A REPLY TO THE CRITICISMS OF THE KNIGHT & LEVESON EXPERIMENT

John C. Knight Nang G. Leveson
University of Virginia Unwersity of California
Charlottesville, YA 22903 Irvine,CA 92717

1. Introduction

In July 1985, we presented a paper at the Fifteenth International Symposiwauleiolerant Computing [KNI85]
describing the results of axperiment that we performedamining an kpothesis about one aspectMersion
programming, i.e., the statistical independenceeo$ion &ilure. Alonger journal paper on that research appeared
in the IEEE Tansactions on Softave Engineering in January 1986 [KNI86].

Since our original paper appeared, some proponertsvefsion programming ke aiticized us and our papers,
making inaccurate statements about what we ltane and what we ke oncluded. V& havespolen and written
to them prvately attempting to xplain their misunderstandings about owrks Unfortunatelysubsequent papers
and public pronouncements by thesevidlials hae mntained the same misrepresentations.

We havenot previously responded publicly to this criticism because we feel that our papers stand up for ggmselv
and we did not ant to &n the flamesHowever, it has nav been nearly 5 years since ouonk first appeared in

print and, in our opinion, the attacks are getting more frequent, more outrageousttiadffom the truth.We

have cecided that it is nw necessary to respond publicly to ensure that those hearing these statements do not think
we are being silent because we agree with the things being said about us amatkouN@neof the papers
criticizing our periment hae gpeared in a refereed journal or been presented in a forum in which we could
respond. Thereforeye are using this forum.

Nearly all of the criticism of our ark has come from Professor AlgirdagiZienis of UCLA or his former students
John kelly, Michael lyu, and Mark Josephe reply to their criticism by quoting some of the erroneous statements
from their papers and addressing each of these statements ifTh&rmguotations from these papers are printed in
italics in this paper

For those who are uamiliar with the contreersy, we provide some backgroundAn N-version system attempts to
incorporate &ult tolerance into softare by &ecuting multiple \ersions of a program that \ea been prepared
independently Their outputs are collected angaenined by a decision function that chooses the output to be used
by the system.For example, if the outputs are not identicaittshould be, the decision function might choose the
majority value if there is one.

It has been suggested that the use of this technique may result in highly reliabégesodten if the softvare
versions hae ot been subjected tatensie testing. Br example, Aizienis states:

By combining softwar\ersions that have not been subjected to V&V [verification and validation] testing to
produce highly eliable multivesion softwae, we may be able to deease cost while ineasing eliability.
[AVI184]

The higher initial cost may be balanced by significant gaind) asidaster elease of trustworthy softwer
less ivestment and criticality in verification and validation, [AV189]

The primary agument for the attainment of ultra-high reliability using this techniquevén dpy Avizienis:

It is the fundamental conjec&Irof the NVP [N-¥rsion Pogramming] appoac that the independence of

T “Conjecture’is defined by Vébsters New World Dictionary to be‘an inference, theoryor prediction based on guessik”.

programming efiorts will assue a low probability that esidual softwag design faults will lead to an
erroneous decision by causing similar @g to occur at the same afsss]c[he&]-points in two or mae
versions... Theffectiveness of the NVP appich depends on the validity of this conje@ur [AVI85b]

Since the vesions ae witten independentlyit is hypothesized that tlgeare not likely to contain the same
errors, i.e, that erors in their results ae uncorrelated. [AVI85a]

As Avizienis notes, thisypothesis is important because thgrée to which it holds will determine the amount of
reliability improvement that is realizedEckhardt and Lee [ECK85] i@ shown that &en small probabilities of
correlated dilures, i.e., ddation from statistically independeraifures, cause a substantial reduction in potential
reliability improvement.

The phrases’low probability” and “not likely” used by Aizienis are not quantified, and his conjecture and
hypothesis are, therefore, not testalttowever, atistical independence, i.e., uncorrelataitlifes, is well defined,
implied by much of the discussion about the technique, and assumed by some practitioners [MABRES, Yn
order to test for statistical independence, we designedxandted an eperiment in which 27 ersions of a program
were prepared independently from the same requirements specification by graduate and segiaduaiter
students at tev universities. Thestudents tested the programs themesghiut each program &s subjected to an
acceptance procedure for theperiment consisting of 200 typical input@perational usage of the programasw
simulated by recuting them on one million inputs that were generated according to a realistic operational profile for
the application.Using a statisticalypothesis test, we concluded that the assumption of independemderesfdid
not hold for our programs and, therefore, that reliability imgmeent predictions using models based on this
assumption may be unrealistically optimistithis wasall that we concluded (see belp

The basic ayjument made by our critics is that if we had just used fardift methodology for producing the
programs, our resultsauld hare been diferent. for example, Aiizienis states:

It is our conjectue that a rigoous application of the design @afigm, as described in this paper would have
led to the elimination of most faults described in [KNI86] beferceptance of the pgrams. [AVI87,
AV 188]

It is easy to assert that changesxpeximental proceduresowld yield diferent results.Such conjectures, @ver,
need to be supported with scientific proof beforg tta be acceptedProfessor Aizienis and former students use
two aguments to support their conjectur&heir first agument is that, in theirxperiments, the did not get the
same results that we did:

An important conjecter o the design divesity apppad is that the independence of thevdlpment pcess

will minimize the pobability that softwae design faults will cause similar ers o occur Although early
experiments caused concern that this assumption may not hold [KNI86], additional empirical work has shown
that this assumption can hold if a ‘besaptice’ development paadigm is used [BIS85\VA87]. [KEL89]

These esults [of the UCLA/H »@eriment] ae dfferent fom peviously published esults by Knight and
Leveson. [AVI87, AVI88]

Their second gument is that the claimed féifence in results is accounted for by the significarferdihces
between theirxperiments and ours and the inadequacies of our aatdeelopment method:

[The Knight/Lereson and Scott, et al. studies] fail ®caynize that NVP is a rigous pocess of softwar
development. Thpapes do not document the rules of isolation, and the C[ommunication]&D[ocumentation]
protocol ... that ae indicators d NVP quality The \{specs of [KNI86] do not show the essential NVS [N-
Version Softwae] attributes. Itmust be concluded that the auth@e assessing their own ad hocogesses

for writing multiple pograms, ather than the NVP press as deloped at UCLA, and that their numerical
results uniquely ta the measwe o the quality of their casual pgramming pocess and their classom
programmes. Theclaims that the NVP press was irestigated a not supported by the documentation of
the softwae development pocess. [AVIB9]

In summarywe have evewed the V/UCI eperiment and foundeasons that may account for this outcome:
the small scale and limited disty potential of the xperiment, lak of MVS [Multi-\ersion Softwae]
softwae dewelopment disciplines, and appently inadequate testing and qmessing of MVS systems.
[AVI188]

Both of these guments are unfoundedVe examine each of these in turn.

2. Different Results

The first claim by our critics is that their results aréedént from ours.For the benefit of the readexe repeat the
conclusion we dre in our 1986 paper [KNI86]:

“ For the particular problem thatag programmed for thixperiment, we conclude that the assumption of
independence of errors that is fundamental to some analy$ésertion programmingloes not hold

Using a probabilistic model based on independence, our results indicate that the model has to be rejected
at the 99% confidencevd.

This was our only conclusion.

Table 1 shavs data from other ralant studies that he been conductedChen generated 16 programs, chose 4 of
these to consider furtheand added 3 programs written bthe authors’for a total of 7 programs written in PL/I
[CHET78]. Kelly used three diérent specifications, written in OBJ, PDL, and English, to generate 18 programs
which he &ecuted on 100 input cases [KEL83yIR4]. Kelly was also isolved in a team &rt headed by NSA
involving 4 unversities (UCSB, Yfginia, lllinois, and NCSU) in which 20 programs were generated from a single
specification [ECK89].We refer to this gperiment here as theA$A experiment. Aizienis, Lyu, and Schutz
generated 6 programs written in 6 languag&48#] from a single specificationWe refer to this gperiment as the
UCLA/H experiment.

Knight/Leveson Chen Kelly NASA UCLA/H
Number of \ersions. 27 7 18 20 6
Average no. of 1.6 notreported | noteported | noteported 1.8
faults per post- de-
velopment \ersion.
No. of simulated 1,000,000 32 100 921,000 1000
use input cases.
Average indvidual .0007 notreported .27 .006 notreported
failure rate.
Average 3-ersion .00004 .10 .20 .0002 not reported
failure rate report-
ed.
Statistically inde- no nottested notested no natested
pendent dilure be-
havior.

Table 1 - Data From Relent Experiments

Joseph mads the follaving claim:

Several experiments on NVP performed at UCLA/|84, A/187] have not disogered the high ates of failue
as reported in Knight/Leeson. [JOS88]

There are tw types of &ilure rates to which Joseph may be referring:viddial version filure rates and 3ersion
failure rates.Fallure rate is calculated by\dding the number ofdilures by the number of input caséss shavn in
the table, both the indidual and the 3-ersion &ilure rates are muchuer for our &periment than for gnof the
UCLA experiments for which the dataaw collected and published.

The comparison with the édly experiment may be uafr because his dataas not generated randomly and may
have been generated to check forfatifilt cases.However, a best, the rates are uncomparabléney certainly are
not better than ours.

Avizienis and lu do not reportdilure rates in anof the papers published by thefhey report only the number of
faults found. It is not possible to ypothesize dilure rates duringxecution from the number ofafilts remwed
during testing. However, it might be noted that theverage number ofaults per program that were detected in
simulated use of their programsasvgreater than ourdVithout collecting data oraflure rates, it is not possible to
draw any conclusions about thefettiveness oiN-version programming.

There hae been mawy statements that the UCLA/H study gotfdifent results than we didzor example:

Although early gperiments caused concern that this assumption may not hold [KNI86], additional empirical
work has shown that this assumption can hold if a ‘beattjme’ development paadigm is used [BIS85,
AVI87]. [KEL89]

The comparison of thesults in the V/UCI and UCLA/H studies thus shows majogdiementsAVI88]

From the published papers, we can find widence that the independence assumptians tested in the UCLA/H
study

The following statement mayxelain some of the confusion about the UCLA/H study results:

A major observation thatelates to the &ctiveness of MVS is that similar and time-coinciderdrsridue to
identical faults in two vesions) wee rare. (nly one identical pairx@sted in the 82 faultsemwed fom the

six vesions befae acceptance [in the UCLA/H studyPuring post-acceptance testing and inspection, five
faults wee uncovered by testing One pair aain was identical.Six moe faults wee dscovered by code
inspection, all unelated and dferent ... These esults ae dfferent fom pevously published esults by
Knight and Leeson. [AVI88]

The rel@ant factor is not whether thadilts are identical, i whether &ilures are coincidentWhen attempting to
provide fault tolerance throughoting, it is the intermediate results or outputs that are compared, neiuttee—+
looking at the dults in a program does not pide information about theaflure behwior of the ececuting program.
The UCLA/H results cannot be compared with ours because tvarresmalysis is not reported; independence is a
statistical property and must be tested statistically

In fact, faults do not need to be identical to produce statistically-dependent coineitigesst Mawy of the fults in

our programs that produced suctildres were seemingly unrelated on the awef sometimes occurring in totally
unrelated parts of the programghis puzzled us until we realized that the relationship is in the functions computed
by the paths tan for that input rather than inyaparticular ‘faulty” statements on that patin a paper to be
published in the February 1990 issue of IEEBnBEactions on Softwe Engineering, we describe tlailts in our
programs and prxade a model thatglains wty programs &il coincidentally due toaiults that are not identical.

Avizienis refers to our study and another one that got similar results [SCO87] and states:

These dbrts serve to illustite the pitfalls of pgmatue preoccupation with numericaksults. [AVI89]

Without looking at numerical results, one cannot do the necessary statistical analysis to determine whether the
independence ypothesis holds or determine what type of benefits can xpected from usingN-version
programming. Itis surprising that Professomvizienis beliees that it is too early to look at numerical resultg b

from his statements does not seem to belirat it is too early to use this technique in safety-critical applications
such as commercial aircraft\/#87, AVI88, AVI89, etc.].

Avizienis males the follaving truly outrageous statement when describing arkw

The use of the ternfekperiment’is misleading since it implies epeatability of the xperimental pocedue
that is talen for ganted in science [AVI89]

Our &perimental procedure is completely repeatabMe published precisely what we did and the requirements
specification we usedAny researcher could kia repeated ourgeriment. Infact, the result has been confirmed.
Using the M\SA programs, which were deeloped using a method closely related to that used in the UCLA/H
study a goup (including DrKelly) led by Dr David Eckhardt of M\SAs Langley Research Center collected the
same type of data and came to the same conclusion that W& @ik89].

In summary the claims that our critics did not get our results are unsupported and appear to be based more on
wishful thinking than scientific analysis.

3. MethodologicalComparisons

The second set of criticisms of owperiment hae o do with the softvare deelopment method that we useor
example, Joseph states:

It would be a mistak o accept the Knight and Meson work at face value without considering its many
weaknesses. i$ proposed that the study did not use NVP due to inadequaciesgarmsystem delopment
methods. [JOS88]

and Avizienis states:

The claims that the NVP qress was irestigated a not supported by the documentation of the softwar
development gcess in [Knight/Leeson]. [AVI89]

We wsed the methodology used by Chen [CHE78] aalilyKEL83, AVI84] and folloved eactly what vas stated
by Avizienis in [AVI77, AVI85b]. Accordingto these definitiong\-version programming means writifjversions
independently This is what we did.To daim that we did not usd-version programming is ridiculous.

The only significant dference between theession deelopment methodology we used and that used in the
UCLA/H experiment (which occurred 3 years after ours) is that our methodology is nelgettikresult in design
diversity. The current‘paradigm’ promoted by Aizienis and ku [AVI88] involves werspecifying the design and
thus limiting potential diersity.

The specific criticisms in the area of methodology thatheen leeled at us hae o do with quality of \ersions,
testing, wting procedure, dersity and scale, specification, communication and isolation of programmers, and
programming dbrt involved. W examine each in turn.

3.1. Quality of Versions

Avizienis and Joseph state:

[The Knight and Leeson] numerical esults uniquely tak the measw o the quality of their casual
programming pocess. [AVI89]

NVP does not mean low quality sEms. In[KNI86], no softwae development standais or methods wer
required of the ppgrammes. Thisis an essentialequirrment for all deelopment andaises doubts about the
quality of the gnesated vesions. [JOS88]

There is a misunderstanding here about what we said in our. gapsrof all, we did not say that no sotive
development methods were usewe sid that no one particular methodsimposedon all the programmersAll
of our participants were graduate students in softvengineering or related fields or were ugdetuates taking a
seniorlevel, advanced softwre engineering course.

We ae particularly concerned about the claim that the programs\argulality despite thevadence to the contrary
in our papers.Six of the twenty-seen programs did notédil on ary of the million input casesThe arerage &ilure
probability was 0.0007 and theosst was 0.009.This should be compared to the published UCIxfpeziments
[CHE78], [KEL83], and [A/I84], which all had much poorer qualityersions than we did in ouxgeriment. No
failure probabilities hae been published for the UCLA/Hxperiment loit the reported number cdudlts per ersion
is comparable with ours.

Our reliability is of the same order as that acédkein industrial settings and is better than that of the studies by our
critics. Ve can see no possible basis for aguanent that ourersions are b quality.

3.2. Testing

Avizienis, Lyu, and Joseph state:

In summarywe have eviewed the V/UCI gperiment and foundeasons that may account for this outcome: ...
appaently inadequate testing andgeessing of MVS veions. [AVI88]

Acceptance tests for daecersion wee too small (i.e only 200 test cases)lso, opeational testing used
randomly g¢nemted test casedror critical and life-critical computer systems this is completely unacceptable
[JOS88]

This has been one of the frequent criticisms aboutxparament. Theritics have refused to beliee aur statements
(both public and pviate, oral and written) that thieare misinformed. The programs were tested by their authors
before thg were submitted to the acceptance procedlifee acceptance procedurasvan gperimental artéict, not
part of ary software deelopment processThe purpose as merely to ensure that thersions were all suitable for
the experiment before the programmers becamevailzdole. We purposely did not ant to put too maninput cases
into the acceptance procedure in order not to bias xperienent by finding and eliminatinguilts outside the
experimental domain Different inputs were used in the acceptance procedure for essibrvto ®soid filtering
common &ults. Asit turned out, ery fav of the programsdiled the acceptance test (and ifytlied, it was usually
only one &ult involved).

As we said abee, the programs were all okwy high quality so thewere olviously tested by the @elopers. What
Joseph callsoperational testingwas not testing. Wsaid in our papers that itag simulated use of the programs.
We were trying to simulate the lifetime production use of the so#w Thatis why we wsed inputs that were
randomly generatedNote, havever, that the were randomly generated according to what the people at Boeing felt
was a kealistic operational profile for this application4N82].

We aree, of course, that the procedures we fgdid were not sfitiently complete for life-critical softare. W
never claimed that thg were. Ifin their statements\Azienis, Lyu, and Joseph are implying that the performance of
N-version programming auld be better using a thfent deelopment methodologythen this needs to be shio
using controlled xperiments to demonstrate that there is a statistically significaeredite in the number of

correlated dilures under diérent deelopment procedures for the same applicatidihis cannot be assumed
without experimental data of which there is currently none.

But the proof is really'in the puddingd, as they say. Our higher quality programs seem to imply that our testing
was & adequate as that in yof the experiments of our critics.

Kelly also claims that our testingas inadequate and that thigkins our results:

Keyresults fom empirical studies addssing the similar eor problem include: ... (c) &fsions whib have
not undegone systematic testing conta@lated faults [KNI86, SCO87][KEL89]

The implication in this statement is thaérsions that hae undeigone systematic testing will not contain related
faults. Havever, we rote that all gperiments orN-version programming that we kmosbout hae found related
faults, no matter what type of testing yifeaveundegone. Shimealhnd Leveson [SHI88], in a study that compared
fault elimination and dult tolerance methods using eight safitev \ersions, found thatxéensve testing vas not
likely to find the &ults that resulted in correlategiléires. Thisnakes some sense intwidly since there is reason to
believe that if these common errors areelii to be made by the programmersythee also lilkely to be made by
those constructing test datd@here is no scientific data to stdhat testing of ankind has an ééct on related
faults. We mote that in the UCLA/H study a much higher percentage of aldisf found after testing were
“identical’ than those found during testing.

3.3. \Wting Procedure

In discussing our definition o&ilure, Joseph states:

The definition of complete NVP faiuis incorrect. In[KNI86] an NVP system fails if a majority of w&ns
fail at the same timeegardless of whether the ems produced wee smilar. An NVP system will prduce the
wrong fesult only if similar, coincident esrs ae geneated. [JOS88]

The authos gatement implies that a program that does not produce an output when required laied)oh f
program only &ils when it produces incorrect outputhis differs from e@ery definition of filure we hae ®en. for
example, ANSI/IEEE Standard 729-1983 definesaidufe as the inability of a system or system component to
perform a required function within specified limits.

If we are prepared to accept that producing no result iseatsy performance, thenyaprogram can be made
arbitrarily reliable by making it abort orvery execution. Thepurpose of dult masking inN-version systems is to
continue to preide service in the presence afiits. Thiswill not be possible if a majority ofersions &il no matter
how they fail.

In [KEL86] it was stated that we took awteeme position by usingector \oting. We haverevoted the programs
using element-by-elemenbting, as vas suggested, and the results are identical to the ones we published originally
[MARS8T].

Avizienis and lu state (the emphasis is theirs):

In the testing and prcessing of the MVS systems, the faildetection and ganularity for the V/UCI
experiment was coae snce it used one Boolean variable &present 241 Boolean conditions for'missile
launching decisioni.The UCLA/H &periment employedeal number comparisons for ixect matbing with
specified toleances. [AVI88]

We wsed all 241 boolean conditions in thatiag as is clearly stated in our paper [KNI86, page 99].

3.4. Dwersity and Scale

Avizienis states:

The scale of the pblem (and the potential for div&ty) [in Knight and Leeson$ experiment] is smaller
[than the UCLA/H study].[AVI88]

and:

We @an see that the V/UCkperiment was ofather small scalesince the specification was 6 ges long and
could be pogrammed in 327 linesThe scale of the UCLA/Hperiment with 64 pges o specification and at
least 1250 lines of code was significanthygkr [AVI88]

Our Rascal programs ranged in size from 310 to 781 lines of code witresaga of 554 lines (tlyedid not include

ary /O statements).The UCLA/H Rascal program ws 1288 lines of code with 49keeutable statements
(including 1/O statements)ln software engineering, a medium size program is 50,000-100,000 lines of code and a
large program is 500,000 to 1,000,000 lines of codg.these realistic standards, theraswno diference in the

scale of the tw gpplications — both were small-scale.

The agument about the size of the specification is more interestinggvbo because it addresses the more
important claim that our application had limited potential faediity because our specificatiorasvshort. Note
that Avizienis acknwledges in the follwing the potential problem ofverspecification when attempting to get
diverse programs from a single specification:

The specification of the member siens, to be called -8pec, epresents the starting point of the NVP
process. Asud, the V¥spec needs to state the functioreduirrments completely and unambiguoustyile
leaving the widest possiblena@ice of implementations to the Nogramming eforts.... Sub gecific
suggestions of ‘how” reduce the ltances for divesity among the verons and should be systematically
eliminated fom the Vspec. [AVI89]

The introduction of a me term, \‘spec, clouds the issuedJsual softvare engineering terminology includes
requirements specifications, highwke design specifications, detailed design specifications, etc; each contain
different amounts of information abothow.” T he specification weayeour programmers as short because we
purposely eliminated all information about algorithms and implementation in order v@erihe maximum
opportunity for dversity, i.e., it was a pure requirements specificatiddince there is no precise definition of
diversity, it is impossible to determine whethewesity is present or not in grset of program grsions. & rote,
however, that informally and in our opinion, outexsions were ery different: thg differed in program structure,
algorithms, wariables and data structures, length, and layout.

The reason that the specifications for the UCldpegiments hee keen so long is that tiiecontained design
information. Fr example, one of the specifications for thelli programs, whichvaeraged 300 lines of PL/I code,
was a B-page specification written in PDL (Program Design Langualyejhe UCLA/H studythe specification
was 64 pages long and included detailed information about the algoritharigbles, and data structures to be used.
Here are some quotes from their description of the results of the UCLA/H study (emphasis is ours):

Primitive opeations ae intggrators, linear filtes, manitude limites, and ate limitels. Thealgorithms for
these opeaations wee exactly specified, hower, different doices of whil primitive opeations to implement
as subpograms have been mad®ainly whether the intgrators include limits on the ngmitude of the output
value (as isequired in most cases), or nofAVI187]

Two factors that limit actual divesity have been observed in the cmuof this assessmentalgorithms
specified by fig@s wee generlly implemented by following the cesponding figue from top to bottom... In
retrospect, a seconeason for this ldc of diversity is that we have concluded that thgitopart of the Lgic

Mode was werspecified.[AVI87]

The H[ongwell)/S[perry] concept of‘test points’ is the second factor that tends to limit disi¢y. Their
purpose is to output and comparot only the final esult of the major subfunctionsutbalso some
intermediate esults. Howeer, that restricted the pspgrammes an their choices of whilk primitive opeations

to combine (ditiently!) into one ppgramming languge satement. Ireffect, the intermediate values to be
computed wer chosen for them[AVI87]

In their post-assessment of thealsity of the \ersions [A187] obtained from this detailed design specification, the
major diferences seemed to be syntactic rather than semantic,tleeg.ise of parameter passing vs. global
variables, diferences in the calling structure of the procedures, the use of subprograms vs. fuhimnef these
seem to us to beewy significant in terms of pwiding fault tolerance of design errors.

Another source of their lack ofwairsity stems from the use of cross-checks pointsote wn intermediate results
and what thg call Community Error Reogery [TSO87]:

[The cross-tied points] have to bexecuted in a certain pdetermined ater, but again great cae was talen
not to werly restrict the possiblehmices of computation sequencAVI87]

One ecovery point is used teecover a failed vesion by supplying it with a set ofwmeénternal state variables
that are dotained fom the other vesions by the Community BirRecaery Bdnique [AVI87]

In order to efect this type of recgery, the internal states of theersions must be identicaln fact, the ersions had
a dsagreement caused by:

the intioduction of ne, unspecified state variables whieve all “undemground variables; since thg are
neither diedked nor corrected in any @ss-tiek or recosery point... A n& design rule for multi-vesion
softwae rrust be stated adJo not introduce any ‘undground’ variables. [AVI87]

It is not surprising that fe identical aults were found by a test procedure thaplired checking the results of these
programs aginst each other since the designs were, for all practical purposes, identical.

On a related issue vizienis states in a recent paper:

The specification for simpleoftware tend to contain guidance not onlwhat” needs to be dondut also
“how’ the solution ought to be apmded. [AVI89]

Specifications for simple(single-\ersion) softvare are no diérent in this respect than folversion softvare. In
fact, the same specifications can be used for both types ofseftl@elopment, and requirements specifications for
simplex software can just as easily contain orlyHat” as requirements specifications for muléngion softvare.

To the contrarywe havefound that in practice (and in the UCLApEriments) specifications fot-version systems
almost alvays require specification of théhow’ (i.e., detailed design) in order to pide the kinds of eting and
comparison required fd¥-version programmingAvizienis, describes these fitiilties with respect to theevsions

in his UCLA/H eperiment:

It was decided that ddrent algorithms wes rot suitable for the scope of FCCs [flight catcomputes] due
to potential timing poblems and diifculties in poving their corectness (guanteed mattsing among them).
[AVI87]

In real-life systems that use this techniquefediéinces between the supposetiiverse’ modules are often minor
In fact, our &periment vas unique and unrealistic in that we a#a more diersity than is usual for these systems
in practice (or in the other studies thatddeen done), and thus our programs are momdylito provide design
fault tolerance. This is rather frightening since this real-life scit@ often is depended on for safety-critical
actwities.

3.5. Specification

Avizienis states:
The Vfspecs [of Knight and eson] do not show the essential NVS aitab. [AVI89]

No explanation of what attrittes are missing is \n, and we are at a loss to figure out whay tbeuld be.
Avizienis’ only specific criticism of our specification seems to be one of lefddté.primary diference between our
specification and those of his latest UCLA/H study is that our specifications are closer to what he describes as
necessary foN-version programming, i.e., thapecify only ‘what” without “how.”

3.6. Communicationand Isolation

Avizienis states:

There was no equired communication ptocol for the pogrammes in the V/UCI aperiment, while the
communication mtocol for the UCLA/H xperiment was well-defined, and rigosly enfoced. [AVI88]

The papes [describing Knight and heeson$ experiment] do not document the rules of isolation, and the
C&D protocol that ae indicators of NVP quality [AVI89]

The communication protocols for the dvexperiments are identicalOur protocol is documented in our paper
[KNI86, page 98].Isolation, which is also documented in the same paper [KNI&&,emforced in the sameawas

in the UCLA e&periment with the addeddtor that some of the programmers were separated by 3000 miles and
were unknan to each otherAll correlated &ilures ivolved \ersions from both schools.

3.7. Programming Time

Avizienis states:

The V/UCI &periment was a classgject during one Quarter term, and éagudent poduced the mgram
alone On the contary, programmes in the UCLA/H gperiment workd in two-member teams and wgaid
a full-time reseach assistant (RA) salary during a clasgér12 week period during the summgiVI88]

The real problem is that students were used as opposed to professional programmers in all xgehesnts,
including ours. Avizienis agues that his students are someless lilely to male smilar errors because thevere
paid, because tlieworked during the summer and not during the academic wedrbecause tlyeworked two
weeks longer We cannot see he any of these things could mela dfference.

There is lilely to be some diérence in results if professional programmers aveliied. Butit is not intuitively
obvious that fever coincidentdilures wuld be the resultlt seems reasonable tggothesize that student programs
would be prone to more randomness in errors and designs than those written by profedsisnaiteresting to
note, havever, that one UCI participant in our studwho had more than ten years of professional scientific
programming eperience, hadaults that correlated inailure characteristics with a Wstudent who had no
professional programmingpgerience.

4. Conclusions

Joseph states:

Thus, [the Knight and IMe@son] esults ae nisleading and should not be used by themselves as a basis for a
decision about the &fctiveness of NVHReal world experiencenot a class oom assignment as in [KNI86], is
needed. Cuently seweral systems in Eope ae wsing NVP (g, the Euopean designed Aids 320

[ROUS6] [AVW87]). [JOS88]

Our results are not misleadin@ur conclusion is simple and clearly stat&tle repeat agin part of the conclusion
section from our paper [KNI86] (italics are from the original paper):

“ For the particular problem thatag programmed for thixperiment, we conclude that the assumption of
independence of errors that is fundamental to some analy$ésertion programmingloes not hold

Using a probabilistic model based on independence, our results indicate that the model has to be rejected
at the 99% confidencevd.

“It is important to understand the meaning of this statentért, it is conditionabn the application that

we used The result may or may noktend to other programs, we do not wnoOther experiments must

be carried out toaher data similar to ours in order to be able tevdreneral conclusions. Haever, the

result does suggest that the us@&efersion programming in crucial systems should be deferred until fur
ther evidence is wailable if the reliability analysis of the system has been performed assuming indepen-
dence of &ilures:

We reve suggested that our result should be used by itself as a basis for a decision abdattitienets ofiN-
version programming.We mnerely suggested that cautiorowld be appropriate We feel strongly that careful,
controlled eperimentation in a realistic winonment is required. However, advocating careful laboratory
experimentation is diérent from aduacating the accumulation okgerience by using the technique in real, safety-
critical applications where loss of life is possible, such as commercial aircraft [JOS88].

Attacking one gperiment by John Knight and Nanteveson does not maN-version programming a reasonable
way to ensure the safety of sofawe. Allof the unversity experiments, including ours, Y% been limited in one ay

or another None (except Shimeall and lveson [SHI88]) has attempted to compakeersion programming with
the alternaties o find out whether the moyeand resources could Y@ keen more ééctively spent on other
techniques such as sophisticated testing or forerdication.

We dd not say thatN-version programming should not be used althoughaitily not be our first choice of
techniques for increasing reliability and safeyfe just do not beliee that it should be relied upon to pide ultra-

high reliability The FAA requires that dilures of critical systems in commercial air transports ‘@dreémely
improbable”. The phrase ‘extremely improbablé’is defined by the KA as “not expected to occur within the total
life span of the whole fleet of the modelAWr8].” | n practice, where such reliability can be analyzed, the phrase is
taken to mean no more than 1Gailures per hour of operation or pereat for actvities such as landingNo one

has demonstrated thAkversion programming can guarantee aodvigent of this leel of reliability. In fact, we
know only of countergamples.

Our conclusion is modest and falle from the gperimental data.Our research is notflawed” as it has been
described in public by our critics at professional meetir@st critics should refrain from attuling conclusions to
us that we hae rot dravn, from making statements about the quality gedity of our programs without the data to
substantiate these judgements, and from making unsupported comparisons of our results with theirs.

Until N-version programming has been wimoto achige utra-high reliability and/or has been st to achige
higher reliability than alternate ways of iilding software, the claims that it does so should be consideredvempro
hypotheses. Untilthese kpotheses are shm to hold for controlled xperiments, depending oN-version
programming in real systems to aald@eldtra-high reliability where peoplg’lives ae at risk seems to us to raise
important ethical and moral questionsttacking us or our papers will not change this.

REFERENCES

[AVI77]
[AVI84]
[AVI85a]
[AVI85b]
[AVI87]
[AVI88]
[AVI8]
[AVW87]
[BIS85]

[CHE78]

[ECK85]

[ECK89]
[JOS88]
[KEL83]
[KEL86]

[KEL89]

[KNI85]

[KNI86]

[MARS7]
[MARS3]

[NAG82]

A. Avizienis and L. Chen, “On the Implementation fVersion Programming for Sofeawe Fault-
Tolerance During Program Egution”,Proc. of Compsac '7,November 1977, pp. 149-155.

A. Avizienis and J.B. Kelly, “Fault Tolerance by Design Beérsity: Concepts and ExperimentsEEE
ComputerVol. 17, No. 8, August 1984, pp. 67-80.

A. Avizienis, et al, “The UCLA Dedix System: A Distrilted estbed for Multiple-¥rsion Softvare”,
15th Int. Symposium oraHlt-Tolerant ComputingMichigan, June 1985, pp. 126-134.

A. Avizienis, “The N-Version Approach to a&ult-Tolerant Softvare”, IEEE Tans. on Softwar
Engineering Vol. SE-11, No. 12, December 1985, pp. 1491-1501

A. Avizienis, M.R. lyu, and W Schutz, “In Search of HEéctive Diversity: A Six-Language Study of
Fault-Tolerant Control Softare”, Tech. Report CSD-870060, UCLA, Manber 1987.

A. Avizienis and M.R. Lu, “On the Efectiveness of Multversion Softvare in Digital Avionics”,
AIAA/IEEE 8th Digital Aionics Systems Conéerce San Jose, October 1988, pp. 422-427.

A. Avizienis, “Software Rult Tolerance” IFIP X1 World Computer Conggss '89 San Francisco, August
1989.

“Airbus 320, the Ne& Generation Aircraft” Aviation Week & Space éichnolagy, February 2, 1987, pp.
45-66.

RPG. Bishop, et al, “Project on Dierse Softvare — An Experiment in Softwe Reliability”,
Proceedings IEC Wrkshop Safecomp '8&omo, Italy 1985.

L. Chen and A A. Aizienis, ‘N-Version ProgrammingA Fault-Tolerance Approach to Reliability of
Software Operation”Digest FTCS-8: Eighth International Symposium oratit-Tolerant Computing
Tolouse, France, June 1978, pp 3-9.

D.E.Eckhardt and L.D. Lee A’ Theoretical Basis for the Analysis of Mwksion Software Subject to
Coincident Errors”,|JEEE Trans. on Softwar Engineering Vol. SE-11, No. 12, December 1985, pp.
1511-1516.

D.E.Eckhardt,et al, “An Experimental Ealuation of Software Redundarycas a Srategy for Improving
Reliability”, Technical Report, NSA/Langley Research Centesubmitted for publication.

M.K.Joseph, Architectural Issues indult-Tolerant, Secure Computing Systems”, Ph.D. Dissertation,
Dept. of Computer Science, UCLA, 1988.

J.RJ. Kelly, and A. Avizienis, ‘A Specification-Oriented Multi-grsion Softvare Experiment’Proc. 13th
International Symposium oraklt-Tolerant ComputingMilan, Italy, June 1983, pp. 120-126.

J.RJ. Kelly, et al, “Multi-Version Softvare Deelopment”, Proc. Safecomp '865arlat, France, October
1986, pp. 43-49

J.RJ. Kelly, “Current Experiences withaklt Tolerant Softvare Design: Dependability Throughvgise
Formal Specifications”Confeence on Rult-Tolerant Computing System&ermary, September 1989,
pp. 134-149.

J.C.Knight and N.G. Leeson, ‘A Large Scale Experiment -Version Programming”, Digest opers
FTCS-15:Fifteenth International Symposium oauf-Tolerant ComputingJune 1985, Ann ArborMl.
pp. 135-139.

J.C. Knight and N.G. Leeson, ‘An Experimental Ealuation of the Assumption of Independence in
Multi-version Programming”lEEE Transactions on SoftwarEngineering Vol. SE-12, No. 1 (January
1986), pp. 96-109.

A.J. Margosis, “Empirical Studies of Multi-&fsion System Performance”, Massethesis, Uniersity of
Virginia, January 1988.

D.J. Martin, “Dissimilar softvare in high intgrity applications in flight controls’Softwae for Avionics
AGARD Conference Proceedings, No. 330, pp. 36-1 to 36-9, January 1983.

PM. Nagel and J.A. Skran, “Software Reliability: Repetitie Run Experimentation and Modelling”,
Technical Report RSA CR-165836, MSA/Langley Research CenteFebruary 1982.

[ROUS6]
[SCO87]

[SHI88]

[TSO87]

[WAT 78]

[YOuss]

J.C.Rouquet and .B. Traverse, “Safe and Reliable Computing on Board the #srbnd AR Aircraft”,
Proc. SAFECOMP '86Sarlat, France, October 1986, pp. 93-97.

R.K. Scott, J.W Gault, and D.F McAllister, “Fault-Tolerant Softvare Reliability Modeling”,IEEE
Transactions on SoftwarEngineering Vol. SE-13, No. 5, May 1987, pp. 582-592.

T.J. Shimeall and N.G. leson, ‘An Empirical Comparison of Softwe Fult Tolerance and &ult
Elimination”, Proc. 2nd Wrkshop on SoftwarTesting \krification, and AnalysjsBanf, July 1988. (A
more complete description isalable as Ech. Report NPS52-89-047, WhPostgraduate School, July
1989.

K.S.Tso and A. Aizienis, “Community Error Rea@ry in N-Version Softvare: A Design Study with
Experimentation”Digest 17th Int. Symposium omHt-Tolerant Computing Pittsburgh, July 1987, pp.
127-133.

H.E. Waterman, “RA’s Certification Position on Adwnced Aionics”, AIAA Astonautics and
Aeronautics May 1978, pp. 49-51.

L.J. Yount, et al, “Fault Effect Protection and d&titioning for Fly-by-Wre/Fly-by-Light Avionics
Systems” AIAA Computer in A@space V Confence Long Beach, August 1985.

