
c

Nancy G. Leveson

Software System Safety

http://sunnyday.mit.edu

MIT, Room 33−334
77 Massachusetts Ave., Cambridge MA 02139

MIT Aero/Astro Dept.
 (leveson@mit.edu)

Tel: 617−258−0505

to the source is given. Abstracting
with credit is permitted.
that the copies are not made or distributed for direct commercial advantage and provided that credit

Copyright by the author,, February 2004.
All rights reserved. Copying without fee is permitted provided

.

Week 4: A New Approach to Hazard, Root Cause, and Accident

Week 3: Hazard Causal Analysis (Root Cause Analysis)

Week 2: The Overall Process and Tasks

 Analysis

 (including safety culture)

Week 10: Summary and Conclusions

Week 1: Understanding the Problem

Week 5: Requirements Analysis

Week 6: Design for Safety

Week 7: Human−Machine Interaction and Safety

Week 8: Testing and Assurance, Operations, Maintenance

Overview of the Class

Week 9: Management and Organizational Issues

�������������	��

�������������	�
�

c

The Problem

fail to have the anticipated effect.
understand and then are surprised when the solutions
We often propose solutions to problems that we do not
The first step in solving any problem is to understand it.

c

�����	��� ����� ���

�����	��� ����� ���
�������������	�
�

�������������	�
�Accident with No Component Failures

LC

COMPUTER

WATER

COOLING

CONDENSER

VENT

REFLUX

REACTOR

VAPOR

LA

CATALYST

GEARBOX

c

c

Caused by interactive complexity and tight coupling

Exacerbated by the introduction of computers.

Arise in interactions among components

Single or multiple component failures

Component Failure Accidents

Types of Accidents

Usually assume random failure

System Accidents

No components may have "failed"

..

�����	��� ����� ���

� ���	����� ��� �������	 "! ��#

interactions within the system and with its environment.
1. A "simple" system has a small number of unknowns in its

2. A system is intellectually unmanageable when the level of

3. Introducing new technology introduces unknowns and

Interactive Complexity

We seem not to trust one another as much as would be
desirable. In lieu of trusting each other, are we putting

not educating our children sufficiently well to understand
too much trust in our technology? . . . Perhaps we are

the reasonable uses and limits of technology.

Thomas B. Sheridan

Computers and Risk

�������������	�
$

�������������	�
%

c

The underlying factor is intellectual manageability

c

Complexity is a moving target

interactions reaches the point where
 they cannot be thoroughly

planned

understood

anticipated

guarded against

even "unk−unks."

� ���	����� ��� �������	 &! ��#

� ���	����� ��� �������	 &! ��#

Machines that were physically impossible or impractical

Computer so powerful and so useful because it has

machines.
eliminated many of physical constraints of previous

Both its blessing and its curse:

+ No longer have to worry about physical
realization of our designs.

the complexity of our designs.
− No longer have physical laws that limit

Advantages = Disadvantages

c �������������	�('

c �������������	�
)

The Computer Revolution

General
Purpose
Machine

Special
Purpose
Machine

Software =+

about how steps will be realized physically.
Can concentrate on steps to be achieved without worrying

Design can be changed without retooling or manufacturing.

to build become feasible.

from its physical realization.
Software is simply the design of a machine abstracted

� ���	����� ��� �*�����	 "! �+#

� ���	����� ��� �������	 &! ��#

Software is the resting place of afterthoughts

No physical constraints

To enforce discipline on design, construction
and modification

So flexible that start working with it before fully
understanding what need to do

‘‘And they looked upon the software and saw that it
was good, but they just had to add one other feature ...’’

The Curse of Flexibility

To control complexity

�������������	�
,

�������������	��
.-

c

c

2. Software is easy to change.

4. Reusing software will increase
safety.

5. Testing or ‘‘proving’’ software
 correct will remove
 all the errors.

3. Software errors are simply ‘‘teething’’ problems.

1. Good software engineering is the same for all
types of software.

Software Myths

� ���	����� ��� �������	 &! ��#

� ���	����� ��� �������	 &! ��#

White Box Testing

= 100 trillion

14
= 10 + ... + 5

18
+ 5

19
+ 5

20
5

msec = 3170 years.
develop/execute/evaluate one test per
If had magic test processor that could

test case every five minutes = 1 billion years

�������������	��
�

Black Box Testing

Also all invalid input (e.g., testing Ada compiler requires all

If program has ‘‘memory’’, need to test all possible unique

this is to try every input condition)
(since black box, only way to be sure to detect

Valid inputs up to max size of machine (not astronomical)

without knowledge of internal structure of program).
Test data derived solely from specification (i.e.,

is impractical.
So for most programs, exhaustive in
put testing

valid and invalid sequences.

valid and invalid programs)

x := y * 2

Need to test every possible input

�������������	��
.�

c

c

If could develop/execute/verify one

(control−flow graph)

20xloop

1) Number of unique paths through program is astronomical.

Exhaustic path testing: Two flaws

Derive test data by examining program’s logic.

� ���	����� ��� �������	 &! ��#

� ���	����� ��� �������	 &! ��#

Have not found good ways to measure software quality

continuous math

Specifications and proofs using logic:

May be same size or larger than code

More difficult to construct than code

Therefore, as difficult and error−prone as code itself

Harder to understand than code

Large number of states and lack of regularity

Lack of physical continuity: requires discrete rather than

Mathematical Modeling Difficulties

�������������	��
.�

�������������	��
.�

c

c

2) Could test every path and program may still have errors!

e.g. program has to compare two numbers for convergence

every path through program.

i.e., wrong program.
Does not guarantee program matches specification,

Missing paths: would not detect absence of necessary paths

Could still have data−sensitivity errors.

if (A − B) < epsilon ...

is wrong because should compare to abs(A − B)

Detection of this error dependent on values used for A
and B and would not necessarily be found by executing

White Box Testing (con’t)

Requirements

Software engineers are doing system design

System Software Design of
Engineer Autopilot

Autopilot
Expert

Most errors in operational software related to requirements

Usually does exactly what you tell it to do

Problems occur from operation, not lack of operation

Software "failure modes" are different

Completeness a particular problem

Usually doing exactly what software engineers wanted

� ���	����� ��� �������	 &! ��#

� ���	����� ��� �������	 &! ��#

Abstraction from Physical Design

Components are the same when examined singly
as when playing their part in the whole.

2.

Principles governing the assembling of the components
into the whole are themselves straightforward.

3.

�������������	��
.%

Analytic Reduction (Descartes)

�������������	��
.$c

1.
phenomenon being studied.
The division into parts will not distort the

Three important assumptions:

Examine the parts separately.

Divide system into distinct parts for analysis purposes.

Ways to Cope with Complexity

c

� ���	����� ��� �������	 &! ��#

� ���	����� ��� �������	 &! ��#

Too complex for complete analysis:

Too organized for statistics

Separation into non−interacting subsystems distorts
the results.

The most important properties are emergent.

Too much underlying structure that distorts
the statistics.

What about software?

�������������	��
.)

�������������	��
.'

c

c

Statistics

Treat as a structureless mass with interchangeable parts.

in their behavior that they can be studied statistically.

Use Law of Large Numbers to describe behavior in

Assumes components sufficiently regular and random

terms of averages.

Ways to Cope with Complexity (con’t.)

Irreducible

(basis of system engineering)

Represent constraints upon the degree of freedom of
components a lower level.

It can only be analyzed in the context of the whole.

It is NOT a component property.

Safety is an emergent system property

/10 ��� ���	����������� 0

systems −− how they interact and fit together.
These properties derive from relationships between the parts of

taking into account all social and technical aspects.
Some properties can only be treated adequately in their entirety,

/10 ��� ���	����������� 0

�������������	�
��-

Two pairs of ideas:

Systems Theory (2)

Levels characterized by emergent properties

1. Emergence and hierarchy

Levels of organization, each more complex than one below.

�������������	��
.,c

c

Systems Theory

Developed for biology (Bertalanffly) and cybernetics (Norbert Weiner)

Most important properties are emergent.

Separation into non−interacting subsystems distorts results

For systems too complex for complete analysis

and too organized for statistical analysis

Concentrates on analysis and design of whole as distinct from parts

Combinatorial structure

Accident Analysis:

Zeebrugge

Harbor
Design

Cargo
Management

Passenger

Management

Traffic

Scheduling

Vessel

Operation

Design
Vessel

Time pressure
Operations management

Captain’s planning

Operations management

Standing orders

Calais

Operations management

Berth design

of possible accidents

/10 ��� ���	����������� 0

/10 ��� ���	����������� 0

at a lower level of the hierarchy.

Open systems are viewed as interrelated components kept
in a state of dynamic equilibrium by feedback loops of
information and control.

Control in open systems implies need for communication

A control action imposes constraints upon the activity

the interfaces between levels.
Hierarchies characterized by control processes working at

for the trees.
very likely will not see the forest
departments in operational context
Decision makers from separate

Operational Decision Making:

to Zeebrugge
Transfer of Herald

heuristics

procedure

can easily be identified.

Berth design

Unsafe

patterns
Crew working

Capsizing

Passenger management
Excess numbers

procedure
docking

Docking

Excess load routines

Change of

stability
Impaired

Truck companies

load added

Design
Stability Analysis

Equipment
Shipyard

c �������������	�
���

c

2. Communication and control

Systems Theory (3)

�������������	�
�2

3&���	�����������	41��� ���	��� ! ���

3&���	�����������	41��� ���	��� ! ���

Available space

Physics of underlying process

Limited possibility of action at a distance

Design decisions highly constrained by:

are physical extensions of it.
Displays are directly connected to process and thus

Mechanical systems1.

Stages in Process Control System Evolution

�������������	�
���

�������������	�
���

c

Direct sensory perception of process

c

Capability for action at a distance

Need to provide an image of process to operators

Need to provide feedback on actions taken.

possibilities for designer and operator error.
Relaxed constraints on designers but created new

Stages in Process Control System Evolution (2)

2. Electromechanical systems

Improve communication among engineers

Build safety in by enforcing constraints on behavior

constraints of materials to intellectual limits

A Possible Solution

Enforce discipline and control complexity

Limits have changed from structural integrity and physical

System safety constraint:

Software safety constraint:

Water must be flowing into reflux condenser whenever
catalyst is added to reactor.

Software must always open water valve before catalyst valve

Example (batch reactor)

3&���	�����������	41��� ���	��� ! ���

2. Commanding behavior that violates constraints

Control software contributes to accidents by:
1. Not enforcing constraints on behavior

�����+�������	�(��%

c

3. Computer−based systems

Relaxes even more constraints and introduces
more possibility for error.

�������������	�
��$

Allow multiplexing of controls and displays.

But constraints shaped environment in ways that efficiently
transmitted valuable process information and supported
cognitive processes of operators.

Finding it hard to capture and present these qualities
in new systems.

Stages in Process Control System Evolution (3)

c

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

The primary safety problem in software−intensive

systems is the lack of appropriate constraints on design.

The Problem to be Solved

ensure the system and software design enforces them.

design constraints necessary to maintain safety and to

The job of the system safety engineer is to identify the

.

. .

. .

to safety accordingly.
their nature, and we must change our approaches
Accidents in high−tech systems are changing

ReliabilitySafety

cc �������������	�
��)

c �������������	�
��'

OR

Hazard

Software
fails

(error)

Typical Fault Trees

Software Error

Hazard Cause Probability Mitigation

0 Test software

... ...

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

"The FAA’s en route automation meets the criteria for
consideration as a safety−critical system. Therefore,
en route automation systems must posses ultra−high
reliability."

Confusing Safety and Reliability

From a blue ribbon panel report on the V−22 Osprey problems:

Recommendation: Improve reliability, then verify by
extensive test/fix/test in challenging environments."

"Safety [software]: ...

From an FAA report on ATC software architectures:

c

�������������	�
��,

�������������	�
��-

c

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

Screening
Timed replacements

Reliability Engineering Approach to Safety

(Note: Most software−related accidents result from errors

from assumed conditions.)
in specified requirements or function and deviations

�������������	�
�2

�������������	�
���

Failure: Nonperformance or inability of system or component

under specified environmental conditions.
to perform its intended function for a specified time

A basic abnormal occurrence, e.g.,

burned out bearing in a pump

relay not closing properly when voltage applied

Fault: Higher−order events, e.g.,
relay closes at wrong time due to improper functioning
of an upstream component.

All failures are faults but not all faults are failures.

What is a Software "Failure"?

c

Derating

c

Reliability: The probability an item will perform its required
function in the specified manner over a given time
period and under specified or assumed conditions.

Concerned primarily with failures and failure rate reduction

Parallel redundancy
Standby sparing
Safety factors and margins

Highly reliable components are not necessarily safe.

Increasing component reliability

Preventing failures through redundancy

Reuse of designs and learning from experience

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

Failure rates in hardware are quantifiable.

Omits important factors in accidents.
May even decrease safety.

Many accidents occur without any component ‘‘failure’’

e.g. Accidents may be caused by equipment operation
outside parameters and time limits upon which

Or may be caused by interactions of components

reliability analyses are based.

all operating according to specification

�������������	�
���

�������������	�
���c

Reliability Engineering Approach to Safety (2)

c

Standard engineering techniques of

won’t work for software and system accidents.

Reliability Approach to Software Safety

Assumes accidents are the result of component failure.

Techniques exist to increase component reliability

"Safety integrity level"

Sometimes give reliability number (e.g., 10
−9

)

NASA experimental aircraft example

Any solutions that involve adding complexity will not
not solve problems that stem from intellectual
unmanageability and interactive complexity.

requirements errors.

Does not work for software even if accident is caused by

Software errors not caused by random wearout failures.

a software implementation error.

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

Can software reliability be measured? What does it even mean?

Example: altitude switch

1. Signal safety−increasing =>

2. Signal safety−reducing =>

Require any of three altimeters report below threshold

Safety involves more than simply getting software "correct"

Require all three altimeters to report below threshold

Appearing in many new international standards for software
safety (e.g., 61508)

c

�������������	�
��%

�������������	�
��$

c

Majority of software−related accidents caused by

Increasing Software Reliability (Integrity)

Preventing Failures through Redundancy

Redundancy simply makes complexity worse.

Accidents occur when these assumptions are incorrect.

U.K. ATC software

Ariane 5

Therac−25

Safety and reliability are different qualities!

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

/ ��5 ��� 0 ����6� &��� ! ����! � ! � 0

Are usually caused by flawed requirements

Incomplete or wrong assumptions about operation of
controlled system or required operation of computer.

reliable will not make it safer under these conditions.

Unhandled controlled−system states and environmental
conditions.

Merely trying to get the software ‘‘correct’’ or to make it

Software−Related Accidents

�������������	�
��)

�������������	�
��'

c

COTS makes safety analysis more difficult.

c

One of most common factors in software−related accidents

Software contains assumptions about its environment.

Most likely to change the features embedded in or
controlled by the software.

Software Component Reuse

1. Flaws in the Safety Culture

Systemic Factors in (Software−Related) Accidents

Safety Culture: The general attitude and approach to safety reflected
by those who participate in an industry or organization,
including management, workers, and government regulators

Underestimating or not understanding software risks

Overconfidence and complacency

Assuming risk decreases over time

Ignoring warning signs

Inadequate emphasis on risk management

Incorrect prioritization of changes to automation

Slow understanding of problems in human−automation mismatch

Overrelying on redundancy and protection systems

Unrealistic risk assessment

/ ��5 � 7&��� �	����� / ��5 ��� 0

/ ��5 � 7&��� �	����� / ��5 ��� 0

c

�������������	�
��,

�������������	�
��-

c

what is specified in requirements.
Software has unintended (and unsafe) behavior beyond

Requirements do not specify some particular behavior

behavior unsafe from a system perspective.
Correctly implements requirements but specified

required for system safety (incomplete)

Software may be highly reliable and ‘‘correct’’ and still
be unsafe.

Software−Related Accidents (con’t.)

/ ��5 � 7&��� �	���8� / ��5 ��� 0

Systemic Factors (con’t)

2. Organizational Structure and Communication

Diffusion of responsibility and authority
Limited communication channels and poor information flow

3. Technical Activities

Flawed review process

Flawed or inadequate analysis of software functions

Inadequate specifications and requirements validation

Violation of basic safety engineering practices in digital components

Inadequate system engineering

Lack of defensive programming

Software reuse without appropriate safety analysis

/ ��5 � 7&��� �	���8� / ��5 ��� 0

Systemic Factors (con’t)

Inadequate system safety engineering

Unnecessary complexity and software functions

Test and simulation environment does not match operations

Deficiencies in safety−related information collection and use

Operational personnel not understanding automation

Inadequate design of feedback to operators

Inadequate cognitive engineering
Conflicting and inadequate documentation for operators

�������������	�
�2

�������������	�
���

c

c

