Analyzing Software Specifications for Mode Confusion Potential*

Nancy G. Leveson
L. Denise Pinnel
Sean David Sandys
Shuichi Koga
Jon Damon Reese

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350
{leveson,denisep,sds, skoga, jdreese}@cs.washington.edu

Abstract

Increased automation in complexr systems has led
to changes in the human controller’s role and to new
types of technology-induced human error. Attempts
to mitigate these errors have primarily involved giv-
ing more authority to the automation, enhancing op-
erator training, or changing the interface. While
these responses may be reasonable under many circum-
stances, an alternative is to redesign the automation
in ways that do not reduce necessary or desirable func-
tionality or to change functionality where the trade-
offs are judged to be acceptable. This paper describes
an approach to detecting error-prone automation fea-
tures early in the development process while significant
changes can still be made to the conceptual design of
the system. The information about such error-prone
features can also be useful in the design of the operator
interface, operational procedures, or operator training.

Introduction

Today’s large, complex systems often incorporate
both human and automated control and monitoring.
These jointly controlled systems are starting to expe-
rience accidents related to a lack of coordinated activ-
ity between the various controllers. One particularly
problematic feature of these new designs is a prolifera-
tion of modes, where modes define mutually exclusive

*The research described has been partly funded by NSF
Grants CCR-9396181 and CCR-9520813 and NASA Grant
NAG-1-1495.

sets of system behavior.

The new mode-rich systems provide flexibility and
enhanced capabilities, but they also increase the need
for and difficulty of maintaining mode awareness,
which can lead to new types of mode-related prob-
lems. This paper describes an approach to dealing
with mode-confusion problems by analyzing the ex-
ternal blackbox behavior of the automation for poten-
tially error-inducing features. The results can be used
to make tradeoff decisions during the early develop-
ment stages of the system.

While automation has eliminated some types of
mode-awareness errors, it has also created the poten-
tial for new types of errors. Sarter and Woods extend
the classic definition of mode error and distinguish be-
tween errors of commission (where an operator takes
an inappropriate action) and errors of omission (where
the operator fails to take a required action) [SW95].

The first automated systems tended to have only
a small number of independent modes, and functions
were associated with one overall mode setting. In ad-
dition, the consequences of operator mode awareness
problems tended to be minor, partly because feedback
about operator errors was fast and complete enough
that operators were able to recover before the errors
caused serious problems (Rasmussen’s concept of error
tolerance) [Ras90].

Studies of less complex aircraft automation show
that pilots sometimes lose track of the automation be-
havior and experience difficulties with directing the
automation, primarily in the context of highly dy-
namic and/or non-normal situations [SW95]. Sarter
and Woods conclude that in most cases, these prob-
lems are associated with errors of commission, that

is, with errors that require a pilot action in order for
the problem to occur. This type of error is the classic
mode error identified and defined by Norman—an in-
tention is executed in a way that is appropriate for one
mode but the device is actually in a different mode.
Because the operator has taken an explicit action, he
or she is likely to check that the intended effect of
the action has actually occurred. The short feedback
loops allow the operator to repair most errors before
serious consequences result. This type of error is still
the prevalent one on relatively simple devices such as
word processors.

In contrast, studies of more advanced automation in
aircraft like the A-320 find that mode errors of omis-
sion are the dominant form of error [SW95]. In this
type of mode error, the operator fails to take an ac-
tion that is required, perhaps because the automation
has done something undesirable (perhaps involving a
mode change) and the operator does not notice. In
other words, the operator fails to detect and react
to an undesired system behavior that he or she did
not explicitly invoke. Because the mode or behavioral
changes are not expected, the operator is less likely
to pay attention to the relevant indications (such as
mode annunciations) at the right time and detect the
mode change or undesired behavior.

Errors of omission are closely related to the role
change of the operator from direct control to monitor,
exception handler, and supervisor of the automation.
As these roles change, the operator tasks and cognitive
demands are not necessarily reduced, but instead tend
to change in their basic nature. The added or changed
cognitive demands tend to congregate at high-tempo,
high-criticality periods [SW95]. While some types of
errors and failures have declined, new error forms and
paths to system breakdown have been introduced.

Some of these new error forms are a result of mode
proliferation without appropriate support. Providing
support has been complicated by some unexpected
changes in operator behavior in working with com-
plex automation. For example, during long periods of
flight, pilots do not have to monitor the mode annun-
ciations continuously. Instead, they need to predict
the occurrence of mode transitions in order to attend
to the right indications at the right time. A-320 pilots
have identified this new type of monitoring behavior
in surveys conducted by Sarter and Woods. However,
the automation and interfaces have been designed as-
suming conventional monitoring.

Simply calling for systems with fewer or less com-
plex modes is unrealistic: Simplifying modes and au-
tomation behavior often requires tradeoffs with in-

creased precision or efficiency and with marketing de-
mands from a diverse set of customers [SW95]. How-
ever, systems may exhibit accidental complezity where
the automation can be redesigned to reduce the po-
tential for human error without sacrificing system ca-
pabilities. Where tradeoffs with desired goals are re-
quired to eliminate potential mode confusion errors,
hazard analysis may be able to assist in providing the
information necessary for appropriate decision mak-
ing.

To identify and evaluate potential tradeoffs, we
need to understand why the problems occur. Acci-
dents in high-tech systems are related to complex-
ity and coupling [Per84, Lev95]. Perrow distinguishes
between accidents caused by component failures and
those, which he calls system accidents, that are caused
by interactive complexity in the presence of tight cou-
pling. High-technology systems are often made up
of networks of closely related subsystems (some of
which may involve humans). Conditions leading to
accidents emerge in the interfaces between subsystems
and in their interactions, and coupling causes distur-
bances to progress from one component to another.
Computers have exacerbated the problems by allowing
new levels of complexity and coupling with more inte-
grated, multi-loop control in systems containing large
numbers of dynamically interacting components. In-
creased complexity and coupling make it difficult for
the designer to consider all the system hazards, or
even the most important ones, or for the operators to
handle all normal and abnormal situations and distur-
bances safely.

Some of the increased complexity has been the re-
sult of what Sarter, Woods, and Billings have called
technology-centered automation [SW95]. Too often,
the designers of the automation focus on technical as-
pects and do not devote enough attention to the cog-
nitive and other demands on the operator. Software
engineers building embedded controllers are rarely
taught or understand the set of cognitive processing
activities associated with maintaining situation and
mode awareness and how their designs can affect these
human activities. Instead, they tend to focus on the
mapping from software inputs to outputs, on mathe-
matical models of required functionality, and on the
technical details and problems internal to the com-
puter. Little attention has been given to evaluating
software in terms of whether it provides transparent
and consistent behavior that supports operators in
their monitoring and control tasks. In fact, the pri-
mary focus in software engineering and in artificial
intelligence has been on producing automation that

can function autonomously and not on supporting co-
operation and communication between humans and
computers.

The result of technology-centered automation has
been what Wiener calls “clumsy automation.” If it is
true that mode-related problems are caused by clumsy
or poorly designed automation, then changing the hu-
man interface, training, or operational procedures is
not the obvious, or at least the only solution: “Train-
ing cannot and should not be the fix for bad design”
[SW95]. Instead, if we can identify automation design
characteristics that lead to mode awareness errors or
that increase cognitive demands, then we may be able
to redesign the automation without reducing system
capabilities. In addition, knowing the causes of in-
creased cognitive load will make changes in training
or interface design more effective. The approach cho-
sen will depend upon such factors as relative costs,
perceived effectiveness, and required tradeoffs.

To accomplish this goal, designers need to be able
to identify problematic design features. Our research
goal is to identify design constraints on the automa-
tion based on known cognitive constraints on the hu-
man operator and engineered or natural environmen-
tal constraints. The first step in accomplishing this
goal is to identify the types of errors that humans make
in highly automated systems. Using this information,
we can analyze the blackbox behavior specified in the
automation requirements to predict where errors will
occur and use this information to design the automa-
tion and the operator procedures, tasks, and interface.
At first, we are simply going to analyze current de-
signs, but our long term goal is to identify software
design criteria and techniques that will help to create
better designs from the beginning.

For our proposed analysis approach to work, hu-
man errors must be non-random. After studying acci-
dents and incidents in the new, highly automated air-
craft, Sarter and Woods have concluded that certain
errors are predictable [SW95]: They are the regular
and predictable consequences of a variety of identi-
fiable factors. Although they are “accentuated” by
poor interface design and gaps or misconceptions in
the user’s mental model of the system, mismatches
between expected and actual automation behavior is
not necessarily related to an inadequate operator men-
tal model but can also result from inconsistent au-
tomation behavior. Sarter and Woods identify some
of these error forms. Degani has also identified some
features that lead to mode confusion [Deg96], and Jaffe
[JL89, Lev95] has identified general requirements com-
pleteness criteria to eliminate some types of human-—

computer interaction errors.

We want to build on the work of Sarter and Woods,
Degani, and Jaffe to find the factors or “predictable
error forms” that relate to automation design and de-
vise ways to identify these factors in software require-
ments specifications. Our approach is to model soft-
ware blackbox behavior and provide analysis meth-
ods and tools to search the models for predictable er-
ror forms. In addition to providing design guidance,
this approach might provide a way of “measuring” or
evaluating the cognitive demands involved in work-
ing with specific automated devices. Hansman has
suggested that automation complexity be defined in
terms of the predictability of the automation behav-
ior [Hans97]. This predictability can potentially be
evaluated using our approach.

Analyzing designs requires an appropriate model-
ing and specification language. This language must
be both formally analyzable and readable without ad-
vanced mathematical training. While automated tools
may be necessary to analyze some aspects of large
and complex models, we believe (and our empirical
evidence supports the view) that the most important
errors will be found by human experts [MLRPS97].
Therefore, one of our goals in the design of our model-
ing language and tools is to provide support in human
navigation and understanding of complex models and
specifications. In addition, any potential design flaws
detected by automated tools will need to be evaluated
by humans. Thus, readability of the models is also a
requirement for human processing of the analysis re-
sults. Finally, the economics of system development
are unlikely to allow for special formal models to be
built. Instead, our analysis tools work directly on sys-
tem and software requirements specifications.

In the following sections, we define the concept of
a “mode” more carefully, describe our modeling lan-
guage, describe criteria for detecting some types of
mode ambiguity, and demonstrate how these criteria
might be used in analyzing the blackbox behavior of
the automation. The language and analysis are illus-
trated using a model of a NASA robot built to service
tiles on the Space Shuttle.

Definition of a Mode

A mode defines a mutually exclusive set of system
behaviors. One convenient way to describe behavior
is to use state machine models. A machine or sys-
tem can be thought of as having a set of states. The
behavior of the system can be described by the possi-
ble transitions from one state to another. Those state
transitions are triggered by events, conditions, or sim-
ply the passage of time (which can be thought of as an

event). As an example, the following table shows the
possible transitions between states given two system
modes: startup mode and normal operation mode:

| a b
Startup | ¢ b
Normal | ¢ d

e &0
Q0|

a

Table 1: A simple state machine with two modes

The startup and normal processing modes in this
machine determine how the machine will behave. For
example, if the conditions occur that trigger a transi-
tion from state ¢, the machine will transfer to state d
if it is in startup mode or to state a if it is in normal
processing mode.

A basic tenet of linear control theory is that ev-
ery controller contains a model of the general behav-
ior and current state of the controlled system. This
model may be embedded in the control logic of an
automated controller or in the mental model of a hu-
man controller. The model is updated and kept con-
sistent with the actual system state through various
forms of feedback from the system to the controller.
When the controller’s model of the system diverges
from the actual system state, erroneous control com-
mands (based on the incorrect model) can lead to an
accident [Lev95]. The situation becomes more compli-
cated when there are multiple controllers because the
models of the various controllers must also be kept
consistent. A pilot, for example, must not only have
a valid model of aircraft behavior but must also have
a model of the automated systems’ behavior in order
to monitor or control the automation as well as the
aircraft.

Mode confusion errors result from divergent con-
troller models. See figure 1. Note that there are sev-
eral sources of inconsistency due to improper feedback.

In attempting to categorize factors that predict
mode errors, it is useful to distinguish between dif-
ferent types of modes. Degani classifies modes into
three types [Deg96]:

1. Interface modes specify the behavior of the inter-
face. They are used to increase the size of the
input or output space.

2. Functional modes specify the behavior of the var-
ious functions of the machine.

3. Supervisory modes specify the level of interaction
or supervision (manual, semi-automatic, or auto-
matic).

We also define three types of modes, but classify them
differently. The modes are defined with respect to the
control component being specified:

1. Supervisory modes determine who or what is con-
trolling the component at any time. Control loops
may be organized hierarchically, with multiple
controllers or components, each being controlled
by the layer above and controlling the layer be-
low (see Figure 1). In addition, each component
may have multiple controllers (supervisors). For
example, a flight guidance system may be issued
direct commands by the pilot(s) or by another
computer that is itself being supervised by the
pilot(s). The robot motor controller (MAPS) de-
scribed in the next section can be in either manual
supervisory mode and controlled by a human op-
erator, or it can accept control instructions from
another computer called the “planner.” Mode-
awareness errors related to confusion in coordina-
tion between the multiple supervisors of a control
component can be defined in terms of these su-
pervisory modes.

2. Component operating modes control the behav-
ior of the control component itself. They may
be used to control the interpretation of the in-
terface (Degani’s interface modes) or to describe
its required process-control behavior. For exam-
ple, MAPS operation may be enabled or disabled
at any time, depending on whether it is safe for
MAPS to move the robot.

3. Controlled-system operating modes specify sets of
related behaviors of the controlled system and are
used to indicate its operational state. For ex-
ample, the MAPS model of the robot indicates
whether it is in a moving mode (between work
areas), in a work mode (in a work area and ser-
vicing tiles, during which time the robot is not
controlled by MAPS but by the planner) or is in
an unknown mode (which means that MAPS does
not know whether the robot is in moving mode or
work mode).

The Modeling Language

Most software errors leading to accidents can be
traced to incorrect or incomplete specifications rather
than to incorrect implementations. While develop-
ing hazard analysis techniques, we have been trying
to understand how to design specification languages
that will facilitate analysis (by both humans and au-
tomated tools) of system and software requirements

-

Operator 1

Interface Operation

N e
Operator 2

Model of

Interface Operation

Model of

! Model of Model of Model of Model of
| Automation Process Automation Process
| J U
!] i
1 Controls Displays Controls Displays
|)
| (R
L Computer Controller
Analog -
Displays
1 Model of
| Supervisory Interface
| Model of
1 Model of Process
| Process Interface
3)
| Actuators
| Sensors Controlled
1 PROCESS

Figure 1: An example of a simple multiple-controller process-control system. To simplify the diagram, we have
shown only one digital (computer) controller. In complex systems there may be several human, digital, or analog
controllers at each level of hierarchical control and also more hierarchical levels than shown here. Note that each
controller has several mental or logical models of the machine or process it is controlling as well as its interfaces.
These models must be kept consistent for correct and safe monitoring and control.

specifications. We have found that effective error de-
tection requires specifications that are readable and re-
viewable by human designers and application experts
as well as analyzable by automated tools.

Our first language, RSML (Requirements State Ma-
chine Language), was designed while specifying the
system requirements for TCAS II, an airborne aircraft
collision avoidance system, for the FAA [LHHRY4].
Using the lessons learned from this experience and
others, we are designing a toolkit called SpecTRM
(Specification Tools and Requirements Methodology)
that includes a requirements specification language
SpecTRM-RL. Underneath SpecTRM-RL there is a
formal state machine model called RSM [JLHMO91]
upon which we have defined a set of correctness and
completeness design criteria for safety-critical process-
control system specifications.

One of our goals for SpecTRM-RL is to incorporate
features to assist in designing less error-prone human-
computer interactions and interfaces and in detect-
ing potential communication problems, such as mode
confusion. Although the notation has changed from
RSML, the system behavior is still represented using
hierarchical and orthogonal state machines. Because
the majority of the errors and difficulty in reviewing
our TCAS II model stemmed from the use of internal,
broadcast events, we have eliminated this feature. We
have also included features to assist in finding common
dangerous omissions and errors in process-control re-
quirements specifications. The language design is not
quite complete, but Figure 2 shows part of an exam-
ple specification for a NASA robot built to service tiles
on the Space Shuttle. The software requirements are
taken from a master’s level project at the CMU Soft-
ware Engineering Institute for part of a robot that
was being designed and constructed in the Robotics
Department [MMR92]. The system component used
as the example in this paper is called MAPS (Mobility
and Positioning Software).

Because our specifications are blackbox, they must
describe the required behavior of the component (in
this case MAPS) in terms only of inputs, outputs, the
relationship between these, and a model of the con-
trolled system. The specifications do not include any
information about the implementation or internal de-
sign of the component, simply the input to output
function it computes specified in terms of operating
modes, an internal model of the controlled system,
and an internal model of the interfaces with its super-
visor(s) and the controlled process(es).

As with many complex control systems, this robot
has multiple controllers and multiple levels of control.

MAPS is a a mid-level controller responsible for is-
suing movement commands to the motor controller,
which controls the mobile base of the robot (see Fig-
ure 3).

MAPS in turn can be controlled either by a hu-
man operator or by an onboard computer called the
planner. The operator controls robot movement and
positioning using a hand-held joystick. The planner
can also control robot movement but does so by pro-
viding MAPS with a specification of the desired des-
tination and route. Thus there are two supervisory
modes: joystick and planner (see Figure 2). Either the
human controller or the planner may assume control
at any time, but the human controller is responsible
for supervising the behavior of the robot at all times
to prevent accidents, even when it is under planner
control. Because of the distributed control structure,
multiple possibilities for mode confusion exist.

The supervisory interface consists of the controls
by which a supervisor directs the control component
(in this case MAPS) and the displays by which the
component relays information back to the supervisor.
(Note that displays are not limited to visual displays;
they can also include aural and other types of com-
munication.) The operator can control MAPS using a
joystick with two buttons and a keyboard, as shown in
Figure 2. MAPS provides information to the operator
via a graphical user interface. The MAPS behavioral
requirements use only information about the content
of the interface, not the specific layouts or design of the
controls and displays (which is specified elsewhere).
The communication interface with the planner is spec-
ified similarly.

In addition to the supervisory interface, there is
an interface with the controlled system (other robot
components), which includes the inputs and outputs
between MAPS and the various sensors and actua-
tors. These interface models are simply the view that
MAPS has of the interfaces—the real interface(s) may
contain different information due to various types of
incorrect design or failures. By separating the as-
sumed interface and the real interface, we are able
to model and analyze the effects of various types of
errors and failures.

The MAPS operational modes are:

e ENABLED or DISABLED: MAPS operation is en-
abled only if the safety circuit has signalled that
the robot is in a safe state, the operator has de-
pressed the deadman switch, and the robot’s ma-
nipulator arm is stowed.

e OFF or OPERATIONAL: MAPS may be turned off
or it may be operational.

SUPERVISORY
MODES

CONTROLS

DISPLAYS

PLANNER
INTERFACE

ROBOT
INTERFACE

MAPS OPERATING
MODES

ROBOT OPERATING
MODES

ROBOT MODEL

MAPS

Joystick Planner

Joystick Keyboard Button 1 Button 2
GUI
Route Destination Position
Movement Values
N\
Enabled Disabled Off Operational
| | | | |
Moving Stopped | | Unknown ‘ In work area ‘ ‘ Between work areas ‘ ‘ Unknown ‘

Stabilizer Legs Motor Controller

Manipulator Arm

MOTOR OPERATING MODES

Safety Circuit

Unsafe Unk

Position

Velocity

Motor Model

Figure 2: A partial specification of MAPS

OPERATOR

| PLANNER
I .
GUI ' JOYSTICK (High-level
| Controller)
I
MAPS
| | | |
I I I I
MOTOR ' STIFF ! SCANNER ' SAFETY !
! ! ! ! MANIPULATOR
CONTROL | LEGS | | CIRCUIT |
I I I I
I I I I
I I I I
I I I I

Figure 3: A high-level view of MAPS

The MAPS operational modes are relatively simple;
a typical flight management component has a large
number of such modes, leading to more potential for
mode confusion.

The controlled system (in this case the robot) is
described (within the MAPS model) in terms of its
operating modes and a model of its relevant states.
The robot controlled by MAPS is either MOVING or
STOPPED (performing inspection and maintenance) or
its operating mode is UNKNOWN. MAPS only controls
motion; the servicing of the tiles is controlled by the
planner. The robot is also either IN-A-WORK-AREA,
BETWEEN-WORK-AREAS, or its location is UNKNOWN.
The commands that MAPS issues will depend on these
operating modes.

The last section of the MAPS high-level specifica-
tion is the internal model of the state of the robot.
Note that the interface and robot models are simply
the internal models that MAPS has of the assumed
state of the interface controls and displays and the as-
sumed state of the robot, not their actual, physical
state. The internal model may not be consistent with
the real interface and robot states due to various types
of errors and failures. For MAPS, the physical com-
ponents of the robot that need to be modeled in order
to specify the control algorithm are the stabilizer legs,
the safety circuit, the manipulator arm, and the motor
controller. Hierarchical control is common in complex
systems: In this case, MAPS provides commands to
the motor controller, which itself has operating modes
and a state model.

The language enforces certain constraints to pre-

vent design features that are known to lead to acci-
dents. For example, in SpecTRM-RL, all components
of the controlled system model (e.g., the robot model)
must have an UNKNOWN state, which is the default for
startup and for transitions from any type of temporary
or partial shutdown to normal processing. The con-
trolled system can usually continue to change state
when the computer is shut down, and the software
model of the process must be updated at startup or
restart to reflect the actual process state. Many ac-
cidents have occurred in systems where the software
assumed the status of the process had not changed
since the computer was last operational and issued
commands based on this erroneous information.

As with all state-machine models, transitions are
governed by external events and the current state of
the modeled system. In SpecTRM-RL, the conditions
under which transitions are taken are specified sep-
arately from the graphical depiction of the state ma-
chine. We have found that the behavior of real systems
is too complex to write on a line between two boxes.
Instead we use a form of logic table we call AND/OR
tables. Figure 4 shows an example specification of a
transition.

Once a blackbox model of the required system be-
havior has been built, this model can be evaluated as
to whether it satisfies design criteria that are known
to minimize errors and accidents.

Design Criteria and Analysis

Jaffe [JLHMO1] originally identified 26 complete-
ness criteria for requirements specifications, which we
have now extended to close to 50 criteria [Lev95].

Planner | — | Joystick

Condition:
A ENTERED Enabled
‘N | Operator Selects Joystick Mode
D | Safety Circuit IN-STATE Safe
Joystick IN-STATE Neutral
References:

Figure 4: An example of a transition definition in SpecTRM-RL. The supervisory mode transitions from PLANNER
to JOoysTICK if the enabled state is entered or if the following three conditions are true: the operator selects
JOYSTICK mode, the safety-circuit is in state SAFE, and the joystick is in the NEUTRAL position.

These criteria include a mixture of absolute criteria
as well as heuristics for finding flaws that frequently
lead to accidents. Many of these are related to human-
computer interaction such as providing appropriate
feedback during graceful degradation and completely
specifying preemption logic when multi-step operator
inputs can be interrupted before they are complete.

A few of the Jaffe criteria were derived from mathe-
matical completeness aspects of the underlying formal
RSM model, but most resulted from the experience
Jaffe had in building such systems over a large num-
ber of years. These lessons learned were used to define
design criteria for the formal RSM model. In attempt-
ing to extend the criteria (design constraints) to cover
mode-confusion errors, we have taken the same ap-
proach.

Using the results of Sarter and Woods’ studies of
A-320 accidents and incidents along with other reports
of mode-related error and building on the five types
of mode-confusion design features identified by De-
gani, we have identified approximately fifteen design
features of blackbox automation behavior not in our
original Jaffe criteria that can lead to operator mode
confusion or mode awareness errors. The work is in
the preliminary stages, and the list will undoubtedly
change as we investigate further. In this section, we
illustrate the approach by describing a few items on
the preliminary list and demonstrate their application
to MAPS (where applicable).

Applying our criteria to a complex control system
will almost surely identify a large number of behav-
iors that could lead to mode confusion. Getting rid
of all such behaviors would most likely result in an
overly simple control system that does not satisfy

many of its goals. Instead, this information should
be used to eliminate accidental complexity (i.e., the
same functionality can be achieved but in a less error-
inducing manner), to provide information for safety
tradeoff analyses (perhaps by applying hazard analy-
sis to the identified behaviors), and to design inter-
faces, operational procedures, and operator training
programs. For example, accidents most often occur
during transitions between normal and non-normal
operating modes or while operating in non-normal
modes. Therefore, the non-normal mode transitions
should be identified and have more stringent design
constraints applied to them.

The rest of the paper describes six of our categories
of potential design flaws: interface interpretation er-
rors, inconsistent behavior, indirect mode changes, op-
erator authority limits, unintended side effects, and
lack of appropriate feedback. Additional criteria can
be found in [Lev95] and others will be described in
future papers.

Interface Interpretation Errors

Interface mode errors are the classic form of mode con-
fusion error: the computer interprets user-entered val-
ues differently than intended or it maps multiple con-
ditions onto the same output depending on the active
controller operational mode and the operator inter-
prets the interface erroneously. The latter is Degani’s
two plant state, one display flaw.

A common example of an input interface interpre-
tation error occurs with many word processors where
the user may think they are in insert mode but instead
are in command mode and their input is interpreted

differently than they intended.

An example of an output interface mode problem
was identified by Cook et.al. in a medical operat-
ing room device with two operating modes: warmup
and normal [CPWMO1]. The device starts in warmup
mode when turned on and changes from normal mode
to warmup mode whenever either of two particular
settings are adjusted by the operator. The meaning of
alarm messages and the effect of controls are different
in these two modes, but neither the current device op-
erating mode nor a change in mode are indicated to the
operator. In addition, four distinct alarm-triggering
conditions are mapped onto two alarm messages so
that the same message has different meanings depend-
ing on the operating mode. In order to understand
what internal condition triggered the message, the op-
erator must infer which malfunction is being indicated
by the alarm.

A more complex example occurs in a proposed A-
320 accident scenario where the crew directed the au-
tomated system to fly in the TRACK /FLIGHT PATH AN-
GLE mode, which is a combined mode related to both
lateral (TRACK) and vertical (FLIGHT PATH ANGLE)
navigation:

When they were given radar vectors by the
air traffic controller, they may have switched
from the TRACK to the HDG SEL mode to
be able to enter the heading requested by
the controller. However, pushing the button
to change the lateral mode also automati-
cally changes the vertical mode from FLIGHT
PATH ANGLE to VERTICAL SPEED—the mode
switch button affects both lateral and verti-
cal navigation. When the pilots subsequently
entered “33” to select the desired flight path
angle of 3.3 degrees, the automation inter-
preted their input as a desired vertical speed
of 3300 ft. This was not intended by the pi-
lots who were not aware of the active “inter-
face mode” and failed to detect the problem.
As a consequence of the too steep descent,
the airplane crashed into a mountain [SW95].

Several design constraints can assist in reducing in-
terface interpretation errors. The first is that any
mode used to control interpretation of the supervi-
sory interface should be annunciated to the operator
(that is, it should be part of the displays interface in
our modeling language). More generally, the current
operating mode of the automation should be annun-
ciated (should be in the displays interface) as well as
being part of the operating modes. In addition, any
change of operating mode should trigger a change in

the current operating mode reflected in the interface
(and thus displayed to the operator), i.e., the annunci-
ated mode must be consistent with the internal mode.
Consistency between displayed and current mode is, of
course, an obvious design constraint and a violation al-
most always signals an error in the requirements spec-
ification. The first constraint should hold for almost
all systems as well.

Degani notes a third type of interface confusion er-
ror that results from mapping a single input control ac-
tion to multiple internal mode changes, depending on
the order of the control actions. He calls this circular
mode transitions. For example, pushing a button on a
device with a small input interface (e.g., a watch with
one or two buttons) will often cycle through the possi-
ble modes, going to the next mode with the next but-
ton push. A possible design constraint here is that if a
control input is used to trigger a mode transition, then
it must be associated with only one mode change, that
is, the mapping from control inputs to mode changes
is one-to-one (a mathematical function). Note that
it is unlikely that one would want to require that the
function be bijective, because that would eliminate the
possibility of all indirect mode changes. For some sim-
ple devices, even the constraint that the function be
injective (one-to-one) may be impossible to enforce,
and feedback about the current mode is the only pos-
sible solution to the problem.

Another design constraint related to these types of
interface interpretation errors is that interpretation of
the supervisory interface should not be conditioned on
modes (an example is the accident related to the inter-
pretation of “33” described earlier). This constraint
is much stronger than the first three and may not al-
ways be feasible or desirable to enforce. However, our
analysis tools will highlight these transitions to the
designer /analyst so that appropriate scrutiny can be
applied to that part of the design. Degani’s circular
mode transition is a subcase of this design constraint.

In the MAPS design, while MAPS movement is be-
ing supervised by the automated planner, the opera-
tor is removed from process control and acts simply
as a safety monitor. There are six conditions under
which MAPS will stop the movement of the robot:
(1) the robot reaches the work area, (2) MAPS is dis-
abled, (3) MAPS enters planner mode, (4) MAPS en-
ters joystick mode, (5) the safety circuit detects an
unsafe condition, or (5) the deadman is released (Fig-
ure 5. Three of these actions involves the operator
directly—the selection of the joystick mode, selection
of the planner mode, and the release of the deadman
switch—and the operator will know why the robot

was stopped. In a fourth case, the safety circuit sig-
nals an unsafe state and an error message is generated
and sent to the operator interface to indicate why the
robot stopped. But the operator cannot differentiate
between the other two reasons, and MAPS can enter
the DISABLED mode without indicating the reason to
the operator. A straightforward solution is simply to
provide additional status messages to the display.

Inconsistent Behavior

A more complex type of mode-confusion error, which
is more often related to errors of omission than the
interface errors mentioned above, is triggered by in-
consistent behavior of the automation. Carroll and
Olson define a consistent design as one where a simi-
lar task or goal is associated with similar or identical
actions [CO88]. Consistent behavior makes it easier
for the operator to learn how a system works, to build
an appropriate mental model of the automation, and
to anticipate system behavior.

An example of inconsistency was detected in an
A-320 simulator study involving a go-around below
100 feet above ground level. Sarter and Woods found
that pilots failed to anticipate and realize that the
autothrust system did not arm when they selected
TOGA (take off/go around) power under these condi-
tions because it did so under all other circumstances
where TOGA power is applied [SW95]. Another ex-
ample of inconsistent automation behavior, which was
implicated in an A-320 accident, involves a protection
function that is provided in all automation configu-
rations except the altitude acquisition mode in which
the autopilot was operating.

Consistency is particularly important in high-
tempo, highly dynamic phases of flight where pilots
may have to rely on their automatic systems to work as
expected without constant monitoring. Even in more
low pressure situations, consistency (or predictability)
is important in light of the evidence from pilot surveys
that their normal monitoring behavior may change on
advanced flight decks [SW95].

Pilots on conventional aircraft use a highly trained
instrument scanning pattern of recurrently sampling
a given set of basic flight parameters. In contrast,
some A-320 pilots explained that they no longer have
a scan anymore but allocate their attention within and
across cockpit displays on the basis of expected behav-
ior. Their monitoring objective is to verify expected
automation states and behaviors. If the automation
behavior is not consistent, mode errors of omission
may occur where the pilot fails to intervene when nec-
essary:

Note the fundamental difference between
these two monitoring strategies. In the case
of a standard pattern, the pilot’s attention
allocation is externally guided while moni-
toring on advanced aircraft requires mental
effort on the part of the pilot who has to
determine on his own where to look next un-
der varying task circumstances. Based on his
expectations, the pilot only monitors part of
all available data. Parameters that are not
expected to change may be neglected for a
long time. A standard instrument scan, on
the other hand, serves to ensure that all rel-
evant parameters concerning airplane behav-
ior will be monitored at certain time intervals
to make sure that no unexpected and maybe
undesirable changes occur [SW95].

In our previous design criteria and analysis tools,
we include a check for nondeterminism in the software
behavior, that is, we check to determine whether more
than one transition can be taken out of a state under
the same conditions [HL96]. But consistency in this
case requires more than simple deterministic behavior
on the part of the automation. If the operator provides
the same inputs but different outputs (behaviors) re-
sult for some reason other than what the operator has
done (or even may know about), then the behavior is
inconsistent from the operator viewpoint even though
it is not mathematically inconsistent. More formally,
inconsistent behavior results from two state transition
functions of the form:

t1:8Xi,Xxx — {sx O}

ta:s xipxy— {sx0}'

where s € X is a state, i, is an operator input, O is an
output, and x and y can be states, reference values,
supervisory interface values, etc.

We have identified several different design con-
straints related to various types of inconsistency. How-
ever, there may be reasons why having such inconsis-
tencies is necessary or reasonable. Again, our tools
can point out such potential problems to the de-
signer /analyst who must make the final decision about
whether the automation should be changed. Because
consistency may be most important during critical sit-
uations or when the behavior is related to a safety
design constraint, our hazard analysis tools may be
able to assist with these decisions and our new intent
specifications [Lev97] (a form of Rasmussen’s means-
ends hierarchy adapted for software) can be used to

MAPS OPERATING
MODES

Enabled Disabled

Enabled | — | Disabled

Condition:

Supervisory-Mode ENTERED Planner

Supervisory-Mode ENTERED Joystick

Dead-Man-Switch-Open()

Oz

Safety-Circuit IN-STATE Unsafe

Robot-Location IN Robot- Between- Work-Area

Maps-Operating-Modes IN-MODE Off

References:

Figure 5: Example of the conditions under which robot movement is stopped

trace such behavior back to its original system goals
and safety constraints to identify any reasons for the
specified inconsistent behavior.

Indirect Mode Changes

Indirect mode changes occur when the automation
changes mode without an explicit instruction by the
operator. Such transitions may be triggered on condi-
tions in the controller (such as preprogrammed enve-
lope protection) or sensor input about the state of the
controlled system (such as achievement of a prepro-
grammed target or an armed state with a preselected
mode transition).

Like many of the other mode-confusion problems
noted in this paper, indirect mode transitions create
the potential for mode errors of omission and of inad-
vertent activation of modes by the operator. Again,
the problems are related to changes in scanning meth-
ods and difficulty in forming expectations of uncom-
manded or externally triggered behavior.

Behavioral expectations are formed based on the
operators’ knowledge of input to the automation and
on his or her mental model of the automation’s de-
signed behavior. Gaps or misconceptions in the op-
erator’s mental model may interfere with predicting
and tracking indirect mode transitions or with under-
standing the interactions between different modes.

An example of an accident that has been attributed
to an indirect mode change occurred while an A-320

was landing in Bangalore. In this case, the pilot se-
lection of a lower altitude while the automation was
in the ALTITUDE ACQUISITION mode resulted in the
activation of the OPEN DESCENT mode. It has been
speculated that the pilots did not notice the mode an-
nunciation because the indirect mode change occurred
during approach when the pilots were busy and they
were not expecting the change [SW95]. Another exam-
ple of such an indirect mode change in the A-320 au-
tomation involves an automatic mode transition trig-
gered when the airspeed exceeds a predefined limit.
For example, if the pilot selects a very high vertical
speed that results in the airspeed decreasing below
a particular limit, the automation will change to the
OPEN CLIMB mode, which allows the airplane to regain
speed. As a final example, Palmer has described an ex-
ample of a common indirect mode transition problem
called a “kill-the-capture bust” that has been noted
in hundreds of ASRS reports [Pal96]. Leveson and
Palmer have modeled an example of this problem in
SpecTRM-RL and shown how it could be detected and
fixed [LP97].

Another example of indirect mode change can be
found in the MAPS specification. In this scenario,
MAPS is in joystick supervisory mode and it receives
a message from the planner that the robot has reached
the work area. This message will cause MAPS to tran-
sition from ENABLED to DISABLED mode (see Figure 5)
without any explicit instruction from the human oper-

ator and without informing the operator of the mode
change. If the analyst decides that this is a poten-
tially dangerous scenario, the problem can be solved
by augmenting the transition ANY — IN-WORK-AREA
as seen in Figure 6.

In general, there are four ways to trigger a mode
change:

1. Operator explicitly selects a new mode.

2. Operator enters data (such as a target altitude)
or a command that leads to a mode change:

(a) Under all conditions.

b) When the automation is in a articular
p
state.

(c) When the controlled system model or envi-
ronment is in a particular state.

3. Operator does not do anything but the transition
is triggered by conditions in the controlled sys-
tem.

4. Operator selects a mode change but the automa-
tion does something else, either because of the
state of the automation and/or the state of the
controlled system.

The formal definitions are obvious and are omitted
here. Degani also notes these types of indirect mode
changes, but he gives them different names and clas-
sifies them differently than we do.

Operator errors associated with indirect mode
changes are a phenomenon found primarily in ad-
vanced automation. Early automation tended to in-
volve only a small number of independent modes.
Most functions were associated with only one over-
all mode setting. We probably do not want to go back
to automation that will change mode only in response
to direct operator input, but design constraints are
desirable that limit such indirect transitions and elim-
inate it when possible. Our analysis methods highlight
mode changes that are independent of direct and im-
mediate instructions from human supervisors, and our
tools may also be able to assist the analyst in identi-
fying the most hazardous indirect mode changes.

Operator Authority Limits

Interlocks and lockouts are often used to ensure safety.
Interlocks are commonly used to prevent hazardous
system states by enforcing correct sequencing of events
or actions or to isolate two events in time. A lockout
makes it impossible or difficult to enter a hazardous
state.

Authority limiting is a type of lockout or interlock
that prevents actions that could cause the system to
enter a hazardous state. Such authority limitations
must be carefully analyzed to make sure they do not
prohibit maneuvers that may be needed in extreme
situations. Recent events have involved pilots “fight-
ing” with the automation over control of the aircraft
after observing unexpected or undesirable aircraft or
automation behavior.

Various types of authority limits are used to pre-
vent operator error or to provide protection when the
operator cannot or does not take proper action. For
example, automation on advanced aircraft often has
the ability to detect and prevent or recover from pre-
defined unsafe aircraft configurations such as a stall.
Once a hazardous state is detected, the automation
has the power to override or limit pilot input.

Some accidents and incidents in highly automated
aircraft have involved pilots not being able to over-
come the protection limits or the pilots not being
aware that the protection functions were in force. For
example, the pilots during one A-320 approach dis-
connected the autopilot while leaving the flight direc-
tors and the autothrust system engaged. Under these
conditions, the automation provides automatic speed
protection by preventing the aircraft from exceeding
upper and lower airspeed limits:

At some point during the approach, after
flaps 20 had been selected, the aircraft ex-
ceeded the upper airspeed limit for that con-
figuration by 2 kts. As a consequence, the
automation intervened by pitching the air-
plane up to reduce airspeed back to 195
kts. The pilots, who were not aware that
the automatic speed protection was active,
observed the uncommanded automation be-
havior. Concerned about the unexpected
reduction in airspeed at this critical phase
of flight, they rapidly increased thrust to
counterbalance the automation. As a conse-
quence of this sudden burst of power, the air-
plane pitched up to about 50 degrees, entered
a sharp left bank, and went into a dive. The
pilots eventually disengaged the autothrust
system and its associated protection function
and regained control of the aircraft [SW95].

Various design criteria are related to authority lim-
its. For example, information about any modes or
states where the operator input is ignored or limited
must be provided in the supervisory interface. In ad-
dition, the analysis tools can examine the specified
software behavior and detect exceptions to following

ANY | — | In-Work-Area

Condition:

Recewe Planner-At-Work-Area Message

Oz

Supervisory-Mode IN-MODE Planner

References:

Figure 6: Modified transition to the IN-WORK-AREA mode.

operator requests. Again, the information in the in-
tent specification is useful in determining whether such
design features are intentional and whether they are
related to identified hazards.

Unintended Side Effects

Mode ambiguity can also arise when an action in-
tended to have one particular effect has an additional
effect, i.e. an unintended side effect. An example oc-
curred in the Sarter and Woods A-320 simulator study
where it was discovered that pilots were not aware that
entering a runway change after entering data for the
assigned approach results in the deletion of all pre-
viously entered altitude and speed constraints even
though they may still apply.

This type of design flaw differs from indirect mode
changes in that the unintended change is not in the
mode but in some other type of information, such as
reference values. Degani describes this type of prob-
lem in terms of a mode/reference value interaction,
but more generally the same problem occurs when
any operator entry (for example, an input value rather
than a mode change) has unintended side effects.

Unintended side effects can contribute to mode con-
fusion, and often need to be evaluated by the design
team. If a decision is made to keep the behavior,
proper feedback constraints may be required to pre-
vent the type of confusion that seems to result.

Lack of Appropriate Feedback

Many of the original Jaffe criteria or the newly defined
criteria mentioned above are related to providing ap-
propriate feedback (e.g., providing feedback about the
status of interlocks and lockouts and providing grace-
ful degradation). In general, operators need to have
the information necessary to understand the mode

transitions taken, i.e., the conditions that trigger tran-
sitions. Operators need not only to track the current
active modes and to understand their implications,
but they also need to keep track of other automa-
tion and system status information that may result
in the indirect activation of modes. The difference
between these design constraints and those requiring
mode transition annunciations described in the section
on interface interpretation errors is that in this case
the automated system must not simply notify the op-
erator that a mode change has already occurred (an-
nunciate the present mode), but it must provide the
information necessary for the operator to predict or
anticipate mode changes.

Incomplete feedback is often implicated in accident
scenarios. For example, in the A-320 Bangalore acci-
dent, the pilot flying (PF) had disengaged his flight
director during the approach and was assuming that
the pilot-not-flying (PNF) would do the same thing
[SW95]. The result would have been a mode configu-
ration in which airspeed is automatically controlled by
the autothrottle (the SPEED mode), which is the rec-
ommended procedure for the approach phase. How-
ever, the PNF never turned off his flight director, and
the OPEN DESCENT mode became active when a lower
altitude was selected. This indirect mode change (ex-
plained above) led to the hazardous state and eventu-
ally the accident. But a complicating factor was that
each pilot only received an indication of the status of
his own flight director and not all the information nec-
essary to determine whether the desired mode would
be engaged. The lack of feedback or knowledge of the
complete system state contributed to the pilots not
detecting the unsafe state in time to reverse it.

Where automation has the ability to take au-
tonomous actions (i.e., those not directly commanded
by the operator), information interchange becomes

crucial in coordinating activities and in detecting mis-
matches between expected and actual system behav-
ior. A behavioral description of the software, as pro-
vided in SpecTRM-RL, is useful in determining ex-
actly what information the operator needs to monitor
and control the automated system.

The problems of providing salient feedback are, of
course, much more complicated than simply identify-
ing the information that needs to be conveyed, but
identification is an important step in the process. In
our original Jaffe criteria, we identified design con-
straints on basic feedback to the computer about the
state of the controlled process and some types of oper-
ator feedback requirements, but these need to be aug-
mented with a complete set of requirements on the
feedback to the operator or automation supervisor.
An example constraint is that operators must have
access to all information on critical mode transitions
in order to predict and monitor those transitions.

One important aspect of using feedback for error
detection is the need for independent information. Er-
rors can only be found through discrepancies in redun-
dant information. One way to detect that automated
equipment is not operating correctly is for operators to
detect a discrepancy between the automation behav-
ior and their mental model of how they think the au-
tomation should work. However, operators often have
limited understanding of complex automation behav-
ior or are afraid to step in.

In addition, often an error is only detectable using
some information about the state of the environment
or the controlled process. However, if the erroneous
behavior is occurring because the automation is con-
fused about the environment or system state, then it
obviously cannot provide this information to the oper-
ator. That is, the automation may show only consis-
tent information because it does not know there is an
error in its system model. Therefore, it is not surpris-
ing that Sarter and Woods found that pilots mostly
found errors through information given in nonauto-
mated displays and instruments (i.e., based on obser-
vations between desired and actual aircraft behavior,
not on indications of the nominal status of the au-
tomated systems). The same phenomenon is true for
other types of systems. The problem is complicated by
the fact that operators cannot always see what the au-
tomation is doing and can only tell by directly observ-
ing the reaction of the system or by getting feedback
from some independent display. Providing indepen-
dent feedback and providing more feedback on what
the automation is doing can alleviate these problems.

Conclusions and Future Work

We have outlined an approach to reducing potential
mode confusion errors. The software requirements are
modeled using a hierarchical state machine language
and then analyzed (manually or with automated as-
sistance) to identify violations of a set of design con-
straints associated with mode-confusion errors. The
approach was illustrated with a model of the software
controlling a NASA robot and a description of a few
of our currently identified software design constraints.

This work is still in the preliminary stages. We
need to complete and partially validate our set of con-
straints by examining more accidents and incidents to
determine whether the current set would identify the
factors involved. Once we are fairly confident about
our list, we plan to validate the feasibility of applying
the constraints to real specifications by building a pro-
totype analysis tool and applying it to a model of an
advanced aircraft FMS (probably not the A-320, from
which many of the constraints were originally derived).
A possible step after that would be to use incident re-
ports from one or more of the reporting systems (e.g,
ASRS, CHIRP, or EUCARE) for that aircraft to see
if our predictions are accurate.

References

[CO88] Carroll, J.M. and Olson, J.R. Mental models
in human—computer interaction. in M. He-
lander (Ed.) Handbook of Human—Computer
Interaction, Elsevier Science Publishers, pp.
4565, 1988.

[CPWM91] Cook, R.I., Potter, S.S., Woods, D.D. and
McDonald, J.M. Evaluating the human en-
gineering of microprocessor-controlled oper-
ating room devices. Journal of Clinical Mon-
itoring, 7, pp. 217-226, 1991.

[Deg96] Degani, A. Modeling Human-Machine Sys-
tems: On Modes, Error, and Patterns of In-
teraction. Ph. D. thesis, Georgia Institute of
Technology, 1996.

[Hans97] Hansman, John. Personal communication.

[HL96] Heimdahl, M. P. E. and N. Leveson. Com-
pleteness and consistency analysis of state-
based requirements. Transactions on Soft-

ware Engineering, June 1996.

[JLHM91] Jaffe, M.S, Leveson, N.G., Heimdahl,
M.P.E., and Melhart, B.E.. Software re-
quirements analysis for real-time process-
control systems. IEEE Transations on Soft-

[JL89]

[Lev95]

[Lev97]

ware Engineering, SE-17(3):241-258, March
1991.

Jaffe, M.S. and Leveson, N.G. Impli-
cations of the man-machine interface for
software requirements completeness in real-
time, safety-critical software systems. Pro-
ceedings of IFAC/IFIP SAFECOMP 89,
Dec. 1989.

Leveson, N.G. Safeware: System Safety and
Computers. Addison-Wesley Publishing Co.,
1995.

Leveson, N.G.
preparation.

Intent Specifications. in

[LHHR94] Leveson, N. G., M. Heimdahl, H. Hildreth,

[LP97]

and J. Reese. Requirements specification for
process-control systems. IEEE Transactions
on Software Engineering, September 1994.

Leveson, N.G. and Palmer, E. Identifying
Indirect Mode Transitions: ‘Oops, it didn’t
arm’ as a case study. in preparation.

[MMR92] Madsen, M., Murphy, J.S., Rosso-Llopart,

M. MAPS Software Requirements Specifica-
tion. School of Computer Science, Carnegia
Mellon University, June 1992.

[MLRPS97] Modugno, F., N. Leveson, J. Reese,

[Pal96]

[Per84]

[Ras90]

[SW95]

K. Partridge, and S. Sandys. Integrated
safety analysis of requirements specifica-
tions. Third IEEE Interational Symposium
on Requirements Engineering, 1997.

Palmer, E. “oops, it didn’t arm” — a case
study of two automation surprises. NASA
Technical Report, 1996.

Perrow, C. Normal Accidents: Living with
High-Risk Technology. Basic Books, Inc.,
New York, 1984.

Rasmussen, J. Human error and the problem
of causality in analysis of accidents. In D.E.
Broadbent, J. Reason, and A. Baddeley, ed-
itors, Human Factors in Hazardous Situa-
tions, pages 1-12, Clarendon Press, Oxford,
1990.

Sarter, N. D. and D. Woods “How in the
world did I ever get into that mode?”: Mode
error and awareness in supervisory control.
Human Factors 37, 5-19.

[SW95]

[SW95]

Sarter, N. D. and D. Woods Strong, silent,
and out-of-the-loop. CSEL Report 95-TR-
01, Ohio State University, February 1995.

Sarter, N. D., Woods, D.D. and Billings,
C.E. Automation Surprises. in G. Sal-
vendy (Ed.) Handbook of Human Fac-
tors/Ergonomics, 2nd Edition, Wiley, New
York, in press.

