

Analysis
System Hazard

Logic principles,
control laws,

and results,
Analysis plans

and results,
Validation plan

Reviews

Assumptions
Constraints

Interface specifications
models

Prog. Mgmt.

HCI models

Operator Task
modelsmodels

Environment

Project management plans, status information, safety plan, etc.

and allocation
functional decomposition

Level 3

Level 4

Physical
Level 5

Operations

Rep.

and audits
monitoring

Performance

and results
Test plans

and results
Test plans

requests, etc.
Error reports, change

HCI design Software and hardware
design specs

Rep.

GUI design,
physical controls

design

Software code, hardware
assembly instructions

Audit
procedures

Operator manuals
Maintenance

Training materials

Task allocation

System
Architecture

Design

Requirements

Blackbox functional

Controls, displays

Responsibilities
Requirements

I/F requirements
Hazard Analysis,

Preliminary
System
Purpose

System goals, high−level
requirements, design

constraints, limitations

External
interfaces

Principles

Task analyses
System

Level 2

Leveson − 191
cc

Environment Operator System and components V&V

Human

Automation
Model of

Controller
Supervisor

Process
Controlled Disturbances

Process
Model of

Automated

Process

drastically reduce number of states and transitions

outputs
Process

variables

Define required blackbox behavior of software in terms of a

Do not have continuous math to assist us

of discrete states required to describe software behavior.
2) Use abstraction and metamodels to handle large number

complexity of internal design to accomplish the behavior.
1) Use blackbox models to separate external behavior from

Problem is dealing with complexity

all the software contributions to accidents.

requirements.

Requirements are source of most operational errors and almost

Requirements Validation

But new types of state machine modeling languages

state machine model of the process (plant).

Measured

modeler needs to describe.

Much of software safety effort therefore should focus on

Requirements

Requirements

inputs

Controlled
variables

Actuators

Process
Model of

Displays

Sensors

Controls

Leveson − 192

Leveson − 193

c

Requirements as State Machine Models

c

c

c

Off
Control
Cruise

Mode
Standby
and in

Control On

or accelerator
depressed /

cruise control

to increase at X rate
send command to throttle

initialize cc
turned on /

cruise control

discontinue

set point reached / reduce
throttle

read wheel turning rate /
adjust throttle

increase speed commanded /

Cruise

brake depressed

Requirements

Requirements

Increasing
Speed

Speed
Maintaining

High reading
Open drain pipe

low
level
Water

Turn off pump
Reading at setpoint /

Activate pump

 /

Low reading /

Close drain pipe

Leveson − 194

Leveson − 195

Reading at set point

Example of a State Machine Model

 /

c

c

c

c

Water
level
high

level at
setpoint

Water

Requirements

Requirements

Internal design decisions are not included.

computed by the component, i.e., the transfer function.

on the passage of time)

Triggers for outputs (externally observable conditions or

(not just inputs, e.g., may want to trigger an output

Outputs

Specify:

Includes externally visible behavior only

Simplifies the specification and review by system experts

events)

Most software−related accidents involve software requirements
deficiencies.

Accidents often result from unhandled and unspecified cases.

Leveson − 196

We have defined a set of criteria to determine whether a

Leveson − 197

Requirements Completeness

Validated (at JPL) and used on industrial projects.

requirements specification is complete.

Derived from accidents and basic engineering principles.

c

c

c

c

Start from a "blackbox" statement of software behavior:

In essence, the specification is the input to output function

Blackbox specifications

Completeness: Requirements are sufficient to distinguish
the desired behavior of the software from
that of any other undesired program that
might be designed.

Added basic engineering principles (e.g., feedback)

Defined completeness for each part of state machine

How were criteria derived?

Sensors

Disturbances
Controller

Process
Controlled

Automated

Process
inputs

outputs
Process

variables
Measured

Controlled
variables

Actuators

Process
Model of

Mapped the parts of a control loop to a state machine

Requirements

Requirements

Mathematical completeness
States, inputs, outputs, transitions

I/O

I/O

Completeness criteria define what needs to be specified about

Leveson − 199

Leveson − 198

Required blackbox behavior specified using the process model.

triggers, outputs, and the relationship between them.

(plant) model.

Requirements Completeness Criteria

Defined in terms of a state machine model of the process

c

Requirements Completeness Criteria (2)

c

c

c

Requirements

Requirements

Mode transitions

Failure states and transitions
Environment capacity

Human−computer interface

(won’t go through them all they are in the book)

About 60 criteria in all including human−computer interaction.

Startup, shutdown

Inputs and outputs

Robustness
Data age
Latency
Feedback
Reversibility
Preemption
Path Robustness

Requirements Completeness Criteria (3)

Leveson − 201

Leveson − 200

Load and capacity

c

c

c

c

Many accidents involve off−nominal processing modes, including
startup and shutdown and handling unexpected inputs.

Examples of completeness criteria in this category:

The internal software model of the process must be updated

temporary shutdown.
to reflect the actual process state at initial startup and after

The maximum time the computer waits before the first input

input in any state, including indeterminate states.

must be specified.

There must be a response specified for the arrival of an

Startup and State Completeness

Value and timing

Requirements

Requirements

There should be no observable events that leave the program’s

Why need to document and check all assumptions?

behavior indeterminate.

Trigger Event Completeness

At blackbox interface, only time and value observable to software.

So triggers and outputs must be defined only as constants or as
the value of observable events or conditions.

Criteria:

All information from the sensors should be used somewhere in the

Legal output values that are never produced should be checked for
potential specification incompleteness.

specification.

Input and Output Variable Completeness

Leveson − 202

Leveson − 203

of these assumptions (such as unexpected inputs).

c

c

c

c

Therefore, robustness of software built from specification will

assumptions.
depend on completeness of specification of environmental

Behavior of computer defined with respect to assumptions about
the behavior of the other parts of the system.

A robust system will detect and respond appropriately to violations

Requirements

Requirements

To be robust, the events that trigger state changes must
satisfy the following:

1. Every state must have a behavior (transition) defined for
possible input.

2. The logical OR of the conditions on every transition out of
every state must form a tautology.

x > 5
x < 5

3. Every state must have a software behavior (transition) defined
in case there is no input for a given period of time (a timeout).

Together these criteria guarantee handing input that are within
range, out of range, and missing.

Formal Robustness Criteria
Leveson − 204

Leveson − 205

Nondeterminism Criterion

c

c

c

c

(only one possible transition out of a state is applicable at
The behavior of the requirements should be deterministic

any time).
X > 0

X < 2

We (and others) have tools to check specifications based on
state machines for robustness, consistency, and nondeterminism.

NOTE: This type of mathematical completeness is NOT enough.

is a mathematically complete, consistent,
and deterministic specification.
‘‘true’’e.g.,

Requirements

Requirements

Response to excessive inputs (violations of load assumptions)
must be specified.

Value and Timing Assumptions

Need to completely specify:

Hysteresis in transitions between off−nominal and nominal

Off−nominal states and transitions

Partial shutdown and restart

Communication with operator about fail−safe behavior

Performance degradation

Most accidents occur while in off−nominal processing modes.

Failure States and Transition Criteria

Leveson − 206

Leveson − 207

physically distinct communication path.

c

c

c

c

Examples:

Software should have the capability to query its environment
with respect to inactivity over a given communication path.

All inputs should be checked and a response specified in the
event of an out−of−range or unexpected value.

All inputs must be fully bounded in time and the proper behavior
specified in case the limits are violated.

Minimum and maximum load assumptions ...

A minimum−arrival−rate check should be required for each

Requirements

Requirements

6. Queue entry deletion.

5. Operator review and disposal commands for queue entries.

Human−Computer Interface Criteria

Examples:

.

Environment Capacity Constraints

environment must equal or exceed the input arrival rate.
are assumed and specified, the absorption rate of the output
For the largest interval in which both input and output loads

absorption rate limit will be exceeded.
Contingency action must be specified when the output

Leveson − 208

Leveson − 209

4. Operator notification mechanism for items inserted in the queue.

c

c

c

c

For every data item displayable to a human, must specify:

1. What events cause this item to be displayed?

If so, what events should cause the update?
2. What events cause item to be updated?

3. What events should cause the display to disappear?

For queues need to specify:

1. Events to be queued

2. Type and number of queues to be provided (alert and routine)

3. Ordering scheme within queue (priority vs. time of arrival)

Requirements

Requirements

Leveson − 211
cc

Data Age Criteria

2. Specification of operator warnings to be issued in case of
such revocation.

1. Specification of multiple times and conditions under which

taken without operator confirmation.
varying automatic cancellation or postponement actions are

Revocation of partially completed transactions may require:

cancel the sequence automatically and inform the operator.

Leveson − 210

Latency Criteria

(see book for criteria)
Subtle problems when considering latency of HCI data.

Cannot be eliminated completely.

Acceptable length determined by controlled process.

Influenced by hardware and software design (e.g., interrupt vs. polling)

Latency is the time interval during which receipt of new information
cannot change an output even though it arrives prior to output.

Incomplete hazardous action sequences (transactions) should have

in the time they can be used.
All inputs used in specifying output events must be properly limited

cc

a finite time specified after which the software should be required to

Output commands that may not be able to be executed immediately
must be limited in the time they are valid.

a finite time specified after which the software should be required to

in the time they can be used.
All inputs used in specifying output events must be properly limited

2. Specification of operator warnings to be issued in case of
such revocation.

1. Specification of multiple times and conditions under which

taken without operator confirmation.
varying automatic cancellation or postponement actions are

Revocation of partially completed transactions may require:

cancel the sequence automatically and inform the operator.

Incomplete hazardous action sequences (transactions) should have

Output commands that may not be able to be executed immediately
must be limited in the time they are valid.

Requirements

Requirements

REACHABILITY

in specific cases.

Path Criteria

Basic feedback loops, as defined by the process control function,

Examples:

There should be an input that the software can use to detect the

Every output to which a detectable input is expected must have
associated with it:

effect of any output on the process.

must be included in the requirements along with appropriate checks
to detect internal or external failures or errors.

late, too early, or has an unexpected value.

1. A requirement to handle the normal response

2. Requirements to handle a response that is missing, too

Feedback Criteria

Leveson − 213

Leveson − 212

Sometimes what is not practical in general case is practical

cc

cc

Paths between states are uniquely defined by the sequence of

Transitions between modes are especially hazardous and

trigger events along the path.

susceptible to incomplete specification.

Required states must be reachable from initial state.

Complete reachability analysis often impractical, but may be
able to reduce search by focusing on a few properties or using
backward search.

Hazardous states must not be reachable.

Requirements

Requirements

to hazardous states.
Multiple inputs or triggers should be required for paths from safe

PATH ROBUSTNESS

Path Criteria (3)

Most process control software is cyclic. May have some non−cyclic
states (mode change, shutdown)

by transitions in a cycle.
Required sequences of events must be specified in and limited

Inhibiting state: State from which output cannot be generated.

There should be no states that inhibit later required outputs.

RECURRENT BEHAVIOR

PREEMPTION

REVERSIBILITY

Path Criteria (2)
Leveson − 214

Leveson − 215

safety.

cc

cc

Soft failure mode: The loss of ability to receive input X could inhibit

Hard failure mode: The loss of ability to receive input X will inhibit
the production of output Y

the production of output Y

Soft and hard failure modes should be eliminated for all hazard
reducing outputs.

modes.

Multiple paths should be provided for state changes that maintain

Hazard increasing outputs should have both soft and hard failure

Readable and reviewable

Minimize semantic distance

Executable

Includes human actions

Assists in finding incompleteness

Minimal (blackbox)

Easy to learn

Unambiguous and simple semantics

Complete
Can specify everything need to specify

Analyzable

Level 3 Specification (modeling) language goals

Requirements

Requirements

Formal (mathematical) foundation

Leveson − 217

Specification Tools and Requirements Methodology

building complex control systems.

Leveson − 216

SpecTRM

A set of integrated tools to assist in

c

cc

c

Requirements

RequirementsSpecTRM−RL

Combined requirements specification and modeling language

A state machine with a domain−specific notation on top of it.

Includes a task modeling language

Can add other notations and visualizations of state machine

Enforces or includes most of completeness criteria

Control modes

Operational modes

Supervisory modes

Display modes

Supports specifying systems in terms of modes

Measured Variable 2

MODES
INFERRED SYSTEM STATE

Supervisor

Measured Variable 1

Device
ControlledControl Input

Display Output

Control

Leveson − 218

Command

Measured Variable
(Feedback)

Sensor
Environment

CONTROL

INFERRED SYSTEM OPERATING MODES

Controller

MODES
DISPLAY

Leveson − 219

cc

cc

SUPERVISORY
MODE

Time since entered detumble < 100 sec

Time since entered wait >= 10 sec

Ground Control

Spinup

Detumble

Wait

Time since entered spinup >= 100 sec

Time since entered ground control >= 10 sec

Optical system in−state tracking

xz momentum error > xz momentum error threshold

Paddles in−state deployed

about the X and Z axes.
entering the mode, and the magnetic moment along the Y axis shall be controlled to minimize the angular velocity
In detumble mode, the wheel actuator shall be controlled such that the wheel maintains the velocity it had upon

As soon as the magnitude falls below a threshold,e software should transition to spinup mode. The mode
The purpose of detumble mode is to minimize the magnitude of body momuntum vector in the X−Z plane.

Detumble (Mode 1)

Requirements

delay provides hysteresis in the mode transitions to prevent the software from jumping between modes too rapidly.

OR

Leveson − 220

SpecTRM Model of HETE Attitude Control System

CONTROL
Paddles

Deploy Paddles

Torque
Coils

Momentum
Wheel

Wheel

Deployed

Not deployed

Unknown

Day

Night

Unknown

Optical System

Tracking

Not tracking

Unknown

Unknown

Not deployed

Deployed

Orbit

Bias
Magnetic Fields (X,Y,Z)

Elevation Angle
Azimuth Angle

Reorient

MODES

Mission
Ops

HETE ACS

Wait

Spinup

Detumble

Deploy Wheel

Acquire

Orbit Day

Orbit Night

Ground Command

MODES
CONTROL

Paddles

Deploy Paddles

Detumble

Reorient

Deploy Wheel

Acquire

Orbit Day

Orbit Night

Ground Command

T

F

T

F

T

T

T

T

=

Control Mode

ACS Mode (2)

Sensors
Sun Magnetometers

cc

T

State Values

Control Mode T

T T

T

T T

T

F

Automatic code generation

Test Coverage Analysis and Test Case Generation

State Machine Hazard Analysis (backwards reachability)

Completeness

Model Execution, Animation, and Visualization

Requirements Analysis

Requirements

Requirements

Human Task Analysis

additional criteria

Completeness Analysis

Automated completeness (robustness) checker

Components of modeling language to assist in checking

API to allow checking by other formal analysis tools

Automated consistency checker

Leveson − 222

Leveson − 221
c

cc

c

= ...

Requirements

Min time between outputs:
Load:

Output Capacity Assumptions:
Completion Deadline:

Max time between outputs:
Hazardous timing behavior:
Exception−Handling:

Initiation Delay:

Feedback Information:

Relationship:

Variables:
Values:

Min. time (latency):
Max. time:
Exception Handling:

Reversed By:
Comments:
References:

DEFINITION

Leveson − 223

Exception Handling:

cc

Name
Output Command

Destination:
Acceptable Values:

Units:
Granularity:

Hazardous Values:

Timing Behavior:

100 milliseconds

*

none

*

*

Digital Altimeter 1

Altitude

Values below −20 are treated as −20 and values above 2500 as 2500

*

*

F

*

*

DA1 Alt Signal was Never Received

Requirements

*

= Obsolete

Min−Time−Between−Inputs:
Arrival Rate (Load):

Units:

Exception−Handling:
−20..2500Possible Values (Expected Range):

Type:
Source:

Granularity:

Comments:

Leveson − 224

System Start
Time Since DA1 Alt Signal was last received > 2 seconds
DA1 Alt Signal was Received

Time Since DA1 Slt Signal was last received > 2 seconds
DA1 Alt Signal was Received

= Previous Value of DA1 Alt Signal

DA1 Alt Signal was Received

= New Data for DA1 Alt Signal

DEFINITION

integer

feet AGL
 1 foot

one per second average

2 seconds
Assumes value Obsolete

Appears in:

Description:
Exception−Handling:

Obsolescence:

Max−Time−Between−Inputs:

F

T

cc

DA1 Alt Signal
Input Value

T

T

T

F

Requirements

Requirements

..

Executable Specifications as Prototypes

Model execution is animated

Results of execution could be input into a graphical
visualization

output can go into another model or simulator.
Inputs can come from another model or simulator and

Model Execution and Animation

SpecTRM−RL models are executable.

Leveson − 225

Leveson − 226

Easily changed

cc

cc

Can be used in hardware−in−the−loop or
operator−in−the−loop simulations

If formal, can be analyzed

Can be more easily reviewed

Can be reused (product families)

At end, have specification to use

Requirements

Requirements

Goal is to enhance intellectual manageability of complex

designing interactive visualizations.

and reviewing specifications of complex systems.

Part of a potential "CATIA" for the logical parts of systems

To extend human cognitive limits

system design, review, maintenance, and operation.

We are trying to provide a theoretical foundation for

the interaction between the human controllers and

Use same underlying formal modeling language.

the computer.

Designed a visual representation more appropriate
for the task modeling.

Can be executed and analyzed along with other parts
of the model.

To ensure safe and efficient operations, must look at

Operator Task Models

Leveson − 227

Leveson − 228

cc

cc

Interactive Visualizations

Pictures or diagrams allowing direct manipulation to
learn more about the thing represented

Useful to understand specification or results of
analysis or simulation

Experimental results show extremely useful in reading

