
The Role of Software in Spacecraft Accidents

Nancy G. Leveson∗

Aeronautics and Astronautics Department
Massachusetts Institute of Technology

Abstract: The first and most important step in solving any problem is understanding the
problem well enough to create effective solutions. To this end, several software-related space-
craft accidents were studied to determine common systemic factors. Although the details in
each accident were different, very similar factors related to flaws in the safety culture, the
management and organization, and technical deficiencies were identified. These factors include
complacency and discounting of software risk, diffusion of responsibility and authority, limited
communication channels and poor information flow, inadequate system and software engineer-
ing (poor or missing specifications, unnecessary complexity and software functionality, software
reuse without appropriate safety analysis, violation of basic safety engineering practices in the
digital components), inadequate review activities, ineffective system safety engineering, flawed
test and simulation environments, and inadequate human factors engineering. Each of these
factors is discussed along with some recommendations on how to eliminate them in future
projects.

1 Introduction

Software is playing an increasingly important role in aerospace systems. Is it also playing an
increasing role in accidents and, if so, what type of role? In the process of a research project
to evaluate accident models, I looked in detail at a variety of aerospace accidents that in some
way involved software.1,2 Many of the factors were in common across several of the accidents.
To prevent accidents in the future, we need to attack these problems.

The spacecraft accidents investigated were the explosion of the Ariane 5 launcher on its
maiden flight in 1996; the loss of the Mars Climate Orbiter in 1999; the destruction of the
Mars Polar Lander sometime during the entry, deployment, and landing phase in the following
year; the placing of a Milstar satellite in an incorrect and unusable orbit by the Titan IV
B-32/Centaur launch in 1999; and the loss of contact with the SOHO (SOlar Heliospheric
Observatory) spacecraft in 1998.

On the surface, the events and conditions involved in the accidents appear to be very
different. A more careful, detailed analysis of the systemic factors, however, reveals striking
similarities. Systemic factors are those that go beyond the specific technical causes, such as
a flawed O-ring design in the Space Shuttle Challenger accident, and include the reasons why
those failures or design errors were made. For Challenger, the latter include flawed decision
making, poor problem reporting, lack of trend analysis, a “silent” or ineffective safety program,

∗Mailing Address: Professor Nancy Leveson, Room 33-313, Dept. of Aeronautics and Astronautics, MIT, 77
Massachusetts Ave., Cambridge MA 02139; Tel: 617-258-0505, email: leveson@mit.edu.
This paper has been accepted for publication in the AIAA Journal of Spacecraft and Rockets.

1



communication problems, etc. Systemic factors are those related to the overall system within
which the technical device is developed and operated.

A difficulty was encountered in that several of the accident reports implicated the software
but then, for some unknown reason, never investigated the software development process in any
depth to determine why the error was made. In some cases, it was possible to find information
about the software development problems from sources outside the official accident investigation
report. One conclusion from this observation might be that accident investigation boards must
include more software experts and must more thoroughly investigation the reasons for the
introduction of the errors and their lack of detection once introduced if we are to learn from
our mistakes and improve our processes.

The accidents are first briefly described for those unfamiliar with them, and then the com-
mon factors are identified and discussed. These factors are divided into three groups: (1)
flaws in the safety culture, (2) management and organizational problems, and (3) technical
deficiencies.

2 The Accidents

Ariane 501

On June 4, 1996, the maiden flight of the Ariane 5 launcher ended in failure. About 40 s after
initiation of the flight sequence, at an altitude of 2700 m, the launcher veered off its flight path,
broke up, and exploded. The accident report describes what they called the “primary cause”
as the complete loss of guidance and attitude information 37 s after start of the main engine
ignition sequence (30 seconds after liftoff).3 The loss of information was due to specification
and design errors in the software of the inertial reference system. The software was reused
from the Ariane 4 and included functions that were not needed for Ariane 5 but were left in for
“commonality.” In fact, these functions were useful but not required for the Ariane 4 either.

Mars Climate Orbiter (MCO)

The Mars Climate Orbiter (MCO) was launched December 11, 1998 atop a Delta II launch
vehicle. Nine and a half months after launch, in September 1999, the spacecraft was to fire its
main engine to achieve an elliptical orbit around Mars and to skim through the Mars upper
atmosphere for several weeks, in a technique called aerobraking, to move into a low circular
orbit. On September 23, 1999, the MCO was lost when it entered the Martian atmosphere in
a lower than expected trajectory. The investigation board identified what it called the “root”
cause of the accident as the failure to use metric units in the coding of a ground software file
used in the trajectory models.4 Thruster performance data were instead in English units.

Mars Polar Lander (MPL)

Like MCO, Mars Polar Lander (MPL) was part of the Mars Surveyor program. It was launched
January 3, 1999, using the same type of Delta II launch vehicle as MCO. Although the cause
of the MPL loss is unknown, the most likely scenario is that the problem occurred during the
entry, deployment, and landing (EDL) sequence when the three landing legs were to be deployed
from their stowed condition to the landed position.5,6 Each leg was fitted with a Hall Effect
magnetic sensor that generates a voltage when its leg contacts the surface of Mars. The descent
engines were to be shut down by a command initiated by the flight software when touchdown

2



was detected. The engine thrust must be terminated within 50 milliseconds after touchdown
to avoid overturning the lander. The flight software was also required to protect against a
premature touchdown signal or a failed sensor in any of the landing legs.

The touchdown sensors characteristically generate a false momentary signal at leg deploy-
ment. This behavior was understood and the flight software should have ignored it. The
software requirements did not specifically describe these events, however, and consequently the
software designers did not account for them. It is believed that the software interpreted the
spurious signals generated at leg deployment as valid touchdown events. When the sensor data
was enabled at an altitude of 40 meters, the software shut down the engines and the lander free
fell to the surface, impacting at a velocity of 22 meters per second and was destroyed.

Titan/Centaur/Milstar

On April 30, 1999, a Titan IV B-32/Centaur TC-14/Milstar-3 was launched from Cape Canaveral.
The mission was to place the Milstar satellite in geosynchronous orbit. An incorrect roll rate
filter constant zeroed the roll rate data, resulting in the loss of roll axis control and then yaw
and pitch control. The loss of attitude control caused excessive firings of the reaction control
system and subsequent hydrazine depletion. This erratic vehicle flight during the Centaur main
engine burns in turn led to an orbit apogee and perigee much lower than desired, placing the
Milstar satellite in an incorrect and unusable low elliptical final orbit instead of the intended
geosynchronous orbit.

The accident investigation board concluded that failure of the Titan IV B-32 mission was due
to an inadequate software development, testing, and quality assurance process for the Centaur
upper stage.7 That process did not detect the incorrect entry by a flight software engineer of a
roll rate filter constant into the Inertial Navigation Unit software file.

The roll rate filter itself was included early in the design phase of the first Milstar space-
craft, but the spacecraft manufacturer later determined that filtering was not required at that
frequency. A decision was made to leave the filter in place for the first and later Milstar flights
for “consistency.”

SOHO (SOlar Heliospheric Observatory)

SOHO was a joint effort between NASA and ESA to perform helioseismology and to monitor the
solar atmosphere, corona, and wind. The spacecraft completed a successful two-year primary
mission in May 1998 and then entered into its extended mission phase. After roughly two months
of nominal activity, contact with SOHO was lost June 25, 1998. The loss was preceded by a
routine calibration of the spacecraft’s three roll gyroscopes and by a momentum management
maneuver.

The flight operations team had modified the ground operations procedures as part of a
ground systems reengineering effort to reduce operations costs and streamline operations, to
minimize science downtime, and to conserve gyro life. Though some of the modifications were
made at the request of the SOHO science team, they were not necessarily driven by any specific
requirements changes. A series of errors in making the software changes along with errors in
performing the calibration and momentum management maneuver and in recovering from an
emergency safing mode led to the loss of telemetry.8 Communication with the spacecraft was
eventually restored after a gap of four months.

3



3 Flaws in the Safety Culture

The safety culture is the general attitude and approach to safety reflected by those working in an
industry. The accident reports all described various aspects of complacency and a discounting
or misunderstanding of the risks associated with software.

3.1 Overconfidence and Complacency

Success is ironically one of the progenitors of accidents when it leads to overconfidence and
cutting corners or making tradeoffs that increase risk. This phenomenon is not new, and it
is extremely difficult to counter when it enters the engineering culture in an organization.
Complacency is the root cause of most of the other accident factors described in this paper and
was exhibited in all the accidents studied.

The Mars Climate Orbiter (MCO) report noted that because JPL’s navigation of interplan-
etary spacecraft had worked well for 30 years, there was widespread perception that “orbiting
Mars is routine” and inadequate attention was devoted to navigation risk management and
contingency planning. The MCO investigators found that project management teams appeared
primarily focused on meeting mission cost and schedule objectives and did not adequately fo-
cus on mission risk. A recommendation common to several of the accident reports was to pay
greater attention to risk identification and management.

The official report on the MPL loss concludes that the pressure of meeting the cost and
schedule goals resulted in an environment of increasing risk in which too many corners were cut
in applying proven engineering practices and in the checks and balances necessary for mission
success. “Lack of adequate risk identification, communication, management, and mitigation
compromised mission success.”6

In the SOHO loss, overconfidence and complacency, according to the accident report, led to
inadequate testing and review of changes to ground-issued software commands to the spacecraft,
a false sense of confidence in the team’s ability to recover from a safe-hold mode (emergency sun
reacquisition) from which a recovery sequence must be commanded and executed under ground
operator control, the use of tight schedules and compressed timelines that eliminated any time
to handle potential emergencies, inadequate contingency planning, responses to emergencies
without taking the designed-in time to consider the options, etc. Protections built into the
process, such as formal reviews of critical decisions by senior management and engineering
staff, were bypassed. The functional content of an operational procedure was changed without
appropriate documentation and review of the changes.

After two previous SOHO spacecraft retreats to safe mode, the software and procedures
were not reviewed because (according to the accident report) higher priority had been assigned
to other tasks. The report concludes that the success in recovering from the previous safe mode
entries led to overconfidence by the operations team in their ability to recover and a lack of
appreciation of the risks involved in entering and recovering from the safing mode.

The Ariane 5 accident report notes that software was assumed to be correct until it was
shown to be faulty. As noted by the Ariane accident investigation board, the opposite assump-
tion is more realistic. A similar attitude prevailed in Titan/Centaur operations. For example,
on the day of the launch, the attitude rates for the vehicle on the launch pad were not properly
sensing the earth’s rotation rate (the software was consistently reporting a zero roll rate) but
no one had the responsibility to specifically monitor that rate data or to perform a check to see
if the software attitude filters were operating correctly. In fact, there were no formal processes
to check the validity of the filter constants or to monitor attitude rates once the flight tape was

4



actually loaded into the Inertial Navigation Unit at the launch site. Potential hardware failures
are usually checked up to launch time, but it may have been assumed that testing removed all
software errors and no further checks were needed.

While management may express their concern for safety and mission risks, true priorities
are shown during resource allocation. Although budget decisions are always difficult when
resources are constrained—and budgets are almost always less than is optimal—the first things
to be cut are often system safety, system engineering, mission assurance, and operations, which
are assigned a low priority and assumed to be the least critical parts of the project.

In the Milstar satellite loss, the Titan Program Office had no permanently assigned civil
service or military personnel nor full-time support to “work” the Titan/Centaur software. They
had decided that because the software was “mature, stable, and had not experienced problems
in the past,” they could best use their limited resources available after the initial development
effort to address hardware issues. The Titan program office had cut support for monitoring the
software development and test process by 50% since 1994 and had greatly cut the number of
engineers working launch operations.

The SOHO Mission Management Plan required that the NASA Project Operations Direc-
tor be responsible for programmatic matters, provide overall technical direction to the flight
operations team, and interface with the ESA technical support director. The position had been
descoped over time by NASA from a dedicated individual during launch and commissioning to
one NASA individual spending less than 10% of his time tracking SOHO operations. ESA was
to retain ownership of the spacecraft and to be responsible for its technical integrity and safety,
but they were understaffed to perform this function in other than routine situations. In both
SOHO and MCO, the operations group did not have a mission assurance manager.

3.2 Discounting Risk

Complacency can also manifest itself in a general tendency of management and decision makers
to discount unwanted evidence of risk. A culture of denial9 arises in which any evidence of
significant risk is dismissed. In the MCO, SOHO, and Titan losses, warning signs existed that
the software was flawed, but they went unheeded.

The problems experienced with the Mars Climate Orbiter (MCO) software during the early
stages of the flight did not seem to raise any red flags. During the first four months of the MCO
mission, the ground software angular momentum desaturation (AMD) files were not used in
the orbit determination process because of multiple file format errors and incorrect spacecraft
attitude data specifications. Four months were required to fix the files. Almost immediately
(within a week) it became apparent that the files contained anomalous data that was indicat-
ing underestimation of the trajectory perturbations due to desaturation events. Despite all
these hints that there were serious problems in the software and perhaps the development pro-
cess, reliance was still placed on the supposedly fixed software without extra manual checks or
alternative calculations to check the results.

Three months before the loss of the SOHO telemetry, ground software problems had trig-
gered an emergency sun reacquisition (a safe hold mode entered when there are attitude control
anomalies) and a shortcut in the recovery from this emergency sun reacquisition led to a second
one. A resulting recommended comprehensive review of the software and procedures had not
been implemented before the accident because higher priority had been assigned to other tasks.

Engineers noticed the problems with the Titan/Centaur software after it was delivered to
the launch site and they were reported back to LMA in Denver, but nobody seemed to take
them seriously.

5



3.3 Misunderstanding the Risks of Software

Some of the complacency can arise from a misunderstanding of the risks associated with soft-
ware. Throughout the accident reports, there is an emphasis on failures as the cause of accidents
and redundancy as the solution. Accidents involving software, however, are usually system ac-
cidents that result from dysfunctional interactions among components, not from individual
component failure. All these accidents (as well as almost all the software-related accidents
known to the author) resulted from the software doing something wrong rather than the com-
puter hardware or software failing to operate at all. In fact, in most cases the software or
hardware components operated according to their specifications (i.e., they did not fail), but the
combined behavior of the components led to disastrous system behavior.

All the accidents investigated for this paper displayed some aspects of system accidents.
System accidents are caused by interactive complexity and tight coupling.10 Software allows us
to build systems with a level of complexity and coupling that is beyond our ability to control;
in fact, we are building systems where the interactions among the components (often controlled
by software) cannot all be planned, understood, anticipated, or guarded against. This change
is not solely the result of using digital components, but it is made possible because of the
flexibility of software. Note that the use of redundancy only makes the problem worse—the
added complexity introduced by redundancy has resulted in accidents that otherwise might not
have occurred.

The Ariane 5 accident report notes that according to the culture of the Ariane program,
only random failures were addressed and they were primarily handled with redundancy. The
engineers designing the Ariane 5 inertial guidance system opted to shut down the computer when
an exception was raised in an unnecessary function (the alignment function after takeoff):

The reason behind this drastic action lies in the culture within the Ariane pro-
gramme of only addressing random hardware failures. From this point of view,
exception—or error—handling mechanisms are designed for a random hardware
failure which can quite rationally be handled by a backup system.3

This approach obviously failed in the Ariane 5’s first flight when both the primary and backup
(redundant) Inertial Reference System computers shut themselves down—exactly as they were
designed to do—while processing the same unexpected input value.

Software and digital systems require changes to important aspects of engineering practice.
Not only are failures not random (if the term “failure” makes any sense when applied to some-
thing like software that is pure design separated from the physical realization of that design),
but the complexity of most software precludes examining all the ways it could “misbehave.”
And the failure modes (the way it misbehaves) can be very different than for physical devices.
The JPL Mars Polar Lander accident report, like others, recommends using FMEA (Failure
Modes and Effects Analysis) and FTA (Fault Tree Analysis) along with appropriate redundancy
to eliminate failures. But these techniques were developed to cope with random wearout fail-
ures in hardware and are not very effective against design errors, the only type of error found
in software. Although computer hardware can fail, software itself is pure design and thus all
errors are design errors and appropriate techniques for handling design errors must be used.

4 Management and Organizational Factors

The five accidents studied during this exercise, as well as most other major accidents, exhibited
common organizational and managerial flaws, notably a diffusion of responsibility and authority,

6



limited communication channels, and poor information flow.

4.1 Diffusion of Responsibility and Authority

In all of the accident reports, serious organizational and communication problems among the
geographically dispersed partners are mentioned or implied by the recommendations. Respon-
sibility was diffused without complete coverage and without complete understanding by anyone
about what all the groups were doing. Roles were not clearly allocated.

Both the Titan and Mars ’98 programs were transitioning to process “insight” from pro-
cess “oversight,” reflecting different levels of feedback control over lower levels and a change
from prescriptive management control to management by objectives, where the objectives are
interpreted and satisfied according to the local context.

Just as the MPL reports noted that “Faster, Better, Cheaper” was not defined adequately
to ensure that it meant more than simply cutting budgets, this change in management role
from oversight to insight seems to have been implemented on the Mars ’98 projects as well as
the Titan/Centaur program simply as a reduction in personnel and budgets without assuring
that anyone was responsible for specific critical tasks. For example, the MCO report says:
“NASA management of out-of-house missions was changed from ‘oversight’ to ‘insight’—with
far fewer resources devoted to contract monitoring.” One of the results of faster-better-cheaper
was a reduction in workforce while maintaining an expectation for the same amount of work to
be accomplished. In many of these accidents, the people were simply overworked—sometimes
driven by their own dedication.

The process used in the Titan/Centaur program to develop the constants used in the flight
software was neither well defined nor completely understood by any of the multiple players
involved in that process. Procedures for creating and updating the database were not formally
documented and were left to the flight software engineer’s discretion. The root problem is
probably not the lack of documentation itself but the lack of anyone being in charge of the
entire process. There were several people who performed part of the process, but they only
completely understood their own specific part. The Accident Investigation Board could not
identify a single process owner responsible for understanding, designing, documenting, control-
ling configuration, and ensuring proper execution of the overall software development process.
Instead, responsibility was diffused among the various partners, without complete coverage.
For example, the Centaur Inertial Navigation Unit consists of two major software components
developed by different companies. LMA developed the Flight Control System (FCS) software
and was responsible for overall INU testing. Honeywell developed the Inertial Measurement
System (IMU) and was partially responsible for its software development and testing. The
erroneous constants were processed by the Honeywell-built IMU, but were designed and tested
by LMA. LMA, in turn, focused its flight software process on the FCS and not the IMS software
and had little knowledge of IMS operations.

Titan launch operations exhibited the same problems. The Space and Missile Systems Cen-
ter Launch Directorate and the 3rd Space Launch Squadron had undergone personnel reductions
and were also transitioning from a task oversight to a process insight role. That transition had
not been managed by a detailed plan. According to the accident report, Air Force responsibil-
ities under the insight concept were not well defined and how to perform those responsibilities
had not been communicated to the work force. There was no master surveillance plan in place
to define the tasks for the engineers remaining after the reductions—so the launch personnel
used their best engineering judgment to determine which tasks they should perform, which
tasks to monitor, and how closely to analyze the data from each task. This approach, however,

7



did not ensure that anyone was responsible for specific tasks. In particular, on the day of the
launch, the attitude rates for the vehicle on the launch pad were not properly sensing the earth’s
rotation rate, but nobody had the responsibility to specifically monitor that rate data or to
check the validity of the roll rate and no reference was provided with which to compare. So
when the anomalies occurred during launch preparations that clearly showed a problem existed
with the software, nobody had the responsibility or ability to follow up on them.

In MPL, there was essentially no JPL line management involvement or visibility into the
software development and minimal involvement by JPL technical experts. Similarly, the MCO
report suggests that authority and accountability were a significant issue in the accident and
that roles and responsibilities were not clearly allocated. There was virtually no JPL oversight
of LMA subsystem development. The MCO report says:

Line managers at the field centers need to be held accountable for the success of all
missions at their centers . . . The line management should be held accountable for
asking the right questions at meetings and reviews, and getting the right people to
those reviews to uncover mission-critical issues and concerns early in the program.4

For SOHO, a transfer of management authority to the SOHO Project Scientist resident at
Goddard Space Flight Center left no manager, either from NASA or ESA, as the clear champion
of spacecraft health and safety. Instead, the accident report concludes that the transfer encour-
aged management decisions that maximized science return over spacecraft risk. In addition, the
decision structure for real-time divergence from agreed-upon ground and spacecraft procedures
was far from clear: The flight operations staff was apparently able to change procedures without
proper review.

The Ariane 501 accident report is almost totally silent about organizational structure prob-
lems: It does not describe the allocation of responsibility and authority for safety nor does
it mention any organizational or management factors that may have influenced the accident.
There is one hint that there may have been problems, however, in a recommendation at the
end of the report that says:

A more transparent organization of the cooperation among partners in the Ariane
5 programme must be considered. Close engineering cooperation, with clear cut
authority and responsibility, is needed to achieve system coherence, with simple
and clear interfaces between partners.3

Inadequate transition from development to operations played a role in several of the acci-
dents. Engineering management sometimes has a tendency to focus on development and to put
less effort into planning the operational phase. The MCO report states:

The overall project plan did not provide for a careful handover from the develop-
ment project to the very busy operations project. Transition from development
to operations—as two separate teams—disrupted continuity and unity of shared
purpose.4

The operations teams (in those accidents that involved operations) also seemed isolated from
the developers. The MCO report notes this isolation and provides as an example that the
operators did not know until long after launch that the spacecraft sent down tracking data that
could have been compared with the ground data, which might have identified the software error
while it could have been fixed. The operations crew for the Titan/Centaur also did not detect
the obvious software problems, partly because of a lack of the knowledge required to detect
them.

8



Most important, responsibility for safety does not seem to have been clearly defined outside
of the quality assurance function on any of these programs. All the accident reports (except
the Titan/Centaur) are surprisingly silent about their safety programs. One would think that
the safety activities and why they had been ineffective would figure prominently in the reports.

Safety was originally identified as a separate responsibility by the Air Force during the
ballistic missile programs of the 1950s and 1960s to solve exactly the problems seen in these
accidents—to make sure that safety is given due consideration in decisions involving conflicting
pressures and that safety issues are visible at all levels of decision making. An extensive system
safety program was developed by NASA after the Apollo launch pad fire in 1967. However,
the Challenger accident report noted that the system safety program had become “silent” over
time and through budget cuts. Has this perhaps happened again? Or are the system safety
efforts just not handling software effectively?

One common mistake is to locate the safety efforts within the quality assurance function.
Placing safety only under the assurance umbrella instead of treating it as a central engineering
concern is not going to be effective, as has been continually demonstrated by these and other
accidents. While safety is certainly one property (among many) that needs to be assured, safety
cannot be engineered into a design through after-the-fact assurance activities alone.

Having an effective safety program cannot prevent errors of judgment in balancing conflicting
safety, schedule, and budget constraints, but a safety program can at least make sure that
decisions are informed and that safety is given due consideration. It also ensures that someone
is focusing attention on what the system is not supposed to do, i.e., the hazards, and not just
on what it is supposed to do. Both perspectives are necessary if safety and mission assurance
are to be optimized.

4.2 Limited Communication Channels and Poor Information Flow

All the accident reports mention poor information flow and communication problems except
the Ariane 5, which includes very little information beyond the technical details. The Ti-
tan/Centaur accident report, for example, notes that “fragmentation/stovepiping in the flight
software development process, coupled with the lack of an overall defined process, resulted in
poor and inadequate communication and interfacing among the many partners and subpro-
cesses.” The report suggests that many of the various partners were confused about what
the other groups were doing. For example, the LMA software group personnel who created
the database from which the erroneous load tape constants were generated, were not aware
that the independent verification and validation testing did not use the as-flown constants but
instead used default values. The company responsible for the independent verification and
validation (Analex-Denver) did not know that the division actually doing the independent ver-
ification and validation (Analex-Cleveland) was only verifying the functionality of the design
constant and not what was actually loaded into the Centaur for flight. The Defense Contract
Management Command software surveillance personnel were not aware that the filter constants
contained in the flight software were generated by a manual input and were never tested by
LMA in their preflight simulation nor subjected to independent verification and validation by
Analex-Cleveland.

All the accidents involved one engineering group not getting the information they needed
from another engineering group. The MCO report cited deficiencies in communication between
the project development team and the operations team. For example, the report notes that
“Critical information on the control and desaturation of the MCO momentum was not passed to
the operations navigation team.” As another example, a decision was made that the “barbecue

9



mode” (a daily 180◦ flip to cancel angular momentum buildup) was not needed and it was
deleted from the spacecraft operations plan, but the operations navigation team was never
notified. Communication was poor in the other direction too. Throughout the first nine months
of the MCO mission, concerns regarding discrepancies observed between navigation solutions
were reported by the navigation operations team only informally and were not communicated
effectively to the spacecraft operations team or project management.

A significant factor in the MPL loss was that test results and new information about the Hall
Effect sensors derived during testing was not communicated to all the component designers that
needed it. In general, system engineering on several of the projects did not keep abreast of test
results from all areas and communicate the findings to other areas of the development project.
The MPL report concludes that the effect of inadequate peer interaction was, in retrospect, a
major problem that led to a breakdown in intergroup communications. Communication is one
of the most important functions in any large, geographically distributed engineering project
and must be carefully planned and fostered.

The Titan/Centaur accident also involved critical information not getting to the right peo-
ple. For example, tests right before launch detected the zero roll rate but there was no com-
munication channel established for getting that information to those who could understand it.
A guidance engineer at the launch site noticed the anomalous roll rates and called LMA in
Denver, leaving a voice mail message to call her or her supervisor. She also sent an email to
her supervisor at Cape Canaveral explaining the situation. Her supervisor was on vacation and
was due back at the office the next Monday, but the engineer herself was scheduled to work
the second shift that day. Two LMA engineers in Denver, the control dynamics engineer who
had originally specified the filter values and his supervisor, listened to the voice mail from the
launch site guidance engineer and called her supervisor, who had just returned from vacation.
He was initially unable to find the email she had sent him during their conversation and said
he would call back. By the time he called back, the control dynamics engineer who had created
the filter values had left his supervisor’s office. At no time did the LMA Denver engineers speak
directly with the launch site guidance engineer who had originally noticed the anomaly.

SOHO had similar communication problems between the operations team and technical
experts. For example, when a significant change to procedures was implemented, an internal
process was used and nobody outside the flight operations team was notified.

In the Titan/Centaur and Mars Climate Orbiter accidents, there was evidence that a prob-
lem existed before the loss occurred, but there was no communication channel established for
getting the information to those who could understand it and to those making decisions or,
alternatively, the problem-reporting channel was ineffective in some way or was simply unused.
The MCO report concludes that project leadership did not instill the necessary sense of author-
ity and accountability in workers that would have spurred them to broadcast problems they
detected so that those problems might be “articulated, interpreted, and elevated to the highest
appropriate level, until resolved.” The report concludes that “Institutional management must
be accountable for ensuring that concerns raised in their own area of responsibility are pursued,
adequately addressed, and closed out.”

Researchers have found that the second most important factor in the success of any safety
program (after top management concern) is the quality of the hazard information system. Both
collection of critical information as well as dissemination to the appropriate people for action
is required, but these activities were haphazard at best for most of the projects involved in
these accidents. The MCO report concludes that lack of discipline in reporting problems and
insufficient followup was at the heart of the mission’s navigation mishap. Email was used to
solve problems rather than the problem tracking system:

10



A critical deficiency in Mars Climate Orbiter project management was the lack of
discipline in reporting problems and insufficient follow-up. The primary, structured
problem-reporting procedure used by the Jet Propulsion Laboratory—the Incident,
Surprise, Anomaly process—was not embraced by the whole team.4

For SOHO, critical information about the required operation of gyros used for changing the
software was also provided informally to the flight operations team via email.

In the Titan/Centaur loss, the use of voice mail and email implies there either was no formal
anomaly reporting and tracking system or the formal reporting procedure was not known or
used by the process participants for some reason. The report states that there was confusion
and uncertainty as to how the roll rate anomalies should be reported, analyzed, documented
and tracked because it was a “concern” and not a “deviation.” There is no explanation of these
terms.

In all the accidents (except for Ariane, where anomaly reporting is not mentioned), the
existing formal anomaly reporting system was bypassed and informal email and voice mail was
substituted. The problem is clear but not the cause, which was not included in the reports and
perhaps not investigated. When a structured process exists and is not used, there is usually a
reason. Some possible explanations may be that the system is difficult or unwieldy to use or
it involves too much overhead. Such systems may not be changing as new technology changes
the way engineers work.

There is no reason why reporting something within the problem-reporting system should
be much more cumbersome than adding an additional recipient to email. Large projects have
successfully implemented informal email processes for reporting anomalies and safety concerns
or issues to system safety personnel. New hazards and concerns will be identified throughout
the development process and into operations, and there must be a simple and non-onerous way
for software engineers and operational personnel to raise concerns and safety issues and get
questions answered at any time.

5 Technical Deficiencies

These cultural and managerial flaws manifested themselves in the form of technical deficiencies:
(1) inadequate system and software engineering, (2) inadequate review activities, (3) ineffective
system safety engineering, (4) inadequate human factors engineering, and (5) flaws in the test
and simulation environments.

5.1 Inadequate System and Software Engineering

For any project as complex as those involved in these accidents, good system engineering is
essential for success. In some of the accidents, system engineering resources were insufficient
to meet the needs of the project. For example, the MPL report notes that insufficient system
engineering during the formulation stage led to important decisions that ultimately required
more development effort than originally foreseen as well as inadequate baseline decisions and
hazard identification. In others, the process followed was flawed, such as in the flowdown
of system requirements to software requirements or in the coordination and communication
among project partners and teams. As just one example, the MCO report notes that navigation
requirements were set at too high a management level and that there was insufficient flowdown
to the subsystem level and inadequate validation of the requirements.

11



The Centaur software process was developed early in the Titan program and many of the
individuals who designed the original process were no longer involved in it due to corporate
mergers and restructuring and the maturation and completion of the Titan/Centaur design and
development. The accident report notes that much of the system and process history was lost
with their departure and therefore nobody knew enough about the overall process to detect
that it omitted any testing with the actual load tape or knew that the test facilities had the
capability of running the type of test that could have caught the error.

Preventing system accidents falls into the province of system engineering—those building
individual components have little control over events arising from dysfunctional interactions
among components. As the systems we build become more complex (much of that complexity
being made possible by the use of computers), system engineering will play an increasingly im-
portant role in the engineering effort. In turn, system engineering will need new modeling and
analysis tools that can handle the complexity inherent in the systems we are building. Appro-
priate modeling methodologies will have to include software, hardware and human components
of systems.

Given that software played a role in all the accidents, it is surprising the reports reflected
so little investigation of the practices that led to the introduction of the software flaws and a
dearth of recommendations to fix them. In some cases, software processes were declared in the
accident reports to have been adequate when the evidence shows they were not.

The accidents all involved very common system and software engineering problems, includ-
ing poor specification practices, unnecessary complexity and software functions, software reuse
without appropriate safety analysis, and violation of basic safety engineering design practices
in the digital components.

5.1.1 Poor or Missing Specifications

Almost all software-related aerospace accidents (and accidents in other industries) have been
related to flawed requirements and misunderstanding about what the software should do—
the software performed exactly as the designers intended (it did not “fail”), but the designed
behavior was not safe from a system viewpoint.11 There is not only anecdotal but some hard data
to support this hypothesis. Lutz examined 387 software errors uncovered during integration
and system testing of the Voyager and Galileo spacecraft.12 She concluded that the software
errors identified as potentially hazardous to the system tended to be produced by different error
mechanisms than non-safety-related software errors. She showed that for these two spacecraft,
the safety-related software errors arose most commonly from (1) discrepancies between the
documented requirements specifications and the requirements needed for correct functioning
of the system and (2) misunderstandings about the software’s interface with the rest of the
system. This experiential evidence points to a need for better specification review and analysis.

All the reports refer to inadequate specification practices. The Ariane accident report men-
tions poor specification practices in several places and notes that the structure of the documen-
tation obscured the ability to review the critical design decisions and their underlying rationale.
Inadequate documentation of design rationale to allow effective review of design decisions is a
very common problem in system and software specifications. The Ariane report recommends
that justification documents be given the same attention as code and that techniques for keeping
code and its justifications consistent be improved.

The MCO report contains little information about the software engineering practices but
hints at specification deficiencies in statements about “JPL’s process of cowboy programming”
and “the use of 20-year-old trajectory code that can neither be run, seen, or verified by anyone

12



or anything external to JPL.”
The MPL report notes that the system-level requirements document did not specifically

state the failure modes the requirement was protecting against (in this case possible transients)
and speculates that the software designers or one of the reviewers might have discovered the
missing requirement if they had been aware of the rationale underlying the requirements. The
small part of the requirements specification shown in the accident report (which may very
well be misleading) seems to avoid all mention of what the software should not do. In fact,
standards and industry practices often forbid such negative requirements statements. The result
is that software specifications often describe nominal behavior well but are very incomplete with
respect to required software behavior under off-nominal conditions and rarely describe what the
software is not supposed to do. Most safety-related requirements and design constraints are best
described using such negative requirements or design constraints. In addition, the requirements
flowdown process for MPL was clearly flawed, and the rationale for requirements did not appear
to be included in the specification.

Not surprising, the interfaces were a source of problems. It seems likely from the evidence
in several of the accidents that the interface documentation practices were flawed. The MPL
report includes a recommendation that in the future “all hardware inputs to the software
must be identified . . . The character of the inputs must be documented in a set of system-level
requirements.” This information is usually included in the standard interface specifications,
and it is surprising that it was not.

There are differing accounts of what happened with respect to the MCO incorrect units
problem. The official accident report seems to place blame on the programmers and recom-
mends that the software development team be provided additional training in “the use and
importance of following the Mission Operations Software Interface Specification (SIS).” Al-
though not included in the official NASA Mars Climate Orbiter accident report, James Oberg
in an IEEE Spectrum article on the accident13 claims that JPL never specified the units to be
used. It is common for specifications to be incomplete or not to be available until late in the
development process.

A different explanation for the MCO units error was provided by the developers.14 According
to them, the files were required to conform to a Mars Global Surveyor (MGS) heritage software
interface specification. The equations used in the erroneous calculation were supplied by the
vendor in English units.

Although starting from MGS-heritage software, the coded MGS thruster equation
had to be changed because of the different size RCS thruster that MCO employed
(same vendor). As luck would have it, the 4.45 conversion factor, although correctly
included in the MGS equation by the previous development team, was not immedi-
ately identifiable by inspection (being buried in the equation) or commented in the
code in an obvious way that the MCO team recognized it. Thus, although the SIS
required SI units, the new thruster equation was inserted in the place of the MGS
equation—without the conversion factor.14

This explanation raises questions about the other software specifications, including the require-
ments specification, which seemingly should include descriptions of the computations to be
used. Either these did not exist or the software engineers did not refer to them when making
the change. Formal acceptance testing apparently did not use the (MGS) software interface
specification either because the test oracle (computed manually) used for comparison contained
the same error as the output file.14

13



Complete and understandable specifications are not only necessary for development, but
they are critical for operations and the handoff between developers, maintainers, and operators.
In the Titan/Centaur accident, nobody other than the control dynamics engineers who designed
the roll rate constants understood their use or the impact of filtering the roll rate to zero. When
discrepancies were discovered right before the Titan/Centaur/Milstar launch, as noted earlier,
nobody understood them. The MCO operations staff also clearly had inadequate understanding
of the automation and therefore were unable to monitor its operation effectively.

The SOHO accident report mentions that no hard copy of the software command procedure
set existed and the latest versions were stored electronically without adequate notification when
the procedures were modified. The report also states that the missing software enable command
(which led to the loss) had not been included in the software module due to a lack of system
knowledge of the person who modified the procedure: he did not know that an automatic
software function must be re-enabled each time Gyro A was despun. The information had been
provided, but via email. Such information, particularly about safety-critical features, obviously
needs to be clearly and prominently described in the system specifications.

Good specifications that include requirements tracing and design rationale are critical for
complex systems, particularly those that are software-controlled. And they must be reviewable
and reviewed in depth by domain experts.

5.1.2 Unnecessary Complexity and Software Functionality

One of the most basic concepts in engineering critical systems is to “keep it simple.”

The price of reliability is the pursuit of the utmost simplicity. It is a price which
the very rich find most hard to pay.15

The seemingly unlimited ability of software to implement desirable features often, as in the case
of most of the accidents examined in this paper, pushes this basic principle into the background:
Creeping featurism is a common problem in software-intensive systems:

‘And they looked upon the software, and saw that it was good. But they just had
to add this one other feature’ . . . A project’s specification rapidly becomes a wish
list. Additions to the list encounter little or no resistance. We can always justify
one more feature, one more mode, one more gee-whiz capability. And don’t worry,
it’ll be easy—after all, it’s just software. We can do anything.

In one stroke, we are free of nature’s constraints. This freedom is software’s
main attraction, but unbounded freedom lies at the heart of all software difficulty
(Frank McCormick, unpublished essay).

All the accidents, except MCO, involved either unnecessary software functions or software
operating when it was not necessary. The MCO report does not mention or discuss the software
features.

Both the Ariane and Titan/Centaur accidents involved software functions that were not
needed, but surprisingly the decision to put in these unneeded features was not questioned in
the accident reports. The software alignment function in the reused Ariane 4 software had no
use in the different Ariane 5 design. The alignment function was designed to cope with the
unlikely event of a hold in the Ariane 4 countdown: the countdown could be restarted and a
short launch window could still be used. The feature had been used once (in 1989 in flight 33 of
the Ariane 4). The Ariane 5 has a different preparation sequence and cannot use the feature at
all. In addition, the alignment function computes meaningful results only before liftoff—during

14



flight, it serves no purpose but the problem occurred while the function was operating after
liftoff.

The Ariane accident report does question the advisability of retaining the unused Ariane
4 alignment function in the Ariane 5 software, but it does not question whether the Ariane 4
software should have included such a non-required but convenient software function in the first
place. Outside of its effect on reuse (which may reasonably not have been contemplated during
Ariane 4 development), a tradeoff was made between possibly delaying a launch and simplifying
the software.

The Mars Polar Lander accident also involved software that was executing when it was not
necessary to execute, although in that case the function was required at a later time in the
descent sequence. The report states that the decision to start the software early was based
on trying to avoid transients in CPU loading. The tradeoff in this case may have seemed
justified, but executing software when it is not needed or including unnecessary code raises risk
significantly. The MPL independent accident investigation report also noted that requirements
creep was a factor in the accident.

The Titan/Centaur accident report explains that the software roll rate filter involved in
the loss of the Milstar satellite was not needed but was kept in for consistency. The same
justification is used to explain why the unnecessary software function leading to the loss of the
Ariane 5 was retained from the Ariane 4 software. Neither report explains why consistency was
assigned such high priority. While changing software that works can increase risk, executing
unnecessary software functions is also risky.

For SOHO, there was no reason to introduce a new function into the module that eventually
led to the loss. A software function already existed to perform the required maneuver and could
have been used. There was also no need to despin Gyro A between gyro calibration and the
momentum maneuvers.

In all these projects, tradeoffs were obviously not considered adequately (considering the
consequences), perhaps partially due to complacency about software risk. The more features
included in software and the greater the resulting complexity (both software complexity and
system complexity), the harder and more expensive it is to test, to provide assurance through
reviews and analysis, to maintain, and to reuse in the future. Well-reasoned tradeoff decisions
must include a realistic assessment of the impact of these extra difficulties. Software functions
are not “free.”

5.1.3 Software Reuse or Changes without Appropriate Safety Analysis

Reuse and the use of commercial off-the-shelf software (COTS) is common practice today in
embedded software development. The Ariane 5 software involved in the loss was reused from
the Ariane 4. According to the MCO developers, the small forces software was reused from the
Mars Global Surveyor project, with the substitution of a new thruster equation.14 Technical
management accepted the “just like MGS” argument and did not focus on the details of the
software.

It is widely believed that because software has executed safely in other applications, it will
be safe in the new one. This misconception arises from confusion between software reliability
and safety: most accidents involve software that is doing exactly what it was designed to do,
but the designers misunderstood what behavior was required and would be safe, i.e., it reliably
performs the wrong function.11

The blackbox (externally visible) behavior of a component can only be determined to be safe
by analyzing its effects on the system in which it will be operating, that is, by considering the

15



specific operational context. The fact that software has been used safely in another environment
provides no information about its safety in the current one. In fact, reused software is probably
less safe because the original decisions about the required software behavior were made for
a different system design and were based on different environmental assumptions. Changing
the environment in which the software operates makes all previous usage experience with the
software irrelevant for determining safety.

The problems in the Ariane 5 software arose from an overflow of a 16-bit integer variable.
The horizontal velocity of the Ariane 4 cannot reach a value beyond the limit of the software,
i.e., the value will always fit in 16 bits. The initial acceleration and trajectory of the Ariane
5, however, leads to a buildup of horizontal velocity five times more rapid than that of the
Ariane 4, leading to an overflow. For some unexplained reason, the Ariane 5 requirements and
specifications did not include the Ariane 5 trajectory data. This omission was not simply an
oversight—the accident report states that the partners jointly agreed not to include it. The
report provides no reason for this very strange decision, which negatively impacted the ability
to detect the problem during reviews and testing.

The philosophy of the Ariane 5 program, as stated in the accident report, that it was not
wise to change software that had worked well on the Ariane 4 unless it was proven necessary
to do so is well founded: Errors are often introduced when software is changed, particularly by
those who did not originally write it, as occurred with SOHO. However, in this case, there is a
tradeoff with safety that needs to be carefully evaluated. The best solution may not have been
to leave the software as it was but to rewrite it from scratch—such a decision depends on the
type of change required, the specific design of the software, and the potential effect of the feature
on system safety. The cost of the decision to reuse the Ariane 4 software without rewriting it
(in terms of both money and program delays) was much greater than the cost of doing a proper
analysis of its safety. The same is true for the Centaur software with respect to the losses
resulting from leaving in the unneeded filter function. If the cost of the analysis of reused (or
COTS) software or of changes to software is prohibitively expensive or beyond the state of the
art, then redeveloping the software or completely rewriting it may be the appropriate decision.

A reasonable conclusion to be drawn is not that software cannot be reused, but that a safety
analysis of its operation in the new system context is mandatory: Testing alone is not adequate
to accomplish this goal. For complex designs, the safety analysis required stretches the limits of
current technology. For such analysis to be technically and financially feasible, reused software
must contain only the features necessary to perform critical functions—another reason to avoid
unnecessary functions.

COTS software is often constructed with as many features as possible to make it commer-
cially useful in a variety of systems. Thus there is tension between using COTS versus being
able to perform a safety analysis and have confidence in the safety of the system. This tension
must be resolved in management decisions about specific project risk—ignoring the potential
safety issues associated with COTS software can lead to accidents and potential losses that are
greater than the additional cost would have been to design and build new components instead
of buying them.

If software reuse and the use of COTS components are to result in acceptable risk, then
system and software modeling and analysis techniques must be used to perform the necessary
safety analyses. This process is not easy or cheap. Introducing computers does not preclude
the need for good engineering practices nor the need for difficult tradeoff decisions, and it
almost always involves higher costs despite the common myth that introducing automation,
particularly digital automation, will save money.

A similar argument applies to changing existing software. Changes to software appear to

16



be easy. While it is indeed easy to change software, it is very difficult to change it correctly and
the difficulty increases over time. The Mars Climate Orbiter software was changed to include
a new thruster equation, but the 4.45 correction factor (the difference between the metric and
imperial units), buried in the original code, was not noticed when the new vendor-supplied
equation was used to update the software. Modifications to the SOHO command procedures
were subjected to very little testing and review, perhaps because they were considered to be
minor.

The more changes that are made to software, the more the original design erodes and
the more difficult it becomes to make changes without introducing errors. In addition, the
assumptions and rationale behind the design decisions are commonly not documented and are
easily violated when the software is changed. To prevent accidents, all changes to software
must be thoroughly tested and, in addition, analyzed for their impact on safety. Such change
analysis will not be feasible unless special steps are taken during development to document the
information needed.

The environment in which the system and software are operating will also change over time,
partially as a result of the introduction of the automation or system itself. Basic assumptions
made in the original hazard analysis process must be recorded and periodically evaluated to
assure they are not being violated in practice. Incident and accident analysis are also important
as well as performance monitoring and periodic operational process audits.

5.1.4 Violation of Basic Safety Engineering Practices in the Digital Components

Although system safety engineering textbooks and standards include principles for safe design,
software engineers are almost never taught them. As a result, software often does not incor-
porate basic safe design principles—for example, separating and isolating critical functions,
eliminating unnecessary functionality, designing error-reporting messages such that they can-
not be confused with critical data (which occurred in the Ariane 5 loss), and reasonableness
checking of inputs and internal states.

Consider the Mars Polar Lander loss as an example. The JPL report on the accident states
that the software designers did not include any mechanisms to protect against transient sensor
signals nor did they think they had to test for transient conditions. Runtime reasonableness
and other types of checks should be part of the design criteria used for any real-time software.
The Ariane 5 software appears not to have included simple and fairly standard range checks and
overflow checks (without using exception handling) that would have been simple to implement
in Ada (the programming language used), which was designed to provide the facilities required
to perform real-time checking of software.

The SOHO, Titan/Centaur, and MCO accident reports are silent about whether the code
included features to prevent the problem but were implemented incorrectly or, alternatively,
such features were omitted. From the outside, it appears that safety-related design features
could easily have been used with minimal impact on hardware resources. System and software
hazard analysis procedures can provide the information needed to implement the critical features
with little cost in terms of programming or execution time. We need to start applying safe design
principles to software just as we do for hardware.

The practices involved, however, may need to be very different than those used for hard-
ware, as witnessed by the misunderstanding of the effectiveness of redundancy in the Ariane
5 accident. Traditional system engineering techniques to protect against accidents caused by
component failure usually involve increasing the reliability (integrity) of the individual compo-
nents, including redundancy to protect against component failure, and building error margins

17



into components to protect against analysis or manufacturing flaws. None of these techniques
are useful in protecting against system accidents or software-related accidents, where the prob-
lems result from system design flaws: Increasing component integrity will have no effect on
accidents where the software operated exactly as it was required and designed to do, but the
requirements were incorrect. Every one of the accidents considered in this paper fit this de-
scription, except perhaps the Titan/Centaur loss, which resulted from a typo in a software load
tape.

Misunderstanding the differences between the failure modes in hardware and those in soft-
ware has led to attempts to increase reliability and safety through software redundancy, often in
the form of independent groups writing multiple versions of the software with majority voting
on the outputs. This approach is based on the assumption that such versions will fail in a
statistically independent manner, but this assumption has been shown to be false in practice
and by scientific experiments (see, for example, Knight and Leveson16). Common-cause (but
usually different) logic errors tend to lead to incorrect results when the various versions at-
tempt to handle the same unusual or difficult-to-handle inputs, as in the Ariane 5. In addition,
such designs usually involve adding to system complexity, which can result in failures itself. A
NASA study of an experimental aircraft with two versions of the control system found that all
of the software problems occurring during flight testing resulted from errors in the redundancy
management system and not in the control software itself, which worked perfectly.17 We need
to devise protection features for software that reflect the “failure” modes of software and not
those of hardware.

5.2 Inadequate Review Activities

General problems with the way quality and mission assurance was practiced were mentioned in
the MCO, MPL, and Titan reports. QA often becomes an ineffective activity that is limited
simply to checking boxes signifying the appropriate documents have been produced without
verifying the quality of the contents. The Titan/Centaur accident report makes this point
particularly strongly. According to the report, the LMA Quality Assurance Plan is a top-level
document that focuses on verification of process completeness, not on how the processes are
executed or implemented. Its basis was the original General Dynamics Quality Assurance Plan
with updates to ensure compliance with ISO 9001. Following this plan, the LMA Software
Quality Assurance staff only verified that the signoff report containing the software load con-
stants had all the proper signatures; they left the constant generation and verification process
to the flight software and control dynamics engineers. Software QA involvement was limited
to verification of software checksums and placing quality assurance stamps on the software
products that were produced.

Review processes (outside of QA) are also described as flawed in the reports but few details
are provided to understand the problems. The Ariane 5 report states that reviews including
all major partners in the Ariane 5 program took place, but no information is provided about
what types of reviews were held or why they were unsuccessful in detecting the design flaws. It
does say that the limitations of the inertial reference system software were not fully analyzed in
reviews, and it was not realized that the test coverage was inadequate to expose such limitations.
For example, the report states “there is no evidence that any trajectory data was used to analyze
the behavior of the three unprotected variables.” Given that the specifications did not include
the Ariane 5 trajectory data, it is unlikely such reviews would have uncovered the problem.
An assumption by the Ariane 5 developers that it was not possible to perform a complete
system integration test made reviews, including simulation and analysis, even more important.

18



The Ariane accident report recommends including external (to the project) participants when
reviewing specifications, code, and justification documents and to make sure that these reviews
consider the substance of arguments, rather than check that the verifications have been made.
The latter seems to imply that reviewers and assurance personnel may have simply ticked off
on checklists that activities had been performed without reviewing their quality and substance.

The MCO report recommends that NASA “conduct more rigorous, in-depth reviews of the
contractor’s and team’s work,” which it states were lacking on the MCO. The report also con-
cludes that the operations team could have benefited from independent peer reviews to validate
their navigation analysis technique and to provide independent oversight of the trajectory anal-
ysis. There is no mention of software quality assurance activities or the software review process
in the MCO report.

In the MPL descent engine control software reviews, apparently nobody attending was
familiar with the potential for spurious Hall Effect sensor signals. The independent MPL
accident report noted that JPL and LMA failed to ensure adequate independent reviews.6

The SOHO accident report states that the changes to the ground-generated commands
were subjected to very limited review. The flight operations team placed high reliance on ESA
and Matra Marconi Space representatives who were quite knowledgeable about the spacecraft
design, but there were only two of them and neither was versed in the computer language
used to define the commands. A simulation was performed on the new compressed SOHO
timelines, but the analysis of a problem detected during simulation was still going on as the
new procedures were being used.

The Titan/Centaur report was the only one to mention the existence of an independent
verification and validation review process by a group other than the developers. In that process,
default values were used for the filter rate constants and the actual constants used in flight were
never validated. An engineer at the launch site detected the anomalous roll rate data at the
time of tower roll back, but he was not able to identify the problem, partly because (according
to the accident report) he had no documented requirements or procedures to review the data
and no reference with which to compare.

Concerns about proprietary software is increasingly preventing external reviewers familiar
with the spacecraft from a systems viewpoint from reviewing the software (see, for example, the
Cassini/Huygens communications link enquiry board report.18 The problem is not limited to
aerospace, but is occurring in all industries. Adequate review is not possible when the system
engineers do not have access to the complete design of the spacecraft.

In general, software is difficult to review and the success of such an effort is greatly dependent
on the quality of the specifications. However, identifying unsafe behavior, i.e., the things that
the software should not do and concentrating on that behavior for at least part of the review
process, helps to focus the review and to ensure that critical issues are adequately considered.

Such unsafe (or mission-critical) behavior should be identified in the system engineering
process before software development begins. The design rationale and design features used to
prevent the unsafe behavior should also have been documented and can be the focus of such a
review. This presupposes, of course, a system safety process to provide the information, which
does not appear to have existed for the projects that were involved in the accidents studied.

As mentioned earlier, almost all software-related accidents have involved incomplete re-
quirements specification and unhandled or mishandled system states or conditions. The two
identified Mars Polar Lander software errors, for example, involved incomplete handling of
software states and are both examples of very common specification flaws and logic omissions
often involved in accidents. Such errors are most likely to be found if spacecraft and subsystem
experts participate actively in the reviews.

19



Software hazard analysis and requirements analysis techniques and tools exist to assist in
finding these types of incompleteness. To make such a review feasible, the requirements should
include only the externally visible (blackbox) behavior; all implementation-specific information
should be put into a separate software design specification (which can be subjected to a later
software design review by a different set of reviewers). The only information relevant for a
software requirements review is the software behavior that is visible outside the computer.
Specifying only blackbox behavior (in engineering terminology, the transfer function across
the digital component) allows the reviewers to concentrate on the information of importance
to them without being overwhelmed by internal design information that has no impact on
externally observable behavior.

The language used to specify the software requirements is also critical to the success of such
a review. The best way to find errors in the software requirements is to include a wide range of
disciplines and expertise in the review process. The reviewers must be able to read and under-
stand the specifications without extensive training and, ideally, the notation should not differ
significantly from standard engineering notations. While formal and executable specification
languages have tremendous potential for enhancing our ability to understand the implications
of complex software behavior and to provide correct and complete requirements, most of the
languages created by computer scientists require too much reviewer training to be practical. A
high priority on readability and learnability has not been placed on the development of such
languages.

5.3 Ineffective System Safety Engineering

All of the accident reports studied are surprisingly silent about the safety programs and system
safety activities involved. The MCO report cryptically says only that the “safety and mission
assurance group was not properly engaged during the operations stage.” All the reports, how-
ever, do cite inadequate hazard analysis or component criticality analysis. The MCO report
notes that there was an absence of a process, such as fault tree analysis, for determining what
could go wrong during a mission to assist in design, reviews, and contingency planning. The
MPL report also notes inadequate hazard identification: During MPL development, fault tree
and other hazard analysis activities were used “inconsistently.”

There did appear to be a criticality analysis performed on the Ariane and MCO projects,
albeit flawed ones. The Ariane 5 report recommends reconsidering the definition of critical
components, taking failures of software components into account (particularly single point fail-
ures). Clearly the handling of an overflow in the alignment function by turning off the guidance
and control computer was flawed. Unfortunately, not enough information is given about how
the criticality analysis was performed to determine why it was unsuccessful.

Like other systemic factors, the Ariane 5 report is silent about the tradeoff analysis process.
The report describes the decisions that resulted but not the process used to reach those decisions.
For example, the fact that several software variables were unprotected is not the root of the
problem: There is always a limit as to how much checking and protection is feasible—spacecraft
computers are limited by size and weight, which in turn limits processor power and memory
and timing constraints may preclude extensive checking software. The problem was that there
was a lack of effective analysis to determine which variables should be protected. Important
information that is missing includes how the analysis and trade studies were performed and what
additional information or additional analysis techniques could have allowed better decisions to
be made.

The MCO accident report also concludes there was “inadequate identification of mission-

20



critical elements throughout the mission.” The criticality of specific elements of the ground
software that impacted the navigation trajectory was not identified, for example.

The source of these problems may stem from the common practice of applying the same engi-
neering analysis techniques developed for electromechanical systems (e.g., FMEA and FMECA)
to the new software-intensive systems. This approach will be limited because the contribution
of software to accidents, as noted previously, is different than that of purely mechanical or
electronic components. In particular, software does not fail in the sense assumed by these
techniques.

Often hazard analyses simply omit software, and when included it is often treated superfi-
cially at best. The hazard analysis produced after the Mars Polar Lander loss is typical. The
JPL report on the loss identifies the hazards for each phase of the entry, descent, and landing
sequence, such as Propellant line ruptures, Excessive horizontal velocity causes lander to tip over
at touchdown, and Premature shutdown of the descent engines. For software, however, only one
hazard—Flight software fails to execute properly—is identified, and it is labeled as common to
all phases. Such a software “hazard” is not very useful—it is equivalent to substituting the
general statement Hardware fails to operate properly for all the hardware-related hazards noted
above. Identifying specific unsafe software behaviors as is done for hardware, such as Software
prematurely shuts down the descent engines, would be much more helpful during development
in identifying ways to mitigate risk.

Providing the information needed to make safety-related engineering decisions is the major
contribution of system safety techniques to engineering. It has been estimated that 70 to 90%
of the safety-related decisions in an engineering project are made during the early concept
development stage.19 When hazard analyses are not performed, are done only after the fact (for
example, as a part of quality or mission assurance of a completed design), or are performed but
the information is never integrated into the system design environment, they can have no effect
on these decisions and the safety effort reduces to a cosmetic and perfunctory role.

Take SOHO for example. A hazard analysis surely would have shown that the roll rate and
the status of gyros A and B were critical, and this information could have guided the design
of feedback channels to the operators about the current gyro state. A rigorous system safety
process also would have triggered special safety analyses when changes were made to the SOHO
operational procedures involving safety-critical components. In addition, a strong system safety
program would have ensured that high priority was given to the analysis of previous emergency
sun reacquisitions, that greater controls were placed on safety-critical operational procedures,
and that safety-related open operational reports, such as the one reporting the difficulty the
SOHO operators were having in reviewing telemetry data, did not stay open for four years and
instead were tracked and resolved in a timely manner.

The description of the MCO problem by the developers15 says that the best chance to find
and eliminate the problem existed at the early stages of development, but the team failed to
recognize the importance of the small forces ground software and it was not given the same
attention as the flight software.

The Titan/Centaur accident provides another example of what happens when such analysis
is not done. The risk analysis, in that case, was not based on determining the steps critical
to mission success but instead considered only the problems that had occurred in previous
launches. Software constant generation was considered to be low risk because there had been
no previous problems with it. There is, however, a potentially enormous (perhaps unlimited)
number of errors related to software and considering only those mistakes made previously, while
certainly prudent, is not adequate.

Not only is such a fly-fix-fly approach inadequate for complex systems in general, particularly

21



when a single loss is unacceptable, but considering only the specific events and conditions
occurring in past accidents is not going to be effective when new technology is introduced into
a system. Computers are, in fact, introduced in order to make radical changes in functionality
and design. In addition, software is often used precisely because it is possible to make changes
for each mission and throughout operations—the system being flown today is often not the
same one that existed yesterday. Proper hazard analysis that examines all the ways the system
components (including software) or their interaction can contribute to accidents needs to be
performed and used in the original development and when making changes during operations.

At the same time, system-safety techniques, like other engineering techniques, need to be
expanded to include software and the complex cognitive decision making and new roles played by
human operators.11 Existing approaches need to be applied, and new and better ones developed.
If system hazard analysis is performed prior to software implementation (not just prior to
testing, as is recommended in the MPL report), requirements can be analyzed for hazardous
states and protection against potentially hazardous behavior designed into the software logic
from the beginning.

The Mars Climate Orbiter accident report recommended that the NASA Mars Program
institute a classic system safety engineering program: 1) Continually performing the system
hazard analyses necessary to explicitly identify mission risks and communicating these risks
to all segments of the project team and institutional management; 2) Vigorously working to
make tradeoff decisions that mitigate the risks in order to maximize the likelihood of mission
success; and 3) Regularly communicating the progress of the risk mitigation plans and tradeoffs
to project, program, and institutional management.4 The other spacecraft accident reports, in
contrast, recommended applying classic reliability engineering approaches that are unlikely to
be effective for system accidents or software-related causal factors.

One of the benefits of using system-safety engineering processes is simply that someone
becomes responsible for ensuring that particular hazardous behaviors are eliminated if possible
or their likelihood reduced and their effects mitigated in the design. Almost all attention
during development is focused on what the system and software are supposed to do. System
safety and software safety engineers are responsible for ensuring that adequate attention is also
paid to what the system and software are not supposed to do and verifying that hazardous
behavior will not occur. It is this unique focus that has made the difference in systems where
safety engineering successfully identified problems that were not found by the other engineering
processes.

5.4 Flaws in the Test and Simulation Environments

It is always dangerous to conclude that poor testing was the “cause” of an accident. After the
fact, it is always easy to find a test case that would have uncovered a known error. It is usually
difficult, however, to prove that the particular test case would have been selected beforehand,
even if testing procedures were changed. By definition, the cause of an accident can always
be stated as a failure to test for the condition that was determined, after the accident, to
have led to the loss. However, all the accidents reports studied mention omissions that reflect
poor decisions related to testing, particularly with respect to the accuracy of the simulated
operational environment.

A general principle in testing aerospace systems is to fly what you test and test what you
fly. This principle was violated in all the spacecraft accidents, especially with respect to soft-
ware. The software test and simulation processes must reflect the environment accurately.
Although implementing this principle is often difficult or even impossible for spacecraft, no

22



reasonable explanation was presented in the reports for some of the omissions and flaws in the
testing for these systems. One example was not testing the Titan/Centaur software with the
actual load tape prior to launch. Another example was the use of Ariane 4 trajectory data in
the simulations of the Ariane 5 software even though the Ariane 5 trajectory was known to
be different. The Ariane inertial reference system specification, in addition, did not include
operational restrictions arising from the implementation and needing to be considered during
test.

Testing of SOHO operational procedures was primarily performed using a simulator, but
the simulator had not been maintained with all the on-board software changes that had been
implemented on the spacecraft, essentially making such testing useless. The MPL touchdown
sensing software was not tested with the lander in the flight configuration. Various other types
of test cases were also not included. The JPL MPL report concludes:

The laboratory needs to reinforce the system-level test principle of ‘test as you fly,
and fly as you test.’ Departures from this principle must be carefully assessed, and
if they are determined to be necessary, alternative measures, such as independent
validation, should be incorporated. Such items must be reflected in the project
risk management plan, communicated to senior management for concurrence, and
reported at reviews.5

For both the Ariane 5 and Mars ’98 projects, a conclusion was reached during development
that the components implicated in the accidents could not be tested and simulation was substi-
tuted. After the fact, it was determined that such testing was indeed possible and would have
had the ability to detect the design flaws. For example, the Ariane 5 report says:

It would have been technically feasible to include almost the entire inertial reference
system in the overall system simulations which were performed. For a number of
reasons, it was decided to use the simulated output of the inertial reference system,
not the system itself or its detailed simulation. Had the system been included, the
[design error] could have been detected.3

The same occurred with the Titan/Centaur accident, where default and simulated values were
used in system testing although the real roll rate filter constants could have been used. Like
Ariane, the Titan/Centaur engineers incorrectly thought the rigid-body simulation of the vehicle
would not exercise the filters sufficiently. In addition, the corporate consolidation/evolution
process had led to a loss of knowledge that the test bed could use the actual roll rate filter
constants. The current engineers thought only default constants could be used in the test bed.
Even the tests performed on the Titan/Centaur right before launch (because anomalies had
been detected) used a default set of constants to filter the measured roll rate instead of the
actual constants, and thus were unsuccessful in detecting the error. After wiring errors were
discovered in the MPL testing process, for undisclosed reasons the tests necessary to detect the
software flaw were not rerun.

Not all problems in testing can be traced to the simulation environment, of course. There
have been cases of spacecraft losses involving inadequate, inappropriate, and ill-suited testing.
A basic problem is one of piecemeal testing and not testing at the system level for system-
level effects and emergent behavior. The rush to get the ground software operational after a
problem was discovered post-launch in MCO resulted in the testing program being abbreviated.
For example, the testing of the ground software changes did not test the correctness of the
file formats but simply made sure that the file could be moved across on the file server.14

23



At a November 10, 1999 press conference, Alfred Stephenson, the chief accident investigator,
admitted, “Had we done end-to-end testing, we believe this error would have been caught.” But
the rushed and inadequate preparations left no time to do it right. The problem lies not only
in testing, but in relying on software that had not been adequately tested without additional
manual or other checks to gain confidence. The same lack of system test also contributed to
the WIRE (Wide-Field Infrared Explorer Mission) spacecraft where a contributing cause cited
in the accident report was that no system level end-to-end test with live pyrotechnic devices in
the as-flown configuration had been done.20

Another common problem in software testing is inadequate emphasis on off-nominal and
stress testing. Most software-related accidents have involved situations that were not considered
during development or were assumed to be impossible and not handled by the software. For
example, the error in the Ariane exception handling software might have been found if off-
nominal testing had been performed on the Ariane despite the fact that an incorrect assumption
about the Ariane trajectory had been made in the specifications. The recent emphasis on “use
cases” in software testing exacerbates the lack of off-nominal and stress testing. Inadequate
and unsafe software logic is much more likely to be found when inputs violate the specifications
than when they simply test the expected cases.

Better system testing practices are needed for components containing software (almost ev-
erything these days), more accurate simulated environments need to be used in software testing,
and the assumptions used in testing and simulations need to be carefully checked.

5.5 Inadequate Human Factors Design for Software

Understanding the impact of software design on human error is still in the early stages. Acci-
dents, surveys and simulator studies, however, have emphasized the problems pilots are having
in understanding digital automation and have shown that pilots are surprisingly uninformed
about how the automation works.21,22

Human factors experts have written extensively on the potential risks introduced by the
automation capabilities of glass cockpit aircraft. Among those problems identified are: causing
mode confusion and situational awareness problems; providing inadequate feedback to support
effective monitoring and decision making; creating over reliance on automation; increasing
workload during periods of already high workload and decreasing it during periods of already
low workload; being “clumsy” or difficult to use; being opaque or difficult to understand; and
requiring excessive experience to gain proficiency in its use. Not all of this information seems
to have affected engineering practice.

As more sophisticated automation has been introduced into spacecraft control and control of
safety-critical functions is increasingly shared between humans and computers, the same prob-
lems found in high-tech aircraft are appearing. Ground controllers rely on indirect information
about the object they are controlling. Their effectiveness depends on the information they are
given and the format in which it is presented. Many of the problems found in human automa-
tion interaction lie in the human not getting appropriate feedback to monitor the automation
and to make informed decisions.

For the three accidents studied that involved operators (MCO, Titan, and SOHO), all the
accident reports mentioned human factors issues. Neither the Mars Climate Orbiter nor the
Titan/Centaur mission operations personnel understood the system or software well enough to
interpret the data they saw as indicating there was a problem in time to prevent the loss.4,7

As noted earlier, the MCO navigation operations team did not know that the spacecraft sent
down tracking data that could have been compared with the ground data to detect the error

24



and to validate the changes in the software. Complexity in the automation combined with poor
documentation and training procedures are contributing to these problems.

Problems abound in the design of the interfaces between humans and automation. As noted
earlier, the SOHO operations personnel had filed a report about the difficulty they were having
interpreting the telemetry data using the interface they were given. For diagnostic purposes,
SOHO was designed to store within its on-board computer the last three telemetry frames
that precede entry into the safe mode, but the ground operators were unable to display this
information in a usable format. If the information had been available to them, the operators
could have determined the status of the gyros and avoided the loss. No explanation for why
the problem was not fixed is provided in the accident report. Several other places in the SOHO
accident report also hint at the controllers not having the information they needed about the
state of the gyros and the spacecraft in general to make appropriate decisions. The diagnosis of
the wrong gyro as the bad one and its subsequent deactivation raises many important questions
about the information provided to the operators that are not answered in the accident report.

The SOHO report also says that the software had been modified incorrectly by the operations
team due to lack of system knowledge of the person making the changes. The flight operations
team was not sufficiently versed regarding details of the spacecraft design and its idiosyncrasies,
and this problem became worse as turnover occurred and there was no time for new personnel
to take advantages of training sessions.

Complexity in the automation combined with inadequate documentation and training pro-
cedures are contributing to the problems we are seeing. Sometimes the incorrect assumption
is made that introducing computers lessens the need for in-depth knowledge by operational
personnel but the opposite is true. Some of the spacecraft accidents where operators were im-
plicated involved a failure to transfer skill and knowledge from those who operated spacecraft
in prior missions, and they were, therefore, unable to detect the software deficiencies in time
to save the mission. Either the design of the automation we are building needs to be improved
from a human factors engineering viewpoint or new training methods are needed for those who
must deal with the clumsy automation and confusing, error-prone interfaces we are designing.

6 Conclusions

This paper has described common factors noted in the accident reports for five recent software-
related spacecraft losses: Ariane 501, Mars Climate Orbiter, Mars Polar Lander, Titan IV B-32,
and SOHO communications. Some suggestions for ways to avoid these problems were provided
throughout the paper, although a comprehensive discussion of how to solve these very complex
problems is beyond its scope. The first step in preventing accidents, however, is learning from
those that have already occurred.

Complacency and misunderstanding software and its risks were at the root of all these
accidents. Software presents tremendous potential for increasing our engineering capabilities.
At the same time, it introduces new causal factors for accidents and requires changes in the
techniques used to prevent the old ones. We need to apply the same good engineering practices
to software development that we apply to other engineering technologies while at the same time
understanding the differences and making the appropriate changes to handle them. There is
no magic in software—it requires hard work and is difficult to do well, but the result is worth
the effort.

25



Acknowledgements

This research was partially supported by a grant from the NASA Ames Design for Safety
program and by the NASA IV&V Center Software Initiative program.

7 References

1Leveson, N.G., “Evaluating Accident Models using Recent Aerospace Accidents: Part I.
Event-Based Models,” MIT ESD Technical Paper, ESD-WP-2002-06, June 2001.

2Weiss, K., Leveson, N.G., Lundqvist, K., Farid, N., and Stringfellow, M., “An Analysis of
Causation in Aerospace Accidents,” Proceedings of the Digital Aviation Systems Conference,
Daytona, October 2001, pp. 137-147.

3Lions, J.L. (Chairman) “Ariane 501 Failure: Report by the Inquiry Board,” European
Space Agency, 19 July, 1996.

4Stephenson, A., “Mars Climate Orbiter: Mishap Investigation Board Report,” NASA,
November 10, 1999.

5JPL Special Review Board, “Report on the Loss of the Mars Polar Lander and Deep Space
2 Missions,” NASA Jet Propulsion Laboratory, 22 March 2000.

6Young, T. (Chairman), “Mars Program Independent Assessment Team Report,” NASA,
14 March, 2000.

7Pavlovich, J.G., “Formal Report of Investigation of the 30 April 1999 Titan IV B/Centaur
TC-14/Milstar-3 (B-32) Space Launch Mishap,” U.S. Air Force, 1999.

8NASA/ESA Investigation Board, “SOHO Mission Interruption,” NASA, 31 August 1998
9Hopkins, A., Managing Major Hazards: The lessons of the Moira Mine Disaster, Allen &

Unwin, Sidney, Australia, 1999.
10Perrow, C. Normal Accidents: Living with High-Risk Technology, Basic Books, Inc., New

York, 1984.
11Leveson, N.G., Safeware: System Safety and Computers, Addison Wesley, Boston, 1985.
12Lutz, R.R., “Analyzing Software Requirements Errors in Safety-Critical, Embedded Sys-

tems,” Proceedings of the International Conference on Software Requirements, IEEE, January
1992, pp. 53-65.

13Oberg, J., “Why the Mars Probe Went Off Course,” IEEE Spectrum Magazine, Vol. 36,
No. 12, December 1999.

14Euler, E.E., Jolly, S.D., and Curtis, H.H., “The Failures of the Mars Climate Orbiter and
Mars Polar Lander: A Perspective from the People Involved,” Proceedings of Guidance and
Control 2001, American Astronautical Society, paper AAS 01-074, 2001.

15Hoare, A.A., “The Emperor’s Old Clothes,” Communications of the ACM, Vol. 24, No.
2, Jan. 1981, pp. 75-83.

16Knight, J.C. and Leveson, N.G., “An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming,” IEEE Transactions on Software Engineering,
Vol. SE-12, No. 1, January 1986, pp. 96-109.

17Mackall, D.A., “Development and Flight Test Experiences with a Flight-Critical Digital
Control System,” NASA Technical Paper 2857, Dryden Flight Research Facility, November
1988.

18D.C.R Link (Chairman), “Report of the Huygens Communications System Inquiry Board,”
NASA, December 2000.

26



19Frola, F.R. and Miller, C.O., “System Safety in Aircraft Acquisition,” Logistics Manage-
ment Institute, Washington D.C., January 1984.

20Branscome, D.R. (Chairman), “WIRE Mishap Investigation Board Report,” NASA, June
8, 1999.

21Sarter, N. D. and Woods, D., “How in the world did I ever get into that mode?: Mode
error and awareness in supervisory control,” Human Factors, Vol. 37, No. 1, 1995, pp. 5–19.

22Bureau of Air Safety Investigation, “Advanced Technology Aircraft Safety Survey Report,”
Department of Transport and Regional Development, Australia, June 1996.

27


