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Introduction 
This paper proposes some fundamental changes in the standard practices for the engineering of 

control systems. Safety-critical control systems (sometimes called cyber-physical systems2), have unique 
properties that are not currently being satisfied by the use of one generalized system engineering 
process. A basic premise of this paper is that to make progress, we need to more carefully design an 
engineering process that is created specifically for this type of system. That will not only make it easier 
to design safety, security, and other emergent properties into these systems from the beginning, but 
also provide tremendous increases in our ability to assure, operate, maintain, and evolve these systems 
within reasonable cost limits. It could also have important uses in the certification of safety-critical 
systems. 

There is an extensive literature on the use of STPA to analyze systems for safety (and other 
emergent properties such as security, quality, producibility, etc.) throughout the system life cycle of 
complex, software-intensive systems. These tools are being used successfully in many industries. This 
paper is focused on a more general topic, i.e., the changes to the basic system engineering process to 
take most advantage of these powerful new tools and to improve the design and development of safety-
critical, control-based systems in general. 

Figure 1 shows a standard V-model of the system engineering process, annotated (in red) with the 
ways that STPA can be used to assist in the process. STPA is not just an assurance or risk assessment 
process, but a qualitative hazard analysis technique that can be used in a large variety of ways 
throughout the system life cycle, including operations.   

This paper proposes adding a new process (see Figure 2), called Conceptual Architecture 
Development (shown in green), after Concept Development and Requirements Engineering and before 
detailed physical/logical architecture development. The new step involves the creation of a conceptual 
architecture that can potentially reduce costs and improve the results through the life of control 
systems. The rest of this paper describes how this conceptual architecture can be created and used. 

This paper assumes that the reader has a basic understanding of STAMP and STPA. If that is not true, 
you will first need to read some basic papers in order to understand what is being proposed. Two places 
to get started are Nancy Leveson (2012) Engineering A Safer World, MIT Press and also the STPA 
Handbook available at http://psas.scripts.mit.edu/home. 

 
2 The term cyber-physical systems (CPS) is used to denote physical and computational systems that are linked to 
achieve some goal.  Control systems is used here as the CPS label is often applied too narrowly or too broadly to 
include everything that has software in it. The term control system is used here to mean systems where software 
and hardware are used to control physical processes. Humans also need to be considered as components of 
systems. The term human-cyber-physical systems is sometimes used to reflect this. 

http://psas.scripts.mit.edu/home
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Figure 1 (above) and Figure 2 (below). Figure 1 shows the standard V-model annotated with 
with the role of STPA. Figure 2 shows the new conceptual architecture step (in green) added. 
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The Problem with the Conventional Approach and Goal of the Paper 
Large projects usually start by deciding on a set of high-level goals, generating a CONOPS, and then 

producing requirements to varying degrees of completeness. At this point, developers usually jump into 
the process of fairly low-level system architecture design. A common strategy for this architecture 
development is to decompose the system into standard functional components (not necessarily those 
required or best for this particular system) and begin immediately to specify the connection between 
the components, often including logical and physical details such as network structures and detailed 
design as well as interface specifications without adequate consideration of how they will implement 
the specific functional requirements. “Standard” architectures may even be used, which are basically 
architectures that have been created for a particular type of system. Examples can be found in this 
paper. 

The problem is that engineers are designing physical interactions among components before they 
know what connections are important or needed. Developing an architecture for a complex system 
requires top-down analysis to understand what interactions among system components are necessary 
and potentially critical.3 I have seen examples where the first steps in architecture development were to 
draw a lot of boxes labeled with standard functions and then draw connections between the functions 
without any tracing to the detailed requirements and desired high-level properties of the system.  

The obvious problem with the current approach is that the unique requirements for the system are 
only vaguely tied to the architecture. At the same time, safety engineering efforts are usually reduced to 
producing a lot of paper with little impact on the actual system design and resulting safety.4 Childs called 
this Cosmetic System Safety, and the problem has only gotten worse since he pointed it out long ago. In 
addition, security efforts may be delayed until very little impact on system design is possible, resulting in 
systems that cannot be protected against adversaries. Security becomes an endless and futile game 
where attackers find a hole and break in, defenders fix that hole, and then the attackers find another 
hole or find a hole in the new defense.5 

The negative impact of this disconnect between the system requirements and constraints and the 
architectural design usually only becomes apparent in later stages of development, where the work 
involved in showing that the safety, security, and functional requirements are satisfied by the system 
can be extremely costly and even infeasible. Often, critical design problems are found late in 
development or during operations, requiring an enormous cost penalty to resolve and sometimes too 
late to make significant changes in the architectural design. If the architecture is not appropriate for the 
problem being solved, inefficiencies will occur throughout the system life: Maintaining, evolving, and 
upgrading the system may be enormously and unnecessarily expensive in terms of time and effort. In 
some cases, the costs are so enormous that systems have actually been abandoned before they can 
serve their intended purpose.  

The goal of this paper is to suggest a different approach to developing a system architecture that 
significantly reduces the most resource-intensive aspects of system engineering, particularly those 
related to designing, assuring, and maintaining system safety, security and other system properties. 
Effort to achieve these goals is shifted to the early development stages. The most obvious changes from 

 
3 To avoid getting bogged down with psychological and technical arguments, support for this statement is not 
provided here. The interested reader might start with Nancy Leveson, Intent Specifications: An Approach to 
Building Human-Centered Specifications, IEEE Transactions on Software Engineering, vol. SE-26, no. 1, pp. 15-35, 
January 2000.  
4 Charles W. Childs. Cosmetic System Safety, Hazard Prevention, May/June 1979. 
5 William Young and Nancy Leveson. An Integrated Approach to Safety and Security Based on Systems Theory, 
Communications of the ACM, Vol. 57, No. 2, Feb. 2014. Downloadable from 

http://sunnyday.mit.edu/papers/cacm232.pdf 

http://sunnyday.mit.edu/papers/cacm232.pdf


5 
 
 

what is commonly done today is (1) the insertion of a safety and security modeling and requirements 
analysis process using STPA during early system requirements generation (which has been described 
previously) and (2) a new activity at the beginning of the system architecture and development step that 
generates a conceptual architecture (Figure 2). This paper concentrates on the new conceptual 
architecture step. 

Conceptual architecture generation provides a design, modeling, and analysis step between English 
language requirements and the development of a detailed logical and physical system design. The added 
step bridges the gap from a large number of “shall” statements to a detailed architectural design that is 
better structured and rational for the specific system requirements and constraints. The resulting 
architecture will enhance our ability to perform later system engineering processes and achieve the 
system goals. 

Architectural validation can start at this point because the conceptual modeling process provides a 
concrete tracing between requirements and design. Such a tracing should also make it easier to 
implement changes and upgrades with more assurance that requirements and constraints are still 
satisfied.  

This paper focuses on the left side of the V-model (the beginning steps in system engineering), but 
changes to other parts of the process will also be helpful. Some companies, for example, are currently 
using STPA to redesign their production engineering process and to assist in design for 
manufacturability, and even to optimize their general engineering and supply chain practices.  

The goal of creating a conceptual architecture is to improve the design process for control systems. 
Therefore, the conceptual architecture and the process for creating it should incorporate basic 
principles for design of complex systems. These are described in the next section and are used to justify 
the decisions made about conceptual architecture design in the rest of the paper.  

 

Basic Principles for the Design of Complex Systems 
Computer science and, in particular, software engineering has had to cope with complex design 

problems for a long time. In the 1970’s, many of the basic principles of designing complex systems were 
identified during the development of what was then called structured programming. Most of the 
principles of structured programming were adopted into fundamental practices and the need for a 
special name for them disappeared. But what was learned is applicable for complex system design 
today—not just for software. They are described here and used in the rest of the paper to explain why 
various decisions were made in the new conceptual architecture development process being proposed. I 
have left out all but a few major references as there are too many to be relevant in a paper not about 
the history of design. Many, if not most of these principles, have been documented and taught for a very 
long time. Table 1 summarizes them. 
 
1. Good design involves mastering complexity. 

A first principle is that the goal of design and the design process is to master complexity. As the 
complexity of our systems increases, the design process itself becomes more complex. As an example, in 
the new highly automated aircraft, most incidents and accidents have been blamed on humans, but 
actually reflect the difficulty of the collateral design of the aircraft, the avionics systems, the cockpit 
displays and controls, and the demands placed on the pilots. We need to master the complexity 
inherent in designing these types of systems and provide techniques that assist designers in this process. 

Complexity can be defined as intellectual unmanageability. We need design processes that stretch 
our intellectual limits and help us to gain traction over the complexity of the systems we want to build. 

 

-  
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Table 1: Engineering Design Principles and Approaches 

 

 

 

 

 

 

 

 

 

 
     What types of tools can help us master complexity? A clue rises from research by Bill Curtis and 
others6 on comparing the critical factors distinguishing between successful and unsuccessful software-
intensive projects. They found that exceptional designers “think on a system level.” They can see the 
system (the entire system, not just the software) as a whole and not just the separate parts. To be 
successful, a project does not need to be composed of all system thinkers, but at least one well-placed 
individual needs to have this perspective. Our tools should assist in such thinking by providing views of 
the desired system behavior and encourage thinking of the system as a whole and not just as a 
combination of its parts. Such system thinking needs to be done before performing a deep dive into 
more detailed design and decomposition of components in order to ensure that the resulting design will 
satisfy the system goals and constraints.  
 
2. The design process should assist in understanding the problem to be solved. 

Design involves problem solving, i.e., creating a structure for solving a problem. An example is 
creating a flight control system to control an aircraft in such a way that efficiency, safety, and other 
goals (requirements) are achieved.  Understanding the problem to be solved is critical in producing a 
useful design. But all the necessary understanding may not exist at the beginning of development. 
Therefore, one goal of a design process is to assist in enhancing our understanding of the problem 
before design decisions are made that cannot be undone. In other words, the design process should 
proceed through steps that allow us to increasingly learn more about the problem we are trying to solve 
as we generate solutions. 

 
6 B. Curtis, H. Krasner, and N. Iscoe. A Field Study of the Software Design Process for Large Systems, 
Communications of the ACM, vol. 31, no. 2, pp. 1268-1287, 1988. 

Basic Design Principles: 

1. Good design involves mastering complexity. 

2. The design process should assist in understanding the problem to be solved. 

3. Successful design depends on the design strategies and specification methods 

used. 

Successful design involves breaking down the design process into successive steps: 

1. Each with a lower complexity than the system itself, 

2. While minimizing interactions among the parts, 

3. Such that the parts together solve the problem. 

Design approaches to deal with complexity: 

1. Separation of concerns 

2. Restricted visibility (locality of information) 

3. Abstraction 

4. Simplicity: Design should match the structure of the problem being solved 

5. Proper ordering of design decisions  
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In addition, design methods impose demands on the humans using them and have a profound 
impact on our problem-solving ability and the strategies we use.7  Our goal should be to create and use 
design methods that impose reasonable demands on the designers and assist them in carrying out their 
tasks. The way we go about designing complex systems will have an impact on our problem-solving 
ability and on the errors that we make while trying to solve the problems and create a good design. Our 
engineering processes, therefore, need to reflect what is known about human limitations and 
capabilities, not just those of the humans who will eventually operate the systems that will result from 
the design process but also the limitations and demands on the designers themselves.  
 
3. Successful design depends on the design strategies and specification methods used. 

A problem-solving activity involves achieving a goal by selecting and using strategies to move from 
the current state to the goal state. Success depends on selecting an effective strategy or set of strategies 
and obtaining the information necessary to carry out that strategy successfully. Success also depends on 
using design specifications and techniques that assist in carrying out the selected strategy successfully.  

Cognitive psychology has established that the representation of the problem provided to problem 
solvers can critically affect, i.e., degrade or support, their performance. David Woods, a cognitive 
psychologist, claims that there are no neutral representations. For example, the representation(s) of the 
system used during design can ideally reduce memory load on the designers or display the critical 
attributes needed to solve the problem in a perceptually salient way and thus enhance the potential for 
success. Some problem representations can also make solving the problem more difficult. The same is 
true not only during the original system development but for later maintenance and evolution activities. 

Designs are created and used by humans. This observation has led to the concept of human-
centered design processes and user-centered design artifacts. System engineering processes should 
enhance human processing and not just processing by automated tools. Usually, model-based design 
tools are able to check only for relatively simple properties, such as the inclusion of specific types of 
information or connections. Even if automated tools are used, humans need to be able to understand 
and check their results to ensure they satisfy the overall project goals and satisfy the required system 
properties. Such human review cannot be fully automated. If a choice needs to be made, human 
reviewability should be prioritized over ease of automation. 

 
Important Aspects of a Good Design Process and Tools 

Keeping these three general principles in mind, we can now consider more detailed aspects of 
creating a good design process. The design problem can be characterized as how to break the design 
process into successive steps:  

• Each with a lower complexity than the system itself 

• While minimizing interactions among the parts 

• Such that the parts together solve the problem. 
There is no universal way to accomplish this. Many methods have, of course, been suggested but none 
seems to be optimal for all problems.  
 
Design Approaches to Deal with Complexity 

 
7 Nancy Leveson, Intent Specifications: An Approach to Building Human-Centered Specifications, IEEE Transactions 
on Software Engineering, vol. SE-26, no. 1, pp. 15-35, January 2000.  
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Along with these general principles, there are five more specific design approaches that have been 
found to be useful as system complexity increases: 

 
(1) Separation of Concerns: Designers need to deal with the different aspects of a problem separately. 
Our minds are just not capable of coping with and resolving all concerns at once. Instead, we need to 
use design methods that allow us to separate decisions into smaller ones that we are able to handle one 
at the time—while still keeping in mind the system-level concerns that the decisions are affecting, For 
example, designers should be able to separate concerns about identifying what functions their system 
must provide from decisions about how to provide them. Or they should be able to separate concerns 
about what types of communication are necessary and between what system components from 
concerns about the design of the communication channels themselves. 
 
(2) Restricted visibility (locality of information):  The design process should allow designers (and design 
components) not to need to understand the whole system in order to make decisions. This seems to 
contradict the “whole picture” requirement, but what it means is that while the whole picture is needed 
for global decision making, the information to make local decisions needs to be available locally and not 
require understanding the entire very complex system for every local decision. One implication is that 
design components should communicate only through well-defined interfaces. Pieces of the system 
should not be allowed to communicate in an unorganized fashion. The latter prevents the designers 
from being able to make decisions without understanding all the details of the larger system, usually 
impossible in systems today. A few designers should concentrate on the bigger picture and not get 
involved in the details. Once the larger picture is understood, it should be possible for other designers 
and tools to make local decisions without violating the coherence of the overall global design. 

Designers are sometimes taught to concentrate on minimizing, ordering, and making explicit the 
connections between modules separate from the uses of those connections. Before designing 
connections, however, it is important to understand how those connections will be used. This is an 
explicit goal of creating a conceptual architecture. Simply minimizing connections or making them 
explicit does not provide much assistance in producing a better system design. 
 
(3) Abstraction: The problems in building systems that satisfy stakeholder goals are rooted in complexity 
and intellectual unmanageability, as already stated. If humans want to successfully build and operate 
increasingly complex systems, we need to increase the intellectual manageability of our designs and 
design processes. That is, we need to find ways to augment human ability. Jens Rasmussen has observed 
that complexity depends on the level of resolution upon which the system is being considered. A 
seemingly simple object becomes complex if observed through a microscope. A way to cope with 
complex systems is to structure the design process such that the designer can transfer a particular 
problem being solved to a level of abstraction with less resolution.   
     Figure 3 shows two abstractions for a “duck.” While usefulness depends on the goal of the 
abstraction effort, the first one eliminates so much information that it is difficult to think of any 
important uses.   The usefulness of the one on the right depends on what use is intended.    
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Figure 3: Two abstractions of a duck. The one on the left does not seem very useful. 
The usefulness of the one on the right depends on the intended use of the abstraction. 

 
Abstractions or models are not right or wrong, they only have comparative effectiveness. George 

Box famously argued that “All models are wrong; some models are useful.” That is, all models are 
incomplete. They are an abstraction placed on a messy world to make it appear less “messy.” By 
definition, an abstraction leaves out something—otherwise it is not a model (i.e., abstraction) but the 
thing itself. We hope that the model does not omit anything important with respect to our goals for the 
use of the model.:  

 

 
 

We like simple models, and a simple model that is useful is indeed a good thing: omitting irrelevant 
information assists in using the model as intended. Einstein said:  
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But at the same time:  

 
 

Abstraction is essentially the process of identifying the important aspects of a phenomenon to assist 
in solving a problem (the goal of the abstraction) and ignoring details that are irrelevant at the current 
stage of problem solving. Not only does this allow us to concentrate or focus on smaller problems, but it 
also acknowledges that we cannot completely understand problems until we start to solve them. Many 
of the details may be too vague at any point to include them in the design process until later. In STPA, 
the control structures use hierarchical abstraction, where the abstractions used at any point in the 
process can include varying levels of detail.  

Figure 4 shows the very high-level physical structure abstraction for a radiation treatment system 
called the Gantry 2 that uses protons to treat patients. Figure 4 is a useful abstraction for the engineers 
that are designing the physical linear accelerator that produces the protons for Gantry 2. 

In contrast, Figure 5 shows the very high-level control structure (abstraction) for treatment by the 
Gantry 2 system. Notice that this abstraction does not provide details about ordering of the functions or 
activities (and definitely not the physical design of the Gantry 2) but simply the control structure.  Notice 
how different these abstractions (Figure 4 and Figure 5) are although they are abstractions of the same 
system. The difference is in the information included and what is excluded. 

The high-level abstraction shown in Figure 6 shows more detail about the control structure within 
the Treatment Definition box. Figure 7 elaborates on the Treatment Delivery abstraction. The final 
abstraction delves more deeply into the control of beam and patient alignment and the physical devices 
being controlled. Boxes with the names of all the high-level control structures (but not the details) such 
as treatment planning and treatment delivery are left in each more refined abstraction in order to 
provide context and help the user see the larger picture within which the more detailed control 
structure fits. 

Using different levels of abstraction assists in creating the system in a step-by-step process as the 
problem is better understood and more detailed design decisions are made. 
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                          Figure 4. A model (abstraction) of the physical design of the Gantry 2. 
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Figure 5. High-level abstraction of treatment by Gantry 2 
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Figure 6. More detail about treatment definition. 
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Figure 7. Zooming in on treatment delivery. 
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Figure 8. Including even more detail about treatment delivery. 
 
 

There are four basic types of hierarchical abstraction, which determine what details we will include and 
what we will exclude: 

• Procedural (functional) abstractions specify the system functions and how they will be 
performed. Examples include a flow chart or sequence of tasks (the task flow) to be performed 
or the sequence of decision making by the system controllers.  

• Data abstraction concentrates on the types of data in a problem solution and how the data will 
be manipulated. Data can be considered at various levels of detail, such as files, records, and 
fields. 

• Object abstraction focuses the design process on objects (usually physical but they could be 
logical) in the system design and the operations that need to be performed on the objects. In 
object-oriented design, focus is on the interacting objects needed to achieve the system 
requirements. While related to data abstraction, the objects represent physical objects that use 
or manipulate data. Objects for a plane might be the engines, fuel tanks, control surfaces, pilots, 
etc. Figure 4 shows the physical objects in Gantry 2 along with their connections. 



16 
 
 

• Control abstraction abstracts from the precise sequence of events to instead concentrate on the 
system (emergent) properties that need to be controlled. In an aircraft, the control abstractions 
describe how desired system (emergent) properties such as trajectory (navigation), lift, 
propulsion, etc. are achieved and maintained. The things controlled may be objects (e.g., the 
control surfaces or the engines), but the abstraction is not focused on the objects themselves 
but on the types of control that must be provided over those objects and their interactions and 
how they are controlled to achieve the overall system goals and constraints. For Gantry 2, the 
control abstraction shows the control structure, the control actions, and the feedback between 
controlled components and controllers as shown in Figures 5 to 8. 

While any of these types of abstractions might be used in problem solving, the one that allows us to deal 
with the most difficult aspects of the specific problem being solved should be preferred. For some 
problems, identifying the data and how it needs to be manipulated is the most important and difficult 
part of the search for a good design. In others, the computation of the functions to solve the problem 
may be critical. In a control system, the control aspects of the problem are usually the most critical.  

In practice, it is helpful to have multiple types of models and abstractions of the system to be used 
during development and operations. Those abstractions or models will assist in different aspects of the 
development process. Unfortunately, much of the design literature has been produced by people who 
design systems where data or object abstraction is the most useful. In addition, tool developers and 
purveyors find it much more profitable to provide only one tool for all system designers. Object-oriented 
design (OOD) is often used, then, in the basic design of systems for which a different type of abstraction 
would be more helpful. Using object-oriented design tools, which have become the focus of almost all 
tool developers, to design systems for which other types of abstractions are better suited can result in 
designs that are more difficult to understand, to assure, and to change. It may also increase the difficulty 
of performing the design process itself if abstraction based on objects is not the most natural for the 
system being created.  

Abstractions and models are used by design methods, defined as the general processes used to 
create the system design. The goal of a design method should be to make it easy for users to extract and 
focus on the important information needed at that point in the design process. While OOD has 
advantages for implementing a design concept, it may not be the best way to create that design 
concept. The difference is what DeRemer and Kron labeled in software engineering as “programming in 
the large versus programming in the small.” Designing the overall structure of the software 
(programming in the large) may require different types of languages and tools than designing the 
software system components (programming in the small).  

As another example, Figures 9(a) and 9(b) show two models of the same spacecraft. Figure 9(a) 
shows the objects used to construct the spacecraft and their connections while Figure 9(b) shows the 
high-level control structure that is implemented by those objects. Figure 9(c) zooms into and shows 
more detail of the abstraction (control structure) in Figure 9(b). While Figure 9(a) has more detail, even 
if that detail was eliminated, Figure 9(a) contains very different information than Figures 9(b) and 9(c). 
Different abstractions support different engineering activities.  
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Figure 9(a). Spacecraft physical/logical design 
 
 
 

 
Figure 9(b). High-level spacecraft control structure 
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Figure 9(c). More detailed abstraction of the spacecraft control structure 
 

     So far, hierarchical abstraction has been described. Another useful abstraction is one that Jens 
Rasmussen called a “means-ends” abstraction and I have called an intent abstraction.8 It abstracts the 
system on the basis of goals, constraints, and design rationale. Basic hierarchical abstraction can be 
thought of as providing “what” information at one level while the next lower level describes “how.” 
Such hierarchies, however, do not provide information about “why.” An intent abstraction provides 
goal-oriented links between the levels of system abstraction. Engineering a Safer World, Chapter 10, 
provides more information about Intent Specifications as does the more technical paper cited at the 
bottom of this page. 

In summary, the abstractions at each point in development must support the various types of formal 
and informal analysis used to decide between alternative designs and to verify the results of the design 
process. They should also assist in the coordinated design of the components and the interactions 
among them.  
     There is no need to pick only one of these types of abstraction. Hierarchical, decompositional, and 
intent may be combined in various ways to assist in the design process. In fact, the combined use of 
these different types of abstractions will assist in the coordinated design of the components and the 
interfaces. The only reason for limiting ourselves to using only one type of model in system engineering 
is to optimize the profits of tool developers and minimize the educational process for designers. Neither 
of these is likely to optimize the system engineering process. MBSE will never deliver its promise until 
the concept includes multiple types of models to provide different information about the system. 
 
(4) Simplicity: The fourth general design principle is simplicity. Emphasis during design should be on 
clear and simple designs that are easy to check, understand, and modify. This principle is related to the 
use of abstractions that focus on the most difficult aspects of the problem, which will influence the 
simplicity and ease of using the final design. But there is more to consider here. An important basic 
principle related to simplicity is that the design (solution) should match the structure of the problem 
being solved.  

 
8 Nancy G. Leveson, Intent Specifications: An Approach to Building Human-Centered Specifications, IEEE 
Transactions on Software Engineering, Vol. 26(1):15-35, January 2000. 
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Why is this true? When we solve problems or try to understand a system design, we build models in 
our minds of the structure of the problem and the solution. The difference between the model in the 
specifications we use and the model we have in our heads is called semantic distance or (the opposite) 
semantic similarity. In the process of creating a system and using one, we must translate the model on 
paper or a computer screen to the one in our head to understand it, find flaws in it, and when finished 
use it. The smaller the semantic distance between the design model (specification) and our mental 
model, the easier it is for designers to create and find errors in the design. I personally have found, for 
example, that when people try to translate an STPA control structure into a SysML object-oriented 
model, it is extremely difficult and often impossible, for me to view the resulting structure as a control 
loop. They have taken the components of the control structure apart and labeled them with their role in 
the control loop using boxes and arrows and other notations that are not in my mental model of a 
control loop. While such translation of intuitive human models to standard computer models certainly 
can be done, the more important question is should it be done. I recognize that this is a very 
controversial statement, but I believe that while an object-oriented model may be appropriate at lower 
levels of abstraction or for specific decomposed system components, it is not appropriate at the basic 
system conceptual level for control-oriented systems such as aircraft, nuclear reactors, or spacecraft. 
The design of STPA reflects that belief. 
 
(5) Proper Ordering of Design Decisions. Ordering of decisions is also important. The first decisions made 
should be general ones that are unlikely to change, i.e., those that will be shared by all potential designs. 
Detailed design decisions should be put off as long as possible, in general, so that they can reflect the 
greater understanding of the problem that evolves during the design process. That will reduce the 
amount of backtracking required. 

 
To summarize, the goal of the design process is to master complexity, i.e., it must make the problem 

and its solution intellectually manageable. The key to intellectual manageability is the structure of the 
artifacts used in design and the structure of the final design. The design (solution) structure should fit 
the problem structure, so as to reduce semantic distance between the design as it is created and the 
model of the system that exists in the minds of the designers and system experts who will be working 
with the proposed solution, for example those reviewing the design structure or those creating design 
artifacts such as testing plans. It must also reflect the types of mental models that users of the system 
form. 
 

Introducing a Conceptual Architecture into the System Engineering Process for Control 
Systems  

We are now ready to consider how to improve the architectural design process for control-oriented 
(human-cyber-physical) systems. STPA is a hazard analysis process, not a design process. It generates 
requirements and information for designers, but does not itself directly assist in the architecture 
generation and system design and specification processes.  

Instead, applying STPA results in a set of system requirements, constraints, and scenarios that can 
lead to the violation of the system constraints. These results can be used by engineers in the 
architectural design process and augmented as more decisions are made. 

Hazard analysis, in general, is usually considered to be a separate or side activity that is not part of 
the design or V-model process. The results are primarily used for after-the-fact assurance of the system 
when the design is basically finished. In reality, of course, safety and security cannot be assured after 
the fact unless these properties are already there. Emphasis, then, should logically be placed on the 
design generation process rather than on the assurance or assessment process. Because of its different 
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types of results and process, STPA can be completed earlier than the traditional hazard analysis 
techniques, which require a detailed design to already exist.  

When a conceptual architecture is inserted, better decisions can be made at the earliest possible 
time in the system engineering process.  STPA results are used to generate a conceptual system 
architecture at a higher level of abstraction than usually found today in architectural design languages 
and designs (Figure 2).  

Two questions immediately arise: (1) why would anyone want to do this and (2) how can it be done. 
 

Why would anyone want to do this? 

In the standard V-model, going from a high-level conceptual view of a system or CONOPS, agreed 
upon by the stakeholders, to detailed requirements and then to a physical/logical architecture requires 
a lot of big jumps without having much assistance in making the design decisions involved. These jumps 
need to be simplified and assistance provided in making them if we want to produce better designs. 

The introduction of modeling and analysis tools, called Model-Based System Engineering, seems like 
an obvious potential solution, but most of the models used today involve designing the detailed 
architecture itself and also use very limited types of models, often only one (such as SysML). In fact, 
most of the modeling languages and types of models used in MBSE are quite old and date from the mid-
1980s. They also focus only on object-oriented design. For control systems, object-oriented design 
(OOD) is not the most appropriate system design paradigm—although the systems can be forced into 
such a design by contractual requirements imposed to use commercial MBSE tools.  

OOD emphasizes (i.e., builds an abstraction of) the system objects. As a result, control functions may 
be spread over many or all of the objects and be nearly impossible to validate and verify. For example, in 
designing an aircraft avionics system, control requirements such as navigation (control over the route), 
propulsion (control over acceleration), and lift (control over the trajectory) may be a better focus during 
design, particularly early design and requirements analysis, than on the physical objects such as the 
horizontal stabilizer, the engines, the fuel tanks, the slats and flaps, etc. It is more efficient to start from 
considering the requirements for navigation or propulsion and determine what that implies for the 
design and operation of the physical components (aircraft objects) than to start from the objects and try 
to determine what functions they might be used to implement. And, as noted, the control functions, 
such as navigation or trajectory control, may be spread throughout the design and associated with 
multiple objects, making it more difficult to verify that they are handled correctly. 
      Getting away from this object-orientation to a control orientation will require the use of new types 
of models and analysis methods than are used today. In this paper, a more control-oriented modeling 
and structured design process is proposed. Although safety and security are emphasized, the approach 
is appropriate for any emergent (system) properties. Remember, object-oriented design approaches 
may be appropriate later in the design process for control systems when detailed component (vs. 
system) design is being considered. 

A second reason for generating a conceptual architecture as described in this paper, is to augment 
our ability to produce user-centered designs. We blame most accidents on the operators (pilots, drivers, 
etc.) but have few tools that can forge an effective partnership between human factors experts who are 
designing system interfaces (control panels, displays, physical controls) and operator procedures and 
the engineers who are focusing on the physical (hardware) and logical (software) parts of the system. 
Too often today, these two groups work relatively independently and we end up creating systems with 
the potential for mode confusion, situational awareness problems, etc. These problems need not have 
been created if the designers worked together as an integrated team.  
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How can this new process be implemented? 

The approach being suggested starts from a foundation in systems theory and involves the use of 
hierarchical control structures. It begins after the basic system requirements (“shall statements”) have 
been specified and validated. The requirements are used to guide the generation of control system 
designs to implement those requirements. The greatest success will follow from the use of a 
specification method that is human-centered (not software-tool centered) and incorporates intent and 
design rationale within the specification language itself and not as an “add on.” The tools should 
minimize semantic distance. These properties are incorporated in “intent specifications,”9 but this topic 
is only peripherally touched on in this paper. Other specification approaches are possible. 

If the design process for control systems focuses on how to create an appropriate abstraction 
(model) of the problem being solved, then the effort involved in verifying that the design satisfies the 
requirements will be greatly reduced.  Most of the formal specification languages promoted by 
computer scientists are too unreadable by the application engineers to be useful here. The most critical 
property of any analyzable specification language is that the specifications are readable by the 
application experts. A second (related) goal is to minimize the semantic distance between the model 
used in the specification and the mental models used by the application experts. 

The new control structure model, with its associated analysis tools, will be inserted between the 
requirements specification and validation process and the start of the architectural design process. The 
type of control model being proposed is that used in STPA and CAST analyses. While we have used this 
model and associated analysis tools for system safety and security, the model is equally appropriate for 
the analysis of most (emergent) system engineering properties and the generation of general system 
architectures that have carefully considered tradeoffs among other emergent properties. 

In this paper, the control model used by STPA and CAST is assumed, but when using it in design, 
there may be augmentations to the basic model that provide advantages and more features. That will be 
left for future research.  Instead, this paper focuses on the process. New structures created to improve 
that process can be considered later.  

Here again is the basic process to be followed when creating a conceptual architecture during 
concept development: 

1. Establish system goals 

2. Create CONOPS 

3. Identify high-level requirements and system hazards 

4. Define basic control structure 

5. Derive high-level safety constraints using STPA and the control structure  

6. Assess risk using STPA scenarios and the  risk matrix (optional) 

7. Create the initial conceptual architecture (from the basic control structure) and refine it using the 
STPA results. 

8. Create physical/logical architecture from the conceptual architecture 

9. Create a detailed systems design using additional STPA analysis in decision making 

10. etc. 
 
In the new, enhanced system engineering process, the normal STPA and concept development 

process is assumed. The system goals and high-level requirements are generated by the usual 
requirements engineering process and the potential losses and hazards to be considered are agreed 

 
9 Nancy Leveson, Intent Specifications: An approach to building human-centered specifications, IEEE Transactions 
on Software Engineering, vol. 26, no. 1, January 2000, pp. 15-35.In 
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upon by the stakeholders. The hazards are represented by constraints on how the goals can be 
accomplished. For example, in the design of TCAS, an aircraft collision avoidance system, one system-
level safety-critical constraint was that TCAS not interfere with the operation of the existing Air Traffic 
Control system. Notice that this constraint cannot be stated using standard “shall” statement (which 
usually forbids including a “not”). 

Then a system-level hierarchical control structure is generated, which will serve as the initial version 
of the conceptual functional architecture. Scenarios and constraints for safety and security are 
generated by first performing STPA on the control structure and recommendations are generated for 
the design. As stated earlier, STPA could also be used to generate requirements and recommendations 
for other emergent system properties. These requirements and design recommendations will be used to 
refine the first, usually very high-level hierarchical control structure into a more detailed conceptual 
control structure or architecture. Once a detailed conceptual design is completed, the logical/physical 
architecture can be generated from it. 

Figure 10 shows a conceptual control model for a generic control system architecture. This model is 
augmented from our past models to include more facets of such an architecture. The conceptual 
architecture for a specific system will particularize this generic model into a conceptual model 
(abstraction) to describe the solution for a specific problem. The generic components in Figure 10 will 
correspond to the parts of your model. A brief description is included here of each of the components of 
the generic model along with descriptions of some of the analyses that might be performed. More 
details can be found in the Appendix of this paper. 

Controlled Process  
A hazard is defined in terms of the state of the controlled process at the bottom of Figure 10, e.g., 

the attitude of the aircraft, the speed of the automobile, the position of the robot. States are composed 
of components or variables. As the goal of STPA is to identify how the controlled process could get into a 
hazardous state, then we need to look at the ways the controlled process can change state. Anything 
that can change that state may potentially be part of a causal scenario for a hazard.  

The conceptual architecture must include the process inputs and outputs, potential external 
disturbances, and all the controllers of the process. The analysis of the conceptual architecture will 
include these components of the architecture as well as failures or degradation over time of the 
controlled process components. 

Automated Controller(s) 
Only one automated controller is shown in the diagram (the blue box) although there may be 

several of these and they may be designed with more hierarchical levels. Because the model for 
automated and human controllers always have the same components, only one is shown here.  

Except in very simple systems, automated controllers provide control actions to actuators, which 
change the controlled process state. Sensors provide feedback about the current process state.  

The conceptual architecture must contain the control path from the automated controller to the 
controlled process through the actuator and a feedback path from the controlled process to the 
automated controller through sensors. 

Within the automated controller, the conceptual architecture contains the following components 
(all described in more depth in the Appendix): 

• The automated control algorithm,  

• A model of the controlled process,  

• A model of the operational modes (the controlled process mode, the automation mode, the 
supervisory mode, and the display mode), 

• A model of the human controller (if relevant), and 
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• A model of other controllers. 

The conceptual architecture model must also contain the environmental inputs, other controllers or 
systems, transmission of information between the automation and its supervisor(s), and direct changes 
to the automated controller that do not go through the control algorithm. 

 

Figure 10. A generic conceptual architecture. 

 
Human Controller(s)  

Human controllers are the most complex component of the model in Figure 10 (although system 
designers are quickly increasing the complexity of automated controllers) and thus provide some of the 
most important parts of the causal scenario and conceptual architecture generation processes. France 
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has defined an extended model of human controllers.10 All the same components are in this model, but 
they are connected differently than France did. An important role for this part of the conceptual 
architecture development is to allow interaction and collaboration between human factors experts and 
hardware/software engineers. While the human controller model is obviously not “implemented” in the 
physical/logical system architecture, the model provides important information for the concrete 
architecture. It also serves as a conceptual architecture for Human–Machine Interaction and augments 
communication between the hardware/software engineers and the human factors experts so that 
integrated system design, including operators and physical system designers, can be achieved. 
Implications of identifying human controller hazardous scenarios will also impact the physical human-
machine interface design and operator training. 

There are many relevant components of the model that should be included in the conceptual 
architecture, including control action generation and mental processing and the mental models related 
to these functions.  

Many types of design problems can be identified using this part of the conceptual architecture 
including:  

• Mode confusion is a common cause of accidents in mode-rich systems where the human is 
confused about the mode of the automation or the automation may be confused about the 
current mode of the controlled process. Mode confusion may be caused by incorrect updating in 
process models, inputs may be incorrect or delayed, updating may be delayed or the human 
controller may be informed of the mode change but does not notice or process that 
information. When automation can change the mode of the controlled process without being 
directed to do so by the human controller, mode confusion and potential unsafe control actions 
can result.  

• “Situation awareness” is commonly cited as the cause of accidents without a careful definition 
of what that term means. A large number of errors can fall into this category. Note that the 
modeling used in STPA can identify situation awareness errors as they simply mean that the 
human controller mental models do not match the real state. The conceptual architecture 
should be designed to minimize such errors. 

• Humans can easily be confused by automation that is nondeterministic or acts one way most of 
the time but in a few special cases behaves differently. Such automation also greatly increases 
training difficulties. Careful design of the conceptual architecture should be able to reduce such 
confusion as well as the other types of errors described here. 

• Some automation is programmed such that the logic can result in side effects that are not 
intended or known by human controllers. If such side effects cannot be eliminated, then they 
need to be part of pilot training if they could lead to hazardous behavior.  

• While the design of the system may include feedback to humans, there are many reasons why 
that feedback may not be noticed such as distraction or lowered alertness when monitoring 
something that rarely changes or is rarely incorrect.  

• Complacency and overreliance on automation by humans is increasingly becoming a problem in 
automated systems today.  

• Automation may fail so gracefully that the human controller does not notice the problem until 
late in the process. Humans may also think that automation is shut down or has failed when it 
has not. This type of problem has arisen when robots and humans must work in the same areas. 

 
10 Megan France, Engineering for Humans: A New Extension to STPA, M.S. thesis, Aeronautics and Astronautics 
Department, MIT, June 2017. 
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The logout/tagout problem, where humans think energy is off but is actually on, leads to a large 
number of accidents in the workplace.  

This list is only meant to indicate that there are many causes that must be considered when humans 
are part of a system. It is far from exhaustive. Eliminating or controlling such factors are often assigned 
to human factors experts but they cannot be eliminated in the human–automation interface alone. 
Solutions must be reflected in the hardware and software design as well. The conceptual architecture 
provides a means for such collateral design. STPA operates on the human, hardware, and software parts 
of a system as well as managerial and social aspects. I am assuming here that managerial and social 
components of the system will be modeled in the same way as the direct controllers of the automation, 
but further investigation may determine that the conceptual architecture format shown in Figure 10 has 
to be extended. 

To summarize, the new conceptual architecture design process starts with the identification of the 
hazards related to the controlled process. After the system-level hazards are identified (and perhaps 
refined, see the STPA Handbook), an initial high-level control structure is instantiated for the system 
being created. STPA is performed and the results are used to refine the conceptual architecture 
iteratively until a detailed conceptual architecture is created. At that point, the requirements on the 
physical/logical design should be complete and the standard design/architecture process can begin by 
generating detailed design features for the conceptual architecture. 

While the emphasis in this paper is on the technical and human-operator parts of control systems, 
the same process could be used for management and social structures and other aspects of critical 
systems such as certification and operational controls. 

 

Examples 
Examples are necessary to understand the conceptual architecture process because, in past papers, 

we have not carefully distinguished the analysis of the detailed control structure from the original high-
level analysis and did not show the process of refining the control structure. That is, we usually stopped 
after generating causal scenarios and often jumped around in the level of abstraction of the control 
structure being used. This paper tries to detangle and clarify all this. Essentially, the conceptual control 
structure is started at a very high-level of abstraction and then the STPA results are used to refine it into 
a more detailed conceptual architecture to the point where it is ready to be used for creating a 
physical/logical architecture and system design. Hopefully, if careful analysis has been done early in the 
system development, later changes will require backtracking only to the detailed design. Basic changes 
to the system requirements and goals, however, may require going back to the conceptual architecture. 
This should be easier than directly trying to change the physical/logical architecture as there is usually 
not the tracing from requirements and constraints to the physical/logical architecture that exists when 
using STPA and a conceptual architecture.  

Three examples are provided here. The first is from Engineering a Safer World (Chapter 9), and was 
used there to illustrate safety-guided design. The example is changed slightly here to show the process 
for creating a conceptual architecture before the usual logical or physical architecture is created.  

The second example is from the M.S. thesis of David Horney.11 For simplicity, the first example 
stresses only one goal for the design process, i.e., safety. Design, however, always has multiple goals and 

 
11 David Craig Horney, Systems-Theoretic Process Analysis and Safety-Guided Design of Military Systems, 
Aeronautics and Astronautics Dept., MIT, 2017. This thesis can be obtained from the MIT Library or from 
http://sunnyday.mit.edu/STAMP-publications-sorted.pdf. The latter is a list (with hyperlinks) of recent STAMP-
related publications including many papers and theses on STAMP and showing examples of STPA and CAST in a 
variety of application areas. 

http://sunnyday.mit.edu/STAMP-publications-sorted.pdf


26 
 
 

constraints and these must be subject to tradeoff analyses during the design and development process. 
Horney discussed this tradeoff process using a class of military helicopters that was in the early concept 
development stage to demonstrate the use of STPA to make complex tradeoff decisions among multiple 
possible conceptual architectures and system design features. Tethering of UAVs is used in this example.  

The final example involves a system composed of manned and unmanned aircraft and illustrates the 
different results obtained by starting with an STPA-generated conceptual architecture compared to 
starting with generic architectures that are not tailored for or designed with respect to the specific 
system requirements and constraints. 

 

Example 1: Generating a Conceptual Architecture for a Manufacturing Robot 
This example involves an experimental robotic system, called the Tesselator, designed to service the 

Space Shuttle thermal tiles between flights.12 The Tesselator was designed at Carnegie Mellon but was 
never used, as we understand, because of NASA safety and other concerns. Our Thermal Tile Processing 
System (TTPS) was based on the CMU Tesselator robot. Some students and I redid the design to 
demonstrate more sophisticated hazard analysis and Intent Specifications.13  

The goal of the TTPS system was to inspect and waterproof the thermal protection tiles on the belly 
of the Space Shuttle, thus saving humans from a laborious task, typically lasting three to four months, 
that began within minutes after the Shuttle landed and ended just prior to launch. Upon landing at 
either the Dryden facility in California or Kennedy Space Center in Florida, the orbiter was brought to 
either the Mate-Demate Device (MDD) or the Orbiter Processing Facility (OPF). These large structures 
provided access to all areas of the orbiters. 

 
 

Figure 11 The original Tesselator robot 
 
The Space Shuttle was covered with several types of heat-resistant tiles that protected the orbiter’s 

aluminum skin during the heat of reentry. While the majority of the upper surfaces were covered with 
flexible insulation blankets, the lower surfaces were covered with silica tiles. These tiles had a glazed 
coating over soft and highly porous silica fibers. The tiles were 95 percent air by volume, which made 
them extremely light but also made them capable of absorbing a tremendous amount of water. Water in 
the tiles caused a substantial weight problem that could adversely affect launch and orbit capabilities for 
the shuttles. Because the orbiters could be exposed to rain during transport and on the launch pad, the 
tiles had to be waterproofed. This task was accomplished through the use of a specialized hydrophobic 

 
12 K. Dowling, R. Bennett, M. Blackwell, T. Graham, S. Gatrall, R. O’Toole, and H. Schempf. A mobile robot system 
for ground servicing operations on the Space Shuttle, Cooperative Intelligent Robots in Space, SPIE, November 
1992. 
13 Israel Navarro, Kristina Lundqvist, and Nancy Leveson. An Intent Specification Model for a Robotic Software 
Control System, 20th DASC (Digital Avionics Systems Conference), 2001. The paper can be downloaded from: 

http://sunnyday.mit.edu/papers/dasc-maps.pdf 

http://sunnyday.mit.edu/papers/dasc-maps.pdf
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chemical, DMES, which was injected into each tile. There were approximately 17,000 lower surface tiles 
covering an area that was roughly 25m × 40m. 

In the standard process, DMES was injected into a small hole in each tile by a handheld tool that 
pumped a small quantity of chemical into the nozzle. The nozzle was held against the tile and the 
chemical was forced through the tile by a pressurized nitrogen purge for several seconds. It took about 
240 hours to waterproof the tiles on an orbiter. Because the chemical is toxic, human workers had to 
wear heavy suits and respirators while injecting the chemical and, at the same time, maneuver in a 
crowded work area. One goal for using a robot to perform this task was to eliminate a very tedious, 
uncomfortable, and potentially hazardous human activity. 

The tiles also had to be inspected. A goal for the CMU Tesselator and later for our TTPS was to 
inspect the tiles more accurately than the human eye and therefore reduce the need for multiple 
inspections. During launch, reentry, and transport, a number of defects could occur on the tiles in the 
form of scratches, cracks, gouges, discoloring, and erosion of surfaces. The examination of the tiles 
determined if they needed to be replaced or repaired. The typical procedures involved visual inspection 
of each tile to see if there was any damage and then assessment and categorization of the defects 
according to detailed check-lists. Later, work orders were issued for repair of individual tiles. 

Like any design process, creation of a conceptual architecture starts with identifying the goals for 
the system and the constraints under which the system must operate. The high-level goals for the TTPS 
were to: 

1.  Inspect the thermal tiles for damage caused during launch, reentry, and transport 
2.  Apply waterproofing chemicals to the thermal tiles 

     Environmental constraints (ECs) delimited how these goals could be achieved and identifying those 
constraints, particularly the safety constraints, is an early goal in conceptual architecture design. The 
environmental constraints in this case stemmed from physical properties of the Orbital Processing 
Facility (OPF) at Kennedy Space Center, such as size constraints on the physical system components and 
the necessity of any mobile robotic components to deal with crowded work areas and for humans to be 
in the area. Example work area environmental constraints for the TTPS are: 

EC1:  The work areas of the Orbiter Processing Facility (OPF) could be very crowded. The facilities 
provides access to all areas of the orbiters through the use of intricate platforms that were 
laced with plumbing, wiring, corridors, lifting devices, and so on. After entering the facility, the 
orbiters were jacked up and leveled. Substantial structure then was moved into place so that it 
surrounded the orbiter on all sides and at all levels. With the exception of the jack stands that 
supported the orbiters, the floor space directly beneath the orbiter was initially clear but the 
surrounding area could be very crowded. 

EC2:  The mobile robot had to enter the facility through personnel access doors 1.1 meters (42″) 
wide. The layout within the OPF allowed a length of 2.5 meters (100″) for the robot. There 
were some structural beams whose heights were as low as 1.75 meters (70″), but once under 
the orbiter the tile heights ranged from about 2.9 meters to 4 meters. The compact roll-in 
form of the mobile system had to maneuver these spaces and also raise its inspection and 
injection equipment up to heights of 4 meters to reach individual tiles while still meeting a 1-
millimeter accuracy requirement. 

EC3:  Additional constraints involved moving around the crowded workspace. The robot had to 
negotiate jack stands, columns, work stands, cables, and hoses. In addition, there were 
hanging cords, clamps, and hoses. Because the robot might cause damage to the ground 
obstacles, cable covers were used for protection and the robot system had to traverse these 
covers. 
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Other system design constraints on the TTPS included: 

DC1: Use of the TTPS must not negatively impact the flight schedules of the orbiters more than that   
of the manual system being replaced. 

DC2: Maintenance costs of the TTPS must not exceed x dollars per year. 
DC3: Use of the TTPS must not cause or contribute to an unacceptable loss (accident) as defined by 

Shuttle management. 

The prioritized losses associated with the Shuttle and the Thermal Tile Processing System (TTPS) are 
defined to be (for this example): 

A-1 Level 1 
A1-1: Loss of the orbiter and crew (for example, due to inadequate thermal protection). 
A1-2: Loss of life or serious injury in the processing facility. 

A-2 Level 2  
A2-1: Damage to the orbiter or to objects in the processing facility that results in delay of a 

launch or in a loss greater than x dollars. 
A2-2: Injury to humans requiring hospitalization or medical attention and leading to long-term 

or permanent physical effects. 
A-3 Level 3 

A3-1: Minor human injury (does not require medical attention or requires only minimal 
intervention and does not lead to long-term or permanent physical effects. 

A3-2: Damage to orbiter that does not delay launch and results in a loss of less than x dollars. 
A3-3: Damage to objects in the processing facility (both on the floor or suspended) that does not 

result in a delay of a launch or a loss of greater than x dollars. 
A3-4: Damage to the mobile robot. 

[Assumption: It is assumed that there is a backup plan in place for servicing the thermal 
tiles in case the tile processing robot has a mechanical failure and that the same backup 
measures can be used in the event the robot is out of commission due to other reasons.] 

 
The hazards for this system can be defined as: 

H1: Violation of minimum separation between the robot mobile base and objects (including the 
orbiter and humans) [A1-2, A2-1, A3]. 

H2: Unstable robot base [A1-2, A2-1, A3]. 
H3: Movement of the robot causing injury to humans or damage to the orbiter [A1-2, A2-1, A3]. 
H4: Conditions that could lead to damage to the robot [A3-4]. 
H5: Conditions that could lead to fire or explosion [A1-2, A-2, A-3]. 
H6: Contact of human with DMES waterproofing chemical [A2-2, A3-1]. 
H7: Inadequate orbiter thermal tile protection [A1-1]. 

 
These very high-level hazards will be refined using STPA. Then the STPA results will in turn be used to 
refine and analyze the conceptual architecture (design) alternatives. 

After the hazards are identified, system-level safety-related requirements and design constraints are 
derived from them. As an example, for hazard H7 (inadequate thermal protection), a system-level safety 
design constraint is that the mobile robot processing must not result in any tiles being missed in the 
inspection or waterproofing process. More detailed design constraints will be generated during the 
conceptual architecture development process as more details are learned about the inspection and 
waterproofing processes. 

To get started, an initial system conceptual architecture must be selected (figure 12). Let’s assume 
that the initial TTPS architecture consists of a mobile base on which tools will be mounted, including a 
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manipulator arm that performs the processing and contains the vision and waterproofing tools. This 
very early decision may be changed after the safety-guided design process starts, but some basic initial 
assumptions are necessary to get going: As the concept development and design process proceeds, 
information generated about hazards and design tradeoffs may lead to changes in the initial 
configuration. Alternatively, multiple design configurations may be considered in parallel. 

 
 

Figure 12. Initial Conceptual Architecture. To avoid clutter, the responsibilities 
                 for each component, the control commands, and feedback are omitted  
                 here but will need to be documented. 

 
In the initial candidate conceptual architecture, a decision is made to introduce a human operator to 

supervise robot movement as so many of the hazards are related to movement. At the same time, it 
may be impractical for an operator to monitor all the activities so the first version of the system 
architecture assigns the TTPS control system the responsibility for non-movement activities and 
assumes both the TTPS and the control room operator will share control of movement. The conceptual 
architecture development process, using STPA, will identify the implications of this decision and will 
assist in analyzing the allocation of tasks to the various components to determine the safety tradeoffs 
involved. It is important that the rationale and assumptions underlying all these decisions are carefully 
documented. Again, an Intent Specification using a conceptual architecture at the system design level 
could be used to accomplish this goal.  

There is also an automated robot work planner in the initial conceptual architecture that generates 
the overall processing goals and tasks for the TTPS. A location system is needed to provide information 
to the movement controller about the current location of the robot. A camera is used to provide 
information to the human controller, as the control room will be located at a distance from the orbiter. 
The role of the other components should be obvious. 

The proposed architecture has two potential movement controllers, so this provides a goal for the 
conceptual designers to identify and eliminate potential coordination problems, which is a common 
cause of hazards. In this example, the operator could control all movement, but that may be considered 
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impractical given the processing requirements and human factors issues, or the robot controller could 
be assigned this responsibility. To assist with this decision process, engineers may perform a human task 
analysis using the concept of operations (assumed to have been created before the architectural design 
process is started) and other information available about the proposed system.  

The conceptual architecture development process, including STPA, will identify the implications of 
the basic decisions in the candidate tasks and will assist in analyzing the allocation of tasks to the various 
components to determine the safety tradeoffs involved. 

The conceptual architecture analysis process is now ready to start. Using the information already 
specified, particularly the general functional responsibilities assigned to each component, designers will 
identify potentially hazardous control actions by each of the system components that could violate the 
safety constraints, determine the causal factors that could lead to these hazardous control actions, and 
prevent or control them in the conceptual architecture design. The process thus involves a top-down 
identification of scenarios in which the safety constraints could be violated. The scenarios can then be 
used to guide more detailed conceptual design decisions. 

In general, the conceptual design process involves first attempting to eliminate the hazard from the 
design and, if that is not possible or requires unacceptable tradeoffs, reducing the potential for the 
hazard to occur, reducing the negative consequences of the hazard if it does occur, and implementing 
contingency plans for limiting damage.  

Chapter 9 of Engineering a Safer World contains information about designing a control structure for 
safety, particularly when human controllers are included. Too often, detailed architectures and designs 
are created without adequate consideration of the role of human controllers in the system. The 
resulting design then has to rely on operator training, following written procedures, and not making 
natural human mistakes. Designing for human control from the beginning creates the potential for 
designing to reduce common types of human error such as mode confusion.  The new conceptual 
architecture phase is a good time for a human-centered design process to commence.  

As design decisions are made, STPA-based hazard analysis is used to inform these decisions. Early in 
the system design process, little information is available, so the hazard analysis will be very general. It 
will be refined and augmented as additional information emerges through the system design activities. 

For the example, let’s focus on the robot instability hazard. The first goal should be to eliminate the 
hazard in the physical (controlled) system design. One way to eliminate potential instability is to make 
the robot base so heavy that it cannot become unstable, no matter how the manipulator arm is 
positioned. A heavy base, however, could increase the damage caused by the base coming into contact 
with a human or object or make it difficult for workers to manually move the robot out of the way in an 
emergency situation. An alternative solution is to make the base long and wide so the moment created 
by the operation of the manipulator arm is compensated by the moments created by base supports that 
are far from the robot’s center of mass. A long and wide base could remove the hazard but may violate 
the environmental constraints in the facility layout, such as the need to maneuver through doors and in 
the crowded OPF. 

The environmental constraint EA2 above implies a maximum length for the robot of 2.5 meters and 
a width no larger than 1.1 meter. Given the required maximum extension length of the manipulator arm 
and the estimated weight of the equipment that will need to be carried on the mobile base, a 
calculation might show that the length of the robot base is sufficient to prevent any longitudinal 
instability, but that the width of the base is not sufficient to prevent lateral instability. 

If eliminating the hazard is determined to be impractical (as in this case) or not desirable for some 
reason, the alternative is to identify ways to control it. This new decision to try to control it may turn out 
not to be practical or later may seem less satisfactory than increasing the weight (the solution earlier 
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discarded). All decisions should remain open as more information is obtained about alternatives and 
back-tracking is an option. 

At the initial stages in design, we identified only the general hazards—for example, instability of the 
robot base and the related system design constraint that the mobile base must not be capable of falling 
over under worst-case operational conditions. As design decisions are proposed and analyzed, they will 
lead to additional refinements in the hazards and the design constraints. 

For example, a potential solution to the stability problem is to use lateral stabilizer legs that are 
deployed when the manipulator arm is extended but must be retracted when the robot base moves. 
Let’s assume that a decision is made to at least consider this solution. That potential design decision 
generates a new refined hazard from the high-level stability hazard (H2): 

 
H2.1:  The manipulator arm is extended while the stabilizer legs are not fully extended. 
 
Damage to the mobile base or other equipment around the OPF is another potential hazard 

introduced by the addition of the legs if the mobile base moves while the stability legs are extended. 
Again, engineers would consider whether this hazard could be eliminated by appropriate design of the 
stability legs. If it cannot, then that is a second additional hazard that must be controlled in the design 
with a corresponding design constraint that the mobile base must not move with the stability legs 
extended. 

There are now two new refined hazards that must be translated into design constraints: 
    1.  The manipulator arm must never be extended if the stabilizer legs are not fully extended. 
    2.  The mobile base must not move with the stability legs extended. 
STPA can be used to further refine these constraints and to evaluate the resulting designs. In the 

process, the control  structure will be refined and perhaps changed. In this case, a controller must be 
identified for the stabilizer legs, which were previously not in the design. As a starting point, let’s 
assume that the legs are controlled by the TTPS movement controller (Figure 13). Alternatively, there 
could be a separate leg controller. However, leg extension and retraction are so intimately connected to 
movement in this design, we might decide to group these functions in a single controller. 
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Figure 13. A refined control structure for the TTPS with stabilizer legs added. 
 

Using the augmented control structure, the remaining activities in STPA are to identify potentially 
hazardous control actions by each of the system components that could violate the safety constraints, 
determine the causal factors (scenarios) that could lead to these hazardous control actions, and prevent 
or control them in the conceptual architecture. The process thus involves a top-down identification of 
potentially hazardous scenarios so that they can be used to guide more detailed design decisions. 

The refined hazards for the system components are at this point:  
H1: Arm extended while legs retracted 
H2: Legs extended during movement  

The control actions for this part of the design are shown in Figure 14 along with the UCAs. Here a little 
more detail about the control of the leg, which may be part of the movement controller or controlled by 
the movement controller (a decision will be made based on the identified hazards and causal scenarios) 
is shown.  
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Control 
action 

Not Provided Provided Early/late/wrong 
order 

Stopped too soon 

Extend legs Legs not extended 
before arm extended 

H1 

Extend legs during 
movement 

H2 

Extend arm before 
legs extended 

H1 

Stop before legs 
fully extended  

H1 

Retract 
legs 

Legs not retracted 
before movement  

                 H2 

Retract legs while 
arm extended 

H1 

Retract legs before 
arm fully stowed 

H1 

Stop while legs still 
partially extended  

H1 

 

Control 
action 

Not Provided Provided Early/late/wrong 
order 

Stopped too soon 

Extend arm (tile processing 
hazard) 

Extend arm when 
legs retracted 

H1 

Extend arm before 
legs fully extended 

H1 

(tile processing 
hazard) 

Retract 

arm 

Not retracted before 
movement starts 

H2 

(tile processing 
hazard) 

(tile processing 
hazard) 

Stop before arm 
fully stowed and 
movement starts or 

legs retracted 

H1 H2 

 
Figure 14. Part of the STPA Analysis 

 

Combining similar entries for H1 in the table leads to the following unsafe control actions by the leg 
controller with respect to the instability hazard: 

1.  The leg controller does not command a deployment of the stabilizer legs before the arm is 
extended. 

2.  The leg controller commands a retraction of the stabilizer legs before the manipulator arm is 
fully stowed. 

3.  The leg controller commands a retraction of the stabilizer legs after the arm has been extended 
or commands a retraction of the stabilizer legs before the manipulator arm is stowed. 

4.  The leg controller stops extension of the stabilizer legs before they are fully extended. 

A potential unsafe control action by the arm controller is: 

1.  The arm controller extends the manipulator arm when the stabilizer legs are not extended or 
before they are fully extended. 

     The inadequate control actions can be restated as system safety constraints on the controller 
behavior (whether the controller is automated or human): 

1.  The leg controller must ensure the stabilizer legs are fully extended before arm movements are 
enabled. 

2.  The leg controller must not command a retraction of the stabilizer legs when the manipulator 
arm is not in a fully stowed position. 
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3.  The leg controller must command a deployment of the stabilizer legs before arm movements are 
enabled; the leg controller must not command a retraction of the stabilizer legs before the manipulator 
arm is stowed. 

4.  The leg controller must not stop the leg extension until the legs are fully extended. 

Similar constraints will be identified for all hazardous commands: for example, the arm controller 
must not extend the manipulator arm before the stabilizer legs are fully extended. 

These system safety constraints might be enforced through physical interlocks, human procedures, 
and so on. Using STPA to identify the causal scenarios for unsafe control actions provides valuable 
information during conceptual and later detailed design (1) to evaluate and compare the different 
design choices, (2) to design the controllers and design fault tolerance features for the system, and (3) 
to guide the test and verification procedures and training for human controllers. As design decisions and 
safety constraints are identified, the functional specifications for the controllers can be created. 

To produce detailed scenarios for the violation of safety constraints, the control structure is 
augmented with process models and feedback. The preliminary design of the process models comes 
from the information necessary to ensure the system safety constraints hold. For example, the 
constraint that the arm controller must not enable manipulator movement before the stabilizer legs are 
completely extended implies there must be some type of feedback to the arm controller to determine 
when the leg extension has been completed. 

As more information is obtained from the hazard analysis and causal scenarios, the original 
conceptual architecture may be altered to minimize safety-critical fault tolerance and communication 
requirements. For example, at this point the need for the process models of the leg and arm controllers 
to be consistent and the communication required to achieve this goal may lead the designers to decide 
to combine the leg and arm controllers (Figure 15). This architectural decision is not one that might be 
considered by the designers without the information provided by STPA, but it turns out to save much 
effort (both development and verification) and reduce risk by eliminating many plausible and common 
causal scenarios for unsafe control. 
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Figure 15. Combining the movement and arm control 
 
Using the causal scenarios generated by STPA for the stability hazard, it is clear that feedback about 

the position of the legs is critical to ensure that the process model of the state of the stabilizer legs is 
consistent with the actual state. The movement and arm controller cannot assume the legs are 
extended simply because a command was issued to extend them. The command may not be executed 
or may only be executed partly. One possible scenario, for example, involves an external object 
preventing the complete extension of the stabilizer legs. In that case, the robot controller (either human 
or automated) may assume the stabilizer legs are extended because the extension motors have been 
powered up (a common type of design error). Subsequent movement of the manipulator arm would 
then violate the identified safety constraints. Just as the analysis assists in refining the component safety 
constraints (functional requirements), the causal analysis can be used to further refine those 
requirements and to design the control algorithm, the control loop components, and the feedback 
necessary to implement them. 

Many of the causes of inadequate control actions are so common that they can be restated as 
general design principles for safety-critical control loops. The requirement for feedback about whether a 
command has been executed in the previous paragraph is one of these. Others result from having 
multiple controllers (as in this case) over the controlled system. More general design principles for 
safety can be found in Chapter 9 of Engineering a Safer World and Chapters 16 and 17 in Safeware. 

To summarize, hazard analysis using STPA will identify application-specific safety design constraints 
that must be enforced by the control algorithm. For the thermal-tile processing robot, a safety 
constraint identified above is that the manipulator arm must never be extended if the stabilizer legs are 
not fully extended. Causal analysis can identify specific causes for the constraint to be violated and 
design features can be created to eliminate or control them in the conceptual architecture. 
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More general principles of safe control algorithm functional design can also be identified by using 
the general causes of accidents as defined in STAMP, general engineering principles, and common 
design flaws that have led to accidents in the past. 

Accidents related to software or system logic design almost always result from incompleteness and 
unhandled cases in the functional design of the controller. This incompleteness can be considered a 
requirements problem. Some requirements completeness criteria were identified in Safeware and 
specified using a state machine model. Those criteria plus additional design criteria are translated into 
functional design principles for the components of the control loop, again in Chapter 9 of Engineering a 
Safer World. 

 

Example 2: Generating an Architecture for Tethered UAVs 
The second example demonstrates a more complex design and how the STPA results can be used in 

the conceptual architecture development process and to assist in design/architectural tradeoffs. The 
example comes from a master’s thesis by David Horney in the MIT Aeronautics and Astronautics Dept.14  

The example involves an Army hypothetical light military transport aircraft. It must be capable of 
carrying fourteen combat troops into battle in full gear. Each soldier will weigh approximately 350 
pounds with their gear. The aircraft must also be capable of transporting a payload of 15,000 pounds 
over a range of 800 nautical miles without outside support. It must be able to deliver troops and cargo 
to remote bases and land on unimproved runways with short take-off and landing (STOL) capability. All 
fourteen troops must be able to unload with their gear in 60 seconds. Finally, the aircraft must be able 
to travel in a tethered formation. A single crew must be able to control three aircraft from takeoff to 
landing at improved airports with instrument landing system (ILS) capabilities. 

The mishaps for this example are defined as: 

M-1: Serious injury or fatality to personnel 
M-2: Loss of or damage to the aircraft or equipment on the aircraft 
M-3: Inability to complete the mission 

These are the preliminary, most general mishaps focused on designing the aircraft to operate safely. 
Later in conceptual development, other mishaps related to operations and specific missions and 
capabilities can be added as the CONOPS is refined.  

The high-level hazards are shown below. 
 

Hazard Constraint 

H1: Violation of minimum separation standards 
(M1, 2, 3)   

The aircraft must maintain minimum separation 
from potential sources of collision. 

H2: Inability to control the aircraft (M1, 2, 3) 
 

The aircraft must be controllable by the pilot or 
piloting function in an OPV (optionally piloted 
vehicle) at all times.  

 
14 David Craig Horney, Systems-Theoretic Process Analysis and Safety-Guided Design of Military Systems, 

Aeronautics and Astronautics Dept., MIT, 2017. This thesis can be obtained from the MIT Library or from 
http://sunnyday.mit.edu/horney-thesis.pdf . The latter is a list (with hyperlinks) of recent STAMP-related 
publications including many papers and theses on STAMP and it’s tools and showing examples of STPA and CAST in 
a variety of application areas. 

. 

http://sunnyday.mit.edu/horney-thesis.pdf
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H3: Loss of airframe integrity (M1, 2, 3) Airframe integrity must not be lost during flight. 

 
 
Figure 16 shows the high-level conceptual architecture for the piloted aircraft. The management and 

higher-level control structure is omitted here, but including the higher management and social levels of 
the control structure in the system conceptual development process will allow including considerations 
that go beyond the aircraft itself, such as the chain of command.  

From this high-level system architecture, more detailed models of different aircraft functions will be 
created (not shown here). The general constraints and design recommendations resulting from the STPA 
analysis are also not included here. Instead, an example is presented that shows how tradeoffs in 
architectural design might be analyzed and resolved. The example involves tethering capability. The 
example makes some assumptions: (1) the lead aircraft and its tethered counterparts will travel 
together in formation and (2) a single software-enabled controller is primarily responsible for executing 
the tethering mission in each aircraft. Changes in these assumptions will simply change the reasoning 
involved in the architectural decisions. 
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Figure 16. High-level conceptual architecture for the piloted aircraft 
 
Figure 17 shows the high-level architecture for the PIC lead aircraft and the software-controlled 

aircraft. There is no assumption, in this initial conceptual architecture, that the piloted aircraft will 
control the software-controlled aircraft. As the conceptual architecture is refined using the results of 
STPA, such high-level control assumptions may change.  

Different formations of the aircraft will be used in different phases of flight and circumstances. 
Some formations make the group more defensible while others increase fuel efficiency. Transition 
through all the phases of flight also requires different formations throughout a mission. In this example, 
the controller that implements the command to set a formation shape will vary. Two candidate 
conceptual architectures are considered here. In architecture one, the human pilot in command (PIC) 
determines the formation shape from the lead aircraft while the tethered aircraft are responsible for 
implementing the command by maintaining their position in the specified formation. In the alternative 
architecture, the tethered aircraft will determine the optimal formation shape based on present 
conditions and the current phase of flight. 

 



39 
 
 

 
 

Figure 17.  Conceptual architecture for the piloted and tethered aircraft. 
 

Without getting into details, the primary difference in these two alternatives is which controller is 
responsible for the control action “Set Formation Shape,” the PIC in the Lead Aircraft or the tethered 
aircraft (the Main Tethering Software-Enabled Controller). This is, of course, a major architectural 
decision and will be difficult to change later in development. The conceptual architect would consider 
the unsafe control actions and causal scenarios for the two choices. While some of the causal scenarios 
are similar between the two potential architectures, others are unique. See David Horney’s thesis for 
the detailed STPA analysis.  

How should the decision about who to make responsible for the Set Formation Shape command be 
made? Horney notes that the architecture with the tethered aircraft setting the formation shape has 
two more unsafe control actions that can lead to the associated hazards. This result comes from the fact 
that responsibility resides in multiple controllers. Unless one of the tethered vehicles is specifically 
designated to choose the formation shape, the second architecture relies on the agreement of multiple 
entities to issue the control action. While this appears to provide some fault tolerance (redundancy), it 
also can lead to important control and safety problems, which are identified by STPA. 

In addition, the lead PIC is still ultimately responsible for the safety of the formation and must be 
informed of the decision: The PIC must know how the formation plans to follow his lead in order to 
make appropriate piloting decisions. The presence of additional hazardous states does not necessarily 
mean that the second architecture is more dangerous than the first; it simply means that designers will 
have to consider additional factors during design to assure the safety of the system. 

In some cases, an architecture can have a large number of hazards that can easily be mitigated. 
Other architectures with fewer hazards could still be more dangerous if the fewer paths to unsafe 
control cannot be easily prevented or the effects mitigated. In this case, delegating the responsibility to 
set the formation shape to the tethered vehicles could decrease the workload for the PIC and thus make 
the mission safer as long as the implementation is carefully thought through and the relevant hazards 
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are addressed. Careful comparison and decision making will likely require considering the updating 
requirements for the process models of the system controllers, situational awareness, feedback 
requirements, security concerns, workload (particularly for the humans), software development 
requirements, etc.  

The bottom line is that this complex decision making should occur in the conceptual architecture 
stage and not be performed at the same time as, or worse, after, the logical/physical architecture is 
being designed. This procedure allows a separation of concerns, i.e., deal with separate aspects of a 
difficult problem separately, where a structured decision process can lead to a better and more 
thoroughly considered design. Important decisions need to be disentangled from decisions about the 
implementation of those decisions, one of the basic principles of design presented earlier. Examples of 
important decisions needing to be made at the conceptual level are high-level system architectural 
tradeoffs, assignment of tasks to humans or to automation, where in the control structure decisions 
should be made and how to assign responsibilities to controllers, critical information that needs to be 
provided to each controller, mental/process models and preventing basic problems like mode confusion 
or general situational awareness problems, i.e., designing to assist humans in better decision making, 
and optimizing communication requirements.  

 

Example 3: Manned-Unmanned Aircraft Teaming  
The third example also involves teaming of manned and unmanned aircraft. The analysis was done 

by Jeremiah Robertson in his MIT Master’s thesis.15 I have reproduced here some of the modeling and 
analysis he produced. The previous examples were focused on showing how to create the conceptual 
architecture. The purpose of this example is to show the difference between starting with an STPA 
conceptual architecture versus an architecture that is not generated directly from specific system 
requirements. 

Manned-Unmanned Teaming (MUM-T) describes a system where a controller (human, software, 
etc.) works together with unmanned systems. The primary motivation for such a platform is that 
missions can be completed by unmanned systems while the manned system provides guidance and 
oversight. The goal is to combine the strengths of manned and unmanned platforms to increase 
situational awareness in operations that include combat support and intelligence, surveillance, and 
reconnaissance (ISR) missions.  

Several groups have provided generic architectures for MUM-T. Each define a decomposed set of 
functional components and their interactions. Differences exist between the functions and general data 
connections in these architectures. For example, one may use a central database to send and receive 
messages while others might use multiple servers that exchange temporary memory depending on a 
UVA’s location. Each of the architectures was designed for specific and different payloads, mission sets, 
and communication capabilities. Therefore, trying to use one of these generic architectures for a 
particular MUM-T mission can result in greater costs and schedule delays than designing and building a 
MUM-T architecture from scratch. None was designed while considering safety and security 
requirements so verifying these properties may be very difficult. Here is where a conceptual MUM-T 
architecture can come into the picture.  

It is useful to look at some of the MUM-T architectures (often called UAV Swarm architectures) that 
have been developed to see how they differ from a general MUM-T conceptual architecture.  

 
15  Jeremiah Robertson, Systems Theoretic Process Analysis Applied to Manned-Unmanned Teaming, Masters 
Thesis, Aeronautics and Astronautics Department, MIT, January 2019. 
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Johns Hopkins University Applied Physics Laboratory (JHU APL) developed an architecture for simple 
surveillance missions that allows the UAVs to take off and land, as well as select targets autonomously 
(Figure 18). 

 

 
Figure 18. The JHU APL swarming modular architecture 

 
MIT Lincoln Lab (MIT LL) developed software and data services for a UAV swarm with the goal of 

information sharing by UAVs for a variety of environments such as oceanic flight, international airspace, 
tactical operations, etc. (Figure 19). 
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Figure 19. The MIT LL Reference Service-Oriented Architecture 

 
A third example was produced by the Technical University of Catalonia in Barcelona, Spain. Their 

service-oriented architecture focuses on three primary services: flight services, mission/payload, and 
“awareness.” The latter service monitors the surroundings and takes over the management of the flight 
when there are critical conditions, such as terrain and meteorological conditions. This architecture, 
shown in Figure 20, was instantiated for an example involving the mission of fighting wildfires. 

Figure 21 shows the aerostack architecture created by a group headed by Molina at the University 
of Catalonia. A primary goal of this architecture was to generate a communication layer that is separate 
from the sensors, processing, etc. If the communication layer becomes corrupt, the other layers can still 
function independently. 

As a final example, the Rand Corporation developed an architecture for UAVs to improve 
interoperability, provide greater autonomy to the UAVs, and allow for cooperative behaviors for 
teaming to perform complex missions in extreme environments. Rand analyzed the previously published 
architectures such as the ones developed by JHU APL and MIT LL in order to develop a set of essential 
modular components that would support multiple levels of autonomy. 

None of these architectural designs started with a set of specific requirements. A set of assumptions 
about the swarm behavior was instead used, such as flying at varying altitudes, etc. According to 
Robertson, decisions were made on the basis of the designers’ expertise and understanding of previous 
designs developed by other groups. In addition, each of these architectures applied to a specific mission 
scope and not all potential missions.  

In contrast, Robertson applied STPA to create a generic MUM-T conceptual architecture to satisfy 
the requirements for the general design of a swarm architecture that is safe when coordinating with a 
manned aircraft.  
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Figure 20. Example of University of Catalonia High-Level System Architecture for Wildfires 

 
 

 
 

Figure 21. Main Components and Layers of the Aerostack Architecture 
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Figure 22. The RAND Corporation Recommended UAV Architecture 

 
Robertson did not think of his analysis as producing a conceptual architecture but instead as 

producing general safety and security requirements for MUM-T. But the resulting model can be used in 
conceptual architecture development none the less. The very general requirements he generated can be 
refined into more specific requirements and constraints depending on the particular mission, etc. and 
used to create a conceptual architecture or perhaps multiple ones. 

In contrast to the other generic swarm architectures described above, STPA is applied to MUM-T to 
identify safety and security requirements for an entire system including the software (automation), 
manned aircraft, ATC, a Ground Station, and more.  

In the specific analysis performed by Robertson, a manned aircraft is used as the Team or Flight 
Lead.  Few, if any, changes are needed to make the Team Lead an aircraft with the pilot on the ground 
instead of airborne, although this decision opens up the potential for more causal scenarios that would 
need to be considered in the conceptual architecture. The system includes a Crew Chief (CC), Air Traffic 
Control (ATC), Mission Planners (MP), an Autonomous Controller (AuC), and a Ground Station (GS). The 
Crew Chief acts as the head of tactical aircraft maintainers, coordinates the aircraft's care, and calls in 
specialists (like avionics or propulsion technicians) when a problem is found. Air Traffic Control provides 
coordination between aircraft to prevent air and ground collisions. The Mission Planners provide 
mission updates and prepare human pilots during the brief. Finally, the Ground Station provides tactical 
coordination for changing targets or locations and may also control unmanned systems when necessary 
using remote pilots.  

The Ground Station is assumed to include remote pilots that can perform LOS (line of sight) or BLOS 
(beyond line of sight) control of the aircraft. There is no distinction between remote pilots at different 
locations because they are performing the same control actions. Finally, the Autonomous Controller 
actuates the UAV(s) hardware based on commands from the Team Lead or the Ground Station. For the 
STPA analysis at this point in development, the details of the autonomous controller are irrelevant. The 
location or decision-making capabilities do not change the early analysis. Whether it uses machine 
learning or not, whether it is on multiple aircraft or on one aircraft or on the ground does not make a 
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difference. The basis for the early STPA analysis is that the autonomous controller is implementing 
commands from the Ground Station and Team Lead by actuating hardware on the UAV(s).  

Because the analysis was done in response to a contract with AFRL, a military environment is 
assumed but need not be. Here are the basics (mishaps and hazards) that form the foundation of 
Robertson’s analysis: 

M1: Death or injury of a person (includes ground system personnel, Team Lead, civilians, friendly 
forces, etc.) 

M2: Destruction or damage to aircraft 
M3: Non-achievement of mission 
M4: Ground property damage (either U.S. Air Force or civilian) 

 
H1: Aircraft violates minimum separation from other aircraft or terrain [M1, M2, M3, M4] 
H2: Aircraft loss of control (includes departure from stable flight) [M1, M2, M3] 
H3: Aircraft does not execute planned operations [M3] 

       H4: Aircraft departs approved airspace (where approved airspace is defined by mission planning and 
ATC) [M2, M3] 

H5: UAV fires at friendly forces [M1, M2, M4] 
H6: Team Lead fires at friendly forces [M1, M2, M4] 
 

 
 
SC-1.1: Aircraft must satisfy minimum separation requirements from other aircraft and objects [H1] 

       SC-1.2: If aircraft violates minimum separation, then the violation must be detected, and measures 
taken to prevent collision [H1] 

SC-2:    Aircraft airframe integrity must be maintained under worst-case conditions [H2] 
SC-3:    Aircraft must satisfy mission parameters [H5] 
SC-4.1: Aircraft should not depart approved airspace [H6] 

       SC-4.2:  If aircraft violates approved airspace constraint, then the violation must be detected and   
measures taken to prevent encounters with enemy or law enforcement [H6] 

SC-5.1:  UAV must not fire at friendly assets or forces [H3] 
       SC-5.2:  If a UAV violates the friendly firing constraint, then the violation must be detected and 

measures taken to prevent impact [H3] 
SC-6:     The Team Lead must not fire at friendly assets or forces [H4] 
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Figure 23 shows the difference between the conceptual architecture developed for the ground 
station and aircraft communication in STPA and the physical/logical architecture developed for the data 
link between the two, to again emphasize the difference between a conceptual architecture and a 
logical/physical one. The standard architectures start from identifying functions that are needed and 
then a connection logic. In contrast, the conceptual architecture starts from the system control 
requirements and identifies the requirements and constraints necessary for system safety, security, and 
other system properties that will need to be maintained by the physical/logical architecture. As in the 
TTPS example, the conceptual architecture can be optimized for these properties before a physical 
design is created. 

Figure 24 shows the entire control structure included in Robertson’s STPA analysis. One of the first 
things that can be seen without any analysis is that there are multiple controllers (e.g., the Team Lead 
and Ground Station) of the autonomous controller. Potential conflicting and unsafe control actions must 
be prevented in the conceptual architecture. Whereas the standard architecture development starts 
with identifying the functions that are to be included in the architecture, STPA starts from a model of 
the system as a whole that the architecture is being created to support and implement. 

Robertson identifies what requirements are necessary for air-to-air combat or ISR missions involving 
manned and unmanned aircraft. Physical/logical architectures should be designed to implement those 
requirements and constraints in a top-down system engineering process. If the STPA analysis starts at a 
very high level, few changes may be needed for different systems, i.e., the conceptual architecture can 
be reused. If a different system is envisioned and under development, the entire analysis will not need 
to be redone.  
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    Figure 23. The top structure shows the conceptual architecture for the interaction 
    between the ground station and the airport. The bottom shows the physical/logical 
    architecture for the data link. 
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Figure 24. The high-level control structure (conceptual architecture) for MUM-T 
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An example UCA table for the landing command for the UAV where the Ground Station is assigned 
control over landing: 

 

UAV 
Control 
Action 

Not providing Providing Too early/Late Applied too 
long/stopped 
too short 

Land 

Ground Station does not 
provide land command 
when the UAV is in a 
pattern and at minimum 
fuel (H1, H2) 

Ground Station provides 
land command when the 
runway is not clear (H1) 

Ground Station 
provides land command 
before the UAV 
completes the airfield 
arrival procedure (H1) 

N/A 

Ground Station does not 
provide land command 
when the UAV is at the 
airfield and other 
aircraft are trying to 
enter a pattern (H1) 

Ground Station provides 
land command when the 
UAV is above unstable 
terrain (H1) 

Ground Station 
provides land command 
after the UAV has 
already entered a 
restricted air space (H6)  

Ground Station does not 
provide land command 
when the UAV is ready 
to land (H1, H2) 

Ground Station provides 
land command when the 
UAV is in a restricted 
landing area (H6) 

Ground Station 
provides land command 
after the UAV is already 
out of fuel or is no 
longer over a safe 
landing area (H1, H2, 
H6)   
Ground Station 
provides land command 
before the UAV(s) 
complete the mission 
(H5) 

 
The UCAs lead to some example constraints on the Ground Station and Team Lead: 

• The Ground Station must provide a land command when the UAV is in a pattern at minimum 
fuel 

• The Ground Station must provide a land command before a UAV enters restricted airspace 

• The Autonomous Controller must provide attitude correction if the UAV is off course 

More specific requirements, constraints, and conceptual architecture decisions will result from the 
scenarios created for the UCAs. As an example: 

UCA: The Ground Station provides a land command before the UAV(s) complete the mission 
 
Possible requirements that follow from the scenarios for this UCA include: 

• The Ground Station must be able to verify the origin of a communication 

• The Ground Station must verify the end of mission with the Team Lead  
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• The UAV(s) must not implement a post-mission procedure until provided with authorization 
from the Team Lead or Ground Station 

• The Team Lead must provide verification to the Ground Station that the UAV(s) completed the 
mission 

• The Team Lead must provide redundant feedback to the Ground Station to verify mission 
completion 

These requirements not only assist in the design of a conceptual architecture, they can be used to 
generate verification and test requirements for later stages of development. Tracing information is 
omitted here, but in a complete analysis, these requirements would be traced back to the scenarios, 
UCA’s, and hazards they were created to address.  

Some of the scenarios and requirements may not apply for a particular system. By starting with a 
very general conceptual architecture, there is potential for reuse of the conceptual architecture in other 
systems and for enhanced interoperability. In fact, a particular physical/logical architecture may only 
implement a subset of the general conceptual architecture. Traceability of the analysis results to 
architecture features can assist with such partitioning. 

 

Generating the Physical/Logical Architecture from the Conceptual Architecture  
A detailed process for generating the physical/logical architecture from the conceptual architecture 

is a future research topic. Some steps are obvious. The essential difference in a process that includes a 
conceptual architecture development step versus the usual current approach is that analysis is 
performed to identify the requirements and best format for the physical/logical architecture rather than 
just jumping to one and assuming it will be effective. Basically, more systems analysis is performed 
before architectural decisions are made. 

There are many benefits from a process that structures the detailed architecture from an initial 
conceptual architecture. It will ease the mapping from the problem to the architecture to be used to 
solve that problem. Consideration of critical system requirements and constraints, such as safety and 
security, during development of the conceptual architecture can significantly reduce the number of later 
required changes if deficiencies in the way safety and security have been handled are discovered. The 
system should be easier to review (validate and verify), to update and maintain/evolve over time, and to 
certify. It may also be possible to design systems that are easier to operate and to train operators. 

Starting from a generic conceptual architecture, we may discover physical/logical architectures that 
are very different than today but have advantages throughout the system lifecycle. 

 

Potential Role in Certification 
One potential use for a conceptual architecture is in certification. Systems (aircraft, autos, etc.) 

today are very complex. Certifiers usually cannot understand all of the design details and the rationale 
for them. To get around this difficulty, current certification methods are based on probabilistic analysis 
to ease the certification effort. But another approach is possible that uses a conceptual architecture.  

Some of my grad students and I were involved in the certification of TCAS, a very complex system 
for that time.16  TCAS was certified before the use of probabilistic analysis in aircraft system certification 
became the standard approach. Engineers at MITRE performed a hazard analysis, but the analysis did 
not involve probabilities because the intensive software and human involvement in the system 
precluded deriving such probabilities. Qualitative scenarios were generated.  

 
16 Nancy Leveson, Mats Heimdahl, Holly Hildreth, and Jon Reese. Requirements Specification for Process-Control 
Systems, IEEE Transactions on Software Engineering, Vol 20, No. 9. September 1994, pp. 684-707. Downloadable 

from: http://sunnyday.mit.edu/papers/tcas-tse.pdf 

http://sunnyday.mit.edu/papers/tcas-tse.pdf
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In addition to the hazard analysis, a black box specification was developed using the format of the 
black box level of intent specifications and the commercial tools developed to implement intent 
specifications called SpecTRM. The language used, called RSML, has evolved over time to be much 
simpler and more straightforward, but it was satisfactory for the purpose at the time.  The most recent 
form of the specification language is called SpecTRM-RL. SpecTRM-RL is formal but also easily 
reviewable, even by non-engineers, with minimum training (less than an hour). In addition, it is 
executable.  

The government, MITRE, and my students were responsible for ensuring that the black box 
behavioral specification was safe, that is, that the scenarios identified by the fault tree analysis were 
eliminated or mitigated. The companies simply had to implement the black box specification in their 
own physical TCAS devices and convince the FAA that they had done sufficient testing and verification to 
ensure that the devices would behave in the same way as the official government behavioral 
specification. This type of verification is familiar to companies. The government, on the other hand, did 
not have to delve into the details of the various implementations and physical TCAS boxes. 

The use of a conceptual architecture might make returning to such a certification approach practical 
while eliminating the serious limitations of probabilistic analyses in systems containing humans and 
software.17 

TCAS is a long-lived system with changes in both itself and its environment over time. A conceptual 
architecture might make it easier to identify the impacts of changes in the environment, such as ADS-B 
and Reduced Vertical Separation Minimum, on safety. The changes in the conceptual architecture can 
be identified and, along with the traceability provided by STPA and the specification of design rationale 
(such as using Intent Specifications), it should be possible to recertify the system under the new 
conditions relatively easily. 

  

How a Conceptual Architecture Based on Control Satisfies the Basic Design Principles 
Use of a conceptual architecture assists in applying the design principles described earlier to systems 

where control is the primary concern. Dealing with complexity effectively requires being able to use top-
down system design principles rather than bottom-up approaches. A conceptual architecture fills a big 
gap between requirements specification (as “shall” statements) and detailed design of the 
logical/physical system architecture to implement those requirements. We cannot completely 
understand very complex problems until we start to solve them. Generating a conceptual architecture 
provides a way of creating this understanding at the beginning of the problem solution phase. That is, 
the process involves determining “what” before “how.” 

A conceptual architecture provides views of the desired system behavior and encourages thinking of 
the system as a whole and not just a combination of parts. As Curtis and his colleagues found, a critical 
factor in successful projects is the ability to understand how the system being developed fits into the 
larger encompassing system as a whole. Those responsible for implementing the system components 
can see how their part fits into the whole without getting overwhelmed with details and losing the big 
picture. 

While the process starts with the big picture, the identification of the control components and their 
subsequent analysis provides a form of “locality of Information” and the ability to consider and analyze 
components separately without having to simultaneously perform detailed design of all the system 
components at once.  

 
17 Nancy Leveson, Chris Wilkinson, Cody Fleming, John Thomas, and Ian Tracy, A Comparison of STPA and the ARP 
4761 Safety Assessment Process, MIT Technical Report, Jun 2014, downloadable from 
http://sunnyday.mit.edu/STAMP/ARP4761-Comparison-Report-final-2.pdf  

http://sunnyday.mit.edu/STAMP/ARP4761-Comparison-Report-final-2.pdf
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Abstraction is clearly involved in the conceptual architecture process. Separation of concerns is used 
along with stepwise refinement of design as the problem is better understood throughout the system 
development process. Top-down ordering of decision making is used, with details left until the overall 
high-level design is completed. Concurrent activities, such as development of test procedures can be 
performed in concert with conceptual architecture development. 

 Including human controllers in the conceptual architecture allows for integrated human-cyber-
physical design and the ability to reduce common human–automation interaction problems, such as 
mode confusion. In essence, it allows integrating the design of the hardware and software with the 
design of human–automation interaction. All the types of engineers on the project—mechanical, 
software, and human factors—can use a common model for improved communication and coordinated 
design. The conceptual architecture for the human controllers also can be used in the design of operator 
controls, displays, procedures, training, etc.  

A conceptual architecture, using the right specification language, is potentially executable although 
analysis ability and reviewability by experts should not be sacrificed for executability. Maintainability 
and evolution should be easier when the modifiers (who may not have been involved in the original 
design process) can understand the role of each component in the whole and how the components 
interact and work together to achieve the system requirements and maintain constraints on behavior. 
Companies might create proprietary conceptual architectures that apply to an entire product line and 
therefore reduce (reuse) the effort required for generating new products. 

 

Conclusions 
In many ways, there is absolutely nothing new in this paper. The techniques are all things that can 

and have been done when analyzing complex systems using STPA. But an assumption has been made in 
most of our previous papers that the control structure is created as an artifact for the STPA analysis only 
and that the results of the hazard analysis are just a set of usually English-language recommendations to 
be passed to the system designers. The control structure is not used further. We conceived of STPA and 
the control structure model as an “add on” that is done as a sideline to the regular development 
process. 

What is new here is a recognition that the control structure can serve as a conceptual architecture 
at the beginning of the process of creating a logical/physical architecture, adding additional system 
analysis to the general system engineering process. The STPA process then becomes a critical step in the 
overall system engineering process, not a side activity. The control structure, the constraints created 
from the UCAs, and the recommendations arising from the causal scenarios serve as the guiding 
requirements and constraints on the generation of the system’s detailed logical/physical architecture. 
Multiple views of the system architecture may be generated and used, such as a model of data flow 
through the system, a model of the control flow as the system operates, and a model of the physical 
components and their physical connections. But they all should derive from and be consistent with the 
system’s conceptual control architecture. 

Currently, engineers jump right into detailed logical and physical design, often with incomplete 
understanding of the requirements and constraints, especially those related to safety and security, that 
the architecture needs to satisfy. If it is later determined that there are potential safety and security 
flaws in the architecture generated, changes to achieve these critical system properties are going to be 
either enormously expensive or may be infeasible and require operational controls of limited 
effectiveness and reliability. Some upgrades may be impossible or very expensive. 

By creating conceptual architectures before concrete architectures are designed, the potential for 
designing more effective safety and security into systems from the beginning and enhancing the 
upgrade and maintenance processes is possible. Later changes simply start at the conceptual 
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architecture and identify changes in requirements and constraints that can guide and limit the effort 
involved in the upgrade process. 

This paper has argued that the general form of the architecture as a control structure is better for 
systems that are control-oriented vs. object-oriented. Solution structure should match the problem 
structure in order to make problem solving easier. Designing basic architectures as objects with 
functions assigned to them can lead to architectures for control systems that are difficult to assure and 
to change. Having the basic architecture designed as a control structure instead and using STPA for 
analysis of the evolving design and design decisions can lead to enhanced assurance and changeability. 

 

Appendix A: The Contents of a Conceptual Architecture  
      Figure 10 shows a conceptual control model for a generic control system architecture. The figure is 
repeated here to reduce needed page flipping.  
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     This model is augmented from our past models of a control structure in order to include more facets 
of an architecture. The conceptual architecture for a specific system will particularize this generic model 
into a conceptual model (abstraction) to describe the solution for a specific problem. The generic 
components in Figure 10 will correspond to the parts of your model. A description is included here of 
each of the components of the generic model along with descriptions of some of the analyses that might 
be performed. 
 
Controlled Process  

A hazard is defined in terms of the state of the controlled process at the bottom of Figure 10, e.g., 
the attitude of the aircraft, the speed of the automobile, the position of the robot. States are composed 
of components or variables. As the goal of STPA is to identify how the controlled process could get into a 
hazardous state, then we need to look at the ways the controlled process can change state. Anything 
that can change that state may potentially be part of a causal scenario for a hazard.  
 
Failures or Degradation over Time of the Controlled Process Components  

Failures of the controlled process hardware can cause it to get into a hazardous state. Changes over 
time of that hardware, such as corrosion, might make it operate differently than designed. Controls such 
as hardware interlocks may also fail or degrade in such a way that a hazardous state is created. 
Remember, the goal is not to do a FMEA, that is, to look at all possible failures and their results. Instead, 
STPA starts from hazards and determine what conditions or events in the controlled process could 
contribute to that hazardous state. As an example, let’s assume that the hazard of concern to the causal 
analysis is the loss of pitch control of an aircraft. Failure of the aircraft pitch control devices, such as the 
slats, flaps, ailerons, and elevator, could lead to the hazard. If the hazard is a lack of effective braking 
(deceleration), that may be due to insufficient hydraulic pressure (pump failure, hydraulic leak, etc.). 
However, by starting from the hazard, STPA considers only the specific failures that could lead to the 
hazard, not all failures. 
 
External Disturbances  

Disturbances to the process can lead to a hazardous state, such as lightning affecting an aircraft’s 
electrical system. Or a bird is sucked into an engine and affects the power (thrust) of the aircraft. The 
national airspace may be disrupted by weather that increases the hazardous state for individual aircraft 
currently in that airspace. The environment may interfere with the proper execution of the controlled 
process, such as inadequate braking due to a wet runway (e.g., the wheels hydroplane).  
 
Direct Inputs to the Controlled Process  

Direct inputs to the process may affect its state. For an aircraft, loading and unloading passengers or 
cargo change the weight, which can affect the controllability of the aircraft. For the national airspace, 
inputs are aircraft that enter the airspace and outputs are those that leave it. If the components of the 
controlled-process hazardous state are affected by any inputs (or outputs), then those process inputs 
and outputs must be considered in causal scenario generation.  
 
Controllers of the Controlled Process  

Clearly, the controllers of a hazardous process can potentially contribute to a hazardous state. The 
model shows the primary controllers in the blue and tan boxes. In an aircraft, these may be the human 
pilots and automated flight control system(s). Note that the model does not imply that the pilot(s) are 
physically onboard the aircraft.  
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The model in Figure 10 shows another box to the left of the controlled process that represents other 
controllers or systems that can directly impact the state of the controlled process or its components. For 
example, maintenance activities or the lack of them can contribute to hazards in physical systems. The 
impact of other automated and human controllers is described separately below.  
 
Automated Controllers  
     Only one automated controller is shown in the diagram (the blue box) although there may be several 
of these and they may be designed with more hierarchical levels. Because the model for automated and 
human controllers always have the same components, only one is shown here.  

Except in very simple systems, automated controllers provide control actions to actuators, which 
change the controlled process state. Sensors provide feedback about the current process state.  
 
Control Path from the Automated Controller to the Controlled Process through the Actuator  

This control path transfers control actions from the automated controller to the controlled process. 
The control path may consist of a simple actuator, may involve a series of actuators, or it may transfer 
control actions through a complex network with switches, routers, satellites, or other equipment. No 
matter how it is implemented (which will be determined later in the physical/logical architecture design 
process), problems along this control path can lead to hazardous controlled system states when control 
actions needed to prevent a hazard are not executed, are improperly executed, or are delayed to the 
point where they become hazardous under some conditions. Examples include actuator failure, 
transmission problems along the control path, or delays in sending or executing the control action. For 
hazards related to security flaws, an adversary may impede a control action required to prevent a 
hazard or inject a control action that leads to a hazard in the controlled process. The basic STPA analysis 
on the generic architecture will provide information about how best to design the physical control path. 
 
Feedback Path from the Controlled Process to the Automated Controller through Sensors  

As with the actuator control path, flaws in the feedback path may stem from transmission problems 
including delays, measurement deficiencies and inaccuracies, sensor failure, or other flaws related to 
sensor design or operation. Again, an adversary might negatively impact the feedback path. If a flawed 
process model in the automated controller can contribute to an unsafe control action, then the 
feedback path should be considered in the causal scenario generation. For example, data may be 
delayed to the point where it no longer reflects the current state and the controller acts on incorrect 
information. The analyst should not stop with “flawed process model” in the causal analysis generation. 
It does not provide enough information to design safeguards against the unsafe control action. Instead, 
the analyst needs to determine why the process model could be flawed. Note that the safeguards, as 
they are designed, become part of the conceptual architecture. 
 
Automated Control Algorithm  

The automated control algorithm has two primary functions: (1) generate control actions and (2) 
maintain accurate information (models) about the state of the controlled process and external system 
components and environment that can impact the generation of control actions. Flaws in either of these 
functions can lead to UCAs. These two functions must be included in the later concrete software 
architecture. While more standard software architectures could be used, alternatives might be 
considered that directly reflect the conceptual automated controller design.  Such a software design 
approach (and other changes in the software architecture to directly reflect the design of the conceptual 
architecture) could have important advantages in terms of verification of the “safety” of the software, 
i.e., consistency with the conceptual architecture and thus with the system safety requirements and 
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constraints implemented by the generic architecture, maintainability, evolvability, certifiability, etc. 
While standard software designs might be used, alternatives that are closer to the conceptual 
architecture might be considered.  

1. Generating Control Actions: The automated control algorithm may generate unsafe control actions 
due to flaws in the control algorithm itself, unsafe commands provided to the automated controller 
from an external source, or flaws in the models that the automated controller has of the controlled 
process and its environment. The causes of the latter are described in the next section.  
        STPA generates the safety requirements and constraints for the automated control algorithm. 
These must, of course, be verified to be correct. A causal factor here, then, is inadequate 
communication and verification of the operational safety requirements and constraints for the 
control algorithm.  

2. Maintaining Internal Models of the Contextual Factors Associated with UCAs: The safety of decision 
making about what control actions to perform are impacted by the correctness of the information 
that the automated controller uses to make those decisions, even if the actual automated 
algorithms satisfy the safety requirements and constraints. The automated controller uses four 
types of information in that decision making: (1) the state of the controlled process and critical 
information about its environment, (2) the state of other controllers of the controlled process, (3) 
the operational mode of the automation, and (4) the state of the human controller (in some 
sophisticated new systems). Various types of flaws in these models can lead to unsafe control 
actions by the automated controller. The context for the UCAs will contain the information about 
what flaws in the model can lead to the UCA. The scenarios will include why an unsafe control action 
might be given in that context. 

 
Model of the Controlled Process  

The model of the controlled process is the state that the automated controller thinks that the 
controlled process is in. This model may include information about the environment in which the 
controlled process is operating. The model is updated by the controller; this updating process is defined 
as a function implemented by the control algorithm in the conceptual architecture. Refinements of the 
control algorithm abstraction may separate it into separate functions, depending on the system 
requirements and constraints such as reliability and fault tolerance concerns. 

The automated control algorithm gets direct information about the controlled process state from 
sensors that are designed to measure controlled process variables. There may also be designs where the 
process model is automatically updated without going through the control algorithm. An example is the 
loading of specific flight data right before launch of the Space Shuttle. Missile systems also do this. 
Appendix B of Engineering a Safer World details a very costly accident arising from errors (typos) in a 
software flight data load.  

 If the control algorithm is separated into several pieces (such as handling of regular braking and 
automated braking), there are various ways that updating of the controlled process model may be 
flawed through unknown or unconsidered interactions among the updating actions. These cases should 
be considered when identifying scenarios that lead to UCAs. Consolidating the updating actions in one 
module in the conceptual architecture may simplify the analysis process and reduce the number and 
type of UCA causal scenarios related to updating the controlled process model. The next section of this 
paper provides examples. 

In updating the controlled-process model, the control algorithm may receive indirect information 
about the state of a controlled process or make assumptions about it. One common assumption is that 
when the control algorithm issues a control action, it may assume the action is executed and update its 
process model. For example, the Electronic Flight Control System on an aircraft issues a control 
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command for an actuator to move the elevator a certain number of degrees. It could then assume both 
that the elevator has moved and that it has moved by the specified amount. Reasons for the 
commanded movement not occurring could involve flaws in the communication links to the actuators, 
inadequate actuator operation, and failures or faults in the controlled process (the elevator itself).  

The UCA causal scenarios will include potential missing feedback about the non-execution of the 
command, including feedback not in the original conceptual architecture, or included but not received 
or not processed by the automated controller. Various types of technical design issues may also be 
involved such as latency (for example, the time between when an input is received and when it is 
processed, which will be impacted by software architecture design decisions such as the use of 
interrupts or polling). Data age problems have also led to hazards, that is, data is used that is no longer 
valid or output commands are delayed in their execution to the point where they are hazardous. The 
latter can occur because of delays in the actuation path or because of conditions in the controlled 
process. For example, on one military aircraft, a maintenance worker was working on the bomb bay 
door and activated a mechanical interlock to prevent the door from closing while he was in its path. At 
the same time, other people working in the cockpit issued a command to close the bomb bay door. The 
command did not execute (because of the mechanical interlock) until several hours later when the 
maintenance worker released the mechanical interlock. The worker was killed. By separating the 
development of the conceptual architecture from the physical/logical architecture, STPA can identify the 
potential causes of these flaws (in this case, flaws in the controlled-system process model) and the 
physical/logical architecture can later be optimized to prevent them. Essentially, harking back to the 
general design principles described earlier, separation of concerns can be used along with stepwise 
refinement of the design as the problem is better understood through the system development process. 

There are many other reasons for inconsistencies between the process model and the actual 
process state (and between models in various controllers). One possible reason is delays in updating 
process models, which can lead to inconsistencies and unsafe control actions. Preventing such delays 
needs to be a consideration in the later design of the physical/logical architecture. In initial startup, 
designers may have assumed default values that are not correct in some cases. For example, some 
aircraft automation is supposed to be powered up and initialized before takeoff. Default values are 
often provided for that case. However, if the device is started up later than takeoff under unusual 
circumstances, the default values may not hold.  

TCAS, for example, assumes that it has been started while the aircraft is on the ground and initializes 
the system with values corresponding to being on the ground. The same is true of process models for 
devices that are shut down for maintenance and restarted with perhaps an assumption that the 
controlled process state is the same as when the system was shut down. Another example is that human 
controllers may decide to restart a device when it does not appear to be working correctly. TCAS, for 
example, allows pilots to reboot TCAS in the air. The device, however, restarts with initialization values 
that may not be correct at that point in the flight. Input to update the process model may also arrive 
before the device is powered up, after shut down, or while the device is disconnected (off-line) and 
therefore may be ignored. Again, all of these considerations can be identified and handled in the 
development of the conceptual architecture and optimized in the design of the physical/logical 
architecture. 

 
Model of the Operational Modes  

The model of the operational modes may also be related to the context defined in the UCAs. There 
are four types of modes that must be considered: (1) the controlled process mode, (2) the automation 
mode, (3) the supervisory mode, and (4) the display mode.  
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1. Controlled Process Mode: The controlled process mode identifies the operating mode of the 
controlled process. For example, an aircraft (controlled process) may be in takeoff mode, landing 
mode, or cruise mode. The requisite modes to model will depend on the contexts identified for the 
UCAs. For example, if the aircraft is in cruise mode (rather than in landing mode), operation of the 
reverse thrusters can be unsafe. That context should be identified in the UCA context table (i.e., 
operation of the reverse thrusters when the aircraft is not in landing mode). The reasons (causal 
scenarios) for the UCA will be at least partially related to the automation being confused about the 
current mode of the controlled process.  

2. Basic Automation Operating Mode: In addition to the controlled process, the automation itself 
(automated controller in Figure 10) has modes of operation. Those modes will often be used in the 
logic of its control algorithm and affect its outputs. Examples include nominal (normal) behavior 
mode, shutdown mode, and fault-handling mode. As another example, the automation may be in 
partial shutdown mode after detecting a fault in itself or in the controlled process.  
     In the Air France 447 loss, the autopilot shut itself off (went into shutdown mode) when a 
pressure probe (pitot tube) on the outside of the aircraft iced over and the autopilot could no longer 
tell how fast the aircraft was moving. The fly-by-wire system, at the same time, continued operating 
but switched into a mode where it no longer provided protection against aerodynamic stall. On 
modern Airbus aircraft, operational modes of the electronic flight control system include normal, 
alternate, direct, and mechanical laws, each of which changes the behavior of the automated flight 
control system. STPA will identify the scenarios involving these modes that can lead to hazards and 
that therefore need to be considered in the conceptual architecture development. 
     Partial shutdown modes in automated controllers can also be very confusing to human 
controllers, which is covered later under the things that can go wrong with human controllers. Mode 
confusion arises when the mode of the controlled system is different than the controller thinks it is. 
Mode confusion has contributed to many accidents and must be considered when generating causal 
scenarios by STPA and in the design of the conceptual architecture.  
     In fault-handling mode, the automated controller may change its behavior because it believes 
there is a fault in the controlled process or in itself and different behavior is necessary to provide 
safe control.  

3. Supervisory Mode: This mode identifies who or what is controlling the automation at any time, 
when multiple supervisors may be in control of (provide control commands) to the automated 
controller. Basically, the supervisory mode allows coordination of control action implementation 
among multiple supervisors. For example, a flight guidance system in an aircraft may be issued 
direct commands by a human pilot or may receive commands from other system components, 
which could be either human or automation. Another example is a tethered UAV, which might 
receive commands from a pilot in the lead aircraft or from ground controllers such as ATC. While 
Figure 10 abstracts all automated controllers into one box for generality, there may be and usually is 
more than one automated controller. One controller may control multiple others in a hierarchical 
arrangement, or multiple controllers may operate in parallel, or both. This, of course, can get very 
complicated, e.g., the multiple controllers may each be supervised by different controllers, etc. All of 
this needs to be sorted out in the development of the conceptual architecture before concerns such 
as actual physical realization of the architecture are tackled. 

4. Display Mode: This mode specifies what type of information should be displayed to a human 
controller of the automated controller. The current display mode will affect both the information 
provided as well as how the user will interpret it. One of the components of the model of a human 
controller in Figure 10 is the current display mode he/she is seeing. If these display modes (in the 
human and the automation) become inconsistent, then serious problems can result, i.e., the 
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behavior on the part of one or both can lead to a system hazard. This type of mode confusion is 
called “Interface Interpretation Mode Confusion” and is described further in Chapter 9 of 
Engineering a Safer World.  
 

Model of the Human Controller  
In some systems today, a model of the state of the human controller, such as drowsiness or 

inattention, is used by the automated control algorithm to determine its behavior. Increasingly, sensors 
are being used to gauge the state of human controllers. For example, cars try to detect whether the 
driver is intoxicated or inattentive through various types of sensors that provide input to the automated 
controller. A dotted line from the sensor to the human controller is shown in Figure 10 to denote a 
design where the human gets feedback about whether the sensor is working or what the state of the 
sensed variables are (e.g., the driver’s intoxication level).  

 
Model of Other Controllers  

If the automation has multiple potential controllers, then the automation may need to have a model 
of important state variables in those controllers.  
 
Environmental Inputs  

There may be inputs from the environment that go directly to the automated controller and not 
through the human controller. For example, some automation today gets direct information about 
location from GPS. GPS location information is calculated from signals in the environment (e.g., through 
antennas) and goes into the automated controller, not through the human controller. In the newest 
aircraft, there is something called ADS-B (Automatic Dependence Surveillance), which can be used to 
communicate information between different aircraft, again without going through the human 
controller. Note that this does not include information about the state of the aircraft itself (e.g., input 
from pitot tubes) which is sent via sensors in or on the controlled process and is part of the model of the 
controlled process.  
 
Other controllers/systems  
In some complex systems today and certainly increasingly in future systems, there may be multiple 
controllers of the automation. For example, there may be the usual human control of the aircraft 
automation with perhaps some control of the aircraft automation outside the aircraft itself (usually on 
the ground but it could also reside on another aircraft to which the automated aircraft is tethered), 
which may be human or automated. The control responsibilities may be shared by different controllers.  

Figure 10 shows only one controller (in tan) and the possibility of others in a box connected to the 
automation as each of the controllers will have the same internal details.  

As mentioned when describing the operational mode, the automation may need to know what 
controller is controlling it at any time. With shared control comes the possibility of conflicting 
commands. Some confusion may result from inconsistencies between the models in the automation and 
the models in its controllers. Such confusion can lead to UCAs. The possible types of inconsistencies and 
confusion can provide important contributions to causal scenario generation and design of the 
conceptual architecture. 

 
Transmission of information between the automation and its supervisor(s)  

Human controllers transmit control commands via various types of controls and get feedback from 
the automated controller through displays. Once again, flawed transmission of information between the 
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automated controller and its controllers will be an important (although straightforward) part of the 
causal scenario and conceptual architecture generation processes.  

 
Direct changes to the automated controller that do not go through the control algorithm  

In some systems today, and certainly increasingly in future systems, the control algorithm and other 
software, as well as all the internal models used by the automation’s control algorithm may be directly 
changeable from the outside without the human controller knowing about it. For example, on some 
aircraft, new software may be updated on an aircraft over the internet without the pilot or even the 
airline’s maintenance personnel being involved (for example, the changes may originate with an OEM). 
The changes may affect both the control algorithm itself and the models used by it, such as maps and 
other information in the automated controller and indirectly (perhaps through displays) by human 
controllers. There are clearly potential safety and especially security issues here. Such changes must be 
considered when generating the contextual factors in a UCA and when designing the conceptual 
architecture.  
 
Human Controllers  

Human controllers are the most complex component of the model in Figure 10 (although system 
designers are quickly increasing the complexity of automated controllers) and thus provide some of the 
most important parts of the causal scenario and conceptual architecture generation processes. France 
has defined an extended model of human controllers.18 All the same components are in this model, but 
they are connected differently than France did. An important role for this part of the conceptual 
architecture development is to allow interaction and collaboration between human factors experts and 
hardware/software engineers. While the human controller model is obviously not “implemented” in the 
physical/logical system architecture, the model provides important information for the concrete 
architecture. It also serves as a conceptual architecture for Human–Machine Interaction and augments 
communication between the hardware/software engineers and the human factors experts so that 
integrated system design, including operators and physical system designers, can be achieved. 
Implications of identifying human controller hazardous scenarios will also impact the physical human-
machine interface design and operator training. 

There are many relevant components of the model that should be included in the conceptual 
architecture, including control action generation and mental processing and the mental models related 
to these functions.  
 
Control Action Generation/Mental Processing  

Although these two functions could be modeled as different components as France did, they have 
important interactions that can be lost in such a separation, such as inadequate updating of the mental 
models because of distraction or overload caused by other human processing functions. Therefore, they 
are combined here to assist in the generation of the conceptual architecture based on the STPA-
generated causal scenarios for human-controller UCAs about why the mental models may not be 
properly updated. This component thus has two basic functions: generating control actions and 
updating mental models.  
1. Generate control actions: Control actions are generated using information from all the models in the 

human controller noted in Figure 10 (environment, automation, and controlled process) as well as 
goals, training, written procedures, and experience. External factors will have an impact such as time 
pressure. Control action generation will be affected by commands from other controllers with which 

 
18 Megan France, Engineering for Humans: A New Extension to STPA, M.S. thesis, Aeronautics and Astronautics 
Department, MIT, June 2017. 
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the human operator interacts. For example, a pilot is partially controlled by control actions or 
information received from the airline operations center or from other controllers, such as Air Traffic 
Control or onboard instruments and systems such as TCAS (Traffic Alert and Collision Avoidance 
System).19  
     When there is unclear delineation of responsibilities for control, coordination challenges increase 
as do the causal scenarios for unsafe control actions. For example, the FAA defines the relationship 
between pilots and airline operations centers as 50/50 with respect to making some specific 
decisions related to aircraft control. Without careful delineation of responsibilities (which may be 
ultimately the responsibility of the Director of Operations for the airline), confusion about who is 
making the decisions can lead to hazards and accidents. This has happened.20 
     There are, of course, a very large number of incorrect behaviors possible during control action 
generation. The UCA generation process (the results of which are documented in the UCA tables) to 
identify the context in which control actions are unsafe, along with the process used by the human 
controller to identify the current context, will serve to limit the number of causal scenarios 
generated. During the scenario generation process, the analyst will need to determine how the 
identified context associated with the UCA could occur and why the controller might be confused 
about the current context. All of this information will be used in the design of the conceptual 
architecture.  
     The human controller can in some systems interact directly with the controlled process (shown 
by dotted lines between the human controller and the actuators and sensors and the controlled 
process) without going through the automation.  

2. Update mental models: Besides generating control actions, a major responsibility of human 
controllers is to update their mental models. Initial mental models may be created through training, 
documentation, or other experiences. Mental models are always updated through processing by the 
human mind, although some of this processing may be subconscious. Thus, there are two-way 
arrows in the model—humans both update and use information in their mental models and things 
can go wrong in both functions.  
     The information the human uses in this updating is partially obtained through the displays, 
partially through inputs from its controllers or other controllers with which it interacts (e.g., 
information transmitted from air traffic control or the airline operations center), and partially from 
direct sensory input to the controller (e.g., looking out the window and seeing a tornado 
approaching or feeling turbulence on an aircraft). For example, a pilot receives information (such as 
NOTAMs) sent from the airline operations center or from other controllers, such as Air Traffic 
Control. In some systems, the human operators have the ability to directly observe the actuators 
operating, which is depicted in Figure 10 by a dotted line from the actuator to the human controller.     
      For example, in some plants, operators may be able to walk up to the actuators and valves and 
watch them open and close to check for proper operation. As another example, pilots usually do a 
walk-around before taking off or during a pre-flight inspection they may move the controls and 

 
19 While TCAS could be considered to be an automated controller (in the middle of the hierarchical control 

structure in Figure X), pilots are required to follow TCAS resolution advisories (control commands) and thus in 
some respects TCAS controls the pilots. However, pilots can input settings for TCAS to control how it generates 
resolution advisories. As more and more functions are automated on aircraft and other systems, various types of 
“partnerships” between humans and automation will be necessary and coordination challenges will increase. 
Updates to the general conceptual architecture, shown in Figure X, may be required. 

20 Shem Malmquist, Nancy Leveson, Gus Larard, Jim Perry, and Darren Straker. Increasing Learning from Accidents: 
A Systems Approach Illustrated by the UPS Flight 1354 CFIT Accident, May 2019. Downloadable from 
sunnyday.mit.edu/UPS-CAST-Final.pdf 
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directly watch the aircraft ailerons to ensure they move in the correct direction. Human controllers 
may also receive input from the state of the controls, for example, the driver may see the steering 
wheel move on its own and assume that the automation has issued a control command related to 
steering.  
      Model updating may also be affected by the training and documentation that the human 
operator (controller) receives as well as whether any inputs or feedback are correctly perceived and 
interpreted [France]. Another subtle type of input may come from the reaction of the controls when 
the pilots operate them (shown as a dotted line in Figure 10 from the controls to the human 
controller). Operators may make assumptions about the state of the automated controller and 
controlled process based on the movement of controls, such as the movement of the control 
column on an aircraft or the steering wheel on an automated car.  

3. Interactions between updating models and generating control actions: As with automated 
controllers and their updating of their process models, there can be important interactions between 
the control generation process and the mental models of human controllers similar to those that 
were described for automated controllers. For example, if a human controller issues a command to 
“Do X,” human controllers are likely to assume that the “Do X” command has been executed by the 
Automated Controller and the actuators for the Controlled Process and unconsciously update their 
mental models about the state of the automation or the controlled process. If, in reality, the “Do X” 
command is never executed, then the process models of the human controller will be inconsistent 
with the actual state of the automation or controlled process. There can be many reasons why the 
command may not be executed, for example, it may be blocked and ignored if the automation 
considers the command to be unsafe or not possible at that point in time or there can be faults or 
failures in the controlled process.  
      This same type of flawed updating of process models was described in the section on the 
automated control algorithm. But in the case of the automation, the algorithm can be checked to 
ensure that this problem does not occur. It is more difficult to preclude this from human mental 
processing.  
     Feedback about the non-execution of the command may be provided to the human controller, 
but the human may not notice it because of distraction or other reasons.  
 

Mental Models used by Human Controllers  
Four types of mental models are identified in Figure 10 for the human controller: a model of the 

environment, a model of the state of the automation, a model of the controlled process (including 
beliefs about how the system will behave in a particular mode or stage of operation), and a model of 
other controllers. Any of these models may be inconsistent with the actual state and thus lead to unsafe 
control actions. These models have similar content and use as the same models in the automated 
controller, although the reasons for their being flawed may be quite different. The STPA-generated 
causal scenarios must include potential reasons for (causes of) dangerous inconsistencies that can give 
rise to the contextual conditions in the UCAs and these scenarios must be considered in the design of 
the conceptual architecture. 

Because the human controller is usually controlling both the automation (directly) and the 
controlled process (indirectly but in some cases directly), humans need models of the states of both.  

In order to supervise automation, humans need to have basic understanding of how the automation 
operates. Confusion about this can lead to unsafe control and losses.  

There are a large number of reasons why human mental models may be incorrect. Some of the 
same reasons given earlier for models being incorrect in automated controllers may apply. But human 
processing presents many other opportunities. We highly recommend that human factors experts be 
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part of the causal scenario generation involving human controllers. Here is a list of some (but only some) 
factors that should be considered:  

• Mode confusion is a common cause of accidents in mode-rich systems where the human is 
confused about the mode of the automation or the automation may be confused about the 
current mode of the controlled process. Mode confusion may be caused by incorrect updating in 
process models, inputs may be incorrect or delayed, updating may be delayed or the human 
controller may be informed of the mode change but does not notice or process that 
information. When automation can change the mode of the controlled process without being 
directed to do so by the human controller, mode confusion and potential unsafe control actions 
can result.  

• “Situation awareness” is commonly cited as the cause of accidents without a careful definition 
of what that term means. A large number of errors can fall into this category. Note that the 
modeling used in STPA can identify situation awareness errors as they simply mean that the 
human controller mental models do not match the real state. The conceptual architecture 
should be designed to minimize such errors. 

• Humans can easily be confused by automation that is nondeterministic or acts one way most of 
the time but in a few special cases behaves differently. Such automation also greatly increases 
training difficulties. Careful design of the conceptual architecture should be able to reduce such 
confusion as well as the other types of errors described here. 

• Some automation is programmed such that the logic can result in side effects that are not 
intended or known by human controllers. If such side effects cannot be eliminated, then they 
need to be part of pilot training if they could lead to hazardous behavior.  

• While the design of the system may include feedback to humans, there are many reasons why 
that feedback may not be noticed such as distraction or lowered alertness when monitoring 
something that rarely changes or is rarely incorrect.  

• Complacency and overreliance on automation by humans is increasingly becoming a problem in 
automated systems today.  

• Automation may fail so gracefully that the human controller does not notice the problem until 
late in the process. Humans may also think that automation is shut down or has failed when it 
has not. This type of problem has arisen when robots and humans must work in the same areas. 
The logout/tagout problem, where humans think energy is off but is actually on, leads to a large 
number of accidents in the workplace.  

This list is only meant to indicate that there are many causes that must be considered when humans 
are part of a system. It is far from exhaustive. Working with a human factors expert is recommended if 
causal scenarios need to get to this level of detail in order to be eliminated or controlled in the 
conceptual architecture.  

The design of the human controller conceptual architecture and its use in both the design of the 
human–automation interaction and the human–automation controls, training, etc. is so important and 
complex that another whole paper on this part of the conceptual architecture may be needed. 
 


