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Preface

I began my adventure in system safety after completing graduate studies in computer science and
joining the faculty of a computer science department. In the first week at my new job, I received
a call from Marion Moon, a system safety engineer at what was then Ground Systems Division
of Hughes Aircraft Company. Apparently he had been passed between several faculty members,
and I was his last hope. He told me about a new problem they were struggling with on a torpedo
project, something he called software safety. I told him I didn’t know anything about it, that I
worked in a completely unrelated field, but I was willing to look into it. That began what has been
a twenty-two year search for a solution to his problem.
It became clear rather quickly that the problem lay in system engineering. After attempting

to solve it from within the computer science community, in 1998 I decided I could make more
progress by moving to an aerospace engineering department, where the struggle with safety and
complexity had been ongoing for a long time. I also joined what is called at MIT the Engineering
Systems Division (ESD). The interactions with my colleagues in ESD encouraged me to consider
engineering systems in the large, beyond simply the technical aspects of systems, and to examine the
underlying foundations of the approaches we were taking. I wanted to determine if the difficulties
we were having in system safety stemmed from fundamental inconsistencies between the techniques
engineers were using and the new types of systems on which they were being used. I began by
exploring ideas in systems theory and accident models.
Accident models form the underlying foundation for both the engineering techniques used to

prevent accidents and the techniques used to assess the risk associated with using the systems we
build. They explain why accidents occur, that is, the mechanisms that drive the processes leading
to unacceptable losses, and they determine the approaches we take to prevent them. Most of the
accident models underlying engineering today stem from the days before computers, when engineers
were building much simpler systems. Engineering techniques built on these models, such as Failure
Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA), have been around for over 40
years with few changes while, at the same time, engineering has been undergoing a technological
revolution. New technology is making fundamental changes in the etiology of accidents, requiring
changes in the explanatory mechanisms used to understand them and in the engineering techniques
applied to prevent them. For twenty years I watched engineers in industry struggling to apply
the old techniques to new software-intensive systems—expending much energy and having little
success—and I decided to search for something new. This book describes the results of that search
and the new model of accidents and approaches to system safety engineering that resulted.
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My first step was to evaluate classic chain-of-events models using recent aerospace accidents.
Because too many important systemic factors did not fit into a traditional framework, I experi-
mented with adding hierarchical levels above the basic events. Although the hierarchies helped
alleviate some of the limitations, they were still unsatisfactory [67]. I concluded that we needed
ways to achieve a more complete and less subjective understanding of why particular accidents
occurred and how to prevent future ones. The new models also had to account for the changes in
the accident mechanisms we are starting to experience in software-intensive and other high-tech
systems. I decided that these goals could be achieved by building on the systems approach that
was being applied by Jens Rasmussen and his followers in the field of human–computer interaction.
The ideas behind my new accident model are not new, only the way they are applied. They

stem from basic concepts of systems theory, the theoretical underpinning of systems engineering
as it developed after World War II. The approach to safety contained in this book is firmly rooted
in systems engineering ideas and approaches. It also underscores and justifies the unique approach
to engineering for safety, called System Safety, pioneered in the 1950s by aerospace engineers like
C.O. Miller, Jerome Lederer, Willie Hammer, and many others to cope with the increased level
of complexity in aerospace systems, particularly in military aircraft and intercontinental ballistic
missile systems.
Because my last book took seven years to write and I wanted to make changes and updates

starting soon after publication, I have decided to take a different approach. Instead of waiting
five years for this book to appear, I am going to take advantage of new technology to create a
“living book.” The first chapters will be available for download from the web as soon as they are
completed, and I will continue to update them as we learn more. Chapters on new techniques
and approaches to engineering for safety based on the new accident model will be added as we
formulate and evaluate them on real systems. Those who request it will be notified when updates
are made. In order to make this approach to publication feasible, I will retain the copyright instead
of assigning it to a publisher. For those who prefer or need a bound version, they will be available.
My first book, Safeware, forms the basis for understanding much of what is contained in this

present book and provides a broader overview of the general topics in system safety engineering.
The reader who is new to system safety or has limited experience in practicing it on complex systems
is encouraged to read Safeware before they try to understand the approaches in this book. To avoid
redundancy, basic information in Safeware will in general not be repeated, and thus Safeware acts
as a reference for the material here. To make this book coherent in itself, however, there is some
repetition, particularly on topics for which my understanding has advanced since writing Safeware.
Currently this book contains:

• Background material on traditional accident models, their limitations, and the goals for a
new model;

• The fundamental ideas in system theory upon which the new model (as well as system engi-
neering and system safety in particular) are based;

• A description of the model;
• An evaluation and demonstration of the model through its application to the analysis of some
recent complex system accidents.

Future chapters are planned to describe novel approaches to hazard analysis, accident prevention,
risk assessment, and performance monitoring, but these ideas are not yet developed adequately to
justify wide dissemination. Large and realistic examples are included so the reader can see how
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this approach to system safety can be applied to real systems. Example specifications and analyses
that are too big to include will be available for viewing and download from the web.
Because the majority of users of Safeware have been engineers working on real projects, class

exercises and other teaching aids are not included. I will develop such teaching aids for my own
classes, however, and they, as well as a future self-instruction guide for learning this approach
to system safety, will be available as they are completed. Course materials will be available un-
der the new MIT Open Courseware program to make such materials freely available on the web
(http://ocw.mit.edu).
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Chapter 1

Why Do We Need a New Model?

Accident models underlie all efforts to engineer for safety: they form the basis for (1) investigating
and analyzing accidents; (2) designing to prevent future losses; and (3) determining whether systems
are suitable for use by assessing the risk associated with an activity, the use of a product, or the
operation of a system. While you may not be consciously aware you are using a model when
engaged in these activities, some (perhaps subconscious) model of the phenomenon is always part
of the process.
Models are important because they provide a means for understanding phenomena and record-

ing that understanding in a way that can be communicated to others. Note that all models are
abstractions—they simplify the thing being modeled by abstracting away what are assumed to be
irrelevant details and focusing on the features of the phenomenon that are assumed to be the most
relevant. That selection process in most cases is arbitrary and dependent entirely on the choice of
the modeler, but it is critical in determining the usefulness and accuracy of the model in predicting
future events.
Accident models are used to explain how accidents occur. An underlying assumption of all

accident models is that there are common patterns in accidents and that they are not simply
random events. Accident models impose patterns on accidents and influence the factors considered
in any safety analysis. Therefore, the model used may either act as a filter and bias toward
considering only certain events and conditions or it may expand activities by forcing consideration
of factors that are often omitted. Because the accident model influences what cause(s) is ascribed
to an accident, the countermeasures taken to prevent future accidents, and the evaluation of the
risk in operating a system, the power and features of the model will greatly affect our ability to
identify and control hazards and thus prevent accidents.
The most common system safety accident models have their roots in industrial safety and view

accidents as resulting from a chain or sequence of events. Such models work well for losses caused
by failures of physical components and for relatively simple systems. But since World War II, the
types of systems we are attempting to build and the context in which they are being built has been
changing. These changes are stretching the limits of current accident models and safety engineering
techniques:

• Fast pace of technological change: Technology is changing faster than the engineering
techniques to cope with the new technology are being created. Lessons learned over centuries
about designing to prevent accidents may be lost or become ineffective when older technologies

3



4 CHAPTER 1. WHY DO WE NEED A NEW MODEL?

are replaced with new ones. New technology introduces unknowns into our systems and even
unk-unks (unknown unknowns).

At the same time that the development of new technology has sprinted forward, the time to
market for new products has significantly decreased and strong pressures exist to decrease
this time even further. The average time to translate a basic technical discovery into a
commercial product in the early part of this century was 30 years. Today our technologies
get to market in two to three years and may be obsolete in five. We no longer have the luxury
of carefully testing systems and designs to understand all the potential behaviors and risks
before commercial or scientific use.

• Changing Nature of Accidents: Digital technology has created a quiet revolution in most
fields of engineering, but system engineering and system safety engineering techniques have
not kept pace. Digital systems are changing the nature of accidents. Many of the approaches
to prevent accidents that worked on electromechanical components—such as replication of
components to protect against individual component failure—are ineffective in controlling
accidents that arise from the use of digital systems and software. Overconfidence in redun-
dancy and misunderstanding of the “failure” modes of software-implemented functions has
played an important role in recent aerospace accidents [67], such as the loss of the Ariane 5
on its first flight.

• New types of hazards: The most common accident models are based on an underlying
assumption that accidents are the result of an uncontrolled and undesired release of energy
or interference in the normal flow of energy. Our increasing dependence on information
systems are, however, creating the potential for loss of information or incorrect information
that can lead to unacceptable physical, scientific, or financial losses. The “head in the sand”
approach of simply denying that software is safety-critical when it only provides information
and does not directly release energy (a common attitude in some applications, such as air
traffic control) is becoming less and less acceptable as software plays an increasingly important
role in accidents.

• Increasing complexity and coupling: Complexity has many facets, most of which are
increasing in the systems we are building, particularly interactive complexity. We are design-
ing systems with potential interactions among the components that cannot be thoroughly
planned, understood, anticipated, or guarded against. The operation of some systems is
so complex that it defies the understanding of all but a few experts, and sometimes even
they have incomplete information about its potential behavior. Software is an important
factor here—it has allowed us to implement more integrated, multi-loop control in systems
containing large numbers of dynamically interacting components where tight coupling allows
disruptions or dysfunctional interactions in one part of the system to have far-ranging rippling
effects. The problem is that we are attempting to build systems that are beyond our ability
to intellectually manage: Increased interactive complexity and coupling make it difficult for
the designers to consider all the potential system states or for operators to handle all normal
and abnormal situations and disturbances safely and effectively. This situation is not new.
Throughout history, inventions and new technology have often gotten ahead of their scientific
underpinnings and engineering knowledge, but the result has always been increased risk and
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accidents until science and engineering caught up.1

• Decreasing tolerance for single accidents: The losses stemming from accidents is increas-
ing with the cost and potential destructiveness of the systems we build. Our new scientific
and technological discoveries have not only created new or increased hazards (such as ra-
diation exposure and chemical pollution) but have provided the means to harm increasing
numbers of people as the scale of our systems increases and to impact future generations
through environmental pollution and genetic damage. Financial losses and lost potential for
scientific advances are also increasing in an age where, for example, a spacecraft may take 10
years and up to a billion dollars to build. Learning from accidents (the fly-fix-fly approach to
safety) needs to be supplemented with increasing emphasis on preventing the first one.

• More complex relationships between humans and automation: Humans are increas-
ingly sharing control of systems with automation and moving into positions of higher-level
decision making with automation implementing the decisions. These changes are leading to
new types of human error—such as new types of mode confusion—and a new distribution of
human errors, for example, increasing errors of omission versus commission [105, 106]. All
human behavior is influenced by the context in which it occurs, and operators in high-tech
systems are often at the mercy of the design of the automation they use. Many recent acci-
dents that have been blamed on operator error could more accurately be labeled as resulting
from flawed system, software, and interface design. Inadequacies in communication between
humans and machines is becoming an increasingly important factor in accidents.

• Changing regulatory and public views of safety: In today’s complex and interrelated
societal structure, responsibility for safety is shifting from the individual to government.
Individuals no longer have the ability to control the risks around them and are demanding
that government assume greater responsibility for controlling behavior through laws and
various forms of oversight and regulation. As companies come under increasing pressure to
satisfy time-to-market and budgetary pressures, government will have to step in to provide
the protection the public demands. The alternative is individuals and groups turning to the
courts for protection, which could have much worse potential effects, such as unnecessarily
stifling innovation through fear of law suits.

These changes are challenging both our accident models and the accident prevention and risk
assessment techniques based on them. Hazard analysis and engineering techniques are needed that
deal with the new types of systems we are building. This book suggests that systems theory is
an appropriate foundation for such techniques, presents a new accident model based upon it, and
describes new accident analysis and prevention procedures based on the new model.

1As an example, consider the introduction of high-pressure steam engines in the first half of the nineteenth
century, which transformed industry and transportation but resulted in frequent and disastrous explosions. While
engineers quickly amassed scientific information about thermodynamics, the action of steam in the cylinder, the
strength of materials in the engine and many other aspects of steam engine operation, there was little scientific
understanding about the buildup of steam pressure in the boiler, the effect of corrosion and decay, and the causes of
boiler explosions. High-pressure steam had made the current boiler design obsolete by producing excessive strain on
the boilers and exposing weaknesses in the materials and construction. Attempts to add technological safety devices
were unsuccessful because engineers did not fully understand what went on in steam boilers: It was not until well
after the mid-century that the dynamics of steam generation was understood. For an examination of the parallels
between the early development of high-pressure steam engines and software engineering, see [65].
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Part I provides the foundation for this model. Chapter 2 reviews the limitations of current event-
based accident models while Chapter 3 outlines the goals and capabilities necessary to handle the
new types of systems we are building and the new technology with which we are building them.
Chapter 4 presents some basic concepts in systems theory and describes how safety fits into system
engineering.



Chapter 2

Limitations of Traditional Accident
Models

2.1 Understanding Accidents using Event Chains

The earliest formal accident models came from industrial safety (sometimes called operational
safety) and reflect the factors inherent in protecting workers against industrial accidents. Later,
these same models and variants of them were applied to the engineering and operation of complex
systems, called system safety. At the beginning, the focus in industrial accident prevention was on
unsafe conditions, such as open blades and unprotected belts. While this emphasis on preventing
unsafe conditions was very successful in reducing industrial injuries, the decrease naturally started
to slow down as the most obvious accident factors were eliminated, and the emphasis shifted to
unsafe acts: Accidents began to be regarded as someone’s fault rather than as an event that could
have been prevented by some change in the plant or product.
Heinrich’s Domino Model, published in 1931, was one of the first general accident models

and was very influential in shifting the emphasis to human error. Heinrich compared the general
sequence of accidents to five dominoes, standing on end in a line (Figure 2.1). When the first
domino falls, it automatically knocks down its neighbor and so on until the injury occurs. In any
accident sequence, according to this model, ancestry or social environment leads to a fault of a
person, which is the proximate reason for an unsafe act or condition (mechanical or physical),
which results in an accident, which leads to an injury. The Domino Model proved to be inadequate
for complex systems and other models were developed, but the assumption that there is a cause of
an accident unfortunately persists.
The most common accident models today explain accidents in terms of multiple events sequenced

as a forward chain over time. The events considered as critical in these models almost always involve
some type of component failure or human error, or are energy related. The chains may be branching
(as in fault trees) or there may be multiple chains synchronized by time or common events [9]. Lots
of notations have been developed to represent the events in a graphical form, but the underlying
model is the same. Figure 2.2 shows an example for the rupture of a pressurized tank. Formal and
informal notations for representing the event chain may contain the events only or they may also
contain the conditions that led to the events. Events create conditions that, along with existing
conditions, lead to events that create new conditions and so on.

7
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Figure 2.1: Heinrich’s Domino Model of Accidents.
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Figure 2.2: A model of the chain of events leading to the rupture of a pressurized tank (adapted
from Hammer [42]). Moisture leads to corrosion, which causes weakened metal, which together
with high operating pressures causes the tank to rupture, resulting in fragments being projected,
and finally leading to personnel injury and/or equipment failure.
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The causal relationships between the events in the chain are direct and linear, representing the
notion that the preceding event or condition must have been present for the subsequent event to
occur, i.e., if event X had not occurred then the following event Y would not have occurred. As such,
event chain models encourage limited notions of linear causality, and it is difficult or impossible to
incorporate non-linear relationships, including feedback. Other examples of event-chain models are
described in Safeware (Chapter 10).
In event-based models, the causal factors identified depend on the events that are considered

and on the selection of the conditions related to those events, i.e., the conditions that link the
events. However, other than the physical events immediately preceding or directly involved in the
loss, the choice of events to include is subjective and the conditions selected to explain the events
is even more so. Event chain models also limit the countermeasures chosen to prevent losses and
the quantification of risk associated with the operation of the system.

2.1.1 Selecting Events

The selection of events to include in an event chain is dependent on the stopping rule used to
determine how far back the sequence of explanatory events goes. Although the first event in
the chain is often labeled the initiating event or root cause, the selection of an initiating event is
arbitrary and previous events and conditions could always be added.
Sometimes the initiating event is selected (the backward chaining stops) because it represents

a type of event that is familiar and thus acceptable as an explanation for the accident. In other
cases, the initiating event or root cause is chosen because it is the first event in the backward chain
for which it is felt that something can be done for correction.1 The backward chaining may also
stop because the causal path disappears due to lack of information. Rasmussen suggests that a
practical explanation for why actions by operators actively involved in the dynamic flow of events
are so often identified as the cause of an accident is the difficulty in continuing the backtracking
“through” a human. Operator actions are often selected as the stopping point in an accident event
chain. Finally, events may be excluded or not examined in depth because they raise issues that are
embarrassing to the organization or its contractors or are politically unacceptable.
As just one example, the accident report on a friendly fire shootdown of a helicopter over the

Iraqi No-Fly-Zone in 1994 describes the accident as a chain of events leading to the shootdown.
Included in the chain of events provided is the fact that the helicopter pilots did not change to
the radio frequency required in the No-Fly-Zone when they entered it (they stayed on the enroute
frequency). Stopping at this event in the chain, it appears that the helicopter pilots were partially
at fault for the loss by making an important mistake. An independent account of the accident
[90], however, notes that the U.S. Commander of the operation had made an exception about the
radio frequency to be used by the helicopters in order to mitigate a different safety concern (see
Chapter 7.3), and therefore the pilots were simply following orders. This commanded exception to
radio procedures is not included in the chain of events included in the official government accident
report, but it provides a very different understanding of the role of the helicopter pilots in the loss.
The problem with event chain models is not simply that the selection of the events to include is

arbitrary. Even more important is that viewing accidents as chains of events may limit understand-
1As an example, a NASA Procedures and Guidelines document (NPG 8621 Draft 1) defines a root cause as:

“Along a chain of events leading to an mishap, the first causal action or failure to act that could have been controlled
systematically either by policy/practice/procedure or individual adherence to policy/practice/procedure.”
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ing and learning from the loss. Event chains developed to explain an accident usually concentrate
on the proximate events immediately preceding the loss. But the foundation for an accident is often
laid years before. One event simply triggers the loss, but if that event had not happened, another
one would have. The Bhopal disaster provides a good example.
The release of methyl isocyanate (MIC) from the Union Carbide chemical plant in Bhopal,

India, in December 1984 has been called the worst industrial accident in history: Conservative
estimates point to 2000 fatalities, 10,000 permanent disabilities (including blindness), and 200,000
injuries [19]. The Indian government blamed the accident on human error—the improper cleaning
of a pipe at the plant. A relatively new worker was assigned to wash out some pipes and filters,
which were clogged. MIC produces large amounts of heat when in contact with water, and the
worker properly closed the valves to isolate the MIC tanks from the pipes and filters being washed.
Nobody, however, inserted a required safety disk (called a slip blind) to back up the valves in case
they leaked [7].
A chain of events describing the accident mechanism for Bhopal might include:

E1 Worker washes pipes without inserting a slip blind.2

E2 Water leaks into MIC tank.

E3 Explosion occurs.

E4 Relief valve opens.

E5 MIC vented into air.

E6 Wind carries MIC into populated area around plant.

A different operator error might be identified as the root cause (initiating event) if the chain is
followed back farther. The worker who had been assigned the task of washing the pipes reportedly
knew that the valves leaked, but he did not check to see whether the pipe was properly isolated
because, he said, it was not his job to do so. Inserting the safety disks was the job of the maintenance
department, but the maintenance sheet contained no instruction to insert this disk. The pipe-
washing operation should have been supervised by the second shift supervisor, but that position
had been eliminated in a cost-cutting effort.
But the selection of a stopping point and the specific operator error to label as the root cause

is not the real problem here—it is the limitations implicit in using a chain of events to understand
why this accident occurred: Given the design and operating conditions of the plant, an accident
was waiting to happen:

However [water] got in, it would not have caused the severe explosion had the refriger-
ation unit not been disconnected and drained of freon, or had the gauges been properly
working and monitored, or had various steps been taken at the first smell of MIC in-
stead of being put off until after the tea break, or had the scrubber been in service, or
had the water sprays been designed to go high enough to douse the emissions, or had

2Union Carbide lawyers have argued that the introduction of water into the MIC tank was an act of sabotage
rather than a maintenance worker mistake. While this differing interpretation of the initiating event has important
implications with respect to legal liability, it makes no difference in the argument presented here regarding the
limitations of event-chain models of accidents or even, as will be seen, understanding why this accident occurred.
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the flare tower been working and been of sufficient capacity to handle a large excursion
[88, p.349].

It is not uncommon for a company to turn off passive safety devices, such as refrigeration units,
to save money. In addition, gauges at plants are frequently out of service [12]. At the Bhopal
facility, there were few alarms or interlock devices in critical locations that might have warned
operators of abnormal conditions—a system design deficiency.
The operating manual specified that the refrigeration unit must be operating whenever MIC

was in the system: The chemical has to be maintained at a temperature no higher than 5◦ Celsius
to avoid uncontrolled reactions. A high temperature alarm was to sound if the MIC reached 11◦.
The refrigeration unit was turned off, however, to save money and the MIC was usually stored
at nearly 20◦. The plant management adjusted the threshold of the alarm, accordingly, from 11◦

to 20◦ and logging of tank temperatures was halted, thus eliminating the possibility of an early
warning of rising temperatures.
Other protection devices at the plant had inadequate design thresholds. The vent scrubber,

had it worked, was designed to neutralize only small quantities of gas at fairly low pressures and
temperatures: The pressure of the escaping gas during the accident exceeded the scrubber’s design
by nearly two and a half times, and the temperature of the escaping gas was at least 80◦ Celsius
more than the scrubber could handle. Similarly, the flare tower (which was supposed to burn off
released vapor) was totally inadequate to deal with the estimated 40 tons of MIC that escaped
during the accident. In addition, the MIC was vented from the vent stack 108 feet above the
ground, well above the height of the water curtain intended to knock down the gas. The water
curtain reached only 40 to 50 feet above the ground. The water jets could reach as high as 115
feet, but only if operated individually.
Leaks were routine occurrences and the reasons for them were seldom investigated: Problems

were either fixed without further examination or were ignored. A safety audit two years earlier by a
team from Union Carbide had noted many safety problems at the plant, including several involved
in the accident, such as filter-cleaning operations without using slip blinds, leaking valves, the
possibility of contaminating the tank with material from the vent gas scrubber, and bad pressure
gauges. The safety auditors had recommended increasing the capability of the water curtain and
had pointed out that the alarm at the flare tower from which the MIC leaked was nonoperational
and thus any leak could go unnoticed for a long time. None of the recommended changes were
made [12]. There is debate about whether the audit information was fully shared with the Union
Carbide India subsidiary and about who was responsible for making sure changes were made. In
any event, there was no follow-up to make sure that the problems had been corrected. A year before
the accident, the chemical engineer managing the MIC plant resigned because he disapproved of
falling safety standards and still no changes were made. He was replaced by an electrical engineer.
Measures for dealing with a chemical release once it occurred were no better. Alarms at the plant

sounded so often (the siren went off 20 to 30 times a week for various purposes) that an actual alert
could not be distinguished from routine events or practice alerts. Ironically, the warning siren was
not turned on until two hours after the MIC leak was detected (and after almost all the injuries
had occurred) and then was turned off after only five minutes—which was company policy [7].
Moreover, the numerous practice alerts did not seem to be effective in preparing for an emergency:
When the danger during the release became known, many employees ran from the contaminated
areas of the plant, totally ignoring the buses that were sitting idle ready to evacuate workers and
nearby residents. Plant workers had only a bare minimum of emergency equipment—a shortage
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of oxygen masks, for example, was discovered after the accident started—and they had almost no
knowledge or training about how to handle nonroutine events.
The police were not notified when the chemical release began; in fact, when called by police and

reporters, plant spokesmen first denied the accident and then claimed that MIC was not dangerous.
Nor was the surrounding community warned of the dangers, before or during the release, or informed
of the simple precautions that could have saved them from lethal exposure, such as putting a wet
cloth over their face and closing their eyes. If the community had been alerted and provided with
this simple information, many (if not most) lives would have been saved and injuries prevented
[60].
These are only a few of the factors involved in this catastrophe, which include other technical

and human errors within the plant, design errors, management negligence, regulatory deficiencies
on the part of the U.S. and Indian governments, and general agricultural and technology transfer
policies related to the reason they were making such a dangerous chemical in India in the first place.
Any one of these perspectives or “causes” is inadequate by itself to understand the accident and to
prevent future ones. In particular, identifying only operator error (failing to insert the slip blind)
as the root cause of the accident (the first or initiating event in the event chain) ignores most of
the opportunities for the prevention of this and similar accidents in the future.
The maintenance worker was, in fact, only a minor and somewhat irrelevant player in the loss.

Instead, degradation in the safety margin occurred over time and without any particular single
decision to do so but simply as a series of decisions that moved the plant slowly toward a situation
where any slight error would lead to a major accident. Given the overall state of the Bhopal Union
Carbide plant and its operation, if the action of inserting the slip disk had not been left out of
the pipe washing operation that December day in 1984, something else would have triggered an
accident. In fact, a similar leak had occurred the year before, but did not have the same catastrophic
consequences and the true root causes of that incident were not identified nor fixed.
To identify one event (such as a maintenance worker leaving out the slip disk) or even several

events as the root cause or the start of an event chain leading to the Bhopal accident is misleading
at best. Rasmussen writes:

The stage for an accidental course of events very likely is prepared through time by
the normal efforts of many actors in their respective daily work context, responding to
the standing request to be more productive and less costly. Ultimately, a quite normal
variation in somebody’s behavior can then release an accident. Had this ‘root cause’
been avoided by some additional safety measure, the accident would very likely be
released by another cause at another point in time. In other words, an explanation of
the accident in terms of events, acts, and errors is not very useful for design of improved
systems [96].

2.1.2 Selecting Conditions

In addition to subjectivity in selecting the events, the links between the events that are chosen
to explain them are subjective and subject to bias. Leplat notes that the links are justified by
knowledge or rules of different types, including physical and organizational knowledge. The same
event can give rise to different types of links according to the mental representations the analyst has
of the production of this event. When several types of rules are possible, the analyst will remember
those that agree with his or her mental model of the situation [62].
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In the loss of an American Airlines B-757 near Cali, Colombia, in 1995, two significant events
were (1) Pilot asks for clearance to take the Rozo approach followed later by (2) Pilot types R into
the FMS.3 In fact, the pilot should have typed the four letters ROZO instead of R—the latter was
the symbol for a different radio beacon (called Romeo) near Bogota—and as a result the aircraft
incorrectly turned toward mountainous terrain. While these events are noncontroversial, the link
between the two events could be explained by any of the following:

• Pilot Error: In the rush to start the descent, the pilot executed a change of course without
verifying its effect on the flight path.

• Crew Procedure Error: In the rush to start the descent, the captain entered the name of the
waypoint without normal verification from the other pilot.

• Approach Chart and FMS Inconsistencies: The identifier used to identify Rozo on the ap-
proach chart (R) did not match the identifier used to call up Rozo in the FMS.

• FMS Design Deficiency: The FMS did not provide the pilot with feedback that choosing the
first identifier listed on the display was not the closest beacon with that identifier.

• American Airlines Training Deficiency: The pilots flying into South America were not warned
about duplicate beacon identifiers nor adequately trained on the logic and priorities used in
the FMS on the aircraft.

• Manufacturer Deficiency: Jeppesen-Sanderson did not inform airlines operating FMS-equipped
aircraft of the differences between navigation information provided by Jeppesen-Sanderson
Flight Management System navigation databases and Jeppesen-Sanderson approach charts
or the logic and priorities employed in the display of electronic FMS navigation information.

• International Standards Deficiency: No single worldwide standard provides unified criteria
for the providers of electronic navigation databases used in Flight Management Systems.

The selection of the linking condition will greatly influence the cause ascribed to the accident yet
in the example all are plausible and each could serve as an explanation of the event sequence. The
choice may reflect more on the person or group making the selection than on the accident itself. In
fact, understanding this accident and learning enough from it to prevent future accidents requires
identifying all these factors: The accident model used should encourage and guide a comprehensive
analysis at multiple technical and social system levels.

2.1.3 Selecting Countermeasures

The use of event-chain models has important implications for the way engineers design for safety.
If an accident is caused by a chain of events, then the most obvious preventive measure is to
break the chain so the loss never occurs. Breaking the chain requires either removing the events or
conditions (preventing them from occurring) or adding enough and gates (required simultaneous
conditions or events) that the likelihood of the chaining factors being realized is very low, that
is, the accident sequence is broken. Because the most common events considered in event-based

3An FMS is an automated Flight Management System, which assists the pilots in various ways. In this case, it
was being used to provide navigation information.
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Figure 2.3: The pressurized tank rupture event chain along with measures that could be taken to
“break” the chain by preventing individual events in it.

models are component failures, preventive measures tend to be focused on preventing failure events
(i.e., increasing component integrity) and on reducing their likelihood of leading to an accident by
adding redundancy (and gates) to the design.
As an example, Figure 2.3 contains the event chain for the rupture of a pressurized tank, shown

earlier, augmented with mitigation measures designed to break the chain. For this simple example,
involving only physical failures, the approach works well. But even this simple example omits any
consideration of factors only indirectly related to the events in the chain, for example, competitive
or financial pressures to increase efficiency that could lead to not following plans to reduce the
operating pressure as the tank ages.
The common focus on component failures as the cause of accidents and the use of event chain

models has led to an overreliance on redundancy as protection against losses. Redundancy does
not provide protection against the types of accidents arising with the use of new technology, par-
ticularly digital technology [58]. These accidents often arise from dysfunctional interactions among
components, where no component may have actually failed. In fact, redundancy may exacerbate
the problems and actually contribute to system complexity and accidents. A NASA study of an
experimental aircraft executing two versions of the control system found that all of the software
problems occurring during flight testing resulted from errors in the redundancy management system
and not in the much simpler control software itself, which worked perfectly [75]. Redundancy is not
particularly effective in protecting against human errors either: pressures to work more efficiently
usually cause such redundancy to deteriorate over time.
With the increasing role of software and humans in supervisory control of complex systems,

concentrating our safety engineering efforts on physical failures and the use of redundancy to
prevent them will become increasingly ineffective. The Ariane 5 loss is an apt reminder of this fact:
both the primary and backup computers shut themselves down when a data exception occurred.

2.1.4 Assessing Risk

Limitations of event-chain models are also reflected in the current approaches to quantitative risk
assessment. When the goal of the analysis is to perform a probabilistic risk assessment (PRA),
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initiating events in the chain are usually assumed to be mutually exclusive. While this assumption
simplifies the mathematics, it may not match reality.
As an example, consider the following description of a accident chain for an offshore oil platform:

An initiating event is an event that triggers an accident sequence—e.g., a wave that
exceeds the jacket’s capacity that, in turn, triggers a blowout that causes failures of
the foundation. As initiating events, they are mutually exclusive; only one of them
starts the accident sequence. A catastrophic platform failure can start by failure of the
foundation, failure of the jacket, or failure of the deck. These initiating failures are also
(by definition) mutually exclusive and constitute the basic events of the [Probabilistic
Risk Assessment] model in its simplest form [85, p.121].

The selection of the failure of the foundation, jacket, or deck as the initiating event is arbitrary,
as we have seen, and eliminates from consideration prior events leading to them such as manufac-
turing or construction problems. The failure of the foundation, for example, might be related to
the use of inferior construction materials which, in turn, may be related to budget deficiencies or
lack of government oversight.
In addition, there does not seem to be any reason for assuming that initiating failures are mutu-

ally exclusive and that only one starts the accident, except perhaps to simplify the mathematics. In
accidents, seemingly independent failures may have a common systemic cause (often not a failure)
that results in coincident failures. For example, the same pressures to use inferior materials in the
foundation may result in their use in the jacket and the deck, leading to a wave causing coincident,
dependent failures in all three. Alternatively, the design of the foundation (a systemic factor rather
than a failure event) may lead to pressures on the jacket and deck when stresses cause deformities
in the foundation. Treating such events as independent may lead to unrealistic risk assessments.
In the Bhopal accident, the vent scrubber, flare tower, water spouts, refrigeration unit, and

various monitoring instruments were all out of operation simultaneously. Assigning probabilities to
all these seemingly unrelated events and assuming independence would lead one to believe that this
accident was merely a matter of a once-in-a-lifetime coincidence. A probabilistic risk assessment
based on an event chain model most likely would have treated these conditions as independent
failures and then calculated their coincidence as being so remote as to be beyond consideration.
On the surface, it does seem incredible that these devices were all out of operation simultaneously.
However, a closer look paints a quite different picture and shows these were not random failure
events but were related to common engineering design and management decisions.
Most accidents in well-designed systems involve two or more low-probability events occurring

in the worst possible combination. When people attempt to predict system risk, they explicitly
or implicitly multiply events with low probability—assuming independence—and come out with
impossibly small numbers, when, in fact, the events are dependent. This dependence may be
related to common systemic factors that do not appear in an event chain. Machol calls this
phenomenon the Titanic coincidence [74].4. A number of “coincidences” contributed to the Titanic
accident and the subsequent loss of life. For example, the captain was going far too fast for existing
conditions, a proper watch for icebergs was not kept, the ship was not carrying enough lifeboats,
lifeboat drills were not held, the lifeboats were lowered properly but arrangements for manning

4Watt defined a related phenomenon he called the Titanic effect to explain the fact that major accidents are often
preceded by a belief that they cannot happen. The Titanic effect says that the magnitude of disasters decreases to
the extent that people believe that disasters are possible and plan to prevent them or to minimize their effects [119]
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them were insufficient, and the radio operator on a nearby ship was asleep and so did not hear the
distress call. Many of these events or conditions may be considered independent but appear less so
when we consider that overconfidence due to incorrect engineering analyses about the safety and
unsinkability of the ship most likely contributed to the excessive speed, the lack of a proper watch,
and the insufficient number of lifeboats and drills. That the collision occurred at night contributed
to the iceberg not being easily seen, made abandoning ship more difficult than it would have been
during the day, and was a factor in why the nearby ship’s operator was asleep [77]. Assuming
independence here leads to a large underestimate of the true risk.
Another problem in probabilistic risk assessment (PRA) is the emphasis on failure events—

design errors are usually omitted and only come into the calculation indirectly through the prob-
ability of the failure event. Accidents involving dysfunctional interactions among non-failing (op-
erational) components are usually not considered. Systemic factors also are not reflected. In the
offshore oil platform example above, the true probability density function for the failure of the deck
might reflect a poor design for the conditions the deck must withstand (a human design error) or,
as noted above, the use of inadequate construction materials due to lack of government oversight
or project budget limitations.
When historical data is used to determine the failure probabilities used in the PRA, non-failure

factors, such as design errors or unsafe management decisions may differ between the historic
systems from which the data was derived and the system under consideration. It is possible (and
obviously desirable) for each PRA to include a description of the conditions under which the
probabilities were derived. If such a description is not included, it may not be possible to determine
whether conditions in the platform being evaluated differ from those built previously that might
significantly alter the risk. The introduction of a new design feature or of active control by a
computer might greatly affect the probability of failure and the usefulness of data from previous
experience then becomes highly questionable.
The most dangerous result of using PRA arises from considering only immediate physical fail-

ures. Latent design errors may be ignored and go uncorrected due to overconfidence in the risk
assessment. An example, which is a common but dangerous practice judging from its implication
in a surprising number of accidents, is wiring a valve to detect only that power has been applied
to open or close it and not that the valve has actually operated. In one case, an Air Force system
included a relief valve to be opened by the operator to protect against overpressurization [3]. A
secondary valve was installed as backup in case the primary relief valve failed. The operator needed
to know when the first valve had not opened in order to determine that the secondary valve must
be activated. One day, the operator issued a command to open the primary valve. The position
indicator and open indicator lights both illuminated but the primary relief valve was not open.
The operator, thinking the primary valve had opened, did not activate the backup valve and an
explosion occurred.
A post-accident investigation discovered that the indicator light circuit was wired to indicate

presence of power at the valve, but it did not indicate valve position. Thus, the indicator showed
only that the activation button had been pushed, not that the valve had operated. An extensive
probabilistic risk assessment of this design had correctly assumed a low probability of simultaneous
failure for the two relief valves, but had ignored the possibility of a design error in the electrical
wiring: The probability of that design error was not quantifiable. If it had been identified, of course,
the proper solution would have been to eliminate the design error, not to assign a probability to
it. The same type of design flaw was a factor in the Three Mile Island accident: An indicator
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misleadingly showed that a discharge valve had been ordered closed but not that it had actually
closed. In fact, the valve was blocked in an open position.
In addition to these limitations of PRA for electromechanical systems, current methods for

quantifying risk that are based on combining probabilities of individual component failures and
mutually exclusive events are not appropriate for systems controlled by software and by humans
making cognitively complex decisions, and there is no effective way to incorporate management
and organizational factors, such as flaws in the safety culture. As a result, these critical factors
in accidents are often simply omitted from risk assessment because analysts do not know how to
obtain a “failure” probability, or alternatively, a number is pulled out of the air for convenience. An
accident model not based on failure events, such as the one introduced in this book, could provide
an entirely new basis for evaluating and assessing safety.

2.2 Interpreting Events and Conditions as Causes

Although it is common to isolate one or more events or conditions and call them the cause (or the
proximate, direct, or root cause) of an accident or incident and to label the other events or conditions
as contributory, there is no basis for this distinction. Usually a root cause selected from the chain
of events has one or more of the following characteristics: (a) it is a deviation from a standard,
(b) it is accepted as a familiar and therefore reasonable explanation, (c) a “cure” is known [11],
and, often, (d) it is politically acceptable as the identified cause. Making such distinctions between
causes or limiting the factors considered can be a hindrance in learning from and preventing future
accidents.
In the crash of an American Airlines DC-10 at Chicago’s O’Hare Airport in 1979, the U.S.

National Transportation Safety Board (NTSB) blamed only a “maintenance-induced crack,” and
not also a design error that allowed the slats to retract if the wing was punctured. Because of this
omission, McDonnell Douglas was not required to change the design, leading to future accidents
related to the same design error [87].
In another DC-10 saga, explosive decompression played a critical role in a near-miss over Wind-

sor, Ontario. An American Airlines DC-10 lost part of its passenger floor, and thus all of the
control cables that ran through it, when a cargo door opened in flight in June 1972. Due to the ex-
traordinary skill and poise of the pilot, Bryce McCormick, the plane landed safely. In a remarkable
coincidence, McCormick had trained himself to fly the plane using only the engines because he had
been concerned about a decompression-caused collapse of the floor. After this close call, McCormick
recommended that every DC-10 pilot be informed of the consequences of explosive decompression
and trained in the flying techniques that he and his crew had used to save their passengers and
aircraft. FAA investigators, the National Transportation Safety Board, and engineers at a subcon-
tractor to McDonnell Douglas that designed the fuselage of the plane, all recommended changes
in the design of the aircraft. Instead, McDonnell Douglas attributed the Windsor incident totally
to human error on the part of the baggage handler responsible for closing the cargo compartment
door (a convenient event in the event chain) and not to any error on the part of their designers or
engineers and decided all they had to do was to come up with a fix that would prevent baggage
handlers from forcing the door.
One of the discoveries after the Windsor incident was that the door could be improperly closed

but the external signs, such as the position of the external handle, made it appear to be closed
properly. In addition, this incident proved that the cockpit warning system could fail, and the crew
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would then not know that they were taking off without a properly closed door:

The aviation industry does not normally receive such manifest warnings of basic design
flaws in an aircraft without cost to human life. Windsor deserved to be celebrated as
an exceptional case when every life was saved through a combination of crew skill and
the sheer luck that the plane was so lightly loaded. If there had been more passengers
and thus more weight, damage to the control cables would undoubtedly have been more
severe, and it is highly questionable if any amount of skill could have saved the plane
[31].

Almost two years later, in March 1974, a fully loaded Turkish Airlines DC-10 crashed near
Paris resulting in 346 deaths—one of the worst accidents in aviation history. Once again, the cargo
door had opened in flight, causing the cabin floor to collapse, severing the flight control cables.
Immediately after the accident, Sanford McDonnell stated the official McDonnell-Douglas position
that once again placed the blame on the baggage handler and the ground crew. This time, however,
the FAA finally ordered modifications to all DC-10s that eliminated the hazard. In addition, an
FAA regulation issued in July 1975 required all wide-bodied jets to be able to tolerate a hole in the
fuselage of 20 square feet. By labeling the root cause in the event chain as baggage handler error
and attempting only to eliminate that event or link in the chain rather than the basic engineering
design flaws, fixes that could have prevented the Paris crash were not made.
If there are human operators in the system, they are most likely to be blamed for an accident.

This phenomenon is not new. In the nineteenth century, coupling accidents on railroads were one of
the main causes of injury and death to railroad workers [42]. In the seven years between 1888 and
1894, 16,000 railroad workers were killed in coupling accidents and 170,000 were crippled. Managers
claimed that such accidents were due only to worker error and negligence, and therefore nothing
could be done aside from telling workers to be more careful. The government finally stepped in and
required that automatic couplers be installed. As a result, fatalities dropped sharply. According
to the June 1896 issue of Scientific American:

Few battles in history show so ghastly a fatality. A large percentage of these deaths
were caused by the use of imperfect equipment by the railroad companies; twenty years
ago it was practically demonstrated that cars could be automatically coupled, and
that it was no longer necessary for a railroad employee to imperil his life by stepping
between two cars about to be connected. In response to appeals from all over, the
U.S. Congress passed the Safety Appliance Act in March 1893. It has or will cost the
railroads $50,000,000 to fully comply with the provisions of the law. Such progress has
already been made that the death rate has dropped by 35 per cent.

The tendency to blame the operator is not simply a nineteenth century problem, but persists
today. During and after World War II, the Air Force had serious problems with aircraft accidents—
for example, from 1952 to 1966, 7715 aircraft were lost and 8547 people killed [42]. Most of
these accidents were blamed on pilots. Some aerospace engineers in the 1950s did not believe the
cause was so simple and argued that safety must be designed and built into aircraft just as are
performance, stability, and structural integrity. Although a few seminars were conducted and papers
written about this approach, the Air Force did not take it seriously until they began to develop
intercontinental ballistic missiles: there were no pilots to blame for the frequent and devastating
explosions of these liquid-propellant missiles. In having to confront factors other than pilot error,
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the Air Force began to treat safety as a system problem, and system safety engineering programs
were developed to deal with them. Similar adjustments in attitude and practice may be forced
in the future by the increasing use of unmanned autonomous aircraft and other fully automated
systems.
It is still common to see statements that 70% to 80% of aircraft accidents are caused by pilot

error or that 85% of work accidents are due to unsafe acts by humans rather than unsafe conditions.
However, closer examination of the data shows that it may be biased and incomplete: the less that
is known about an accident, the most likely it will be attributed to operator error [49]. Thorough
investigation of serious accidents almost invariably finds other factors. Perrow cites a U.S. Air
Force study of aviation accidents that concludes that the designation of human error, or pilot error,
is a convenient classification for accidents whose real cause is uncertain, complex, or embarrassing
to the organization [87].
As noted earlier, operator actions represent a convenient stopping point in an event-chain model

of accidents. Other reasons for the operator error statistics include: (1) operator actions are
generally reported only when they have a negative effect on safety and not when they are responsible
for preventing accidents; (2) blame may be based on unrealistic expectations that operators can
overcome every emergency; (3) operators may have to intervene at the limits of system behavior
when the consequences of not succeeding are likely to be serious and often involve a situation
the designer never anticipated and was not covered by the operator’s training; and (4) hindsight
often allows us to identify a better decision in retrospect, but detecting and correcting potential
errors before they have been made obvious by an accident is far more difficult.5 The report on the
Clapham Junction railway accident in Britain concluded:

There is almost no human action or decision that cannot be made to look flawed and
less sensible in the misleading light of hindsight. It is essential that the critic should
keep himself constantly aware of that fact. [Hidden, A. (Chairman), pg. 147]

The phenomenon is so common that it has been given a name—hindsight bias.
All human activity takes place within and is influenced by the environment, both physical and

social, in which it takes place. It is, therefore, often very difficult to separate system design error
from operator error: In highly automated systems, the operator is often at the mercy of the system
design and operational procedures. One of the major mistakes made by the operators at Three Mile
Island was following the procedures provided to them by the utility, and the instrumentation design
did not provide the information they needed to act effectively in recovering from the hazardous
state [52].
In the lawsuits following the 1995 Boeing-757 Cali accident, American Airlines was held liable

for the crash based on the Colombian investigators blaming crew error entirely for the accident.
The official accident investigation report cited the following four causes for the loss:

1. The flightcrew’s failure to adequately plan and execute the approach to runway 19 and their
inadequate use of automation.

2. Failure of the flightcrew to discontinue their approach, despite numerous cues alerting them
of the inadvisability of continuing the approach.

5The attribution of operator error as the cause of accidents is discussed more thoroughly in Safeware (Chapter 5).
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3. The lack of situational awareness of the flightcrew regarding vertical navigation, proximity to
terrain, and the relative location of critical radio aids.

4. Failure of the flightcrew to revert to basic radio navigation at a time when the FMS-assisted
navigation became confusing and demanded an excessive workload in a critical phase of the
flight.

Note that the blame was placed on the pilots when the automation became confusing and demanded
an excessive workload rather than on the FMS itself. To be fair, the report also identifies two
“contributory factors”—but not causes—as:

• FMS logic that dropped all intermediate fixes from the display(s) in the event of execution
of a direct routing.

• FMS-generated navigational information that used a different naming convention from that
published in navigational charts.

A U.S. appeals court rejected the conclusion of the report about the four causes of the accident,
which led to a lawsuit by American in a federal court in which American Airlines alleged that
components of the automated aircraft system made by Honeywell Air Transport Systems and
Jeppesen Sanderson helped cause the crash. American blamed the software, saying Jeppesen stored
the location of the Cali airport beacon in a different file from most other beacons. Lawyers for
the computer companies argued that the beacon code could have been properly accessed and
that the pilots were in error. The jury concluded that the two companies produced a defective
product and that Jeppesen was 17 percent responsible, Honeywell was 8 percent at fault, and
American was held to be 75 percent responsible. While such distribution of responsibility may
be important in determining how much each company will have to pay, it does not provide any
important information with respect to accident prevention in the future. The verdict is interesting,
however, because the jury rejected the oversimplified notion of causality being argued. It was also
one of the first cases not settled out of court where the role of software in the loss was acknowledged.
Beyond the tendency to blame operators, other types of subjectivity in ascribing cause exist.

Rarely are all the causes of an accident perceived identically by everyone involved including engi-
neers, managers, operators, union officials, insurers, lawyers, politicians, the press, the state, and
the victims and their families. Such conflicts are typical in situations that involve normative, ethi-
cal, and political considerations on which people may legitimately disagree. Some conditions may
be considered unnecessarily hazardous by one group yet adequately safe and necessary by another.
In addition, judgments about the cause of an accident may be affected by the threat of litigation
or by conflicting interests.
Research data validates this hypothesis. Various studies have found the selection of a cause(s)

depends on characteristics of the victim and of the analyst (e.g., hierarchical status, degree of
involvement, and job satisfaction) as well as on the relationships between the victim and the
analyst and on the severity of the accident [63].
For example, one study found that workers who were satisfied with their jobs and who were

integrated into and participating in the enterprise attributed accidents mainly to personal causes. In
contrast, workers who were not satisfied and who had a low degree of integration and participation
more often cited nonpersonal causes that implied that the enterprise was responsible [63]. Another
study found differences in the attribution of accident causes among victims, safety managers, and
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general managers. Other researchers have suggested that accidents are attributed to factors in
which the individuals are less directly involved. A further consideration may be position in the
organization: The lower the position in the hierarchy, the greater the tendency to blame accidents
on factors linked to the organization; individuals who have a high position in the hierarchy tend to
blame workers for accidents [63].
There even seem to be differences in causal attribution between accidents and incidents: Data

on near-miss (incident) reporting suggest that causes for these events are mainly attributed to
technical deviations while similar events that result in losses are more often blamed on human
error [32, 53].
Causal identification may also be influenced by the data collection methods. Data usually is

collected in the form of textual descriptions of the sequence of events of the accident, which, as we
have seen, tend to concentrate on obvious conditions or events closely preceding the accident in
time and tend to leave out less obvious or indirect events and factors. There is no simple solution
to this inherent bias: On the one hand, report forms that do not specifically ask for nonproximal
events often do not elicit them while, on the other hand, more directive report forms that do request
particular information may limit the categories of conditions considered [54].
Other factors affecting causal filtering in accident and incident reports may be related to the

design of the reporting system itself. For example, the NASA Aviation Safety Reporting System
(ASRS) has a category that includes non-adherence to FARs (Federal Aviation Regulations). In a
NASA study of reported helicopter incidents and accidents over a nine-year period, this category
was by far the largest category cited [43]. The NASA study concluded that the predominance of
FAR violations in the incident data may reflect the motivation of the ASRS reporters to obtain
immunity from perceived or real violations of FARs and not necessarily the true percentages.
A final complication is that human actions always involve some interpretation of the person’s

goals and motives. The individuals involved may be unaware of their actual goals and motivation or
may be subject to various types of pressures to reinterpret their actions. Explanations by accident
analysts after the fact may be influenced by their own mental models or additional goals and
pressures.
Note the difference between an explanation based on goals and one based on motives: a goal

represents an end state while a motive explains why that end state was chosen. Consider the
hypothetical case where a car is driven too fast during a snow storm and it slides into a telephone
pole. An explanation based on goals for this chain of events might include the fact that the driver
wanted to get home quickly. An explanation based on motives might include the fact that guests
were coming for dinner and the driver had to prepare the food before they arrived.
Explanations based on goals and motives depend on assumptions that cannot be directly mea-

sured or observed by the accident investigator. Leplat illustrates this dilemma by describing three
different motives for the event “operator sweeps the floor”: (1) the floor is dirty; (2) the supervisor
is present, or (3) the machine is broken and the operator needs to find other work [64]. Even if
the people involved survive the accident, true goals and motives may not be revealed for various
reasons.
Where does all this leave us? There are two basic reasons for conducting an accident investi-

gation: (1) to assign blame for the accident and (2) to understand why it happened so that future
accidents can be prevented. When the goal is to assign blame, the backward chain of events con-
sidered often stops when someone or something appropriate to blame is found, such as the baggage
handler in the DC-10 case or the maintenance worker at Bhopal. As a result, the selected initiating
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event may provide too superficial an explanation of why the accident occurred to prevent similar
losses in the future. For example, stopping at the O-ring failure in the Challenger accident and
fixing that particular design flaw would not have eliminated the systemic flaws that could lead
to accidents in the future. For Challenger, examples of those systemic problems include flawed
decision making and the pressures that led to it, poor problem reporting, lack of trend analysis,
a “silent” or ineffective safety program, communication problems, etc. None of these are “events”
(although they may be manifested in particular events) and thus do not appear in the chain of
events leading to the accident. Wisely, the authors of the Challenger accident report used an event
chain only to identify the proximate physical cause and not the reasons those events occurred, and
the report writers’ recommendations led to many important changes at NASA or at least attempts
to make such changes.6

Blame is not an engineering concept; it is a legal or moral one. Usually there is no objective
criterion for distinguishing one factor or several factors from other factors that contribute to an
accident. While lawyers and insurers recognize that many factors contribute to a loss event, for
practical reasons and particularly for establishing liability, they often oversimplify the causes of
accidents and identify what they call the proximate (immediate or direct) cause. The goal is to
determine the parties in a dispute that have the legal liability to pay damages, which may be
affected by the ability to pay or by public policy considerations, such as discouraging company
management or even an entire industry from acting in a particular way in the future.
When learning how to engineer safer systems is the goal rather than identifying who to punish

and establishing liability, then the emphasis in accident analysis needs to shift from cause (in terms
of events or errors), which has a limiting, blame orientation, to understanding accidents in terms of
reasons, i.e., why the events and errors occurred. In an analysis by the author of recent aerospace
accidents involving software in some way, most of the reports stopped after assigning blame—
usually to the operators who interacted with the software—and never got to the root of why the
accident occurred, e.g., why the operators made the errors they did and how to prevent such errors
in the future (perhaps by changing the software) or why the software requirements specified unsafe
behavior and why that error was introduced and why it was not detected and fixed before the
software was used [67].
In general, determining the relative importance of various factors to an accident may not be

useful in preventing future accidents. Haddon [41] argues, reasonably, that countermeasures to
accidents should not be determined by the relative importance of the causal factors; instead, priority
should be given to the measures that will be most effective in reducing future losses. Explanations
involving events in an event chain often do not provide the information necessary to prevent future
losses, and spending a lot of time determining the relative contributions of events or conditions to
accidents (such as arguing about whether an event is the root cause or a contributory cause) is not
productive outside the legal system. Rather, engineering effort should be devoted to identifying
the factors (1) that are easiest or most feasible to change, (2) that will prevent large classes of
accidents, and (3) over which we have the greatest control,
Because the goal of the model and associated system safety engineering techniques described in

this book is understanding and preventing accidents rather than assigning blame, the emphasis is
6Recently, another Space Shuttle has been lost. While the proximate cause for the Columbia accident (foam

hitting the wing of the orbiter) was very different than for Challenger, many of the systemic or root causes were
similar and reflected either inadequate fixes of these factors after the Challenger accident or their re-emergence in
the years between these losses.
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on identifying the factors involved in an accident and understanding the relationship among these
factors to provide an explanation of why the accident occurred. There is no attempt to determine
which factors are more “important” than others but rather how they relate to each other and to
the final loss event or near miss. Models based on event chains are not the most effective way to
accomplish this goal.
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Chapter 3

Extensions Needed to Traditional
Models

Event-based models work best for accidents where one or several physical components fail, leading
to a system failure or hazard. However, such models and the explanations based on them can
easily miss subtle and complex couplings and interactions among failure events and omit entirely
accidents involving no component failure at all. New models that are more effective for accidents
in complex systems will need to account for social and organizational factors, system accidents and
dysfunctional interactions, human error and flawed decision making, software errors, and adapta-
tion.

3.1 Social and Organizational Factors

Event-based models are poor at representing systemic accident factors such as structural deficiencies
in the organization, management deficiencies, and flaws in the safety culture of the company or
industry. An accident model should encourage a broad view of accident mechanisms that expands
the investigation beyond the proximate events: A narrow focus on technological components and
pure engineering activities may lead to ignoring some of the most important factors in terms of
preventing future accidents.
As an example, an explosion at a chemical plant in Flixborough, Great Britain, in June 1974,

resulted in 23 deaths, 53 injuries, and $50 million in damages to property (including 2,450 houses)
up to five miles from the site of the plant.1 The official accident investigators devoted most of their
effort to determining which of two pipes was the first to rupture (Figure 3.1). The British Court
of Inquiry concluded that “the disaster was caused by a coincidence of a number of unlikely errors
in the design and installation of a modification [a bypass pipe],” and “such a combination of errors
is very unlikely ever to be repeated” [25].
While these conclusions are true if only specific technical failures and immediate physical events

are considered, they are not true if a broader view of accidents is taken. The pipe rupture at
Flixborough was only a small part of the cause of this accident. A full explanation and prevention

1Many more lives might have been lost had the explosion not occurred on a weekend when only a small shift was
at the plant, the wind was light, and many of the nearby residents were away at a Saturday market in a neighboring
town.

25
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Figure 3.1: The temporary change at Flixborough. A bypass pipe was used to replace a reactor
that had been removed to repair a crack. The crack had resulted from a tripling of the process
capacity.

of future such accidents requires an understanding of the management practices of running the
Flixborough plant without a qualified engineer on site, allowing unqualified personnel to make
important modifications to the equipment, making engineering changes without properly evaluating
their safety, and storing large quantities of chemicals under dangerous conditions [22]. The British
Court of Inquiry investigating the accident amazingly concluded that “there were undoubtedly
certain shortcomings in the day-to-day operations of safety procedures, but none had the least
bearing on the disaster or its consequences and we do not take time with them.” Fortunately,
others did not take this overly narrow viewpoint, and Flixborough led to major changes in the way
hazardous facilities were allowed to operate in Britain.
Large-scale engineered systems are more than just a collection of technological artifacts: They

are a reflection of the structure, management, procedures, and culture of the engineering organi-
zation that created them, and they are also, usually, a reflection of the society in which they were
created. Ralph Miles Jr., in describing the basic concepts of systems theory, noted that:

Underlying every technology is at least one basic science, although the technology may
be well developed long before the science emerges. Overlying every technical or civil
system is a social system that provides purpose, goals, and decision criteria. [78, p.1]

Effectively preventing accidents in complex systems requires using accident models that include
that social system as well as the technology and its underlying science. Without understanding the
purpose, goals, and decision criteria used to construct and operate systems, it is not possible to
completely understand and most effectively prevent accidents.
Awareness of the importance of social and organizational aspects of safety goes back to the

early days of system safety engineering. In 1968, Jerome Lederer, then the director of the NASA
Manned Flight Safety Program for Apollo wrote:

System safety covers the total spectrum of risk management. It goes beyond the hard-
ware and associated procedures of system safety engineering. It involves: attitudes and
motivation of designers and production people, employee/management rapport, the re-
lation of industrial associations among themselves and with government, human factors
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Figure 3.2: Johnson’s Three Level Model of Accidents

in supervision and quality control, documentation on the interfaces of industrial and
public safety with design and operations, the interest and attitudes of top management,
the effects of the legal system on accident investigations and exchange of information,
the certification of critical workers, political considerations, resources, public sentiment
and many other non-technical but vital influences on the attainment of an acceptable
level of risk control. These non-technical aspects of system safety cannot be ignored
[61].

Several attempts have been made to graft factors other than simple failure events and conditions
onto event models, but all have been unsatisfactory, including my own previous attempts. The
most common approach has been to add hierarchical levels above the event chain. In the seventies,
Johnson proposed a model and sequencing method that described accidents as chains of direct
events and causal factors arising from contributory factors, which in turn arise from systemic
factors (Figure 3.2) [49].
Johnson also tried to put management factors into fault trees (a technique called MORT or

Management Oversight Risk Tree), but ended up simply providing a general checklist for auditing
management practices. While such a checklist can be very useful, it presupposes that every error
can be predefined and put into a checklist form. The checklist is comprised of a set of questions
that should be asked during an accident investigation. Examples of the questions from a DOE
MORT User’s Manual are: Was there sufficient training to update and improve needed supervisory
skills? Did the supervisors have their own technical staff or access to such individuals? Was the
technical support of the right discipline(s) sufficient for the needs of supervisory programs and
review functions? Were there established methods for measuring performance that permitted the
effectiveness of supervisory programs to be evaluated? Was a maintenance plan provided before
startup? Was all relevant information provided to planners and managers? Was it used? Was
concern for safety displayed by vigorous, visible personal action by top executives? etc. Johnson
originally provided hundreds of such questions, and additions have been made to his checklist since
Johnson created it in the 1970s so it is now even larger. The use of the MORT checklist is feasible
because the items are so general, but that same generality also limits its usefulness.



28 CHAPTER 3. EXTENSIONS NEEDED TO TRADITIONAL MODELS

In 1995, Leveson proposed a three-level model (based on an earlier conceptual model by
Lewycky) [66] with slightly different types of information at the levels. In contrast to Johnson’s
model where the levels represent different types of factors, each level here provides a different model
of the accident causal factors at three different levels of abstraction. The lowest level describes the
accident mechanism in terms of an event chain. For example, an object appeared in front of the
car, the driver hit the brake, the car skidded and hit the tree, the driver was thrown from the car
and injured.
The second level is a model of the accident in terms of the conditions or lack of conditions that

allowed the events at the first level to occur, e.g., the driver does not know how to prevent or stop
the skid, the car is not equipped with anti-lock brakes, the driver was driving too fast, the street
was wet from rain and thus friction was reduced, visibility was poor, the driver was not wearing a
seat belt, the seat belt was defective. Systemic factors made up the third level, i.e., weaknesses of
a technical, human, organizational, managerial, or societal nature that contributed to the accident,
usually by allowing or causing the conditions to arise that led to the events.
The most sophisticated of these types of hierarchical add-ons to event chains is Rasmussen

and Svedung’s model of the socio-technical system involved in risk management [96]. As shown in
Figure 3.3, at the social and organizational levels they use a hierarchical control structure, with
levels for government, regulators and associations, company, management, and staff. At all levels
they map information flow. The model concentrates on the operations component of the socio-
technical system; information from the system design and analysis process is treated as input to
the operations process. At each level, they model the factors involved using event chains, with
links to the events chains at the level below. In addition, at the technical level they focus on
the downstream part of the event chain following the occurrence of the hazard. This downstream
emphasis is common in the process industry where Rasmussen has done most of his work. In such
a downstream focus, emphasis is placed on protection or “safety systems” that identify a hazardous
state after it occurs and then attempt to move the plant back into a safe state, often by means of
a partial or total shutdown. While this type of shutdown design can work for process plants, it is
not appropriate for all types of systems and suffers from a lack of emphasis on designing for safety
and eliminating or controlling hazards in the basic system design.
One drawback to all these proposals is that the factors selected to be included are still arbitrary.

An experimental application of Leveson’s hierarchical model to eight aerospace accidents concluded
that the model was an improvement over a basic chain of events model. Separation of the basic
events from all the various types of explanations that could be given for those events allowed
evaluation of the explanation in a more objective fashion and easier detection of omissions and
biases. It also helped to identify conditions indirectly related to events or those related to all or
a subset of the events. However, it (and the others that have been proposed) provide little help
in selecting the events to include and, more important, in the selection of conditions and systemic
factors.
Another drawback of such models is that they stick a hierarchy on top of the event chain without

any real connection to it and with no way to show indirect relationships.
Most important, all the limitations of event chain models still exist, particularly at the technical

or accident mechanism level. But event chains do not adequately handle the important new accident
factors arising in the systems we are building today: system accidents caused by dysfunctional
interactions among components and not individual component failure, complex human decision-
making and supervisory control, software, and adaptation.
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3.2 System Accidents

Since World War II, we are increasingly experiencing a new type system accident2 that arises in the
interactions among components (electromechanical, digital, and human) rather than in the failure
of individual components. In contrast, accidents arising from component failures, including the
possibility of multiple and cascading failures, might be termed component failure accidents.
A failure in engineering can be defined as the nonperformance or inability of a component (or

system) to perform its intended function. Intended function (and thus failure) is usually defined
with respect to the component’s behavioral requirements. If the behavior of a component satisfies
its specified requirements, even though the requirements may include behavior that is undesirable
from a larger system context, the component has not failed.
Accidents that do not involve component failure but instead result from dysfunctional interac-

tions among system components have received less attention. This lack of concern may stem partly
from the fact that in the simpler systems of the past, analysis and testing allowed exercising the
system to detect all such potential interactions and changing the system design to eliminate them.
Increasing complexity and the introduction of software control is reducing this ability and increasing
the number of system accidents. System accidents can be explained in terms of inadequate control
over component interactions. Prevention requires reducing or eliminating dysfunctional interac-
tions, i.e., interactions that can lead to hazardous states in the controlled process. A taxonomy
and classification of the types of dysfunctional interactions leading to accidents is shown in Section
7.2.
The Ariane 5 and Mars Polar Lander losses are examples of system accidents. In both of these

accidents, the components did not fail in terms of not satisfying their specified requirements. The
individual components operated exactly the way the designers had planned—the problems arose in
the unplanned or misunderstood effects of these component behaviors on the system as a whole,
that is, errors in the system design rather than the component design, including errors in allocating
and tracing the system functions to the individual components. The solution, therefore, lies in
systems engineering.
Consider an example of a system accident that occurred in a batch chemical reactor in England

[56]. The design of this system is shown in Figure 3.4. The computer was responsible for controlling
the flow of catalyst into the reactor and also the flow of water into the reflux condenser to cool off
the reaction. Additionally, sensor inputs to the computer were supposed to warn of any problems
in various parts of the plant. The programmers were told that if a fault occurred in the plant, they
were to leave all controlled variables as they were and to sound an alarm.
On one occasion, the computer received a signal indicating a low oil level in a gearbox. The

computer reacted as the requirements specified: It sounded an alarm and left the controls as they
were. By coincidence, a catalyst had been added to the reactor, but the computer had just started
to increase the cooling-water flow to the reflux condenser; the flow was therefore kept at a low rate.
The reactor overheated, the relief valve lifted, and the content of the reactor was discharged into
the atmosphere.
Note that there were no component failures involved in this accident: the individual compo-

nents, including the software, worked as specified, but together they created a hazardous system
state. Merely increasing the reliability of the individual components or protecting against their

2Perrow used this term to denote accidents resulting from failures of multiple components [87], but accidents occur
even in systems where there have been no component failures.
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Figure 3.4: A chemical reactor design (adapted from Kletz [57, p.6]).
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failure would not have prevented this accident. Prevention required identifying and eliminating or
mitigating unsafe interactions among the system components.
While better engineering techniques aimed at increasing component integrity or reducing the

effects of component failure on the system are reducing component failure accidents, system acci-
dents are increasing in importance and will require new prevention approaches. In fact, some of the
approaches typically used to reduce component failure accidents, such as redundancy, may actually
increase the likelihood of system accidents by increasing one of the basic causal factors—interactive
complexity.
The extraordinary interactive complexity of the systems we are trying to build and increased

coupling between heterogeneous components (which may not be obvious or known) are two of
the reasons behind the increase in system accidents. Both are related to the introduction of new
technology, particularly software and digital technology.
While system design errors could usually be detected during system testing and fixed before

use in pure physical systems, software is allowing us to build systems with such a high level of in-
teractive complexity that potential interactions among components cannot be thoroughly planned,
anticipated, tested, or guarded against. We are building systems that are intellectually unman-
ageable using currently available tools. In the long run, the solution is to extend our ability to
manage complexity, but in the present we must deal with the tools we have and catching up to the
continually increasing complexity of the systems we would like to build may be difficult.
A second factor implicated in system accidents is tight coupling. Loosely coupled or decoupled

components and subsystems allow for intervention when problems arise or limit the ability of a
disturbance in one part of the system to affect other parts. The drive toward tightly coupled
systems is fueled by a desire for higher levels of efficiency and functionality, and the use of software
allows us now to achieve levels of coupling and interaction that were previously impossible with
pure electromechanical devices.

3.3 Human Error and Decision Making

Human error is usually defined as any deviation from the performance of a specified or prescribed
sequence of actions. However, instructions and written procedures are almost never followed exactly
as operators strive to become more efficient and productive and to deal with time pressures. In
fact, a common way for workers to apply pressure to management without actually going out on
strike is to work to rule, which can lead to a breakdown in productivity and even chaos.
In studies of operators, even in such highly constrained and high-risk environments as nuclear

power plants, modification of instructions is repeatedly found and the violation of rules appears
to be quite rational, given the actual workload and timing constraints under which the operators
must do their job [37, 115, 127]. In these situations, a basic conflict exists between error viewed
as a deviation from the normative procedure and error viewed as a deviation from the rational and
normally used effective procedure [97].
One implication is that following an accident, it will be easy to find someone involved in the

dynamic flow of events that has violated a formal rule by following established practice rather
than specified practice. Given the frequent deviation of established practice from normative work
instructions and rules, it is not surprising that operator “error” is found to be the cause of 70% to
80% of accidents. As noted in Section 2.2, a root cause is often selected because that event involves
a deviation from a standard.
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The updating of human mental models plays a significant role here (Figure 3.5). Both the
designer and the operator will have their own mental models of the plant. It is quite natural for
the designer’s and operator’s models to differ and even for both to have significant differences from
the actual plant as it exists. During development, the designer evolves a model of the plant to
the point where it can be built. The designer’s model is an idealization formed before the plant is
constructed. Significant differences may exist between this ideal model and the actual constructed
system. Besides construction problems, the designer always deals with ideals or averages, not
with the actual components themselves. Thus, a designer may have a model of a valve with an
average closure time, while real valves have closure times that fall somewhere along a continuum
of behavior that reflects manufacturing and material differences. The designer’s model will be the
basis for developing operator work instructions and training.
The operator’s model will be based partly on formal training and partly on experience with the

system. The operator must cope with the system as it is constructed and not as it may have been
envisioned. In addition, physical systems will change over time and the operator’s model must
change accordingly. The only way for the operator to determine that the system has changed and
that his or her mental model must be updated is through experimentation: To learn where the
boundaries of safe behavior currently are, occasionally they must be crossed.
Experimentation is important at all levels of control [95]. For manual tasks where the optimiza-

tion criteria are speed and smoothness, the limits of acceptable adaptation and optimization can
only be known from the error experienced when occasionally crossing a limit. In this case, errors
are an integral part of maintaining a skill at an optimal level and a necessary part of the feedback
loop to achieve this goal. The role of such experimentation in accidents cannot be understood by
treating human errors as events in a causal chain separate from the feedback loops in which they
operate.
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At higher levels of cognitive control, experimentation is needed for operators to update proce-
dures to handle changing conditions or to evaluate hypotheses while engaged in symbolic reasoning
about the best response to unexpected situations. Actions that are quite rational and important
during the search for information and test of hypotheses may appear to be unacceptable mistakes
in hindsight, without access to the many details of a “turbulent” situation [97].
The ability to adapt mental models through experience in interacting with the operating system

is what makes the human operator so valuable. Based on current inputs, the operators’ actual
behavior may differ from the prescribed procedures. When the deviation is correct (the designers’
models are less accurate than the operators’ models at that particular instant in time), then the
operators are considered to be doing their job. When the operators’ models are incorrect, they
are often blamed for any unfortunate results, even though their incorrect mental models may have
been reasonable given the information they had at the time.
Flawed decisions may also result from limitations in the boundaries of the model used, but the

boundaries relevant to a particular decision maker may depend on activities of several other decision
makers found within the total system [96]. Accidents may then result from the interaction of the
potential side effects of the performance of the decision makers during their normal work. Before an
accident, it will be difficult for the individual decision makers to see the total picture during their
daily operational decision making and to judge the current state of the multiple defenses that are
conditionally dependent on decisions taken by other people in other departments and organizations.
Using a ferry accident analyzed by Rasmussen and Svedung as an example (Figure 3.6), those

making decisions about vessel design, harbor design, cargo management, passenger management,
traffic scheduling, and vessel operation were unaware of the impact of their decisions on the others
and the overall impact on the process leading to the ferry accident.
Rasmussen stresses that most decisions are sound using local judgment criteria and given the

time and budget pressures and short-term incentives that shape behavior. Experts do their best
to meet local conditions and in the busy daily flow of activities are unaware of the potentially
dangerous side effects. Each individual decision may appear safe and rational within the context
of the individual work environments and local pressures, but may be unsafe when considered as a
whole: It is difficult if not impossible for any individual to judge the safety of their decisions when
it is dependent on the decisions made by other people in other departments and organizations.
Traditional decision theory research perceives decisions as discrete processes that can be sep-

arated from the context and studied as an isolated phenomenon. More recent research has taken
a very different approach: Instead of thinking of operations as predefined sequences of actions,
human interaction with a system is increasingly being considered to be a continuous control task
in which separate “decisions” or errors are difficult to identify.
Edwards, back in 1962, was one of the first to argue that decisions can only be understood as

part of an ongoing process [33]. The state of the system is perceived in terms of possible actions,
one of these actions is chosen, and the resulting response from the controlled system acts as a
background for the next action. Errors then are difficult to localize in the stream of behavior; the
effects of less successful actions are a natural part of the search on the part of the operator for
optimal performance.
Not only are separate decisions difficult to identify in this model of human control, but the

study of decision making then cannot be separated from a simultaneous study of the social context,
the value system in which it takes place, and the dynamic work process it is intended to control
[95]. This view is the foundation of dynamic decision making [15] and the new field of naturalistic
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decision making [132, 55].
As argued by Rasmussen and others, devising more effective accident models requires shifting

the emphasis in explaining the role of humans in accidents from error (deviations from norma-
tive procedures) to focus on the mechanisms and factors that shape human behavior, i.e., the
performance-shaping mechanisms and context in which human actions take place and decisions
are made. Modeling behavior by decomposing it into decisions and actions and studying it as a
phenomenon isolated from the context in which the behavior takes place is not an effective way
to understand behavior [96]. The alternative view requires a new approach to representing human
behavior, focused not on human error and violation of rules but on the mechanisms generating be-
havior in the actual, dynamic context. Such an approach must take into account the work system
constraints, the boundaries of acceptable performance, the need for experimentation, and subjec-
tive criteria guiding adaptation to change. In this approach, traditional task analysis is replaced
or augmented with cognitive work analysis [97, 116] or cognitive task analysis [40].
To accomplish this goal, a representation of human behavior at a higher level of functional

abstraction than the level used for task analysis is needed. Such a representation must include
the objectives of the individual actor in the actual context and the boundaries of acceptable per-
formance, that is, the constraints on the work space. Rasmussen, Pejtersen, and Goodstein [97]
define one such framework for identifying the objectives, value structures, and subjective prefer-
ences governing behavior within the degrees of freedom faced by the individual decision maker and
actor. Vicente also uses this framework for his Cognitive Work Analysis [116]. In this approach,
behavior is modeled directly in terms of the behavior-shaping constraints of the environment and
the adaptive mechanisms of human actors in the environment.
Using this view of human error leads to a new approach to control of human performance: Rather

than trying to control behavior by fighting deviations from a particular path, focus should be on
control of behavior by identifying the boundaries of safe performance, by making boundaries explicit
and known, by giving opportunities to develop coping skills at the boundaries, by designing systems
to support safe optimization and adaptation of performance in response to contextual influences
and pressures, by providing means for identifying potentially dangerous side effects of individual
decisions in the network of decisions over the entire system, by designing for error tolerance (making
errors observable and reversible before safety constraints are violated), and by counteracting the
pressures that drive operators and decision makers to violate safety constraints.

3.4 Software Error

One of the common factors involved in system accidents is the use of software control. Software
and digital automation introduces a new factor into the engineering of complex systems. This new
factor requires changes to existing systems engineering techniques and places new requirements on
accident models.
The uniqueness and power of the digital computer over other machines stems from the fact

that, for the first time, we have a general-purpose machine:

Machine

Special−PurposeGeneral−Purpose

Computer
Software
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We no longer need to build a mechanical or analog autopilot from scratch, for example, but simply to
write down the “design” of an autopilot in the form of instructions or steps to accomplish the desired
goals. These steps are then loaded into the computer, which, while executing the instructions, in
effect becomes the special-purpose machine (the autopilot). If changes are needed, the instructions
can be changed instead of building a different physical machine from scratch. Software in essence
is the design of a machine abstracted from its physical realization.
Machines that previously were physically impossible or impractical to build become feasible,

and the design of a machine can be changed quickly without going through an entire retooling
and manufacturing process. In essence, the manufacturing phase is eliminated from the lifecycle of
these machines: The physical parts of the machine (the computer hardware) can be reused, leaving
only the design and verification phases. The design phase also has changed: Emphasis is placed
only on the steps to be achieved without having to worry about how those steps will be realized
physically.
These advantages of using computers (along with others specific to particular applications,

such as reduced size and weight) have led to an explosive increase in their use, including their
introduction into potentially dangerous systems. There are, however, some potential disadvantages
of using computers and some important changes that their use introduces into the traditional
engineering process that are leading to new types of accidents as well as creating difficulties in
investigating accidents and preventing them.
With computers, the design of a machine is usually created by someone who is not an expert

in its design. The autopilot design expert, for example, decides how the autopilot should work,
but then provides that information to a software engineer who is an expert in software design but
not autopilots. It is the software engineer who then creates the detailed design of the autopilot.
The extra communication step between the engineer and the software developer is the source of

Requirements
System Software

Engineer
Autopilot
Expert Autopilot

Design of

the most serious problems with software today.
It should not be surprising then that most errors found in operational software can be traced

to requirements flaws, particularly incompleteness3. In addition, nearly all the serious accidents
in which software has been involved in the past 20 years can be traced to requirements flaws, not
coding errors. The requirements may reflect incomplete or wrong assumptions about the operation
of the system components being controlled by the software or about the operation of the computer
itself. The problems may also stem from unhandled controlled-system states and environmental
conditions. Thus simply trying to get the software “correct” in terms of accurately implementing
the requirements will not make it safer in most cases. Software may be highly reliable and correct
and still be unsafe when:

• The software correctly implements the requirements but the specified behavior is unsafe from
a system perspective;

3Completeness is a quality often associated with requirements but rarely defined. The most appropriate definition
in the context of this book has been proposed by Jaffe: Software requirements specifications are complete if they are
sufficient to distinguish the desired behavior of the software from that of any other undesired program that might be
designed [48].
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• The software requirements do not specify some particular behavior required for system safety
(that is, they are incomplete);

• The software has unintended (and unsafe) behavior beyond what is specified in the require-
ments.

Basically the problems stem from the software doing what the software engineer thought it should
do when that is not what the original design engineer wanted. Integrated product teams and other
project management schemes to help with this communication are being used, but the problem has
not been adequately solved as witnessed by the increasing number of system accidents related to
these types of communication problems.
Even if the requirements problem was solved, there are other important problems that the use

of software introduces into the system safety equation. First, the “failure modes” of software differ
from physical devices. Software is simply the design of the machine abstracted from its physical
realization; for example, the logical design of an autopilot independent of any concurrent physical
design to realize that logic in hardware. Can software “fail”? What does it mean for a design to
fail? Obviously, if the term failure has any meaning whatsoever in this context, it has to be different
than that implied by the failure of a physical device. Most software-related accidents stem from the
operation of the software, not from its lack of operation and usually that operation is exactly what
the software engineers intended. Thus event-based accident models as well as reliability analysis
methods that focus on classic types of failure events will not apply to software. Confusion about
this point is reflected in the many fault trees containing boxes that say “Software fails.”
The third problem can be called the curse of flexibility. The computer is so powerful and so

useful because it has eliminated many of the physical constraints of previous machines. This is
both its blessing and its curse: We no longer have to worry about the physical realization of our
designs, but we also no longer have physical laws that limit the complexity of our designs. Physical
constraints enforce discipline on the design, construction, and modification of our design artifacts.
Physical constraints also control the complexity of what we build. With software, the limits of what
is possible to accomplish are different than the limits of what can be accomplished successfully and
safely—the limiting factors change from the structural integrity and physical constraints of our ma-
terials to limits on our intellectual capabilities. It is possible and even quite easy to build software
that we cannot understand in terms of being able to determine how it will behave under all condi-
tions. We can construct software (and often do) that goes beyond human intellectual limits. The
result has been an increase in system accidents stemming from intellectual unmanageability related
to interactively complex and tightly coupled designs that allow potentially unsafe interactions to
go undetected during development.
One possible solution is to stretch our intellectual limits by using mathematical modeling and

analysis. Engineers make extensive use of models to understand and predict the behavior of physical
devices. Although computer scientists realized that software could be treated as a mathematical
object over 30 years ago, mathematical methods (called formal methods in computer science) have
not been widely used on software in industry, although there have been some successes in using
them on computer hardware. There are several reasons for this lack of use. The biggest problem
is simply the complexity of such models. Software has a very large number of states (a model
we created of the function computed by TCAS II, a collision avoidance system required on most
commercial aircraft in the U.S., has upwards of 1040 states). Sheer numbers would not be a problem
if the states exhibited adequate regularity to allow reduction in the complexity based on grouping
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and equivalence classes. Unfortunately, application software does not exhibit the same type of
regularity found in digital hardware.
Physical systems, of course, also have a large number of states (in fact, often infinite) but

physical continuity allows the use of continuous math, where one equation can describe an infinite
number of states. Software lacks that physical continuity, and discrete math must be used. In place
of continuous math, such as differential equations, formal logic is commonly used to describe the
required characteristics of the software behavior. However, specifications using formal logic may be
the same size or even larger than the code, more difficult to construct than the code, and harder
to understand than the code. Therefore, they are as difficult and error-prone to construct, if not
more so, than the software itself. That doesn’t mean they cannot be useful, but they are not going
to be a panacea for our problems.
Testing, while necessary, is not the solution to the problem either. The enormous number of

states in most software means that only a very small percentage can be tested and the lack of
continuity does not allow for sampling and interpolation of behavior between the sampled states.
For most nontrivial software, exhaustive testing to cover all paths through the logic would take
centuries.
One limitation in the current formal models and tools is that most require a level of expertise in

discrete math that is commonly attained only by those with advanced degrees in computer science or
applied math. More serious is the problem that the models do not match the way engineers usually
think about their designs and therefore are difficult to review and validate. The basic problems will
not be solved by providing tools to evaluate the required behavior of the special-purpose machine
being designed that can be used only by computer scientists. Instead, tools are needed that are
usable by the expert in the special-purpose machine’s design to specify and evaluate the behavior.
At the same time, software engineers do need models and tools to analyze the structural design of
the software itself. Thus, for each group, different tools and models are required.
One additional complication is simply the number of emergent properties exhibited by software.

Like most complex designs, errors are more likely to be found in the interactions among the software
components than in the design of the individual components. Emergent properties complicate the
creation of effective analysis methods.
In summary, accident models and system safety approaches will be ineffective for software-

intensive systems unless they can handle the unique characteristics of software. They will need to
account for the abstract nature of software and the different role it plays in accidents.

3.5 Adaptation

Any accident model that includes the social system and humans must account for adaptation. To
paraphrase a familiar saying, the only constant is that nothing ever remains constant. Systems and
organizations continually experience change as adaptations are made in response to local pressures
and short-term productivity and cost goals. People adapt to their environment or they change their
environment to better suit their purposes. A corollary of this propensity for systems and people to
adapt over time is that safety defenses are likely to degenerate systematically through time, partic-
ularly when pressure toward cost-effectiveness and increased productivity is the dominant element
in decision making. The critical factor here is that such adaptation is not a random process—it
is an optimization process depending on search strategies—and thus should be predictable and
potentially controllable [96].
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Woods has stressed the importance of adaptation in accidents. He describes organizational and
human failures as breakdowns in adaptations directed at coping with complexity and accidents as
involving a “drift toward failure as planned defenses erode in the face of production pressures and
change” [129].
Similarly, Rasmussen has argued that major accidents are often caused not by a coincidence of

independent failures but instead reflect a systematic migration of organizational behavior to the
boundaries of safe behavior under pressure toward cost-effectiveness in an aggressive, competitive
environment [96]. One implication of this viewpoint is that the struggle for a good safety culture will
never end because it must continually fight against the functional pressures of the work environment.
Improvement of the safety culture will therefore require an analytical approach directed toward the
behavior-shaping factors in the environment.
Humans and organizations can adapt and still maintain safety as long as they stay within the

area bounded by safety constraints. But in the search for optimal operations, humans and orga-
nizations will close in on and explore the boundaries of established practice, and such exploration
implies the risk of occasionally crossing the limits of safe practice unless the constraints on safe
behavior are enforced.
The natural migration toward the boundaries of safe behavior, according to Rasmussen, is

complicated by the fact that it results from the decisions of multiple people, in different work
environments and contexts within the overall socio-technical system, all subject to competitive or
budgetary stresses and each trying to optimize their decisions within their own immediate context.
Several decision makers at different times, in different parts of the company or organization, all
striving locally to optimize cost effectiveness may be preparing the stage for an accident, as illus-
trated by the Zeebrugge ferry accident (see Figure 3.6) and the friendly fire accident described in
Chapter 7. The dynamic flow of events can then be released by a single act.
For an accident model to handle system adaptation over time, it must consider the processes

involved in accidents and not simply events and conditions: Processes control a sequence of events
and describe system and human behavior as it changes and adapts over time rather than considering
individual events and human actions. To talk about the cause or causes of an accident makes no
sense in this view of accidents. As Rasmusssen argues, deterministic, causal models are inadequate
to explain the organizational and social factors in highly adaptive socio-technical systems. Instead,
accident causation must be viewed as a complex process involving the entire socio-technical system
including legislators, government agencies, industry associations and insurance companies, company
management, technical and engineering personnel, operations, etc.

3.6 Goals for a New Accident Model

Event-based models work best for accidents where one or several components fail, leading to a
system failure or hazard. However, accident models and explanations involving only simple chains
of failure events can easily miss subtle and complex couplings and interactions among failure events
and omit entirely accidents involving no component failure at all. The event-based models developed
to explain physical phenomena (which they do well) are inadequate to explain accidents involving
organizational and social factors and human decisions and software design errors in highly adaptive,
tightly-coupled, interactively complex socio-technical systems—namely, those accidents related to
the new factors (described in Chapter 1) in the changing environment in which engineering is taking
place.
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The search for a new model, resulting in the accident model presented in Part II of this book,
was driven by the following goals:

• Expanding accident analysis by forcing consideration of factors other than component fail-
ures and human errors. The model should encourage a broad view of accident mechanisms,
expanding the investigation from simply considering proximal events to considering the en-
tire socio-technical system. Such a model should include societal, regulatory, and cultural
factors. While some accident reports do this well, for example the space shuttle Challenger
report, such results appear to be ad hoc and dependent on the personalities involved in the
investigation rather than being guided by the accident model itself.

• Providing a more scientific way to model accidents that produces a better and less subjective
understanding of why the accident occurred and how to prevent future ones. Event chain
models provide little guidance in the selection of events to include in the accident explanation
or the conditions to investigate. The model should provide more assistance in identifying and
understanding a comprehensive set of factors involved and in identifying the adaptations that
led to the loss.

• Including system design errors and dysfunctional system interactions. The models used widely
were created before computers and digital components and do not handle them well. In
fact, many of the event-based models were developed to explain industrial accidents, such as
workers falling into holes or injuring themselves during the manufacturing process, and do
not fit system safety at all. A new model must be able to account for accidents arising from
dysfunctional interactions among the system components.

• Allowing for and encouraging new types of hazard analyses and risk assessments that go beyond
component failures and can deal with the complex role software and humans are assuming in
high-tech systems. Traditional hazard analysis techniques, such as fault tree analysis and the
various types of failure analysis techniques, do not work well for software and other system
design errors. An appropriate model should suggest hazard analysis techniques to augment
these failure-based methods and encourage a wider variety of risk reduction measures than
redundancy and monitoring. Risk assessment is currently firmly rooted in the probabilistic
analysis of failure events. Attempts to extend current probabilistic risk assessment techniques
to software and other new technology, to management, and to cognitively complex human
control activities have been disappointing. This way forward may lead to a dead end, but
starting from a different theoretical foundation may allow significant progress in finding new,
more comprehensive approaches to risk assessment for complex systems.

• Shifting the emphasis in the role of humans in accidents from errors (deviations from norma-
tive behavior) to focus on the mechanisms and factors that shape human behavior (i.e., the
performance-shaping mechanisms and context in which human actions take place and deci-
sions are made). A new model should account for the complex role that human decisions and
behavior are playing in the accidents occurring in high-tech systems and handle not simply
individual decisions but sequences of decisions and the interactions among decisions by mul-
tiple, interacting decision makers [96]. The model must include examining the possible goals
and motives behind human behavior.
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• Encouraging a shift in the emphasis in accident analysis from “cause”—which has a limiting,
blame orientation—to understanding accidents in terms of reasons, i.e., why the events and
errors occurred [112]. Learning how to engineer safer systems is the goal here, not identifying
who to punish.

• Examining the processes involved in accidents and not simply events and conditions. Processes
control a sequence of events and describe changes and adaptations over time rather than
considering events and human actions individually.

• Allowing for and encouraging multiple viewpoints and multiple interpretations when appropri-
ate. Operators, managers, and regulatory agencies may all have different views of the flawed
processes underlying an accident, depending on the hierarchical level of the socio-technical
control structure from which the process is viewed. At the same time, the factual data should
be separated from the interpretation of that data.

• Assisting in defining operational metrics and analyzing performance data. Computers allow
the collection of massive amounts of data, but analyzing that data to determine whether the
system is moving toward the boundaries of safe behavior is difficult. A new accident model
should provide directions for identifying appropriate safety metrics and operational auditing
procedures to evaluate decisions made during design and development, to determine whether
controls over hazards are adequate, to detect erroneous operational and environmental as-
sumptions underlying the hazard analysis and design process, to identify dangerous trends
and changes in operations before they lead to accidents, and to identify any maladaptive sys-
tem or environment changes over time that could increase risk of accidents to unacceptable
levels.

These goals are achievable if models based on systems theory underlie our safety engineering
activities.



Chapter 4

Systems Theory and its Relationship
to Safety

4.1 An Introduction to Systems Theory

Systems theory dates from the thirties and forties and was a response to limitations of the clas-
sic analysis techniques in coping with the increasingly complex systems being built [18]. Norbert
Weiner applied the approach to control and communications engineering while Ludwig von Berta-
lanffy developed similar ideas for biology. It was Bertalanffy who suggested that the emerging ideas
in various fields could be combined into a general theory of systems.
In the traditional scientific method, sometimes referred to as divide and conquer, systems are

broken into distinct parts so that the parts can be examined separately: Physical aspects of systems
are decomposed into separate physical components while behavior is decomposed into events over
time.
Such decomposition (formally called analytic reduction) assumes that such separation is fea-

sible: that is, each component or subsystem operates independently and analysis results are not
distorted when these components are considered separately. This assumption in turn implies that
the components or events are not subject to feedback loops and other non-linear interactions and
that the behavior of the components is the same when examined singly as when they are play-
ing their part in the whole. A third fundamental assumption is that the principles governing the
assembling of the components into the whole are straightforward, that is, the interactions among
the subsystems are simple enough that they can be considered separate from the behavior of the
subsystems themselves.
These are reasonable assumptions, it turns out, for many of the physical regularities of the

universe. System theorists have described these systems as displaying organized simplicity (Figure
4.1) [120]. Such systems can be separated into non-interacting subsystems for analysis purposes: the
precise nature of the component interactions is known and interactions can be examined pairwise.
This approach has been highly effective in physics and is embodied in structural mechanics.
Other types of systems display what systems theorists have labeled unorganized complexity—

that is, they lack the underlying structure that allows reductionism to be effective. They can,
however, often be treated as aggregates: They are complex but regular and random enough in
their behavior that they can be studied statistically. This study is simplified by treating them as a
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Figure 4.1: Three Categories of Systems (Adapted from Gerald Weinberg, An Introduction to
General Systems Thinking, John Wiley, 1975)

structureless mass with interchangeable parts and then describing them in terms of averages. The
basis of this approach is the law of large numbers: The larger the population, the more likely that
observed values are close to the predicted average values. In physics, this approach is embodied in
statistical mechanics.
A third type of system exhibits what system theorists call organized complexity: These systems

are too complex for complete analysis and too organized for statistics; the averages are deranged
by the underlying structure [120]. It is this type of system, which describes many of the complex
engineered systems of the post-World War II era as well as biological systems and social systems,
that is the subject of systems theory. Organized complexity also represents particularly well the
problems that are faced by those attempting to build complex software, and it explains the difficulty
computer scientists have had in attempting to apply analysis and statistics to such software. In
recent years, more computer scientists are recognizing the limitations and are looking to systems
theory. In fact, many of the most successful forms of abstraction developed and used by computer
scientists from the very beginnings of the field embody basic systems theory principles.
The systems approach focuses on systems taken as a whole, not on the parts taken separately.

It assumes that some properties of systems can only be treated adequately in their entirety, taking
into account all facets relating the social to the technical aspects [91]. These system properties
derive from the relationships between the parts of systems: how the parts interact and fit together
[2]. Thus, the system approach concentrates on the analysis and design of the whole as distinct
from the components or the parts and provides a means for studying systems exhibiting organized
complexity.
The foundation of systems theory rests on two pairs of ideas: (1) emergence and hierarchy and

(2) communication and control [18].
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4.2 Emergence and Hierarchy

A general model of complex systems can be expressed in terms of a hierarchy of levels of organi-
zation, each more complex than the one below, where a level is characterized by having emergent
properties. Emergent properties do not exist at lower levels; they are meaningless in the language
appropriate to those levels. The shape of an apple, although eventually explainable in terms of
the cells of the apple, has no meaning at that lower level of description. Thus, the operation of
the processes at the lower levels of the hierarchy result in a higher level of complexity—that of the
whole apple itself—that has emergent properties, one of them being the apple’s shape [18]. The
concept of emergence is the idea that at a given level of complexity, some properties characteristic
of that level (emergent at that level) are irreducible. In computer science, deadlock is an example
of such a property.
Hierarchy theory deals with the fundamental differences between one level of complexity and

another. Its ultimate aim is to explain the relationships between different levels: what generates
the levels, what separates them, and what links them. Emergent properties associated with a set
of components at one level in a hierarchy are related to constraints upon the degree of freedom of
those components. Describing the emergent properties resulting from the imposition of constraints
requires a language at a higher level (a metalevel) different than that describing the components
themselves. Thus, different languages of description are appropriate at different levels.
Safety is clearly an emergent property of systems. Determining whether a plant is acceptably

safe is not possible by examining a single valve in the plant. In fact, statements about the “safety
of the valve” without information about the context in which that valve is used, are meaningless.
Conclusions can be reached, however, about the reliability of the valve, where reliability is defined
as the probability that the behavior of the valve will satisfy its specification over time and under
given conditions. This is one of the basic distinctions between safety and reliability: Safety can
only be determined by the relationship between the valve and the other plant components—that
is, in the context of the whole. Therefore it is not possible to take a single system component,
like a software module, in isolation and assess its safety. A component that is perfectly safe in one
system may not be when used in another.
The new model of accidents introduced in Part II of this book incorporates the basic systems

theory idea of hierarchical levels, where constraints or lack of constraints at the higher levels control
or allow lower-level behavior. Safety is treated as an emergent property at each of these levels.

4.3 Communication and Control

The second major pair of ideas in systems theory is communication and control. An example of
regulatory or control action is the imposition of constraints upon the activity at one level of a
hierarchy, which define the “laws of behavior” at that level yielding activity meaningful at a higher
level. Hierarchies are characterized by control processes operating at the interfaces between levels
[18]. The link between control mechanisms studied in natural systems and those engineered in
man-made systems was provided by a part of systems theory known as cybernetics. Checkland
writes:

Control is always associated with the imposition of constraints, and an account of a
control process necessarily requires our taking into account at least two hierarchical
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Figure 4.2: A standard control loop.

levels. At a given level, it is often possible to describe the level by writing dynamical
equations, on the assumption that one particle is representative of the collection and
that the forces at other levels do not interfere. But any description of a control process
entails an upper level imposing constraints upon the lower. The upper level is a source
of an alternative (simpler) description of the lower level in terms of specific functions
that are emergent as a result of the imposition of constraints [18, p.87].

Control in open systems (those that have inputs and outputs from their environment) implies the
need for communication. Bertalanffy distinguished between closed systems, in which unchanging
components settle into a state of equilibrium, and open systems, which can be thrown out of
equilibrium by exchanges with their environment.
In control theory, open systems are viewed as interrelated components that are kept in a state of

dynamic equilibrium by feedback loops of information and control. The plant’s overall performance
has to be controlled in order to produce the desired product while satisfying cost and quality
constraints. In general, to effect control over a system requires four conditions [5]:

• Goal Condition: The controller must have a goal or goals (e.g., to maintain the setpoint).

• Action Condition: The controller must be able to affect the state of the system.

• Model Condition: The controller must be (or contain) a model of the system (see Sec-
tion 7.1).

• Observability Condition: The controller must be able to ascertain the state of the system.

Figure 4.2 shows a typical control loop. The plant controller obtains information about (ob-
serves) the process state from measured variables (feedback) and uses this information to initiate
action by manipulating controlled variables to keep the process operating within predefined limits
or set points (the goal) despite disturbances to the process. In general, the maintenance of any
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open-system hierarchy (either biological or man-made) will require a set of processes in which there
is communication of information for regulation or control [18].
Control actions will, in general, lag in their effects on the process because of delays in signal

propagation around the control loop: an actuator may not respond immediately to an external
command signal (called dead time); the process may have delays in responding to manipulated
variables (time constants); and the sensors may obtain values only at certain sampling intervals
(feedback delays). Time lags restrict the speed and extent with which the effects of disturbances,
both within the process itself and externally derived, can be reduced. They also impose extra
requirements on the controller, for example, the need to infer delays that are not directly observable.

4.4 Using System Theory to Understand Accidents

Models based on system theory consider accidents as arising from the interactions among system
components and usually do not specify single causal variables or factors [63]. Whereas industrial
(occupational) safety models focus on unsafe acts or conditions, classic system safety models instead
look at what went wrong with the system’s operation or organization to allow the accident to take
place.
This systems approach treats safety as an emergent property that arises when the system

components interact within an environment. Emergent properties are controlled or enforced by a
set of constraints (control laws) related to the behavior of the system components. Accidents result
from interactions among components that violate these constraints—in other words, from a lack of
appropriate constraints on the interactions.
Safety then can be viewed as a control problem. Accidents occur when component failures,

external disturbances, and/or dysfunctional interactions among system components are not ade-
quately handled by the control system. In the space shuttle Challenger accident, for example, the
O-rings did not adequately control propellant gas release by sealing a tiny gap in the field joint.
In the Mars Polar Lander loss, the software did not adequately control the descent speed of the
spacecraft—it misinterpreted noise from a Hall effect sensor (feedback of a measured variable) as
an indication the spacecraft had reached the surface of the planet. Accidents such as these, in-
volving engineering design errors, may in turn stem from inadequate control over the development
process. Control is also imposed by the management functions in an organization—the Challenger
and Columbia accidents involved inadequate controls in the launch-decision process, for example.
While events reflect the effects of dysfunctional interactions and inadequate enforcement of

safety constraints, the inadequate control itself is only indirectly reflected by the events—the events
are the result of the inadequate control. The control structure itself must be examined to determine
why it was inadequate to maintain the constraints on safe behavior and why the events occurred.
As an example, the unsafe behavior (hazard) in the Challenger loss was the release of hot

propellant gases from the field joint. The miscreant O-ring was used to control the hazard, i.e., its
role was to seal a tiny gap in the field joint created by pressure at ignition. The loss occurred because
the system design did not effectively impose the required constraint on the propellant gas release.
Starting from here, there are then several questions that need to be answered to understand why
the accident occurred and to obtain the information necessary to prevent future accidents. Why
was this particular design unsuccessful in imposing the constraint, why was it chosen (what was
the decision process), why was the flaw not found during development, and was there a different
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design that might have been more successful? These questions and others consider the original
design process.
Understanding the accident also requires examining the contribution of the operations process.

One constraint that was violated during operations was the requirement to correctly handle feed-
back about any potential violation of the safety design constraints, in this case, feedback during
operations that the control by the O-rings of the release of hot propellant gases from the field
joints was not being adequately enforced by the design. There were several instances of feedback
that was not adequately handled, such as data about O-ring blowby and erosion during previous
shuttle launches and feedback by engineers who were concerned about the behavior of the O-rings
in cold weather. In addition, there was missing feedback about changes in the design and testing
procedures during operations, such as the use of a new type of putty and the introduction of new
O-ring leak checks without adequate verification that they satisfied system safety constraints on the
field joints. As a final example, the control processes that ensured unresolved safety concerns were
adequately considered before each flight, i.e., flight readiness reviews and other feedback channels
to project management making flight decisions, were flawed.
Systems theory provides a much better foundation for safety engineering than the classic analytic

reduction approach underlying event-based models of accidents. In addition, system safety fits
naturally within the field of systems engineering: both rest on the same theoretical foundations
and require engineering the system as a whole.

4.5 Systems Engineering and Safety

The emerging theory of systems, along with many of the historical forces noted in Chapter 1, gave
rise after World War II to a new emphasis in engineering, eventually called systems engineering.
During and after the war, technology expanded rapidly and engineers were faced with designing
and building more complex systems than had been attempted previously. Much of the impetus for
the creation of this new discipline came from military programs in the 1950s and 1960s, particularly
ICBM systems. Apollo was the first nonmilitary government program in which systems engineering
was recognized from the beginning as an essential function [13]. System safety was created at
the same time and for the same reasons and is often considered to be a subdiscipline of systems
engineering.
Systems theory provided the theoretical foundation for systems engineering, which views each

system as an integrated whole even though it is composed of diverse, specialized components. The
objective is to integrate the subsystems into the most effective system possible to achieve the overall
objectives, given a prioritized set of design criteria. Optimizing the system design often requires
making tradeoffs between these design criteria (goals).
Although many of the techniques of systems engineering were developed and were being used

before the creation of the formal discipline and the underlying theory, the development of systems
engineering as a discipline enabled the solution of enormously more complex and difficult tech-
nological problems than before [78]. Many of the elements of systems engineering can be viewed
merely as good engineering: It represents more a shift in emphasis than a change in content. In
addition, while much of engineering is based on technology and science, systems engineering is
equally concerned with overall management of the engineering process.
A systems engineering approach to safety starts with the basic assumption that some properties

of systems, in this case safety, can only be treated adequately in their entirety, taking into account
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all variables and relating the social to the technical aspects [91]. A basic assumption of systems
engineering is that optimization of individual components or subsystems will not in general lead
to a system optimum; in fact, improvement of a particular subsystem may actually worsen the
overall system performance because of complex, non-linear interactions among the components.
Similarly, individual component behavior (including events or actions) cannot be understood with-
out considering the components’ role and interaction within the system as a whole. This basis for
systems engineering has been stated as the principle that a system is more than the sum of its parts.
Attempts to improve long-term safety in complex systems by analyzing and changing individual
components have often proven to be unsuccessful over the long term. For example, Rasmussen
notes that over many years of working in the field of nuclear power plant safety, he found that
attempts to improve safety from models of local features were compensated for by people adapting
to the change in an unpredicted way [96].
Any accident model based on systems theory must take these basic systems engineering prin-

ciples into account. Models that do not account for them will be limited in the types of accidents
and systems they can handle. At the same time, models that include them have the potential to
greatly improve our ability to engineer safer and more complex systems having greater interactive
complexity and coupling.

4.6 Building Safety into the System Design

Safety fits naturally within the general systems engineering process and the problem-solving ap-
proach that a system view provides. This problem-solving process entails several steps (Figure
4.3). First, a need or problem is specified in terms of objectives that the system must satisfy along
with criteria that can be used to rank alternative designs. Then, a process of system synthesis
takes place that results in a set of alternative designs. Each of these alternatives is analyzed and
evaluated in terms of the stated objectives and design criteria, and one alternative is selected to
be implemented. In practice, the process is highly iterative: The results from later stages are fed
back to early stages to modify objectives, criteria, design alternatives, and so on.
System safety should be treated as an integral component of systems engineering, as is common

in the defense industry (and defined in MIL-STD-882). The following are some examples of basic
systems engineering activities and the role of safety within them:

• Needs analysis: The starting point of any system design project is a perceived need. This need
must first be established with enough confidence to justify the commitment of resources to
satisfy it and understood well enough to allow appropriate solutions to be generated. Design
criteria must be established to provide a means to evaluate both the evolving and final system.
These criteria will include criteria for a safe design if safety is a perceived need for the project,
i.e., if there are hazards associated with the operation of the system.

• Feasibility studies: The goal of this step in the design process is to generate a set of realistic
designs. This goal is accomplished by (1) identifying the principal constraints—including
safety constraints—and design criteria for the specific problem being addressed; (2) generating
plausible solutions to the problem that satisfy the requirements and constraints; and (3)
selecting potential solutions on the basis of physical and economic feasibility.

• Trade studies: This step in the process evaluates the alternative feasible designs with respect
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Figure 4.3: The Standard System Engineering Process.

to various design criteria. A hazard might be controlled by any one of several safeguards: A
trade study would determine the relative desirability of each safeguard with respect to effec-
tiveness, cost, weight, size, safety, and any other relevant criteria. For example, substitution
of one material for another may reduce the risk of fire or explosion, but may also reduce
reliability or efficiency. Each alternative design may have its own set of safety constraints
(derived from the system hazards) as well as other performance goals and constraints that
need to be assessed. Although, ideally, decisions should be based upon mathematical analysis,
quantification of many of the key factors is often difficult, if not impossible, and subjective
judgment often has to be used.

• System architecture development and analysis: In this step, the system engineers break down
the system into a set of subsystems, together with the functions and constraints—including
safety constraints—imposed upon the individual subsystem designs, the major system inter-
faces, and the subsystem interface topology. These aspects are analyzed with respect to de-
sired system performance characteristics and constraints (again including safety constraints)
and the process is iterated until an acceptable system design results. The preliminary design
at the end of this process must be described in sufficient detail that subsystem implementation
can proceed independently.

• Interface analysis: The interfaces define the functional boundaries of the system components.
From a management standpoint, interfaces must (1) optimize visibility and control and (2)
isolate components that can be implemented independently and for which authority and
responsibility can be delegated [89]. From an engineering standpoint, interfaces must be
designed to separate independent functions and to facilitate the integration, testing, and
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operation of the overall system. Because interfaces tend to be particularly susceptible to
design error and are implicated in the majority of accidents, a paramount goal of interface
design is simplicity. Simplicity aids in ensuring that the interface can be adequately designed
and tested prior to integration and that interface responsibilities can be clearly understood.

Any specific realization of this general systems engineering process depends on the engineering
models used for the system components and the desired system qualities. For safety, the models
commonly used to understand why and how accidents occur have been based on events, particularly
failure events, and the use of reliability engineering techniques to prevent them. Part II of this book
proposes an alternative. The most useful accident models will go beyond simple component failure
and reliability and will support the systems engineering problem-solving model and its related
processes.
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Part II introduces an accident model based on systems theory called STAMP—Systems Theory
Accident Modeling and Processes. In this conception of safety, accidents (loss events1) occur when
external disturbances, component failures, and/or dysfunctional interactions among system com-
ponents are not adequately controlled, i.e., accidents result from inadequate control or enforcement
of safety-related constraints on the development, design, and operation of the system.
Safety then can be viewed as a control problem, and, as suggested by Rasmussen, safety is

managed by a control structure embedded in an adaptive socio-technical system. The goal of the
safety control structure is to enforce safety-related constraints (1) on system development, including
both the development process itself and the resulting system design, and (2) on system operation.
In this framework, understanding why an accident occurred requires determining why the control

structure was ineffective. Preventing future accidents requires designing a control structure that
will enforce the necessary constraints. Thus the most basic concept in STAMP is not an event, but
a constraint.
Systems are viewed, in this approach, as interrelated components that are kept in a state of

dynamic equilibrium by feedback loops of information and control. A system is not treated as a
static design but as a dynamic process that is continually adapting to achieve its ends and to react
to changes in itself and its environment. The original design must not only enforce appropriate
constraints on behavior to ensure safe operation, but it must continue to operate safely as changes
and adaptations occur over time. Accidents then are viewed as the result of flawed processes
involving interactions among people, societal and organizational structures, engineering activities,
and physical system components. The process leading up to an accident can be described in terms
of an adaptive feedback function that fails to maintain safety as performance changes over time to
meet a complex set of goals and values.
Instead of defining safety management in terms of preventing component failure events, it is

defined as a continual control task to impose the constraints necessary to limit system behavior to
safe changes and adaptations. Accidents can be understood, using STAMP, in terms of why the
controls that were in place did not prevent or detect maladaptive changes, that is, by identifying the
safety constraints that were violated and determining why the controls were inadequate in enforcing
them. For example, understanding the Bhopal accident requires not simply determining why the
maintenance personnel did not insert the slip blind (an inadvertent omission or sabotage), but why
the controls that had been designed into the system to prevent the release of hazardous chemicals
and to mitigate the consequences of such occurrences—including refrigeration units, gauges and
other monitoring units, a vent scrubber, water spouts, a flare tower, safety audits, alarms and
practice alerts, and emergency procedures and equipment—were not successful.
The three chapters in Part II examine the three basic components of STAMP: constraints,

hierarchical levels of control, and process loops. A classification of accident factors is derived from
these three components. Then Part III shows how STAMP can be used as a basis for new and more
effective accident analysis, hazard analysis and prevention, risk assessment, and safety metrics.

1Definitions are always controversial, but a set of definitions for the safety terms as used in this book can be found
in Appendix A
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Chapter 5

The Central Role of Constraints in
System Safety

Constraints on behavior are at the core of STAMP. In systems theory, control is always associated
with the imposition of constraints. Instead of viewing accidents as the result of an initiating event
in a series of events leading to a loss event, they are considered to result from a lack constraints
imposed on the system design and operation, that is, by inadequate enforcement of constraints on
behavior at each level (e.g., technical, managerial, regulatory) of a socio-technical system. The
safety-related constraints specify those relationships between system variables that constitute the
nonhazardous system states. An example of a safety constraint at the physical system level is: the
power must never be on when the access door is open. The control processes that enforce these
constraints limit system behavior to safe changes and adaptations.
Constraints (versus failures) are particularly useful in explaining and preventing accidents where

design errors, particularly those related to software and operator behavior, play a part.

5.1 Constraints and Software Design

Why do design constraints play such an important role in the safety of complex systems, particularly
software-intensive systems? The computer is so powerful and so useful because it has eliminated
many of the physical constraints of electromechanical devices. This is both its blessing and its
curse: We no longer have to worry about the physical realization of our designs, but that implies
that we no longer have physical laws the limit the complexity of these designs. I call this the curse
of flexibility. Physical constraints enforce discipline on the design, construction, and modification
of our design artifacts. Physical constraints also control the complexity of what we build. With
software, the limits of what is possible to accomplish are different than the limits of what can be
accomplished successfully and safely—the limiting factors change from the structural integrity and
physical constraints of our materials to limits on our intellectual capabilities. It is possible and even
quite easy to build software (i.e., system designs) that we cannot understand in terms of being able
to determine how it will behave under all conditions: We can construct software (and often do)
that goes beyond human intellectual limits. The result has been an increase in system accidents
stemming from intellectual unmanageability related to interactively complex and tightly coupled
designs that allow potentially unsafe interactions to go undetected during development.
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The solution to this problem is for engineers to enforce the same discipline on the software parts
of the system design that nature imposes on the physical parts. Safety, like any quality, must be
built into the system design. When software acts as a controller in complex systems, it represents
or is the system design—it embodies or enforces the system safety constraints by controlling the
components and their interactions. Control software, then, contributes to an accident by not
enforcing the appropriate constraints on behavior or by commanding behavior that violates the
constraints. In the batch reactor example of Section 3.2, a system safety constraint related to the
software is that water must be flowing into the reflux condenser whenever the flow of catalyst to
the reactor is initiated. This system behavioral constraint translates to a constraint on software
behavior (a software requirement) that the software must always open the water valve before the
catalyst valve.
STAMP provides a much better description of how software affects accidents than a failure

model and partially explains why most software-related accidents stem from requirements errors
(misunderstanding about the required software behavior) rather than coding errors. The primary
safety problem in computer-controlled systems is not software “failure” but the lack of appropriate
constraints on software behavior, and the solution is to identify the required constraints and enforce
them in the software and overall system design. The job of the system engineer or system safety
engineer is to identify the constraints necessary to ensure safe system behavior and effectively
communicate these behavioral constraints to the software engineers who, in turn, must enforce
them in their software. This process is detailed further in Chapter 9.

5.2 Constraints and Human–Automation Interface Design

The relaxation of previous physical constraints also impacts human supervision and control of
automated systems and the design of interfaces between operators and controlled processes [21].
Cook argues that when controls were primarily mechanical and were operated by people located
close to the operating process, proximity allowed sensory perception of the status of the process via
direct physical feedback such as vibration, sound, and temperature. Displays were directly linked to
the process and thus were essentially a physical extension of it. For example, the flicker of a gauge
needle in the cab of a train indicated (1) the engine valves were opening and closing in response to
slight pressure fluctuations, (2) the gauge was connected to the engine, (3) the pointing indicator
was free, etc. In this way, the displays provided a rich source of information about the controlled
process and the state of the displays themselves.
The introduction of electromechanical controls allowed operators to control the process from

a greater distance (both physical and conceptual) than possible with pure mechanically linked
controls. That distance, however, meant that operators lost a lot of direct information about the
process—they could no longer sense the process state directly and the control and display surfaces
no longer provided as rich a source of information about the process (or the state of the controls
themselves). The system designers had to synthesize and provide an image of the process state to
the operators. An important new source of design errors was the need for the designers to determine
beforehand what information the operator would need under all conditions to safely control the
process. If the designers had not anticipated a particular situation could occur and provided for it in
the original system design, they might also not anticipate the need of the operators for information
about it during operations.
Designers also had to provide feedback on the actions of the operators and on any failures
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that might have occurred. The controls could now be operated without the desired effect on the
process, and the operators might not know about it. Accidents started to occur due to incorrect
feedback. For example, major accidents (including Three Mile Island) have involved the operators
commanding a valve to open and receiving feedback that the valve had opened as a result, when
in reality it had not. In this case and others, the valves were wired to provide feedback that power
had been applied to the valve, but not that it had actually opened. Not only could the design of the
feedback about failures be misleading, but the return links were also subject to failure themselves.
Thus, electromechanical controls relaxed constraints on the system design allowing greater

functionality. At the same time, they created new possibilities for designer and operator error that
had not existed or were much less likely in mechanically controlled systems. The later introduction
of computer and digital controls afforded additional advantages and removed even more constraints
on the control system design—and introduced more possibility for error.
It is the freedom from constraints that makes the design of such systems so difficult. The

physical constraints shaped system design in ways that efficiently transmitted valuable physical
component and process information and supported the operators’ cognitive processes. Proximity
provided rich sources of feedback that involved almost all of the senses, enabling early detection
of potential problems. We are finding it hard to capture and provide these same qualities in new
systems that use computer controls and displays.
In summary, accidents result from a lack of appropriate constraints on system design. The

role of the system engineer or system safety engineer is to identify the design constraints necessary
to maintain safety and to ensure that the system design, including the social and organizational
aspects of the system and not just the physical ones, enforce them.



60 CHAPTER 5. THE CENTRAL ROLE OF CONSTRAINTS IN SYSTEM SAFETY



Chapter 6

Hierarchical Safety Control Levels

In systems theory (see Section 4.3), systems are viewed as hierarchical structures where each level
imposes constraints on the activity of the level beneath it—that is, constraints or lack of constraints
at a higher level allow or control lower-level behavior. In a systems theory model of accidents,
instead of decomposing systems (and accident causation) into structural components and a flow of
events, systems and accidents are described in terms of a hierarchy of control based on adaptive
feedback mechanisms. This approach allows adaptation to play a central role in the understanding
and prevention of accidents. The first step is to create a hierarchical control model.

6.1 Hierarchical Control Models

Socio-technical systems can be modeled as a hierarchy of levels of organization with control processes
operating at the interfaces between levels to control processes at the lower levels. At each level,
inadequate control may result from missing constraints, inadequately communicated constraints,
constraints that were not enforced correctly at a lower level, or inadequately communicated or
processed feedback about constraint enforcement.
The idea of modeling socio-technical systems using system theory concepts is not a new one.

For example, Jay Forrester in the 1960s created system dynamics using such an approach. System
dynamics over the years has been applied to a wide variety of open system problems. The Rasmussen
and Svedung model (see Figure 3.3) uses some system theory concepts but, reverts to an event model
at each hierarchical level.
STAMP builds on the ideas used in the upper levels of the Ramussen/Svedung model and

adds a system development control structure. The control-theoretic approach is continued down
through and including the technical system. System dynamics is used to model the reasons for
system change or adaptation over time, as shown in Part III.
Figure 6.1 shows a typical socio-technical control model in STAMP. Each system, of course,

must be modeled to include its specific features. Examples are provided later in this chapter and in
Chapter 8. The generic model shown in Figure 6.1 has two basic hierarchical control structures—one
for system development (on the left) and one for system operation (on the right)—with interactions
between them. An aircraft manufacturer, for example, might only have system development under
its immediate control, but safety involves both development and operational use of the aircraft, and
neither can be accomplished successfully in isolation: Safety during operation depends partly on
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the original design and development and partly on effective control over operations. Manufacturers
must communicate to their customers the assumptions about the operational environment upon
which the safety analysis was based, as well as information about safe operating procedures. The
operational environment, in turn, provides feedback to the manufacturer about the performance of
the system over its lifetime.
Between the hierarchical levels of each control structure, effective communication channels are

needed, both a downward reference channel providing the information necessary to impose con-
straints on the level below and an upward measuring channel to provide feedback about how
effectively the constraints are being satisfied (Figure 6.2). Feedback is critical in any open system
in order to provide adaptive control. As noted above, at each level of the control structure, in-
adequate control may result from missing constraints, inadequately communicated constraints, or
from constraints that are not enforced correctly at a lower level.
Government, general industry groups, and the court system are the top two levels of each of

the generic control structures shown in Figure 6.1. The government control structure in place to
control development may differ from that controlling operations—a different group at the FAA, for
example, is responsible for issuing aircraft type certifications than that responsible for supervising
airline operations. The appropriate constraints in each control structure and at each level will
vary but in general may include technical design and process constraints, management constraints,
manufacturing constraints, and operational constraints.
At the highest level in both the system development and system operation hierarchies are

Congress and state legislatures.1 Congress controls safety by passing laws and by establishing and
funding government regulatory structures. Feedback as to the success of these controls or the need
for additional ones comes in the form of government reports, congressional hearings and testimony,
lobbying by various interest groups, and, of course, accidents.
The next level contains government regulatory agencies, industry associations, user associa-

tions, insurance companies, and the court system. Unions may play a role in ensuring safe system
operations (such as the air traffic controllers union) or worker safety in manufacturing. The legal
system tends to be used when there is no regulatory authority and the public has no other means
to encourage a desired level of concern for safety in company management. The constraints gener-

1Obvious changes are required in the model for countries other than the U.S. The U.S. is used in the example
here because of the author’s familiarity with it.
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ated at this level and passed down to the companies are usually in the form of policy, regulations,
certification, standards (by trade or user associations), or threat of litigation. Where there is a
union, safety-related constraints on operations or manufacturing may result from union demands
and collective bargaining.
Company management takes the standards, regulations, and other general controls on its be-

havior and translates them into specific policy and standards for the company. Many companies
have a general safety policy (it is required by law in Great Britain) as well as more detailed stan-
dards documents. Feedback may come in the form of status reports, risk assessments, and incident
reports.
In the development control structure (shown on the left of Figure 6.1), the company policies and

standards are tailored and usually augmented by each engineering project to fit the needs of the
particular project. The higher-level control process may provide only general goals and constraints
and each level may then add many details to operationalize the general goals and constraints
given the immediate conditions and local goals. For example, while government and/or company
standards may require a hazard analysis be performed, the system designers and documenters
(including those designing the operational procedures and writing user manuals) may have control
over the actual hazard analysis process used to identify specific safety constraints on the design
and operation of the system. The design constraints identified as necessary to control system
hazards are passed to the implementers and assurers of the individual system components along
with standards and other requirements. Success is determined through test reports, reviews, and
various additional hazard analyses. At the end of the development process, the results of the hazard
analyses as well as documentation of the safety-related design features and design rationale should
be passed on to the maintenance group to be used in the system evolution and sustainment process.
A similar process involving layers of control is found in the system operation control structure.

In addition, there will be (or at least should be) interactions between the two structures. For
example, the safety design constraints used during development should form the basis for operating
procedures and for performance and process auditing.
Rasmussen notes that control at each level may be enforced in a very prescriptive command

and control structure (see the example in the next section) or it may be loosely implemented
as performance objectives with many degrees of freedom in how the objectives are met. Recent
trends from management by oversight to management by insight reflect differing levels of feedback
control that are exerted over the lower levels and a change from prescriptive management control to
management by objectives, where the objectives are interpreted and satisfied according to the local
context. In a Titan/Centaur/Milstar loss [86] and in the NASA Mars ’98 accidents (Mars Climate
Orbiter [109] and Mars Polar Lander [50, 130]), the accident reports note that a poor transition
from oversight to insight was a factor in the losses. Attempts to delegate decisions and to manage
by objectives requires an explicit formulation of the value criteria to be used and an effective means
for communicating the values down through society and organizations. And the impact of specific
decisions at each level on the objectives and values passed down need to be adequately and formally
evaluated. Feedback is required to measure how successfully the functions were performed.
As in any control loop, time lags may affect the flow of control actions and feedback and

may impact the efficiency of the control loop. For example, standards can take years to develop
or change—a time scale that may keep them behind current technology and practice. At the
physical level, new technology may be introduced in different parts of the system at different rates
(asynchronous evolution of the control structure). In the accidental shootdown of two U.S. Army
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Black Hawk helicopters by two U.S. Air Force F-15s in the No-Fly-Zone over northern Iraq in
1994, for example, the fighter jet aircraft and the helicopters were inhibited in communicating by
radio because the F-15’s had newer jam-resistant radios that could not communicate with the older
technology Army helicopter radios. Hazard analysis needs to include the influence of these time
lags.
In general, a common way to deal with time lags is to delegate responsibility to lower levels

that are not subject to as great a delay in obtaining information or feedback from the measuring
channels. In periods of quickly changing technology, time lags may make it necessary for the lower
levels to augment the control processes passed down from above or to modify them to fit the current
situation. Time lags at the lowest levels, as in the Black Hawk shootdown example, may require
the use of feedforward control to overcome lack of feedback or instituting controls on behavior:
Communication between the F-15s and the Black Hawks would have been possible if the F-15
pilots had been told to use an older radio technology available to them (as they were commanded
to do for other types of friendly aircraft).
Note that the operation of the socio-technical safety control structure at all levels is facing the

stresses noted in Section 1, such as rapidly changing technology, competitive and time-to-market
pressures, and changing public and regulatory views of responsibility for safety. These pressures
can lead to a need for new procedures or for controls to ensure that required safety constraints are
not ignored.
Aside from a few isolated proposals such as MORT, Johnson’s attempt to incorporate man-

agement factors into a fault tree format [49], accident models and hazard analysis techniques have
omitted all the levels of this socio-technical safety control structure except the lowest, technical
level. Effective accident analysis and prevention, however, requires going beyond the current ap-
proaches.
The next section contains an example of a control structure designed to prevent a hazard, in this

case the friendly fire accident mentioned above. The analysis, using STAMP, of why the accident
occurred is completed in the next chapter. This example was chosen because the controversy and
multiple viewpoints and books about the shootdown provide the information necessary to recreate
most of the control structure. Accident reports do not often include that information unless some
unusual controversy surrounds the investigation or the accident itself or the report is exceptionally
good. Because of the nature of this particular accident, the investigation and analysis was primarily
focused on operations. Examples of safety control structures for system development and their
relationship to accidents can be found in Chapter 8.

6.2 An Example Hierarchical Safety Control Structure for Friendly
Fire

After the Persian Gulf War, Operation Provide Comfort (OPC) was created as a multinational
humanitarian effort to relieve the suffering of hundreds of thousands of Kurdish refugees who fled
into the hills of northern Iraq during the war. The goal of the military efforts was to provide a
safe haven for the resettlement of the refugees and to ensure the security of relief workers assisting
them. The formal mission statement for OPC read: “To deter Iraqi behavior that may upset peace
and order in northern Iraq.”
In addition to operations on the ground, a major component of OPC’s mission was to occupy
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the airspace over northern Iraq. To accomplish this task, a no-fly-zone (also called the TAOR or
Tactical Area of Responsibility) was established that included all airspace within Iraq north of the
36th parallel (see Figure 6.3). Air operations were led by the Air Force to prohibit Iraqi aircraft
from entering the No-Fly-Zone while ground operations were organized by the Army to provide
humanitarian assistance to the Kurds and other ethnic groups in the area.
U.S., Turkish, British, and French fighter and support aircraft patrolled the No-Fly-Zone daily

to prevent Iraqi warplanes from threatening the relief efforts. The mission of the Army helicopters
was to support the ground efforts; the Army used them primarily for troop movement, resupply,
and medical evacuation.
On April 15, 1994, after nearly three years of daily operations over the TAOR (Tactical Area of

Responsibility), two U.S. Air Force F-15’s patrolling the area shot down two U.S. Army Black Hawk
helicopters, mistaking them for Iraqi Hind helicopters. The Black Hawks were carrying 26 people
including 15 U.S. citizens and 11 others, among them British, French, and Turkish military officers
as well as Kurdish citizens. All were killed in one of the worst air-to-air friendly fire accidents
involving U.S. aircraft in military history.
All the aircraft involved were flying in clear weather with excellent visibility, an AWACS (Air-

borne Warning and Control System) aircraft was providing surveillance and control for the aircraft
in the area, and all the aircraft were equipped with electronic identification and communication
equipment (apparently working properly) and flown by decorated and highly experienced pilots.
The hazard being controlled was mistaking a “friendly” (coalition) aircraft for a threat and

shooting at it. This hazard, informally called friendly fire, was well known and a control structure
was established to prevent it. Appropriate constraints were established and enforced at each level,
from the Joint Chiefs of Staff down to the aircraft themselves. Understanding why this accident
occurred requires understanding why the control structure in place was ineffective in preventing
the loss. Preventing future accidents involving the same control flaws requires making appropriate
changes to the control structure, including establishing monitoring and feedback loops to detect
when the controls are becoming ineffective and the system is migrating toward an accident (moving
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toward a state of increased risk). The more comprehensive the model and factors identified, the
larger the class of accidents that can be prevented. This section describes the safety control structure
for this accident while Chapter 7 contains an analysis of the accident using STAMP.
For this example analysis, information about the accident and the control structure was obtained

from the original accident report [4], a GAO (Government Accounting Office) report on the accident
investigation process and results [113], and two books on the shootdown—one a Ph.D. dissertation
by Scott Snook [108] and one by the mother (Joan Piper) of one of the victims [90]. Because of the
extensive existing analysis, much of the control structure (shown in Figure 6.4) can be reconstructed
from these sources.

National Command Authority and Commander-in-Chief Europe

When the National Command Authority (the President and Secretary of Defense) directed the
military to conduct Operation Provide Comfort (OPC), the U.S. Commander in Chief Europe
(USCINCEUR) directed the creation of Combined Task Force (CTF) Provide Comfort.
A series of orders and plans established the general command and control structure of the CTF.

These orders and plans also transmitted sufficient authority and guidance to subordinate component
commands and operational units so that they could then develop the local procedures that were
necessary to bridge the gap between general mission orders and specific subunit operations.
At the top of the control structure, the National Command Authority (the President and Secre-

tary of Defense, who operate through the Joint Chiefs of Staff) provided guidelines for establishing
Rules of Engagement (ROE). ROE govern the actions allowed by U.S. military forces to protect
themselves and other personnel and property against attack or hostile incursion and specify a strict
sequence of procedures to be followed prior to any coalition aircraft firing its weapons. They are
based on legal, political, and military considerations and are intended to provide for adequate self
defense to ensure that military activities are consistent with current national objectives and that
appropriate controls are placed on combat activities. Commanders establish ROE for their areas
of responsibility that are consistent with the Joint Chiefs of Staff guidelines, modifying them for
special operations and for changing conditions.
Because the ROE dictate how hostile aircraft or military threats are treated, they play an

important role in any friendly fire accidents. The ROE in force for OPC were the peacetime
ROE for the United States European Command with OPC modifications approved by the National
Command Authority. These conservative ROE required a strict sequence of procedures to be
followed prior to any coalition aircraft firing its weapons. The less aggressive peacetime rules of
engagement were used even though the area had been designated a combat zone because of the
number of countries involved in the joint task force. The goal was to slow down any military
confrontation, thus preventing the type of friendly fire accidents that had been common during
Operation Desert Storm. Thus the ROE were an important control in force to prevent the type of
accident involved in the shootdown of the Black Hawk helicopters and understanding the reasons
for the accident requires understanding why the ROE did not provide effective controls against
friendly fire.

Safety Constraints Related to the Accident:

1. The NCA and UNCINCEUR must establish a command and control structure that provides
the ability to prevent friendly fire accidents.
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2. The guidelines for ROE generated by the Joint Chiefs of Staff (with tailoring to suit specific
operational conditions) must be capable of preventing friendly fire accidents in all types of
situations.

3. The European Commander-in-Chief must review and monitor operational plans generated by
the Combined Task Force, ensure they are updated as the mission changes, and provide the
personnel required to carry out the plans.

Controls: The controls in place included the ROE guidelines, the operational orders, and review
procedures for the controls generated as a result (e.g., the actual ROE and Operational Plans) at
the control levels below.

Combined Task Force (CTF)

The components of the Combined Task Force (CTF) organization relevant to the accident (and
to preventing friendly fire) were a Combined Task Force staff, a Combined Forces Air Component
(CFAC), and an Army Military Coordination Center. The Air Force fighter aircraft were co-located
with CTF Headquarters and CFAC at Incirlik Air Base in Turkey while the U.S. Army helicopters
were located with the Army headquarters at Diyarbakir, also in Turkey (see Figure 6.3).
The Combined Task Force had three components under it (Figure 6.4):

1. The Military Coordination Center (MCC) monitored conditions in the security zone and had
operational control of Eagle Flight helicopters (the Black Hawks), which provided general
aviation support to the MCC and the CTF.

2. The Joint Special Operations Component (JSOC) was assigned primary responsibility to
conduct search and rescue operations should any coalition aircraft go down inside Iraq.

3. The Combined Forces Air Component (CFAC) was tasked with exercising tactical control of
all OPC aircraft operating in the Tactical Area of Responsibility (TAOR) and operational
control over Air Force aircraft.2 The CFAC commander exercised daily control of the OPC
flight mission through a Director of Operations (CFAC/DO), as well as a ground-based Mis-
sion Director at the Combined Task Force (CTF) headquarters in Incirlik and an Airborne
Command Element aboard the AWACS.

Operational orders were generated at the European Command level of authority that defined
the initial command and control structure and directed the CTF commanders to develop an oper-
ations plan to govern OPC. In response, the CTF commander created an operations plan in July
1991 delineating the command relationships and organizational responsibilities within the CTF.
In September 1991, the U.S. Commander in Chief, Europe, modified the original organizational
structure in response to the evolving mission in northern Iraq, directing an increase in the size
of the Air Force and the withdrawal of a significant portion of the ground forces. The CTF was
ordered to provide a supporting plan to implement the changes necessary in their CTF operations

2Tactical control involves a fairly limited scope of authority, i.e., the detailed and usually local direction and
control of movement and maneuvers necessary to accomplish the assigned mission. Operational control, on the other
hand, involves a broader authority to command subordinate forces, assign tasks, designate objectives, and give the
authoritative direction necessary to accomplish the mission.
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plan. The Accident Investigation Board found that although an effort was begun in 1991 to revise
the operations plan, no evidence could be found in 1994 to indicate that the plan was actually
updated to reflect the change in command and control relationships and responsibilities. The crit-
ical element of the plan with respect to the shootdown was that the change in mission led to the
departure of an individual key to the communication between the Air Force and Army, without his
duties being assigned to someone else.
In summary, the safety constraints at the highest levels of the socio-technical operations control

structure were:

Safety Constraints Related to the Accident:

1. Rules of engagement and operational orders and plans must be established at the Command
level that prevent friendly fire accidents. The plans must include allocating responsibility and
establishing and monitoring communication channels to allow for coordination of flights into
the theater of action.

2. Compliance with the ROE and operational orders and plans must be monitored. Alterations
must be made in response to changing conditions and changing mission.

Controls: The controls included the ROE and operational plans plus feedback mechanisms on
their effectiveness and application.

CFAC and MCC

The two parts of the Combined Task Force involved in the accident were the Army Military Coor-
dination Center (MCC) and the Air Force Combined Forces Air Component (CFAC).
The shootdown obviously involved a communication failure—the F-15 pilots did not know the

U.S. Army Black Hawks were in the area or that they were targeting friendly aircraft. Problems in
communication between the three services (Air Force, Army, and Navy) are legendary. Procedures
had been established to attempt to eliminate these problems in Operation Provide Comfort.
The Military Coordination Center (MCC) coordinated land and U.S. helicopter missions that

supported the Kurdish people. In addition to providing humanitarian relief and protection to the
Kurds, another important function of the Army detachment was to establish an ongoing American
presence in the Kurdish towns and villages by showing the U.S. flag. This U.S. Army function was
supported by a helicopter detachment called Eagle Flight.
All CTF components, with the exception of the Army Military Coordination Center lived and

operated out of Incirlik Air Base in Turkey. The MCC operated out of two locations. A forward
headquarters was located in the small village of Zakhu (see Figure 6.3), just inside Iraq. Ap-
proximately twenty people worked in Zakhu, including operations, communications, and security
personnel, medics, translators, and coalition chiefs. Zakhu operations were supported by a small
administrative contingent working out of Pirinclik Air Base in Diyarbakir, Turkey. Pirinclik is
also where the Eagle Flight Platoon of UH-60 Black Hawk helicopters was located. Eagle Flight
helicopters made numerous (usually daily) trips to Zakhu to support MCC operations.
The Combined Forces Air Component (CFAC) Commander was responsible for coordinating

the employment of all air operations to accomplish the OPC mission. He was delegated operational
control of the Airborne Warning and Control System (AWACS), USAF airlift, and fighter forces.
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He had tactical control of the U.S. Army, U.S. Navy, Turkish, French, and British fixed wing and
helicopter aircraft This splintering of control, along with communication problems, were major
contributors to the accident.
In a complex coordination problem of this sort, communication is critical. Communications were

implemented through the Joint Operations and Intelligence Center (JOIC). The JOIC received,
delivered, and transmitted communications up, down, and across the CTF control structure. No
Army Liaison Officer was assigned to the JOIC, but one was available on request to provide liaison
between the MCC helicopter detachment and the CTF staff.
To prevent friendly fire accidents, pilots need to know exactly what friendly aircraft are flying

in the No-Fly-Zone at all times as well as know and follow the ROE and other procedures for
preventing such accidents. The higher levels of control delegated to the CTF level and below the
authority and guidance to develop local procedures,3 which included:

• Airspace Control Order: The ACO contains the authoritative guidance for all local air opera-
tions in OPC. It covers such things as standard altitudes and routes, air refueling procedures,
recovery procedures, airspace deconfliction responsibilities, and jettison procedures. The de-
confliction procedures were a way to prevent interactions between aircraft that might result
in accidents. For the Iraqi TAOR, fighter aircraft, which usually operated at high altitudes,
were to stay above 10,000 feet above ground level while helicopters, which normally conducted
low-altitude operations, were to stay below 400 feet. All flight crews were responsible for re-
viewing and complying with the information contained in the ACO. The CFAC Director of
Operations was responsible for publishing guidance, including the Airspace Control Order,
for conduct of OPC missions.

• Aircrew Read Files (ARFs): The Aircraft Read Files supplement the ACOs and are also
required reading by all flight crews. They contain the classified rules of engagement (ROE),
changes to the ACO, and recent amplification of how local commanders want air missions
executed.

• Air Tasking Orders (ATOs): While the ACO and ARFs contain general information that
applies to all aircraft in OPC, specific mission guidance was published in the daily ATOs.
They contained the daily flight schedule, radio frequencies to be used, IFF codes (used to
identify an aircraft as friend or foe), and other late-breaking information necessary to fly on
any given day. All aircraft are required to have a hard copy of the current ATO with Special
Instructions (SPINS) on board before flying. Each morning around 1130, the mission planning
cell (or Frag shop) publishes the ATO for the following day, and copies are distributed to all
units by late afternoon.

• Battle Staff Directives (BSDs): Any late scheduling changes that do not make it onto the
ATO are published in last minute Battle Staff Directives, which are distributed separately
and attached to all ATOs prior to any missions flying the next morning.

• Daily Flow Sheets: Military pilots fly with a small clipboard attached to their knees. These
kneeboards contain boiled-down reference information essential to have handy while flying a
mission, including the daily flow sheet and radio frequencies. The flow sheets are graphical

3The term procedures as used in the military denote standard and detailed courses of action that describe how to
perform a task.
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depictions of the chronological flow of aircraft scheduled into the no-fly-zone for that day.
Critical information is taken from the ATO, translated into timelines, and reduced on a
copier to provide pilots with a handy inflight reference.

• Local Operating Procedures and Instructions, Standard Operating Procedures, Checklists,
etc.

In addition to written material, real-time guidance is provided to pilots after taking off via radio
through an unbroken command chain that runs from the OPC Commanding General, through the
CFAC, through the Mission Director, through an Airborne Command Element (ACE) on board
the AWACS, and ultimately to pilots.
The CFAC commander of operations was responsible for ensuring aircrews were informed of all

unique aspects of the OPC mission, including the ROE, upon their arrival. He was also responsible
for publishing the Aircrew Read File (ARF), the Airspace Control Order (ACO), the daily Air
Tasking Order, and mission-related special instructions (SPINS).

Safety Constraints Related to the Accident:

1. Coordination and communication among all flights into the TAOR must be established. Pro-
cedures must be established for determining who should be and is in the TAOR at all times.

2. Procedures must be instituted and monitored to ensure that all aircraft in the TAOR are
tracked and fighters are aware of the location of all friendly aircraft in the TAOR.

3. The ROE must be understood and followed by those at lower levels.

4. All aircraft must be able to communicate effectively in the TAOR.

Controls: The controls in place included the ACO, ARFs, flowsheets, intelligence and other
briefings, training (on the ROE, on aircraft identification, etc.), AWACS procedures for identifying
and tracking aircraft, established radio frequencies and radar signals for the No-Fly-Zone, a chain
of command (OPC Commander to Mission Director to ACE to pilots), disciplinary actions for
those not following the written rules, and a group (the JOIE) responsible for ensuring effective
communication occurred.

Mission Director and Airborne Command Element:

The Airborne Command Element (ACE) flies in the AWACS and is the commander’s representative
in the air, armed with up-to-the-minute situational information to make time-critical decisions.
The ACE monitors all air operations and is in direct contact with the Mission Director located
in the ground command post. He must also interact with the AWACS crew to identify reported
unidentified aircraft.
The ground-based Mission Director maintains constant communication links with both the

ACE up in the AWACS and with the CFAC commander on the ground. The Mission Director must
inform the OPC commander immediately if anything happens over the No-Fly-Zone that might
require a decision by the commander or his approval. Should the ACE run into any situation that
would involve committing U.S. or coalition forces, the Mission Director will communicate with
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him to provide command guidance. The Mission Director is also responsible for making weather-
related decisions, implementing safety procedures, scheduling aircraft, and ensuring that the ATO
is executed correctly.
The ROE in place at the time of the shootdown stated that aircrews experiencing unusual

circumstances were to pass details to the ACE or AWACS, who would provide guidance on the
appropriate response [113]. Exceptions were possible, of course, in cases of imminent threat. Air-
crews were directed to first contact the ACE and, if that individual was unavailable, to then contact
AWACS. The six unusual circumstances/occurrences to be reported, as defined in the ROE, in-
cluded “any intercept run on an unidentified aircraft.” As stated, the ROE was specifically designed
to slow down a potential engagement to allow time for those in the chain of command to check
things out.
Although the written guidance was clear, there was controversy with respect to how it was

or should have been implemented and who had decision-making authority. Conflicting testimony
during the investigation of the shootdown about responsibility either reflect after-the-fact attempts
to justify actions or they reflect real confusion on the part of everyone, including those in charge,
as to where the responsibility lay.

Safety Constraints Related to the Accident:

1. The ACE and MD must follow procedures specified and implied by the ROE.

2. The ACE must ensure that pilots follow the ROE.

3. The ACE must interact with the AWACS crew to identify reported unidentified aircraft.

Controls: Controls to enforce the safety constraints included: the ROE to slow down engagements
and a chain of command to prevent individual error or erratic behavior; the ACE up in the AWACS
to get up-to-the-minute information about the state of the TAOR airspace; and the Mission director
on the ground to provide a chain of command from the pilots to the CFAC commander for real-time
decision making.

AWACS Controllers

The AWACS (Airborne Warning and Control Systems) acts as an air traffic control tower in the
sky. The AWACS OPC mission was to:

1. Control aircraft enroute to and from the No-Fly-Zone;

2. Coordinate air refueling (for the fighter aircraft and the AWACS itself);

3. Provide airborne threat warning and control for all OPC aircraft operating inside the No-
Fly-Zone.

4. Provide surveillance, detection, and identification of all unknown aircraft.

An AWACS is a modified Boeing 707, with a saucer-shaped radar dome on the top, equipped
inside with powerful radars and radio equipment that scan the sky for aircraft. A computer takes
raw data from the radar dome, processes it, and ultimately displays tactical information on 14 color
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consoles arranged in rows of three throughout the rear of the aircraft. AWACS have the capability
to track approximately 1000 enemy aircraft at once while directing 100 friendly ones [90].
The AWACS carries a flight crew (pilot, copilot, navigator, and flight engineer) responsible

for safe ground and flight operation of the AWACS aircraft and a mission crew that has overall
responsibility for the AWACS command, control, surveillance, communications, and sensor systems.
The mission crew of approximately 19 people are under the direction of a Mission Crew Com-

mander (MCC). The Mission Crew Commander has overall responsibility for the AWACS mission
and the management, supervision, and training of the mission crew. The mission crew were divided
into three sections:

1. Technicians: The technicians are responsible for operating, monitoring, and maintaining
the physical equipment on the aircraft.

2. Surveillance: The surveillance section is responsible for the detection, tracking, identifica-
tion, height measurement, display, and recording of surveillance data. As unknown targets
appear on the radarscopes, surveillance technicians follow a detailed procedure to identify the
tracks. They are responsible for handling unidentified and non-OPC aircraft detected by the
AWACS electronic systems. The section is supervised by the Air Surveillance Officer and the
work is carried out by an Advanced Air Surveillance Technician and three Air Surveillance
Technicians.

3. Weapons: The weapons controllers are supervised by the Senior Director (SD). This section
is responsible for the control of all assigned aircraft and weapons systems in the TAOR
(tactical area of operations). The SD and three weapons directors are together responsible
for locating, identifying, tracking, and controlling all friendly aircraft flying in support of
OPC. Each weapons director was assigned responsibility for a specific task:

• The Enroute Controller controlled the flow of OPC aircraft to and from the TAOR. This
person also conducted radio and IFF checks on friendly aircraft outside the TAOR.

• The TAOR Controller provided threat warning and tactical control for all OPC aircraft
within the TAOR.

• The Tanker Controller coordinated all air refueling operations (and played no part in
the accident).

To facilitate communication and coordination, the SD’s console was physically located in the
“pit” right between the Mission Crew Commander and the ACE (Airborne Command Element).
Through internal radio nets, the SD synchronized the work of the weapons section with that of
the surveillance section. He also monitored and coordinated the actions of his weapons directors
to meet the demands of both the ACE and Mission Crew Commander.
Because those who had designed the control structure recognized the potential for some dis-

tance to develop between the training of the AWACS crew members and the continually evolving
practice in the No-Fly-Zone, they had instituted a control by creating staff or instructor personnel
permanently stationed in Turkey. Their job was to help provide continuity for U.S. AWACS crews
who rotated through OPC on temporary duty status, usually for 30 day rotations. This shadow
crew flew with each new AWACS crew on their first mission in the TAOR to alert them as to how
things were really done in OPC. Their job was to answer any questions the new crew might have
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about local procedures, recent occurrences, or changes in policy or interpretation that had come
about since the last time they had been in the theater. Because the accident occurred on the first
day for a new AWACS crew, instructor or staff personnel were also on board.
In addition to all these people, a Turkish controller flew on all OPC missions to help the crew

interface with local air traffic control systems.
The AWACS typically takes off from Incirlik AB approximately 2 hours before the first air-

refueling and fighter aircraft. Once the AWACS is airborne, the AWACS’s systems are brought
on-line and a Joint Tactical Information Distribution System (JTIDS4) link is established with
a Turkish Sector Operations Center (radar site). After the JTIDS link is confirmed, the CFAC
airborne command element (ACE) initiates the planned launch sequence for the rest of the force.
Normally, within a one hour period, tanker and fighter aircraft take off and proceed to the TAOR in
a carefully orchestrated flow. Fighters may not cross the political border into Iraq without AWACS
coverage.

Safety Constraints Related to the Accident:

1. The AWACS mission crew must identify and track all aircraft in the TAOR. Friendly aircraft
must not be identified as a threat (hostile).

2. The AWACS mission crew must accurately inform fighters about the status of all tracked
aircraft when queried.

3. The AWACS mission crew must alert aircraft in the TAOR to any coalition aircraft not
appearing on the flowsheet (ATO).

4. The AWACS crew must not fail to warn fighters about any friendly aircraft the fighters are
targeting.

5. The JTIDS must provide the ground with an accurate picture of the airspace and its occu-
pants.

Controls: Controls included procedures for identifying and tracking aircraft, training (including
simulator missions), briefings, staff controllers, and communication channels. The SD and ASO
provided real-time oversight of the crew’s activities.

Pilots

Fighter aircraft, flying in formations of two and four aircraft, must always have a clear line of
command. In the two-aircraft formation involved in the accident, the lead pilot is completely in
charge of the flight and the wingman takes all of his commands from the lead.
The ACO (Airspace Control Order) stipulates that fighter aircraft may not cross the political

border into Iraq without AWACS coverage and no aircraft may enter the TAOR until fighters with
4The Joint Tactical Information Distribution System acts as a central component of the mission command and

control system, providing ground commanders with a real-time downlink of the current air picture from AWACS. This
information is then integrated with data from other sources to provide commanders with a more complete picture of
the situation.
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airborne intercept (AI) radars have searched the TAOR for Iraqi aircraft. Once the AI radar-
equipped aircraft have “sanitized” the No-Fly-Zone, they establish an orbit and continue their
search for Iraqi aircraft and provide air cover while other aircraft are in the area. When they detect
non-OPC aircraft, they are to intercept, identify, and take appropriate action as prescribed by the
rules of engagement (ROE) as specified in the ACO.
After the area is sanitized, additional fighters and tankers flow to and from the TAOR through-

out the 6–8 hour daily flight schedule. This flying window is randomly selected to avoid predictabil-
ity.
Communication is important in preventing friendly fire accidents. The U.S. Army Black Hawk

helicopters carried a full array of standard avionics, radio, IFF, and radar equipment as well as
communication equipment consisting of FM, UHF, and VHF radios. Each day the FM and UHF
radios were keyed with classified codes to allow pilots to talk secure in encrypted mode. The ACO
directed that special frequencies were to be used when flying inside the TAOR.
Due to the line-of-sight limitations of their radios, the high mountainous terrain in northern

Iraq, and the fact that helicopters tried to fly at low altitudes to use the terrain to mask them
from enemy air defense radars, all Black Hawk flights into the No-Fly-Zone also carried tactical
satellite radios (TACSATs). These TACSATS were used to communicate with MCC operations.
The helicopters had to land to place the TACSATs in operation; they cannot be operated from
inside a moving helicopter.
The F-15’s were equipped with avionics, communications and electronic equipment similar to

that on the Black Hawks except that the F-15’s were equipped with HAVE QUICK II (HQ-II)
frequency-hopping radios while the helicopters were not. HQ-II defeated most enemy attempts
to jam transmissions by changing frequencies many times per second. Although the F-15 pilots
preferred to use the more advanced HAVE QUICK technology, the F-15 radios were capable of
communicating in a clear, non-HQ-II mode. The ACO directed that F-15s use the non-HQ-II
frequency when specified aircraft that were not HQ-II capable flew in the TAOR. One factor
involved in the accident was that Black Hawk helicopters (UH-60s) were not on the list of non-HQ-
II aircraft that must be contacted using a non-HQ-II mode.
Identification of aircraft was assisted by electronic Air-to-Air Interrogation/Identification Friend

or Foe (AAI/IFF) systems. Each coalition aircraft was equipped with an IFF transponder. Friendly
radars (located in the AWACS, a fighter aircraft, or a ground site) execute what is called a parrot
check to determine if the target being reflected on their radar screens is friendly or hostile. The AAI
component (the interrogator) sends a signal to an airborne aircraft to determine its identity, and
the IFF component answers or squawks back with a secret code—a numerically identifying pulse
that changes daily and must be uploaded into aircraft using secure equipment prior to takeoff. If
the return signal is valid, it appears on the challenging aircraft’s visual display (radarscope). A
compatible code has to be loaded into the cryptographic system of both the challenging and the
responding aircraft to produce a friendly response.
An F-15’s AAI/IFF system can interrogate using four identification signals or modes. The

different types of IFF signals provide a form of redundancy. Mode I is a general identification
signal that permits selection of 32 codes. Two Mode I codes were designated for use in OPC at the
time of the accident: one for inside the TAOR and the other for outside. Mode II is an aircraft-
specific identification mode allowing the use of 4,096 possible codes. Mode III provides a nonsecure
friendly identification of both military and civilian aircraft and was not used in the TAOR. Mode
IV is secure and provides high-confidence identification of friendly targets. According to the ACO,
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the primary means of identifying friendly aircraft in the Iraqi no-fly-zone were to be modes I and
IV in the IFF interrogation process.
Physical identification is also important in preventing friendly fire accidents. The ROE require

that the pilots perform a visual identification of the potential threat. To assist in this identification,
the Black Hawks were marked with six two-by-three foot American flags. An American flag was
painted on each door, on both sponsons,5 on the nose, and on the belly of each helicopter [90]. A
flag had been added to the side of each sponson because the Black Hawks had been the target of
small arms ground fire several months before.

Safety Constraints Related to the Accident:

1. Pilots must know and follow the rules of engagement established and communicated from the
levels above,

2. Pilots must know who is in the No-Fly-Zone at all times and whether they should be there
or not, i.e., they must be able to accurately identify the status of all other aircraft in the
No-Fly-Zone at all times and must not misidentify a friendly aircraft as a threat.

3. Pilots of aircraft in the area must be able to hear radio communications.

4. Fixed-wing aircraft must fly above 10,000 feet and helicopters must remain below 400 feet.

Controls: Controls included the ACO, the ATO, flowsheets, radios, IFF, the ROE, training, the
AWACS, procedures to keep fighters and helicopters from coming into contact (e.g., the F-15s fly
at different altitudes), and special tactical radio frequencies when operating in the TAOR. Flags
were displayed prominently on all aircraft in order to identify their origin.

With all these controls and this elaborate control structure to protect against friendly fire
accidents, how could the shootdown occur on a clear day with all equipment operational? The next
chapter contains an analysis of this accident using STAMP to answer these questions. But first,
the rest of STAMP needs to be described.

5Sponsons are auxiliary fuel tanks
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Chapter 7

Accident Factors

In STAMP, accidents result from inadequate enforcement of safety constraints on the behavior of
the system components—the control loops between the various levels of the hierarchical control
structure create or do not handle dysfunctional interactions leading to violations of the safety
constraints. Dysfunctional interactions may result both from component failures and system design
flaws.
Starting from this basic definition of an accident, the process that leads to a loss can be un-

derstood in terms of flaws in the components of the system development and systems operations
control loops in place during design, development, manufacturing, and operations. This chapter
presents a classification of those flaws. The classification can be used during accident analysis or
accident prevention activities to assist in identifying the factors involved in an accident and the
relationships among them.
Process models (the third component of STAMP, along with constraints and hierarchical levels of

control) play an important role in this classification and need to be discussed before the classification
is presented.

7.1 The Role of Process Models in System Accidents

The importance of the human operator’s mental model of the controlled process was discussed in
Section 3.3. More generally, any controller—human or automated—needs a model of the process
being controlled to effectively control it (the model condition discussed in Section 4.3 and in [20]).
At one extreme, this process model may contain only one or two variables, such as the model
required for a simple thermostat, which contains the current temperature and the setpoint. At the
other extreme, effective control may require a complex model with a large number of state variables
and transitions, such as the model needed to control air traffic.
Whether the model is embedded in the control logic of an automated controller or in the mental

model maintained by a human controller, it must contain the same type of information: the required
relationship among the system variables (the control laws), the current state (the current values of
the system variables), and the ways the process can change state. This model is used to determine
what control actions are needed, and it is updated through various forms of feedback. Note that a
model of the process being controlled is required at all levels of the hierarchical control structure,
not simply the lowest technical level.
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Figure 7.1a shows a typical process-control loop with an automated controller supervised by a
human controller. The dashed lines indicate that the human supervisor may have direct access to
system state information (not coming through the computer) and may have ways to manipulate
the controlled process state other than through computer commands.
There may, of course, be multiple human and automated controllers in the control loop, and

computers may be in other parts of the control loop. For example, computers may act as automated
decision aids that provide information to the human controller but do not directly issue control
commands to the process actuators: Figure 7.1b shows an example. If the software provides decision
aiding, then it must contain a model of the process because it is indirectly controlling the process.
Common arguments that in this design the software is not safety-critical are not justified—it is
still a critical part of the functioning of the control loop and its behavior will affect the human
controllers’ decisions and actions.
This discussion has been simplified by speaking only of process models. Models will also need

to include the relevant properties of the sensors, actuators, and some aspects of the environment,
particularly those related to any potential environmental disturbances. An example is the need for
an automated controller to have a model of its interface to the human controller(s) or supervisor(s).
This interface, which contains the controls, displays, alarm annunciators, etc., is important because
it is the means by which the automated and human controller models are synchronized, and lack
of synchronization between the models and the inconsistencies that result often result in system
accidents.
Note that process models are not only important during operations, but they are used during

system development activities. Designers use both models of the system being designed and models
of the development process itself. As an example of the latter, a loss of a Titan/Centaur spacecraft
involved flaws in the developers’ models of the testing process—each thought someone else was
testing the software using the actual load tape when, in fact, nobody was.

7.2 A Classification of Accident Factors using STAMP

Now that the primary components of STAMP have been introduced—constraints, hierarchical
control structures, and process models—a classification of accident factors can be derived for the
model (Figure 7.2).
In STAMP, accidents are defined in terms of violations of safety constraints, which may re-

sult from system component failure(s), environmental disturbances, and dysfunctional interactions
among (failing or nonfailing) components. In each control loop at each level of the socio-technical
control structure for a particular system, unsafe behavior results from either a missing or inad-
equate constraint on the process at the lower level or inadequate enforcement of the constraint
leading to its violation.
Because each component of the control loop may contribute to inadequate enforcement of safety

constraints, classification starts by examining each of the general control-loop components and
evaluating their potential contribution: (1) the controller may issue inadequate or inappropriate
control actions, including inadequate handling of failures or disturbances in the physical process
or (2) control actions may be inadequately executed by the actuator. These same general factors
apply at each level of the socio-technical control structure, but the interpretations (applications)
of the factor at each level may differ.
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Figure 7.2: A Classification of Control Flaws Leading to Hazards

For each of the factors, at any point in the control loop where a human or organization is
involved, it will be necessary to evaluate the context in which decisions are made and the behavior-
shaping mechanisms (influences) at play in order to understand how and why unsafe decisions have
been made.
Note that accidents caused by basic component failures are included here. Component failures

may result from inadequate constraints on the manufacturing process; inadequate engineering de-
sign such as missing or incorrectly implemented fault tolerance; lack of correspondence between
individual component capacity (including humans) and task requirements; unhandled environmen-
tal disturbances (e.g., EMI); inadequate maintenance, including preventive maintenance; physical
degradation over time (wearout), etc.
Component failures may be prevented by increasing the integrity or resistance of the component

to internal or external influences or by building in safety margins or safety factors. They may also
be avoided by operational controls, such as operating the component within its design envelope and
by periodic inspections and preventive maintenance. Manufacturing controls can reduce deficiencies
or flaws introduced during the manufacturing process. The effects of component failure on system
behavior may be eliminated or reduced by using redundancy. STAMP goes beyond simply blaming
component failure for accidents and requires that the reasons be identified for why those failures
occurred and led to an accident.
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7.2.1 Inadequate Enforcement of Safety Constraints

Inadequate control over (enforcement of) safety constraints, can occur either because hazards and
their related constraints were not identified (1.1 in Figure 7.2) or because the control actions do
not adequately enforce the constraints (1.2). The latter may, in turn, result from flawed control
algorithms (1.2.1), inconsistent or incorrect process models used by the control algorithms (1.2.2),
inadequate coordination among multiple controllers and decision makers (1.2.3), or inadequate or
missing feedback (1.2.4).

Inadequate Control Algorithms: Control algorithms may not enforce safety constraints (1.2.1)
because the algorithms are inadequately designed originally, the process may change and thus
the algorithms become inadequate, or they may be inadequately modified by maintainers (if the
algorithms are automated) or through various types of natural adaptation if they are implemented
by humans. Leplat has noted that many accidents relate to asynchronous evolution [63] where
one part of a system (in our case the hierarchical safety control structure) changes without the
related necessary changes in other parts. Changes to subsystems may be carefully designed, but
consideration of their effects on other parts of the system, including the safety control aspects, may
be neglected or inadequate. Asynchronous evolution may also occur when one part of a properly
designed system deteriorates. In both these cases, the erroneous expectations of users or system
components about the behavior of the changed or degraded subsystem may lead to accidents.
The Ariane 5 trajectory changed from that of the Ariane 4, but the inertial reference system
software did not. One factor in the loss of contact with SOHO (SOlar Heliosperic Observatory)
in 1998 was the failure to communicate to operators that a functional change had been made
in a procedure to perform gyro spin down. The Black Hawk friendly fire accident had several
examples of asynchronous evolution, for example the CTF mission changed and an individual key
to communication between the Air Force and Army left, without his duties being assigned to
someone else.
Communication is a critical factor here as well as monitoring for changes that may occur and

feeding back this information to the higher-level control. For example, the safety analysis process
that generates constraints always involves some basic assumptions about the operating environment
of the process. When the environment changes such that those assumptions are no longer true,
the controls in place may become inadequate. Embedded pacemakers, for example, were originally
assumed to be used only in adults, who would lie quietly in the doctor’s office while the pacemaker
was being “programmed.” Later they began to be used in children, and the assumptions under
which the hazard analysis was conducted and the controls were designed no longer held and needed
to be revisited.

Inconsistent Process Models: Section 7.1 stated that effective control is based on a model of
the process state. Accidents, particularly system accidents, most often result from inconsistencies
between the models of the process used by the controllers (both human and automated) and the
actual process state (1.2.2). When the controller’s model of the process (either the human mental
model or the software model) diverges from the process state, erroneous control commands (based
on the incorrect model) can lead to an accident—for example, (1) the software does not know that
the plane is on the ground and raises the landing gear or (2) the controller (automated or human)
does not identify an object as friendly and shoots a missile at it or (3) the pilot thinks the aircraft
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controls are in speed mode but the computer has changed the mode to open descent and the pilot
issues inappropriate commands for that mode or (4) the computer does not think the aircraft has
landed and overrides the pilots’ attempts to operate the braking system. All of these examples
have actually occurred.
The mental models of the system developers are also important. During software development,

for example, the programmers’ models of required behavior may not match engineers’ models
(commonly referred to as software requirements error), or the software may be executed on computer
hardware or may control physical systems during operations that differs from what was assumed
by the programmer and used during testing. The situation becomes more even complicated when
there are multiple controllers (both human and automated) because each of their process models
must also be kept consistent.
The most common form of inconsistency occurs when one or more of the process models is

incomplete in terms of not defining appropriate behavior for all possible process states or all possible
disturbances, including unhandled or incorrectly handled component failures. Of course, no models
are complete in the absolute sense: The goal is to make them complete enough that no safety
constraints are violated when they are used. Definitions of completeness in this sense are described
in Chapter 15 of Safeware [66].
How do the models become inconsistent? First, they may be wrong from the beginning, such as

incorrect system or software requirements). In this case, the design of the controller itself is flawed:
there may be uncontrolled disturbances, unhandled process states, inadvertent commands of the
system into a hazardous state, unhandled or incorrectly handled system component failures, etc.
Second, the models may start out being accurate but may become incorrect due to lack of

feedback, inaccurate feedback, or inadequate processing of the feedback. A contributing factor
cited in the Cali B-757 accident report was the omission of the waypoints behind the aircraft from
cockpit displays, which contributed to the crew not realizing that the waypoint for which they were
searching was behind them (missing feedback). The model of the Ariane 501 attitude used by the
attitude control software became inconsistent with the launcher attitude when an error message sent
by the inertial reference system was interpreted by the attitude control system as data (incorrect
processing of feedback), leading to the issuance of an incorrect and unsafe control command.
Other reasons for the process models to diverge may be more subtle. Information about the

process state has to be inferred from measurements. For example, in the TCAS II aircraft collision
avoidance system, relative range positions of other aircraft are computed based on round-trip
message propagation time. The theoretical control function (control law) uses the true values
of the controlled variables or component states (e.g., true aircraft positions). However, at any
time, the controller has only measured values, which may be subject to time lags or inaccuracies.
The controller must use these measured values to infer the true conditions in the process and, if
necessary, to derive corrective actions to maintain the required process state. In the TCAS example,
sensors include on-board devices such as altimeters that provide measured altitude (not necessarily
true altitude) and antennas for communicating with other aircraft. The primary TCAS actuator is
the pilot, who may or may not respond to system advisories. The mapping between the measured
or assumed values and the true values can be flawed.
In addition, the control loop must necessarily include time lags, such as the time between

measuring values and receiving those values or between issuing a command and the actual process
state change. Pilot response delays are important time lags that must be considered in designing
the control function for TCAS or other aircraft systems as are time lags in the controlled process
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Figure 7.3: Problems often occur when there is shared control over the same process or at the
boundary areas or separately controlled processes.

(the aircraft trajectory) caused by aircraft performance limitations. Delays may not be directly
observable, but may need to be inferred. Depending on where in the feedback loop the delay occurs,
different models are required to cope with the delays [15]: dead time and time constants require
a model that makes it possible to predict when an action is needed before the need arises while
feedback delays require a model that allows prediction of when a given action has taken effect and
when resources will be available again. Such requirements may impose the need for some type of
open loop or feedforward strategy to cope with delays.
To summarize, process models can be incorrect from the beginning (where correct is defined

in terms of consistency with the current process state and with the models being used by other
controllers) or they can become incorrect due to erroneous or missing feedback or measurement
inaccuracies. They may also be incorrect only for short periods of time due to time lags in the
process loop.

Inadequate Coordination Among Controllers and Decision Makers: When there are
multiple controllers (human and/or automated), control actions may be inadequately coordinated
(1.2.3), including unexpected side effects of decisions or actions or conflicting control actions. Com-
munication flaws play an important role here.
Leplat suggests that accidents are most likely in overlap areas or in boundary areas or where

two or more controllers (human and/or automated) control the same process or processes with
common boundaries (Figure 7.3) [63]. In both boundary and overlap areas, the potential exists for
ambiguity and for conflicts among independent decisions.
Responsibility for the control functions in boundary areas are often poorly defined. For example,

Leplat cites an iron and steel plant where frequent accidents occurred at the boundary of the blast
furnace department and the transport department. One conflict arose when a signal informing
transport workers of the state of the blast furnace did not work and was not repaired because
each department was waiting for the other to fix it. Faverge suggests that such dysfunctioning can
be related to the number of management levels separating the workers in the departments from a
common manager: The greater the distance, the more difficult the communication, and thus the
greater the uncertainty and risk.
Coordination problems in the control of boundary areas are rife. As mentioned earlier, a Milstar

satellite was lost due to inadequate attitude control of the Titan/Centaur launch vehicle, which
used an incorrect process model based on erroneous inputs in a software load tape. After the
accident, it was discovered that nobody had tested the software using the actual load tape—each
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group involved in testing and assurance had assumed some other group was doing so. In the
system development process, system engineering and mission assurance activities were missing or
ineffective, and a common control or management function was quite distant from the individual
development and assurance groups. A factor in the loss of the Black Hawk helicopters to friendly
fire over northern Iraq was that the helicopters normally flew only in the boundary areas of the
No-Fly-Zone and procedures for handling aircraft in those areas were ill-defined. Another factor
was that an Army base controlled the flights of the Black Hawks while an Air Force base controlled
all the other components of the airspace. A common control point once again was high above
where the accident occurred in the control structure. In addition, communication problems existed
between the Army and Air Force bases at the intermediate control levels.

Overlap areas exist when a function is achieved by the cooperation of two controllers or when
two controllers exert influence on the same object. Such overlap creates the potential for conflicting
control actions (dysfunctional interactions among control actions). Leplat cites a study of the steel
industry that found 67 percent of technical incidents with material damage occurred in areas of
co-activity, although these represented only a small percentage of the total activity areas. In an
A320 accident in Bangalore, India, the pilot had disconnected his flight director during approach
and assumed that the co-pilot would do the same. The result would have been a mode configuration
in which airspeed is automatically controlled by the autothrottle (the speed mode), which is the
recommended procedure for the approach phase. However, the co-pilot had not turned off his flight
director, which meant that open descent mode became active when a lower altitude was selected
instead of speed mode, eventually contributing to the crash of the aircraft short of the runway [102].
In the Black Hawks’ shootdown by friendly fire, the aircraft surveillance officer (ASO) thought she
was responsible only for identifying and tracking aircraft south of the 36th parallel while the air
traffic controller for the area north of the 36th parallel thought the ASO was also tracking and
identifying aircraft in his area and acted accordingly.

Inadequate or Missing Feedback: The third flaw leading to system hazards involves inade-
quate feedback (1.2.4). A basic principle of system theory is that no control system will perform
better than its measuring channel. Important questions therefore arise about whether the con-
trollers or decision makers (either automated or human) have the necessary information about the
actual state of the controlled process to satisfy their objectives. This information is contained in
their process models and updating these models correctly is crucial to avoiding accidents (1.2.2).
Feedback may be missing or inadequate because such feedback is not included in the system design,
flaws exist in the monitoring or feedback communication channel, the feedback is not timely, or the
measuring instrument operates inadequately.

7.2.2 Inadequate Execution of Control Actions

A second way for constraints to be violated in the controlled process is if there is a failure or
inadequacy in the reference channel, i.e., in the transmission of control commands or in their
execution, i.e., an actuator or controlled component fault or failure. Again, these types of flaws do
not simply apply to operations or to the technical system but also to system design and development.
For example, a common flaw in system development is that the safety information gathered or
created by the system safety engineers (the hazards and the necessary design constraints to control
them) is inadequately communicated to the system designers and testers or flaws exist in the
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application of this information in the system development process.
The next secion continues the friendly fire example, which incorporates almost all of these

accident factors.

7.3 The Friendly Fire Example Continued

We can now return to the Black Hawk friendly fire accident as an example of the use of STAMP.
Chapter 6 described the hierarchical structure in place to prevent friendly fire accidents in the

Iraqi No-Fly-Zone. As noted, frendly fire is well known as a hazard, and many controls were in
place in OPC to prevent such an occurrence. As the Chairman of the Joint Chiefs of Staff said
after the accident:

In place were not just one, but a series of safeguards—some human, some procedural,
some technical—that were supposed to ensure an accident of this nature could never
happen. Yet, quite clearly, these safeguards failed.1

Understanding why this accident occurred and learning how to prevent such losses in the fu-
ture requires determining why these safeguards were not successful in preventing the friendly fire.
Various explanations for the accident have been posited. Making sense out of these conflicting
explanations and understanding the accident process involved (including not only failures of in-
dividual system components but the dysfunctional interactions and miscommunications between
components) requires understanding the role played in this process by each of the elements of the
safety control structure in place at the time.
The next section contains a description of the proximate events involved in the loss. Then the

STAMP model explaining these events is presented.

7.3.1 Some Proximate Events to the Loss

Table 7.4, taken from the official Accident Investigation Board Report, shows a time line of the
actions of each of the main actors in the proximate events—the AWACS, the F-15s, and the Black
Hawks. It may also be helpful to refer back to Figure 6.3, which contains a map of the area showing
the relative locations of the important activities.
After receiving a briefing on the day’s mission, the AWACS took off from Incirlik Air Base.

When they arrived on station and started to track aircraft, the AWACS surveillance section noticed
unidentified radar returns (from the Black Hawks). A “friendly general” track symbol was assigned
to the aircraft and labeled as H, denoting a helicopter. The Black Hawks (Eagle Flight) later
entered the TAOR2 through Gate 1, checked in with the AWACS controllers who annotated the
track with the identifier EE01, and flew to Zakhu. The Black Hawk pilots did not change their
IFF (Identify Friend or Foe) Mode I code: The code for all friendly fixed-wing aircraft flying in
Turkey on that day was 42 and the code for the TAOR was 52. They also remained on the enroute
radio frequency instead of changing to the frequency to be used in the TAOR. When the helicopters
landed at Zakhu, their radar and IFF (Identify Friend or Foe) returns on the AWACS radarscopes
faded. Thirty minutes later, Eagle Flight reported their departure from Zakhu to the AWACS and

1John Shalikashvili, Chairman of the Joint Chiefs of Staff, from a cover letter to the twenty-one volume Report
of the Aircraft Accident Investigation Board, 1994a, page 1.

2Tactical Area of Responsibility, the official name of the No-Fly-Zone.
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Figure 7.4: The proximate chronological events leading to the accident.
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said they were enroute from Whiskey (code name for Zakhu) to Lima (code name for Irbil, a town
deep in the TAOR). The enroute controller reinitiated tracking of the helicopters.
Two F-15s were tasked that day to be the first aircraft in the TAOR and to sanitize it (check

for hostile aircraft) before other coalition aircraft entered the area. The F-15s reached their final
checkpoint before entering the TAOR approximately an hour after the helicopters had entered.
They turned on all combat systems, switched their IFF Mode I code from 42 to 52, and switched
to the TAOR radio frequency. They reported their entry into the TAOR to the AWACS.
At this point, the Black Hawks’ radar and IFF contacts faded as the helicopters entered moun-

tainous terrain. The AWACS computer continued to move the helicopter tracks on the radar display
at the last known speed and direction, but the identifying H symbol (for helicopter) on the track
was no longer displayed. The Air Surveillance Officer (ASO) placed an “attention arrow” (used to
point out an area of interest) on the Senior Director’s (SD) scope at the point of the Black Hawk’s
last known location. This large arrow is accompanied by a blinking alert light on the SD’s console.
The SD did not acknowledge the arrow and after sixty seconds, both the arrow and the light were
automatically dropped. The ASO then adjusted the AWACS’s radar to detect slow-moving objects.
Before entering the TAOR, the lead F-15 pilot checked in with the ACE and was told there were

no relevant changes from previously briefed information (“negative words”). Five minutes later,
the F-15’s entered the TAOR and the lead pilot reported their arrival to the TAOR controller. One
minute later, the enroute controller finally dropped the symbol for the helicopters from the scope,
the last remaining visual reminder that there were helicopters inside the TAOR.
Two minutes after entering the TAOR, the lead F-15 picked up hits on its instruments indicating

that it was getting radar returns from a low and slow-flying aircraft. The lead F-15 pilot alerted
his wingman and then locked onto the contact and used the F-15’s air-to-air interrogator to query
the target’s IFF code. If it was a coalition aircraft, it should be squawking Mode I, code 52. The
scope showed it was not. He reported the radar hits to the controllers in the AWACS, and the
TAOR controller told him they had no radar contacts in that location (“clean there”). The wing
pilot replied to the wing pilot’s alert, noting that his radar also showed the target.
The lead F-15 pilot then switched the interrogation to the second mode (Mode IV) that all

coalition aircraft should be squawking. For the first second it showed the right symbol, but for the
rest of the interrogation (4 to 5 seconds) it said the target was not squawking Mode IV. The lead F-
15 pilot then made a second contact call to the AWACS over the main radio, repeating the location,
altitude, and heading of his target. This time the AWACS enroute controller responded that he
had radar returns on his scope at the spot (“hits there”) but did not indicate that these returns
might be from a friendly aircraft. At this point, the Black Hawk IFF response was continuous
but the radar returns were intermittent. The enroute controller placed an “unknown, pending,
unevaluated” track symbol in the area of the helicopter’s radar and IFF returns and attempted to
make an IFF identification.
The lead F-15 pilot, after making a second check of Modes I and IV and again receiving no

response, executed a visual identification pass to confirm that the target was hostile (the next
step required in the Rules of Engagement). He saw what he thought was an Iraqi helicopter. He
pulled out his “goody book” with aircraft pictures in it, checked the silhouettes, and identified
the helicopters as Hinds, a type of Russian aircraft flown by the Iraqis (“Tally two Hinds”). The
F-15 wing pilot also reported seeing two helicopters (“Tally two”), but never confirmed that he had
identified them as Hinds or as Iraqi aircraft.
The lead F-15 pilot called the AWACS and said they were engaging enemy aircraft (“Tiger
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Two3 has tallied two Hinds, engaged”), cleared his wingman to shoot (“Arm hot”), and armed his
missiles. He then did one final Mode I check, received a negative response, and pressed the button
that released the missiles. The wingman fired at the other helicopter and both were destroyed.
This description represents the chain of events, but it does not explain “why” the accident

occurred except at the most superficial level and provides few clues as to how to redesign the
system to prevent future occurrences. Just looking at these basic events surrounding the accident,
it appears that mistakes verging on gross negligence were involved—undisciplined pilots shot down
friendly aircraft in clear skies, and the AWACS crew and others who were supposed to provide
assistance simply sat and watched without telling the F-15 pilots that the helicopters were there.
An analysis using STAMP, as will be seen, provides a very different level of understanding. In the
following analysis, the goal is to understand why the controls in place did not prevent the accident
and to identify the changes necessary to prevent similar accidents in the future. A related type
of analysis can be used during system design and development (see Chapter 9) to prevent such
occurrences in the first place.
In the following analysis, the basic failures and dysfunctional interactions leading to the loss at

the physical level are identified first. Then each level of the hierarchical safety control structure is
considered in turn, starting from the bottom.
At each level, the context in which the behaviors took place is considered. The context for each

level includes the hazards, the safety requirements and constraints, the controls in place to prevent
the hazard, and aspects of the environment or situation relevant to understanding the control
flaws, including the people involved, their assigned tasks and responsibilities, and any relevant
environmental behavior-shaping factors. Following a description of the context, the dysfunctional
interactions and failures at that level are described along with the accident factors (see Figure 7.2)
that were involved.

7.3.2 Physical Process Failures and Dysfunctional Interactions

The first step in the analysis is to understand the physical failures and dysfunctional interactions
within the physical process that were related to the accident. Figure 7.5 shows this information.
All the physical components worked exactly as intended, except perhaps for the IFF system.

The fact that the Mode IV IFF gave an intermittent response has never been completely explained.
Even after extensive equipment teardowns and reenactments with the same F-15s and different
Black Hawks, no one has been able to explain why the F-15 IFF interrogator did not receive a
Mode IV response [113]. The Accident Investigation Board report states that: “The reason for the
unsuccessful Mode IV interrogation attempts cannot be established, but was probably attributable
to one or more of the following factors: incorrect selection of interrogation modes, faulty air-to-
air interrogators, incorrectly loaded IFF transponder codes, garbling of electronic responses, and
intermittent loss of line-of-sight radar contact.”4

There were several dysfunctional interactions and communication inadequacies among the cor-
rectly operating aircraft equipment. The most obvious dysfunctional interaction was the release of

3Tiger One was the code name for the F-15 lead pilot while Tiger Two denoted the wing pilot.
4The Commander, US Army in Europe objected to this sentence. He argued that nothing in the Board report

supported the possibility that the codes had been loaded inproperly and that it was clear the Army crews were not
at fault in this matter. The US Commander in Chief, Europe, agreed with his view. Although the language in
the opinion was not changed, the Commander, US Army in Europe, said his concerns were addressed because the
complaint had been included as an attachment to the Board report.
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Figure 7.5: The Physical Level of the Accident Process.

two missiles in the direction of two friendly aircraft, but there were also four obstacles to the type
of fighter-helicopter communications that might have prevented that release.

1. The Black Hawks and F-15s were on different radio frequencies and thus the pilots could not
speak to each other or hear the transmissions between others involved in the incident, e.g.,
the radio transmissions between the two F-15 pilots and between the lead F-15 pilot and
personnel onboard the AWACS. The Black Hawks, according to the Aircraft Control Order5,
should have been communicating on the TAOR frequency. Stopping here and looking only at
this level, it appears that the Black Hawk pilots were at fault in not changing to the TAOR
frequency, but an examination of the higher levels of control points to a different conclusion.

2. Even if they had been on the same frequency, the Air Force fighter aircraft were equipped
with HAVE QUICK II (HQ-II) radios while the Army helicopters were not. The only way
the F-15 and Black Hawk pilots could have communicated would have been if the F-15 pilots
switched to non-HQ mode. The procedures the pilots were given to follow did not tell them
to do so. In fact, with respect to the two helicopters that were shot down, one contained an
outdated version called HQ-I, which was not compatible with HQ-II. The other was equipped
with HQ-II, but because not all of the Army helicopters supported HQ-II, CFAC refused
to provide Army helicopter operations with the necessary cryptographic support required to
synchronize their radios with the other OPC components.

If the objective of the accident analysis is to assign blame, then the different radio frequencies
noted in Number 1 above could be considered irrelevant because the differing technology
meant they could not have communicated even if they had been on the same frequency. If
the objective, however, is to learn enough to prevent future accidents, then the different radio
frequencies is relevant.

5The Aircraft Control Order or ACO contains the authoritative rules for all local air operations. All air crews are
responsible for reviewing and complying with the information contained in the ACO.
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3. The Black Hawks were not squawking the required IFF Mode I code for those flying within
the TAOR. The GAO report states that Black Hawk pilots told them they routinely used the
same Mode I code for outside the TAOR while operating within the TAOR and no one had
advised them that it was incorrect to do so. But, again, the wrong Mode I code is only part
of the story.

The Accident Investigation Board report concluded that the use of the incorrect Mode I IFF
code by the Black Hawks was responsible for the F-15 pilots’ failure to receive a Mode I
response when they interrogated the helicopters. However, an Air Force special task force
concluded that based on the descriptions of the system settings that the pilots testified they
had used on the interrogation attempts, the F-15s should have received and displayed any
Mode I or II response regardless of the code [113]. The AWACS was receiving friendly Mode
I and II returns from the helicopters at the same time that the F-15s received no response.
The GAO report concluded that the helicopters’ use of the wrong Mode I code should not
have prevented the F-15s from receiving a response. Confusing the situation even further,
the GAO report cites the Accident Board president as telling the GAO investigators that
because of the difference between the lead pilot’s statement on the day of the incident and
his testimony to the investigation board, it was difficult to determine the number of times
the lead pilot had interrogated the helicopters [113].

4. Communication was also impeded by physical line-of-sight restrictions. The Black Hawks were
flying in narrow valleys among very high mountains that disrupted communication depending
on line-of-sight transmissions.

One reason for these dysfunctional interactions lies in the asynchronous evolution of the Army
and Air Force technology, leaving the different services with largely incompatible radios. Other
reasons stem from inadequate control actions above this physical level, described later. Looking
only at the event chain or at the failures and dysfunctional interactions in the technical process—a
common stopping point in accident investigations—gives a very misleading picture of the reasons
this accident occurred. Examining the higher levels of control is necessary to obtain the information
necessary to prevent future occurrences.
After the shootdown, the following changes were made:

• Updated radios were placed on Black Hawk helicopters to enable communication with fighter
aircraft. Until the time the conversion was complete, fighters were directed to remain on the
TAOR clear frequencies for deconfliction with helicopters.

• Helicopter pilots were directed to monitor the common TAOR radio frequency and to squawk
the TAOR IFF codes.

7.3.3 The Controllers of the Aircraft and Weapons

The pilots directly control the aircraft, including the activation of weapons. The context in which
their decisions and actions took place is first described, followed by the disfunctional interactions
at this level of the control structure. Then the inadequate control actions are outlined and the
factors that led to them are described.
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Context in Which Decisions and Actions Took Place

Safety Requirements and Constraints: The safety constraints that must be enforced at this
level of the socio-technical control structure are described in Section 6.2. The F-15 pilots must know
who is in the TAOR and whether they should be there or not, i.e., they must be able to accurately
identify the status of all other aircraft in the TAOR at all times so that a friendly aircraft is not
identified as a threat. They must also follow the rules of engagement (ROE), which specify the
procedures to be executed before firing weapons at any targets. As noted in the previous chapter,
the OPC ROE were devised by the OPC Commander, based on guidelines created by the Joint
Chiefs of Staff, and were purposely conservative because of the many multinational participants
in OPC and the potential for friendly fire accidents. The ROE were designed to slow down any
military confrontation, but were unsuccessful in this case. An important part of understanding this
accident process and preventing repetitions is understanding why this goal was not achieved.

Controls: As noted in the previous chapter, the controls at this level included the rules and
procedures for operating in the TAOR (specified in the ACO), information provided about daily
operations in the TAOR (specified in the Air Tasking Order or ATO), flowsheets, communication
and identification channels (radios and IFF), training, AWACS oversight, and procedures to keep
fighters and helicopters from coming into contact (for example, the F-15s fly at different altitudes).
National flags were required to be displayed prominently on all aircraft in order to facilitate iden-
tification of their origin.

Roles and Responsibilities of the F-15 Pilots: When conducting combat missions, aerial
tactics dictate that F-15s always fly in pairs with one pilot as the lead and one as the wingman.
They fly and fight as a team, but the lead is always in charge. The mission that day was to
conduct a thorough radar search of the area to ensure that the TAOR was clear of hostile aircraft
(to sanitize the airspace) before the other aircraft entered. They were also tasked to protect the
AWACS from any threats. The wing pilot was responsible for looking 20,000 feet and higher with
his radar while the lead pilot was responsible for the area 25,000 feet and below. The lead pilot
had final responsibility for the 5,000 foot overlap area.

Environmental and Behavior-Shaping Factors for the F-15 Pilots: The lead pilot that
day was a Captain with nine years experience in the AF. He had flown F-15s for over three years,
including 11 combat missions over Bosnia and 19 over northern Iraq protecting the No-Fly-Zone.
The mishap occurred on his sixth flight during his second tour flying in support of OPC.
The wing pilot was a lieutenant Colonel and 53rd Fighter Squadron Commander at the time of

the shootdown and was a highly experienced pilot. He had flown combat missions out of Incirlik
during Desert Storm and had served in the initial group that set up OPC afterward. He was
credited with the only confirmed kill of an enemy Hind helicopter during the Gulf War. That
downing involved a beyond visual range shot, which means he never actually saw the helicopter.
F-15 pilots were rotated through every 6 to 8 weeks. Serving in the No-Fly-Zone was an unusual

chance for peacetime pilots to have a potential for engaging in combat. The pilots were very aware
they were going to be flying in unfriendly skies. They drew personal sidearms with live rounds,
removed wedding bands and other personal items that could be used by potential captors, were
supplied with blood chits offering substantial rewards for returning downed pilots, and were briefed



94 CHAPTER 7. ACCIDENT FACTORS

Safety Requirements and ConstraintsViolated:

Inaccurate model of current 
Incorrect model of ROE

Must follow deconfliction rules 

Ambiguous
feedback from
ID passes

identification
No report of lack of

communication
Ambiguous radio

Deviated from basic mission to protect AWACS
Violated altitude restrictions without permission

Inaccurate models of helicopters

Misidentified Black Hawks as Hinds and Iraqi

Incorrect model of ROE
Inaccurate model of current airspace occupants

Mental Model Flaws:

Safety Requirements and ConstraintsViolated:

Must follow deconfliction rules 

Must follow rules of engagement
Must not identify a friendly aircraft as a threat

Context:
Takes orders from Lead pilot
In war zone and ready for combat
Radio discipline (min comm)
Rivalry with F−15 pilots

Must not identify a friendly aircraft as a threat
Must follow rules of engagement

Physically separated from AF squadrons
Daily missions to Zakhu

Context:

In war zone and ready for combat

Must follow ATO

Radio discipline (min comm)

Thought being tracked by AWACS
Thought AWACS using Delta point system.

before fighter sweep did not apply to them

Rivalry with F−15 pilots

airspace occupants

Safety Requirements and ConstraintsViolated:

Inaccurate models of helicopters

Flew in valleys for protection

Mental Model Flaws:

Mental Model Flaws:

Did not know supposed to change radio freq.
Believed ACO restriction on entry to TAOR

Unaware of separate IFF codes for TAOR

Context:
Takes orders from Lead pilot

On a VIP mission
Hinds fitted with sponsons

and Mode IV 
Incorrect Mode I

Inadequate Decisions and Control Actions:

Inadequate Decisions and Control Actions:

Continued engagement despite lack of ID

to fire
Command

Command

Command feedback from ID passes

Performed inadequate visual identification
Did not report lack of identification

IFF information

Inadequate Decisions and Control Actions:

Did not change to Mode I IFF code 
Did not change to TAOR radio frequency
Entered TAOR before sanitized

Black Hawk pilots

F−15 Fighter

on radar scope

to fire

F−15 Fighter

Unidentified target 
on radar scope

to engage

Did not question vague response from wing
Did not wait for positive ID from wing
Acted without ACE’s approval
Acted with undue haste

Did not confirm hostile intent
Did not report to ACE

No second visual ID pass
Performed inadequate visual identification pass

F−15 Wing Pilot

Ambiguous visual

UH−60 (Black Hawk) Helicopters

Unidentified target 

F−15 Lead Pilot

Figure 7.6: The Analysis at the Pilot level.
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about threats in the area. Every part of their preparation that morning drove home the fact that
they could run into enemy aircraft. Thus the pilots were making decisions in the context of being
in a war zone and were ready for combat.
Another factor that might have influenced behavior, according to the GAO report, was rivalry

between the F-15 and F-16 pilots engaged in Operation Provide Comfort (OPC). While such rivalry
was normally perceived as healthy and leading to positive professional competition, at the time of
the shootdown the rivalry had become more pronounced and intense. The Combined Task Force
Commander attributed this atmosphere to the F-16 community’s having executed the only fighter
shootdown in OPC and all the shootdowns in Bosnia [113]. F-16 pilots are better trained and
equipped to intercept low-flying helicopters. The F-15 pilots knew that F-16s would follow them
into the TAOR that day. Any hesitation might have resulted in the F-16s getting another kill.
A final factor was a strong cultural norm of “radio discipline” (called minimum communication

or min comm), which led to abbreviated phraseology in communication and a reluctance to clarify
potential miscommunications. Fighter pilots are kept extremely busy in the cockpit; their cognitive
capabilities are often stretched to the limit. As a result, any unnecessary interruptions on the radio
are a significant distraction from important competing demands [108]. Hence, there was a great
deal of pressure within the fighter community to minimize talking on the radio, which discouraged
efforts to check accuracy and understanding.

Roles and Responsibilities of the Black Hawk Pilots: The Army helicopter pilots flew
daily missions into the TAOR to visit Zakhu. On this particular day, a change of command
had taken place at the US Army Command Center at Zakhu. The outgoing commander was to
escort his replacement into the No-Fly-Zone in order to introduce him to the two Kurdish leaders
who controlled the area. The pilots were first scheduled to fly the routine leg into Zakhu, where
they would pick up two Army colonels and carry other high-ranking VIPs representing the major
players in OPC to the two Iraqi towns of Irbil and Salah ad Din. It was not uncommon for the
Black Hawks to fly this far into the TAOR; they had done it frequently during the three preceding
years of Operation Provide Comfort.

Environmental and Behavior-Shaping Factors for the Black Hawk Pilots: Inside Iraq,
helicopters flew in terrain flight mode, i.e., they hugged the ground, both to avoid mid-air collisions
and to mask their presence from threatening ground-to-air Iraqi radars. There are three types of
terrain flight: Pilots select the appropriate mode based on a wide range of tactical and mission-
related variables. Low-level terrain flight is flown when enemy contact is not likely. Contour flying
is closer to the ground than low level, and nap-of-the-earth flying is the lowest and slowest form
of terrain flight, flown only when enemy contact is expected. Eagle Flight helicopters flew contour
mode most of the time in northern Iraq. They liked to fly in the valleys and the low-level areas.
The route they were taking the day of the shootdown was through a green valley between two
steep, rugged mountains. The mountainous terrain provided them with protection from Iraqi air
defenses during the one-hour flight to Irbil, but it also led to disruptions in communication.
Because of the distance and thus time required for the mission, the Black Hawks were fitted

with sponsons or pontoon-shaped fuel tanks. The sponsons are mounted below the side doors, and
each hold 230 gallons of extra fuel. The Black Hawks were painted with green camouflage while
the Iraqi Hinds’ camouflage scheme was light brown and desert tan. To assist with identification,
the Black Hawks were marked with three two-by-three foot American flags—one on each door and
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one on the nose—and a fourth larger flag on the belly of the helicopter. In addition, two American
flags had been painted on the side of each sponson after the Black Hawks had been the target of
small-arms ground fire several months before.

Dysfunctional Interactions at this Level

Communication between the F-15 and Black Hawk pilots was obviously dysfunctional and related
to the dysfunctional interactions in the physical process (incompatible radio frequencies, IFF codes,
and anti-jamming technology) resulting in the ends of the communication channels not matching
and information not being transmitted along the channel. Communication between the F-15 pilots
was also hindered by the minimum communication policy that led to abbreviated messages and a
reluctance to clarify potential miscommunications as described above as well as the physical terrain.

Flawed or Inadequate Decisions and Control Actions

Both the Army helicopter pilots and the F-15 pilots executed inappropriate or inadequate control
actions during their flights, beyond the obviously incorrect F-15 pilot commands to fire on two
friendly aircraft.

Black Hawk Pilots:

• The Army helicopters entered the TAOR before it had been sanitized by the Air Force. The
Air Control Order or ACO specified that a fighter sweep of the area must precede any entry of
allied aircraft. However, because of the frequent trips of Eagle Flight helicopters to Zakhu, an
official exception had been made to this policy for the Army helicopters. The Air Force fighter
pilots had not been informed about this exception. Understanding this miscommunication
requires looking at the higher levels of the control structure, particularly the communication
structure at those levels.

• The Army pilots did not change to the appropriate radio frequency to be used in the TAOR.
As noted above, however, even if they had been on the same frequency, they would have been
unable to communicate with the F-15s because of the different anti-jamming technology of
the radios.

• The Army pilots did not change to the appropriate IFF Mode I signal for the TAOR. Again,
as noted above, the F-15s should still have been able to receive the Mode I response.

F-15 Lead Pilot
The accounts of and explanation for the unsafe control actions of the F-15 pilots differ greatly

among those who have written about the accident. Analysis is complicated by the fact that any
statements the pilots made after the accident were likely to have been influenced by the fact that
they were being investigated on charges of negligent homicide—their stories changed significantly
over time. Also, in the excitement of the moment, the lead pilot did not make the required radio
call to his wingman requesting that he turn on the HUD6 tape, and he also forgot to turn on his
own tape. Therefore, evidence about certain aspects of what occurred and what was observed is
limited to pilot testimony during the post-accident investigations and trials.

6Heads Up Display
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Complications also arise in determining whether the pilots followed the Rules of Engagement
(ROE) specified for the No-Fly-Zone because the ROE are not public and the relevant section of the
Accident Investigation Board Report is censored. Other sources of information about the accident,
however, reference clear instances of pilot violations of the ROE.
The following inadequate decisions and control actions can be identified for the lead F-15 pilot:

• He did not perform a proper visual ID as required by the ROE and did not take a second pass
to confirm the identification. F-15 pilots are not accustomed to flying close to the ground or to
terrain. The lead pilot testified that because of concerns about being fired on from the ground
and the danger associated with flying in a narrow valley surrounded by high mountains, he
had remained high as long as possible and then dropped briefly for a visual identification that
lasted between 3 and 4 seconds. He passed the helicopter on his left while flying over 500
miles an hour and at a distance of about 1000 feet off to the side and about 300 feet above
the helicopter. He testified that

“I was trying to keep my wing tips from hitting mountains and I accomplished two
tasks simultaneously, making a call on the main radio and pulling out a guide that
had the silhouettes of helicopters. I got only three quick interrupted glances of less
than 1.25 seconds each” [90].

The dark green Black Hawk camouflage blended into the green background of the valley,
adding to the difficulty of the identification.

The Accident Investigation Board used pilots flying F-15s and Black Hawks to recreate the
circumstances under which the visual identification was made. The test pilots were unable
to identify the Black Hawks, and they could not see any of the six American flags on each
helicopter. The F-15 pilots could not have satisfied the ROE identification requirements using
the type of visual identification passes they testified that they made.

• He misidentified the helicopters as Iraqi Hinds: There were two basic incorrect decisions
involved in this misidentification. The first is identifying the UH-60 (Black Hawk) helicopters
as Russian Hinds, and the second is assuming the Hinds were Iraqi. Both Syria and Turkey
flew Hinds, and the helicopters could have belonged to one of the U.S. coalition partners.
The Commander of the Operations Support Squadron, whose job was to run the weekly
detachment squadron meetings, testified that as long as he had been in OPC, he had reiterated
to the squadrons each week that they should be careful about misidentifying aircraft over the
No-Fly-Zone because there were so many nations and so many aircraft in the area and that
any time F-15s or anyone else picked up a helicopter on radar, it was probably a U.S., Turkish,
or United Nations helicopter:

“Any time you intercept a helicopter as an unknown, there is always a question
of procedures, equipment failure, and high terrain masking the line-of-sight radar.
There are numerous reasons why you would not be able to electronically identify a
helicopter. Use discipline. It is better to miss a shot than be wrong” [90].

• He did not confirm, as required by the ROE, that the helicopters had hostile intent before firing:
The ROE required that the pilot not only determine the type of aircraft and nationality, but
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to take into consideration the possibility the aircraft was lost, in distress, on a medical mission,
or was possibly being flown by pilots who were defecting.

• He violated the Rules of Engagement by not reporting to the Air Command Element (ACE):
According to the ROE, the pilot should have reported to the ACE (who is in his chain of
command and physically located in the AWACS) that he had encountered an unidentified
aircraft. He did not wait for the ACE to approve the release of the missiles.

• He acted with undue and unnecessary haste that did not allow time for those above him in
the control structure (who were responsible for controlling the engagement) to act: The entire
incident, from the first time the pilots received an indication about helicopters in the TAOR
to shooting them down lasted only seven minutes. Pilots are allowed by the ROE to take
action on their own in an emergency, so the question then becomes whether this situation
was such an emergency.

CFAC officials testified that there had been no need for haste. The slow-flying helicopters had
traveled less than fourteen miles since the F-15s first picked them up on radar, they were not
flying in a threatening manner, and they were flying southeast away from the Security Zone.
The GAO report cites the Mission Director as stating that given the speed of the helicopters,
the fighters had time to return to Turkish airspace, refuel, and still return and engage the
helicopters before they could have crossed south of the 36th parallel.

The helicopters also posed no threat to the F-15s or to their mission (which was to protect
the AWACS and determine whether the area was clear). One expert later commented that
even if they had been Iraqi Hinds,

“A Hind is only a threat to an F-15 if the F-15 is parked almost stationary directly
in front of it and says ‘Kill me.’ Other than that, it’s probably not very vulnerable”
[108].

Piper quotes Air Force Lt. Col. Tony Kern, a professor at the U.S. Air Force Academy, who
wrote about this accident:

“Mistakes happen, but there was no rush to shoot these helicopters. The F-15s
could have done multiple passes, or even followed the helicopters to their destination
to determine their intentions” [90].

Any explanation behind the pilot’s hasty action can only be the product of speculation.
Snook attributes the fast reaction to the overlearned defensive responses taught to fighter
pilots. Both Snook and the GAO report mention the rivalry with the F-16 pilots and a desire
of the lead F-15 pilot to shoot down an enemy aircraft. F-16s would have entered the TAOR
10 to 15 minutes after the F-15s, potentially allowing the F-16 pilots to get credit for the
downing of an enemy aircraft: F-16s are better trained and equipped to intercept low-flying
helicopters. If the F-15 pilots had involved the chain of command, the pace would have slowed
down, ruining the pilots’ chance for a shootdown. In addition, Snook argues that this was a
rare opportunity for peacetime pilots to engage in combat.

The goals and motivation behind any human action are unknowable. Even in this case
where the F-15 pilots survived the accident, there are many reasons to discount their own
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explanations, not the least of which is potential jail sentences. The explanations provided by
the pilots right after the engagement differ significantly from their explanations a week later
during the official investigations to determine whether they should be court martialed. But
in any case, there was no chance that such slow flying helicopters could have escaped two
supersonic jet fighters in the open terrain of northern Iraq nor were they ever a serious threat
to the F-15s so this situation was not an emergency.

• He did not wait for a positive ID from the wing pilot before firing on the helicopters and did
not question the vague response when he got it: When the lead pilot called out that he had
visually identified two Iraqi helicopters, he asked the wing pilot to confirm the identification.
The wingman called out “Tally Two” on his radio, which the lead pilot took as confirmation,
but which the wing pilot later testified only meant he saw two helicopters but not necessarily
Iraqi Hinds. The lead pilot did not wait for a positive identification from the wingman before
starting the engagement.

• He violated altitude restrictions without permission: According to Piper, the commander of
the OPC testified at one of the hearings that

“I regularly, routinely imposed altitude limitations in northern Iraq. On the four-
teenth of April, the restrictions were a minimum of ten thousand feet for fixed-wing
aircraft. This information was in each squadron’s Aircrew Read File. Any excep-
tions had to have my approval” [90].

None of the other accident reports, including the official one, mentions this erroneous action
on the part of the pilots. Because this control flaw was never investigated, it is not possible to
determine whether the action resulted from a “reference channel” problem (i.e., the pilots did
not know about the altitude restriction) or an “actuator” error (i.e., the pilots knew about it
but chose to ignore it.)

• He deviated from the basic mission to protect the AWACS, leaving the AWACS open to attack:
The helicopter could have been a diversionary ploy. The mission of the first flight into the
TAOR was to make sure it was safe for the AWACS and other aircraft to enter the restricted
operating zone. Piper emphasizes that that was the only purpose of their mission [90]. Piper
(who again is the only one who mentions it) cites testimony of the Commander of OPC during
one of the hearings when asked whether the F-15s exposed the AWACS to other air threats
when they attacked and shot down the helicopters. The Commander replied:

“Yes, when the F-15s went down to investigate the helicopters, made numerous
passes, engaged the helicopters and then made more passes to visually reconnais-
sance the area, AWACS was potentially exposed for that period of time” [90].

Wing Pilot
The wing pilot, like the lead pilot, violated altitude restrictions, and deviated from the basic

mission. In addition:

• He did not make a positive identification of the helicopters: His visual identification was not
even as close to the helicopters as the lead F-15 pilot, which was inadequate to recognize the
helicopters, and the wing pilot’s ID lasted only between 2 and 3 seconds. According to a
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Washington Post article, he told investigators that he never clearly saw the helicopters before
reporting “Tally Two.” In a transcript of one of his interviews with investigators, he said:

“I did not identify them as friendly; I did not identify them as hostile. I expected
to see Hinds based on the call my flight leader had made. I didn’t see anything
that disputed that.”

Although the wing had originally testified he could not identify the helicopters as Hinds, he
reversed his statement between April and six months later when he testified at the hearing
on whether to court martial him that “I could identify them as Hinds” [90]. There is no way
to determine which of these contradictory statements is true.

Explanations for continuing the engagement without an identification could range from an
inadequate mental model of the ROE, following the orders of the lead pilot and assuming that
his identification had been proper, wanting the helicopters to be hostile, and any combination
of these.

• He did not tell the lead pilot that he had not identified the helicopters: In the hearings to
place blame for the shootdown, the lead pilot testified that he had radioed the wing pilot and
said “Tiger One has tallied two Hinds, confirm.” Both pilots agree to this point, but then the
testimony becomes contradictory.

The hearing in the fall of 1984 on whether the wing pilot should be charged with 26 counts
of negligent homicide rested on the very narrow question of whether the lead pilot had called
the AWACS announcing the engagement before or after the wing pilot responded to the lead
pilot’s directive to confirm whether the helicopters were Iraqi Hinds. The lead pilot testified
that he had identified the helicopters as Hinds and then asked the wing to confirm the
identification. When the wing responded with “Tally Two,” the lead believed this response
signaled confirmation of the identification. The lead then radioed the AWACS and reported
“Tiger Two has tallied two Hinds, engaged.” The wing pilot, on the other hand, testified that
the lead had called the AWACS with the “engaged” message before he (the wing pilot) had
made his “Tally Two” radio call to the lead. He said his “Tally Two” call was in response to
the “engaged” call, not the “confirm” call and simply meant that he had both target aircraft
in sight. He argued that once the engaged call had been made, he correctly concluded that
an identification was no longer needed.

The Fall 1994 hearing conclusion about which of these scenarios actually occurred is different
than the conclusions in the official Air Force accident report and that of the hearing officer in
another hearing. Again, it is not possible nor necessary to determine blame here or to deter-
mine exactly which scenario is correct to conclude that the communications were ambiguous.
The minimum communication policy was a factor here as was probably the excitement of
a potential combat engagement. Snook suggests that the expectations of what the pilots
expected to hear resulted in a filtering of the inputs. Such filtering is a well-known problem
in airline pilots’ communications with controllers. The use of well-established phraseology
is meant to reduce it. But the calls by the wing pilot were nonstandard. In fact, Piper
notes that in pilot training bases and programs that train pilots to fly fighter aircraft since
the shootdown, these radio calls are used as examples of “the poorest radio communications
possibly ever given by pilots during a combat intercept” [90].
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• He continued the engagement despite the lack of an adequate identification: Explanations for
continuing the engagement without an identification could range from an inadequate mental
model of the ROE, following the orders of the lead pilot and assuming that the lead pilot’s
identification had been proper, wanting the helicopters to be hostile, and any combination of
these. With only his contradictory testimony, it is not possible to determine the reason.

Some Reasons for the Flawed Control Actions and Dysfunctional Interactions

The accident factors shown in Figure 7.2 can be used to provide an explanation for the flawed
control actions. These factors here are divided into incorrect control algorithms, inaccurate mental
models, poor coordination among multiple controllers, and inadequate feedback from the controlled
process.

Incorrect Control Algorithms: The Black Hawk pilots correctly followed the procedures they
had been given (see the discussion of the CFAC–MCC level later). These procedures were unsafe
and were changed after the accident.
The F-15 pilots apparently did not execute their control algorithms (the procedures required by

the Rules of Engagement) correctly, although the secrecy involved in the ROE make this conclusion
difficult to prove. After the accident, the ROE were changed, but the exact changes made are not
public.

Inaccurate Mental Models of the F-15 Pilots: There were many inconsistencies between the
mental models of the Air Force pilots and the actual process state. First, they had an ineffective
model of what a Black Hawk helicopter looked like. There are several explanations for this, including
poor visual recognition training and the fact that Black Hawks with sponsons attached resemble
Hinds. None of the pictures of Black Hawks on which the F-15 pilots had been trained had these
wing-mounted fuel tanks. Additional factors include the speeds at which the F-15 pilots do their
visual identification (VID) passes and the angle at which the pilots passed over their targets.
Both F-15 pilots received only limited visual recognition training in the previous four months,

partly due to the disruption of normal training caused by their wing’s physical relocation from
one base to another in Germany. But the training was probably inadequate even if it had been
completed. Because the primary mission of F-15s is air-to-air combat against other fast moving
aircraft, most of the operational training is focused on their most dangerous and likely threats—
other high-altitude fighters. In the last training before the accident, only five percent of the slides
depicted helicopters. None of the F-15 intelligence briefings or training ever covered the camouflage
scheme of Iraqi helicopters, which was light brown and desert tan (in contrast to the forest green
camouflage of the Black Hawks).
Pilots are taught to recognize many different kinds of aircraft at high speeds using “beer shots,”

which are blurry pictures that resemble how the pilot might see those aircraft while in flight. The Air
Force pilots, however, received very little training in the recognition of Army helicopters, which they
rarely encountered because of the different altitudes at which they flew. All the helicopter photos
they did see during training, which were provided by the Army, were taken from the ground—a
perspective from which it was common for Army personnel to view them but not useful for a fighter
pilot in flight above them. None of the photographs were taken from the above aft quadrant—the
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position from which most fighters would view a helicopter. Air Force visual recognition training
and procedures were changed after this accident.
The F-15 pilots also had an inaccurate model of the current airspace occupants, based on the

information they had received about who would be in the airspace that day and when. They
assumed and had been told in multiple ways that they would be the first coalition aircraft in the
TAOR:

• The ACO specified that no coalition aircraft (fixed or rotary wing) was allowed to enter the
TAOR before it was sanitized by a fighter sweep.

• The daily ATO and ARF included a list of all flights scheduled to be in the TAOR that
day. The ATO listed the Army Black Hawk flights only in terms of their call signs, aircraft
numbers, type of mission (transport), and general route (from Diyarbakir to the TAOR and
back to Diyarbakir). All departure times were listed “as required” and no helicopters were
mentioned on the daily flow sheet. Pilots fly with the flow sheet on kneeboards as a primary
reference during the mission. The F-15s were listed as the very first mission into the TAOR;
all other aircraft were scheduled to follow them.

• During preflight briefings that morning, the ATO and flowsheet were reviewed in detail. No
mention was made of any Army helicopter flights not appearing on the flow sheet.

• The Battle Sheet Directive (a handwritten sheet containing last minute changes to information
published in the ATO and the ARF) handed to them before going to their aircraft contained
no information about Black Hawk flights.

• In a radio call to the ground-based Mission Director just after engine start, the lead F-15
pilot was told that no new information had been received since the ATO was published.

• Right before entering the TAOR, the lead pilot checked in again, this time with the ACE in
the AWACS. Again, he was not told about any Army helicopters in the area.

• At 1020, the lead pilot reported that they were on station. Usually at this time, the AWACS
will give them a “picture” of any aircraft in the area. No information was provided to the
F-15 pilots at this time, although the Black Hawks had already checked in with the AWACS
on three separate occasions.

• The AWACS continued not to inform the pilots about Army helicopters during the encounter.
The lead F-15 pilot twice reported unsuccessful attempts to identify radar contacts they were
receiving, but in response they were not informed about the presence of Blackhawks in the
area. After the first report, the TAOR controller responded with “Clean there,” meaning
he did not have a radar hit in that location. Three minutes later, after the second call, the
TAOR controller replied “Hits there.” If the radar signal had been identified as a friendly
aircraft, the controller would have responded “Paint there.”

• The IFF transponders on the F-15s did not identify the signals as from a friendly aircraft (as
discussed earlier).

Various complex interpretations have been proposed for why the F-15 pilots’ mental models of
the airspace occupants were incorrect and not open to reexamination once they received conflicting
input. The simplest explanation is that they believed what they were told. It is well known in
cognitive psychology that mental models are slow to change, particularly in the face of ambiguous
evidence like that provided in this case. When operators receive input about the state of the system
being controlled, they will first try to fit that information into their current mental model and will
find reasons to exclude information that does not fit. Because operators are continually testing their
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mental models against reality, the longer a model has been held and the more different sources of
information that led to that incorrect model, the more resistant the models will be to change due to
conflicting information, particularly ambiguous information. The pilots had been told repeatedly
and by almost everyone involved that there were no friendly helicopters in the TAOR at that time.
The F-15 pilots also may have had a misunderstanding about (incorrect model of) the ROE and

the procedures required when they detected an unidentified aircraft. The accident report says that
the ROE were reduced in briefings and in individual crew members’ understandings to a simplified
form. This simplification led to some pilots not being aware of specific considerations required prior
to engagement, including identification difficulties, the need to give defectors safe conduct, and the
possibility of an aircraft being in distress and the crew being unaware of their position. On the
other hand, there had been an incident the week before and the F-15 pilots had been issued an
oral directive reemphasizing the requirement for fighter pilots to report to the ACE. That directive
was the result of an incident on April 7 in which F-15 pilots had initially ignored directions from
the ACE to “knock off” or stop an intercept with an Iraqi aircraft. The ACE overheard the pilots
preparing to engage the aircraft and contacted them, telling them to stop the engagement because
he had determined that the hostile aircraft was outside the No-Fly-Zone and because he was leery
of a “bait and trap” situation.7 The GAO report stated that CFAC officials told the GAO that the
F-15 community was “very upset” about the intervention of the ACE during the knock-off incident
and felt he had interfered with the carrying out of the F-15 pilots’ duties [113]. As discussed in
Chapter 2, there is no way to determine the motivation behind an individual’s actions. Accident
analysts can only present the alternative explanations.
Additional reasons for the lead pilot’s incorrect mental model stem from ambiguous or missing

feedback from the F-15 wing pilot, dysfunctional communication with the Black Hawks, and inad-
equate information provided over the reference channels from the AWACS and CFAC operations.

Inaccurate Mental Models of the Black Hawk Pilots: The Black Hawk control actions can
also be linked to inaccurate mental models, i.e., they were unaware there were separate IFF codes
for flying inside and outside the TAOR and that they were supposed to change radio frequencies
inside the TAOR. As will be seen later, they were actually told not to change frequencies. They
had also been told that the ACO restriction on the entry of allied aircraft into the TAOR before
the fighter sweep did not apply to them—an official exception had been made for helicopters. They
understood that helicopters were allowed inside the TAOR without AWACS coverage as long as
they stayed inside the security zone. In practice, the Black Hawk pilots frequently entered the
TAOR prior to AWACS and fighter support without incident or comment, and therefore it became
accepted practice. In addition, because their radios were unable to pick up the HAVE QUICK
communications between the F-15 pilots and between the F-15s and the AWACS, the Black Hawk
pilots’ mental models of the situation were incomplete. According to Snook, Black Hawk pilots
testified during the investigation that

“We were not integrated into the entire system. We were not aware of what was going
on with the F-15s and the sweep and the refuelers and the recon missions and AWACS.
We had no idea who was where and when they were there” [108].

7According to the GAO report, in such a strategy, a fighter aircraft is lured into an area by one or more enemy
targets and then attacked by other fighter aircraft or surface-to-surface missiles.
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Coordination among Multiple Controllers: At this level, each component (aircraft) had a
single controller and thus coordination problems did not occur. They were rife, however, at the
higher control levels.

Feedback from the Controlled Process: The F-15 pilots received ambiguous information
from their visual identification pass. At the speeds and altitudes they were traveling, it is unlikely
that they would have detected the unique Black Hawk markings that identified them as friendly.
The mountainous terrain in which they were flying limited their ability to perform an adequate
identification pass and the green helicopter camouflage added to the difficulty. The feedback from
the wingman to the lead F-15 pilot was also ambiguous and was most likely misinterpreted by the
lead pilot. Both pilots apparently received incorrect IFF feedback.

Changes After the Accident

After the accident, Black Hawk pilots were:

• Required to strictly adhere to their ATO published routing and timing.
• Not allowed to operate in the TAOR unless under positive control of AWACS. Without
AWACS coverage, only administrative helicopter flights between Diyarbakir and Zakhu were
allowed, provided they were listed on the ATO.

• Required to monitor the common TAOR radio frequency.
• Required to confirm radio contact with AWACS at least every 20 minutes unless they were
on the ground.

• Required to inform AWACS upon landing. They must make mandatory radio calls at each
enroute point.

• If radio contact could not be established, required to climb to line-of-sight with AWACS until
contact is reestablished.

• Prior to landing in the TAOR (including Zakhu), required to inform the AWACS of anticipated
delays on the ground that would preclude taking off at the scheduled time.

• Immediately after takeoff, required to contact the AWACS and reconfirm IFF Modes I, II and
IV are operating. If they have either a negative radio check with AWACS or an inoperative
Mode IV, they cannot proceed into the TAOR.

All fighter pilots were:

• Required to check in with the AWACS when entering the low altitude environment and remain
on the TAOR clear frequencies for deconfliction with helicopters.

• Required to make contact with AWACS using UHF, HAVE QUICK, or UHF clear radio
frequencies and confirm IFF Modes I, II, and IV before entering the TAOR. If there was
either a negative radio contact with AWACS or an inoperative Mode IV, they could not enter
the TAOR.

Finally, white recognition strips were painted on the Black Hawk rotor blades to enhance their
identification from the air.
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7.3.4 ACE and Mission Director

Context in which Decisions and Actions Took Place

Safety Requirements and Constraints: The ACE and Mission Director must follow the pro-
cedures specified and implied by the ROE, the ACE must ensure that pilots follow the ROE, and
the ACE must interact with the AWACS crew to identify reported unidentified aircraft (see Figure
7.7 and Section 6.2).

Controls: The controls include the ROE to slow down the engagement and a chain of command
to prevent individual error or erratic behavior.

Roles and Responsibilities: The ACE was responsible for controlling combat operations and
for ensuring that the ROE were enforced. He flew in the AWACS so he could get up-to-the-minute
information about the state of the TAOR airspace.
The ACE was always a highly experienced person with fighter experience. That day, the ACE

was a major with 19 years in the Air Force. He had perhaps more combat experience than anyone
else in the Air Force under 40. He had logged 2000 total hours of flight time and flown 125 combat
missions, including 27 in the Gulf War, during which time he earned the Distinguished Flying Cross
and two air medals for heroism. At the time of the accident, he had worked for 4 months as an
ACE and flown approximately 15 to 20 missions on the AWACS [108].
The Mission Director on the ground provided a chain of command for real-time decision making

from the pilots to the CFAC commander. On the day of the accident, the Mission Director was
a lieutenant colonel with over 18 years in the AF. He had logged over 1000 hours in the F-4 in
Europe and an additional 100 hours worldwide in the F-15 [108].

Environmental and Behavior-Shaping Factors: No pertinent factors were identified in the
reports and books on the accident.

Dysfunctional Interactions at this Level

The ACE was supposed to get information about unidentified or enemy aircraft from the AWACS
mission crew, but in this instance they did not provide it.

Flawed or Inadequate Decisions and Control Actions

The ACE did not provide any control commands to the F-15s with respect to following the ROE
or engaging and firing on the U.S. helicopters.

Reasons for Flawed Control Actions and Dysfunctional Interactions

Incorrect Control Algorithms: The control algorithms should theoretically been effective, but
they were never executed.
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Mental Model Flaws:

Must know status of all aircraft in TAOR
Must ensure that discharging of weapons follows ROE.

Command to cease targeting of Black Hawks not given

Unaware of presence of Black Hawks
Unaware F−15s were engaging an aircraft

Safety Requirements and ConstraintsViolated:
Must follow procedures specified and implied by ROE
Must ensure that pilots follow ROE

Must interact with AWACS crew to identify reported unidentified aircraft
Must know status of all aircraft in TAOR

Did not provide control commands to F−15 pilots with respect to
following ROE and engaging aircraft

Mental Model Flaws:
Unaware of presence of Black Hawks in TAOR

Did not consider helicopters part of responsibility
Different understanding of ROE than F−15 pilots

Did not know what "engaged" meant

Command to cease engaging Black Hawks not given

and had landed
Thought the BHs were conducting standard operations in Security Zone

Safety Requirements and ConstraintsViolated:

F−15 Lead Pilot

provided inaccurate

Inadequate Decisions and Control Actions:

JTIDS picture 

Inadequate Decisions and Control Actions:

aircraft

No control commands No report from ACE

Mission Director

AWACS

ACE

Controllers
No information 

about unidentifiied

Figure 7.7: Analysis for the ACE and Mission Director
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Inaccurate Mental Models: CFAC, and thus the Mission Director and ACE, exercised ultimate
tactical control of the helicopters, but they shared the common view with the AWACS crew that
helicopter activities were not an integral part of OPC air operations. In testimony after the accident,
the ACE commented “The way I understand it, only as a courtesy does the AWACS track Eagle
Flight.”
The Mission Director and ACE also did not have the information necessary to exercise their

responsibility. The ACE had an inaccurate model of where the Black Hawks were located in the
airspace. He testified that he presumed the Black Hawks were conducting standard operations in
the Security Zone and had landed [90]. He also testified that, although he had a radarscope, he
had no knowledge of AWACS radar symbology: “I have no idea what those little blips mean.” The
Mission Director, on the ground, was dependent on the information about the current airspace
state sent down from the AWACS via JTIDS (the Joint Tactical Information Distribution System).
The ACE testified that he assumed the F-15 pilots would ask him for guidance in any situation

involving a potentially hostile aircraft, as required by the ROE. The ACE’s and F-15 pilots’ mental
models of the ROE clearly did not match with respect to who had the authority to initiate the
engagement of unidentified aircraft. The rules of engagement stated that the ACE was responsible,
but some pilots believed they had authority when an imminent threat was involved. Because of
security concerns, the actual ROE used were not disclosed during the accident investigation, but,
as argued earlier, the slow, low-flying Black Hawks posed no serious threat to an F-15.
Although the F-15 pilot never contacted the ACE about the engagement, the ACE did hear the

call of the F-15 lead pilot to the TAOR controller. The ACE testified to the Accident Investigation
Board that he did not intervene because he believed the F-15 pilots were not committed to anything
at the visual identification point, and he had no idea they were going to react so quickly. Since
being assigned to OPC, he said the procedure had been that when the F-15s or whatever fighter
was investigating aircraft, they would ask for feedback from the ACE. The ACE and AWACS crew
would then try to rummage around and find out whose aircraft it was and identify it specifically. If
they were unsuccessful, the ACE would then ask the pilots for a visual identification [90]. Thus, the
ACE probably assumed that the F-15 pilots would not fire at the helicopters without reporting to
him first, which they had not done yet. At this point, they had simply requested an identification
by the AWACS traffic controller. According to his understanding of the ROE, the F-15 pilots would
not fire without his approval unless there was an immediate threat, which there was not. The ACE
testified that he expected to be queried by the F-15 pilots as to what their course of action should
be.
The ACE also testified at one of the hearings:

“I really did not know what the radio call ‘engaged’ meant until this morning. I did
not think the pilots were going to pull the trigger and kill those guys. As a previous
right seater in an F-111, I thought ‘engaged’ meant the pilots were going down to do a
visual intercept.” (Piper)

Coordination among Multiple Controllers: Not applicable

Feedback from Controlled Process: The F-15 lead pilot did not follow the ROE and report
the identified aircraft to the ACE and ask for guidance, although the ACE did learn about it from
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the questions the F-15 pilots posed to the controllers on the AWACS aircraft. The Mission Director
got incorrect feedback about the state of the airspace from JTIDS.

Time Lags: An unusual time lag occurred where the lag was in the controller and not in one
of the other parts of the control loop.8 The F-15 pilots responded faster than the ACE (in the
AWACS) and Mission Director (on the ground) could issue appropriate control instructions (as
required by the ROE) with regard to the engagement.

Changes After the Accident

There were no changes after the accident, although roles were clarified.

7.3.5 AWACS

This level of the control structure contains more examples of inconsistent mental models and asyn-
chronous evolution. In addition, this control level provides interesting examples of the adaptation
over time of specified procedures to accepted practice and of coordination problems. There were
multiple controllers with confused and overlapping responsibilities for enforcing different aspects
of the safety requirements and constraints. The overlaps and boundary areas in the controlled
processes led to serious coordination problems among those responsible for controlling aircraft in
the TAOR.

Context in which Decisions and Actions Took Place

Safety Requirements and Constraints: The general safety constraint involved in the accident
at this level was to prevent misidentification of aircraft by the pilots and any friendly fire that might
result. More specific requirements and constraints are shown in Figure 7.8.

Controls: Controls included procedures for identifying and tracking aircraft, training (including
simulator missions), briefings, staff controllers, and communication channels. The Senior Director
and surveillance officer (ASO) provided real-time oversight of the crew’s activities while the Mission
Crew Commander (MCC) coordinated all the activities aboard the AWACS aircraft.
The Delta Point system, used since the inception of OPC, provided standard code names for

real locations. These code names were used to prevent the enemy, who might be listening to radio
transmissions, from knowing the helicopters’ flight plans.

Roles and Responsibilities: The AWACS crew were responsible for identifying, tracking, and
controlling all aircraft enroute to and from the TAOR; for coordinating air refueling; for providing
airborne threat warning and control in the TAOR; and for providing surveillance, detection and
identification of all unknown aircraft. Individual responsibilities are described in Section 6.2.
The Staff Weapons Director (instructor) was permanently assigned to Incirlik. He did all

incoming briefings for new AWACS crews rotating into Incirlik and accompanied them on their first
mission in the TAOR. The OPC leadership recognized the potential for some distance to develop

8A similar type of time lag led to the loss of an F-18 when a mechanical failure resulted in inputs arriving at the
computer interface faster than the computer was able to process them.
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between stateside spin-up training and continuously evolving practice in the TAOR. Therefore,
permanent staff or instructor personnel flew with each new AWACS crew on their maiden flight in
Turkey. Two of these staff controllers were on the AWACS the day of the accident to answer any
questions that the new crew might have about local procedures and to alert them as to how things
were really done in OPC—i.e., to handle adaptation of accepted practice from specified procedures.
The Senior Director (SD) had worked as an AWACS controller for 5 years. This was his fourth

deployment to OPC, his second as an SD, and his sixtieth mission over the Iraqi TAOR [90]. He
worked as a SD over 200 days a year and had logged over 2383 hours flying time [108].
The Enroute Controller, who was responsible for aircraft outside the TAOR, was a first lieu-

tenant with four years in the AF. He had finished AWACS training two years earlier (May 1992)
and had served in the Iraqi TAOR previously [108].
The TAOR Controller, who was responsible for controlling all air traffic flying within the TAOR,

was a second lieutenant with over nine years of service in the AF, but he had just finished controller’s
school and had had no previous deployments outside the continental U.S. In fact, he had become
mission ready only two months prior to the incident. This tour was his first in OPC and his first
time as a TAOR controller. He had only controlled as a mission-ready weapons director on three
previous training flights [108] and never in the role of TAOR controller. AWACS guidance at the
time suggested that the most inexperienced controller be placed in the TAOR position: None of
the reports on the accident provided the reasoning behind this practice.
The Air Surveillance Officer (ASO) was a captain at the time of the shootdown. She had been

mission ready since Oct. 1992 and was rated as an instructor ASO. Because the crew’s originally
assigned ASO was upgrading and could not make it to Turkey on time, she volunteered to fill in
for him. She had already served for five and a half weeks in OPC at the time of the accident and
was completing her third assignment to OPC. She worked as an ASO approximately 200 days a
year [108].

Environmental and Behavior-Shaping Factors: At the time of the shootdown, shrinking
defense budgets were leading to base closings and cuts in the size of the military. At the same time,
a changing political climate, brought about by the fall of the Soviet Union, demanded significant
U.S. military involvement in a series of operations. The military (including the AWACS crews) were
working at a greater pace than they had ever experienced due to budget cuts, early retirements,
force outs, slowed promotions, deferred maintenance, and delayed fielding of new equipment. All
of these factors contributed to poor morale, inadequate training, and high personnel turnover.
AWACS crews are stationed and trained at Tinker Air Force Base in Oklahoma and then

deployed to locations around the world for rotations lasting approximately 30 days. Although all
but one of the AWACS controllers on the day of the accident had served previously in the Iraqi
no-fly-zone, this was their first day working together and, except for the surveillance officer, the
first day of their current rotation. Due to last minute orders, the team got only minimal training,
including one simulator session instead of the two full 3-hour sessions required prior to deploying. In
the only session they did have, some of the members of the team were missing—the ASO, ACE, and
MCC were unable to attend—and one was later replaced: As noted, the ASO originally designated
and trained to deploy with this crew was instead shipped off to a career school at the last minute,
and another ASO, who was just completing a rotation in Turkey, filled in.
The one simulator session they did receive was less than effective, partly because the computer

tape provided by Boeing to drive the exercise was not current (another instance of asynchronous
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evolution). For example, the maps were out of date and the Rules of Engagement used were different
and much more restrictive than those currently in force in OPC. No Mode I codes were listed. The
list of friendly participants in OPC did not include UH-60s (Black Hawks) and so on. The second
simulation session was canceled because of a wing exercise.
Because the TAOR area had not yet been sanitized, it was a period of low activity: At the

time, there were still only four aircraft over the No-Fly-Zone—the two F-15s and the two Black
Hawks. AWACS crews are trained and equipped to track literally hundreds of enemy and friendly
aircraft during a high-intensity conflict. Many accidents occur during periods of low activity when
vigilance is reduced compared to periods of higher activity.
The MCC sits with the other two key supervisors (SD and ACE) toward the front of the aircraft

in a three-seat arrangement named the “Pit,” where each has his own radarscope. The SD is seated
to the MCC’s left. Surveillance is seated in the rear. Violations of the No-Fly-Zone had been rare
and threats few during the past three years, so that day’s flight was expected to be an average one
and the supervisors in the Pit anticipated just another routine mission [90]
During the initial orbit of the AWACS, the technicians determined that one of the radar consoles

was not operating. According to Snook, this type of problem was not uncommon, and the AWACS
is therefore designed with extra crew positions. When the enroute controller realized his assigned
console was not working properly, he moved from his normal position between the TAOR and
tanker controllers, to a spare seat directly behind the Senior Director. This position kept him out
of the view of his supervisor and also eliminated physical contact with the TAOR controller.

Dysfunctional Interactions Among the Controllers

According to the formal procedures, control of aircraft was supposed to be handed off from the
enroute controller to the TAOR controller when the aircraft entered the TAOR. This handoff did
not occur for the Black Hawks, and the TAOR controller was not made aware of the Black Hawks’
flight within the TAOR. Snook explains this communication error as resulting from the terminal
failure, which interfered with communication between the TAOR and enroute controllers. But this
explanation does not gibe with the fact that the normal procedure of the enroute controller was to
continue to control helicopters without handing them off to the TAOR controller, even when the
enroute and TAOR controllers were seated in their usual places next to each other. There may
usually have been more informal interaction about aircraft in the area when they were seated next
to each other, but there is no guarantee that such interaction would have occurred even with a
different seating arrangement. Note that the helicopters had been dropped from the radar screens
and the enroute controller had an incorrect mental model of where they were: He thought they
were close to the boundary of the TAOR and was unaware they had gone deep within it. The
enroute controller, therefore, could not have told the TAOR controller about the true location of
the Blackhawks even if they had been sitting next to each other.
The interaction between the surveillance officer and the senior weapons director with respect

to tracking the helicopter flight on the radar screen involved many dysfunctional interactions. For
example, the surveillance officer put an attention arrow on the senior director’s radar scope in an
attempt to query him about the lost helicopter symbol that was floating, at one point, unattached
to any track. The senior director did not respond to the attention arrow, and it automatically
dropped off the screen after 60 seconds. The helicopter symbol (H) dropped off the radar screen
when the radar and IFF returns from the Black Hawks faded and did not return until just before
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the engagement, removing any visual reminder to the AWACS crew that there were Black Hawks
inside the TAOR. The accident investigation did not include an analysis of the design of the AWACS
human-computer interface nor how it might have contributed to the accident.
During his court martial for negligent homicide, the senior director argued that his radarscope

did not identify the helicopters as friendly and that therefore he was not responsible. When asked
why the Black Hawk identification was dropped from the radar scope, he gave two reasons. First,
because it was no longer attached to any active signal, they assumed the helicopter had landed
somewhere. Second, because the symbol displayed on their scopes was being relayed in real time
through a JTIDS downlink to commanders on the ground, they were very concerned about sending
out an inaccurate picture of the TAOR.

“Even if we suspended it, it would not be an accurate picture, because we wouldn’t
know for sure if that is where he landed. Or if he landed several minutes earlier, and
where that would be. So, the most accurate thing for us to do at that time, was to drop
the symbology [sic].”

Flawed or Inadequate Decision Making and Control Actions

There were myriad inadequate control actions in this accident, involving each of the controllers in
the AWACS. The AWACS crew work as a team so it is sometimes hard to trace incorrect decisions
to one individual. While from each individual’s standpoint the actions and decisions may have
been correct, when put together as a whole the decisions were incorrect.
The enroute controller never told the Black Hawk pilots to change to the TAOR frequency that

was being monitored by the TAOR controller and did not hand off control of the Black Hawks
to the TAOR controller. The established practice of not handing off the helicopters had probably
evolved over time as a more efficient way of handling traffic. Because the helicopters were usually
only at the very border of the TAOR and spent very little time there, the overhead of handing them
off twice within a short time period was considered inefficient by the AWACS crews. As a result,
the procedures used had changed over time to the more efficient procedure of keeping them under
the control of the enroute controller. The AWACS crews were not provided with written guidance
or training regarding the control of helicopters within the TAOR, and, in its absence, they adapted
their normal practices for fixed-wing aircraft as best they could to apply them to helicopters.
In addition to not handing off the helicopters, the enroute controller did not monitor the course

of the Black Hawks while they were in the TAOR (after leaving Zakhu), did not take note of the
flight plan (from Whiskey to Lima), did not alert the F-15 pilots there were friendly helicopters
in the area, did not alert the F-15 pilots before they fired that the helicopters they were targeting
were friendly, and did not tell the Black Hawk pilots that they were on the wrong frequency and
were squawking the wrong IFF Mode I code.
The TAOR controller did not monitor the course of the Black Hawks in the TAOR and did

not alert the F-15 pilots before they fired that the helicopters they were targeting were friendly.
None of the controllers warned the F-15 pilots at any time that there were friendly helicopters in
the area nor did they try to stop the engagement. The accident investigation board found that
because Army helicopter activities were not normally known at the time of the fighter pilots’ daily
briefings, normal procedures were for the AWACS crews to receive real-time information about
their activities from the helicopter crews and to relay that information on to the other aircraft in
the area. If this truly was established practice, it clearly did not occur on that day.
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The controllers were supposed to be tracking the helicopters using the Delta Point system,
and the Black Hawk pilots had reported to the enroute controller that they were traveling from
Whiskey to Lima. The enroute controller testified, however, that he had no idea of the towns to
which the code names Whiskey and Lima referred. After the shootdown, he went in search of the
card defining the call signs and finally found it in the Surveillance Section [90]. Clearly, tracking
helicopters using call signs was not a common practice or the charts would have been closer at
hand. In fact, during the court martial of the Senior Director, the defense was unable to locate
any AWACS crewmember at Tinker AFB (where AWACS crews were stationed and trained) who
could testify that he or she had ever used the Delta Point system [90] although clearly the Black
Hawk pilots thought it was being used because they provided their flight plan using Delta Points.
None of the controllers in the AWACS told the Black Hawk helicopters that they were squawk-

ing the wrong IFF code for the TAOR. Snook cites testimony from the court martial of the Senior
Director that posits three related explanations for this lack of warning: (1) the minimum commu-
nication policy, (2) a belief by the AWACS crew that the Black Hawks should know what they
were doing, and (3) pilots not liking to be told what to do. None of these explanations provided
during the trial is very satisfactory and appear to be after-the-fact rationalizations for the con-
trollers not doing their job when faced with possible court martial and jail terms. Given that the
controllers acknowledged that the Army helicopters never squawked the right codes and had not
for months, there must have been other communication channels that could have been used besides
real-time radio communication to remedy this situation so the min comm policy is not an adequate
explanation. Arguing that the pilots should know what they were doing is simply an abdication
of responsibility, as is the argument that pilots did not like being told what to do. A different
perspective, and one that likely applies to all the controllers, was provided by the Staff Weapons
Director who testified that “For a helicopter, if he’s going to Zakhu, I’m not that concerned about
him going beyond that. So, I’m not really concerned about having an F-15 needing to identify this
guy.”
The Mission Crew Commander had provided the crew’s morning briefing. He spent some time

going over the activity flow sheet, which listed all the friendly aircraft flying in the OPC that day,
their call signs, and the times they were scheduled to enter the TAOR. According to Piper (but
nobody else mentions it), he failed to note the helicopters, even though their call signs and their
IFF information had been written on the margin of his flowsheet.
The shadow crew always flew with new crews on their first day in OPC, but the task of these

instructors does not seem to have been well defined. At the time of the shootdown, one was in the
galley “taking a break” and the other went back to the crew rest area, read a book, and took a nap.
The staff weapons director, who was asleep in the back of the AWACS, during the court martial of
the Senior Director testified that his purpose on the mission was to be the “answer man,” just to
answer any questions they might have. This was a period of very little activity in the area (only
the two F-15s were supposed to be in the TAOR) and the shadow crew members may have thought
their advice was not needed at that time.
When the staff weapons director went back to the rest area, the only symbol displayed on the

scopes of the AWACS controllers was the one for the helicopters (EE01), which they thought were
going to Zakhu only.
Because many of the dysfunctional actions of the crew did conform to the established practice

(e.g., not handing off helicopters to the TAOR controller), it is unclear what different result might
have occurred if the shadow crew had been in place. For example, the staff Weapon Director
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testified during the hearings and trial that he had seen helicopters out in the TAOR before, past
Zakhu, but he really did not feel it was necessary to brief crews about the Delta Point system to
determine a helicopter’s destination [90].9

Reasons for the Flawed Control

Inadequate control algorithms: This level of the accident analysis provides an interesting
example of the difference between prescribed procedures and established practice, the adaptation
of procedures over time, and migration toward the boundaries of safe behavior. Because of the
many helicopter missions that ran from Diyarbakir to Zakhu and back, the controllers testified
that it did not seem worth handing them off and switching them over to the TAOR frequency for
only a few minutes. Established practice (keeping the helicopters under the control of the enroute
controller instead of handing them off to the TAOR controller) appeared to be safe until the day
the helicopters’ behavior differed from normal, i.e., they stayed longer in the TAOR and ventured
beyond a few miles inside the boundaries. The effective procedures no longer assured safety under
these conditions. A complicating factor in the accident was the universal misunderstanding of each
of the controllers’ responsibilities with respect to tracking Army helicopters.
Snook suggests that the min comm norm contributed to the AWACS crew’s general reluctance

to enforce rules, contributed to AWACS not correcting Eagle Flight’s improper Mode I code, and
discouraged controllers from pushing helicopter pilots to the TAOR frequency when they entered
Iraq because they were reluctant to say more than absolutely necessary.
According to Snook, there were also no explicit or written procedures regarding the control of

helicopters. He states that radio contact with helicopters was lost frequently, but there were no
procedures to follow when this occurred. In contrast, Piper claims the AWACS operations manual
says:

“Helicopters are a high interest track and should be hard copied every five minutes
in turkey and every two minutes in Iraq. These coordinates should be recorded in a
special log book, because radar contact with helicopters is lost and the radar symbology
[sic]can be suspended”[90].

There is no information in the publicly available parts of the accident report about any special
logbook or whether such a procedure was normally followed.

Inaccurate and Inconsistent Mental Models: In general, the AWACS crew (and the ACE)
shared the common view that helicopter activities were not an integral part of OPC air operations.
There was also a misunderstanding about which provisions of the ATO applied to Army helicopter
activities.
Most of the people involved in the control of the F-15s were unaware of the presence of the

Black Hawks in the TAOR that day, the lone exception perhaps being the enroute controller who
knew they were there but apparently thought they would stay at the boundaries of the TAOR and
thus were far from their actual location deep within it. The TAOR controller testified that he had
never talked to the Black Hawks: Following their two check-ins with the enroute controller, the

9Even if the actions of the shadow crew did not contribute to this particular accident, we can take advantage of the
accident investigation to perform a safety audit on the operation of the system and identify potential improvements.
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helicopters had remained on the enroute frequency (as was the usual, accepted practice), even as
they flew deep into the TAOR.
The enroute controller, who had been in contact with the Black Hawks, had an inaccurate

model of where the helicopters were. When the Black Hawk pilots originally reported their takeoff
from the Army Military Coordination Center at Zakhu, they contacted the enroute controller and
said they were bound for Lima. The enroute controller did not know to what city the call sign
Lima referred and did not try to look up this information. Other members of the crew also had
inaccurate models of their responsibilities, as described in the next section. The Black Hawk pilots
clearly thought the AWACS was tracking them and also thought the controllers were using the
Delta Point system (or the pilots would not have provided the route names in that way).
The AWACS crews did not appear to have accurate models of the Black Hawks mission and

role in OPC. Some of the flawed control actions seem to have resulted from a mental model that
helicopters only went to Zakhu and therefore did not need to be tracked or to follow the standard
TAOR procedures.
As with the pilots and their visual recognition training, the incorrect mental models may have

been at least partially the result of the inadequate AWACS training the team received.

Coordination Among Multiple Controllers: As mentioned earlier, coordination problems
are pervasive in this accident due to overlapping control responsibilities and confusion about re-
sponsibilities in the boundary areas of the controlled process. Most notably, the helicopters usually
operated close to the boundary of the TAOR, resulting in confusion over who was or should be
controlling them.
The official Accident Report noted a significant amount of confusion within the AWACS mission

crew regarding the tracking responsibilities for helicopters [4]. The Mission Crew Commander
testified that nobody was specifically assigned responsibility for monitoring helicopter traffic in the
No-Fly-Zone and that his crew believed the helicopters were not included in their orders [90]. The
Staff Weapons Director made a point of not knowing what the Black Hawks do: “It was some
kind of a squirrely mission” [90]. During the court martial of the Senior Director, the AWACS
tanker controller testified that in the briefing the crew received upon arrival at Incirlik, the Staff
Weapons Director had said about helicopters flying in the No-Fly-Zone, ”They’re there, but don’t
pay any attention to them.” The Enroute controller testified that the handoff procedures applied
only to fighters. “We generally have no set procedures for any of the helicopters.. . .We never had
any [verbal] guidance [or training] at all on helicopters.
Coordination problems also existed between the activities of the surveillance personnel and the

other controllers. During the investigation of the accident, the ASO testified that surveillance’s
responsibility was south of the 36th parallel and the other controllers were responsible for track-
ing and identifying all aircraft north of the 36th parallel. The other controllers suggested that
surveillance was responsible for tracking and identifying all unknown aircraft, regardless of loca-
tion. In fact, Air Force regulations say that surveillance had tracking responsibility for unknown
and unidentified tracks throughout the TAOR. It is not possible through the testimony alone, again
because of the threat of court martial, to piece out exactly what was the problem here, including
simply a migration of normal operations from specified operations. At the least, it is clear that
there was confusion about who was in control of what.
One possible explanation for the lack of coordination among controllers at this level of the

hierarchical control structure is that, as suggested by Snook, this particular group had never trained
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as a team. But given the lack of procedures for handling helicopters and the confusion even by
experienced controllers and the staff instructors about responsibilities for handling helicopters,
Snook’s explanation is not very convincing. A more plausible explanation is simply a lack of
guidance and delineation of responsibilities by the management level above. And even if the roles
of everyone in such a structure had been well-defined originally, uncontrolled local adaptation to
more efficient procedures and asynchronous evolution of the different parts of the control structure
created dysfunctionalities as time passed. The helicopters and fixed wing aircraft had separate
control structures that only joined fairly high up on the hierarchy and, as is described in the next
section, there were communication problems between the components at the higher levels of the
control hierarchy, particularly between the Army Military Coordination Center (MCC) and the
Combined Forces Air Component (CFAC) headquarters.

Feedback from the Controlled Process: Signals to the AWACS from the Black Hawks were
inconsistent due to line-of-sight limitations and the mountainous terrain in which the Black Hawks
were flying. The helicopters used the terrain to mask themselves from air defense radars, but this
terrain masking also caused the radar returns from the Black Hawks to the AWACS (and to the
fighters) to fade at various times.

Time Lags: Important time lags contributed to the accident, such as the delay of radio reports
from the Black Hawk helicopters due to radio signal transmission problems and their inability to
use the TACSAT radios until they had landed. As with the ACE, the speed with which the F-15
pilots acted also provided the controllers with little time to evaluate the situation and respond
appropriately.

Changes After the Accident

Many changes were instituted with respect to AWACS operations after the accident:

• Confirmation of a positive IFF Mode IV check was required for all OPC aircraft prior to their
entry into the TAOR.

• The responsibilities for coordination of air operations were better defined.
• All AWACS aircrews went through a one-time retraining and recertification program, and
every AWACS crewmember had to be recertified.

• A plan was produced to reduce the temporary duty of AWACS crews to 120 days a year. In
the end, it was decreased from 166 to 135 days per year from January 1995 to July 1995. The
Air Combat Command planned to increase the number of AWACS crews.

• AWACS control was required for all TAOR flights.
• In addition to normal responsibilities, AWACS controllers were required to specifically main-
tain radar surveillance of all TAOR airspace and to issue advisory/deconflicting assistance on
all operations, including helicopters.

• The AWACS controllers were required to periodically broadcast friendly helicopter locations
operating in the TAOR to all aircraft.
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Although not mentioned anywhere in the available documentation on the accident, I assume also
that either the AWACS crews started to use the Delta Point system or the Black Hawk pilots were
told not to use it and an alternative means for transmitting flight plans was mandated.

7.3.6 Military Coordination Center, Combined Forces Air Component, and
CTF Commander

Fully understanding the behavior at any level of the socio-technical control structure requires
understanding how and why the control at the next higher level allowed or contributed to the
inadequate control at the current level. In this accident, many of the erroneous decisions and
control actions at the lower levels can only be fully understood by examining this level of control.

Context in which Decisions and Actions Took Place

Safety Requirements and Constraints Violated: There were many safety constraints vio-
lated at this level of the control structure, and several people were investigated for potential court
martial and received official letters of reprimand. These safety constraints include: (1) procedures
must be instituted that delegate appropriate responsibility, specify tasks, and provide effective train-
ing to all those responsible for tracking aircraft and conducting combat operations; (2) procedures
must be consistent or at least complementary for everyone involved in TAOR airspace operations;
(3) performance must be monitored (feedback channels established) to ensure that safety-critical
activities are being carried out correctly and that local adaptations have not moved operations
beyond safe limits; (4) equipment and procedures must be coordinated between the Air Force and
Army to make sure that communication channels are effective and that asynchronous evolution has
not occurred; (5) accurate information about scheduled flights must be provided to the pilots and
the AWACS crews.

Controls: The controls in place included operational orders and plans to designate roles and
responsibilities as well as a management structure, the ACO, coordination meetings and briefings,
a chain of command (OPC commander to Mission Director to ACE to Pilots), disciplinary actions
for those not following the written rules, and a group (the Joint Operations and Intelligence Center
or JOIC) responsible for ensuring effective communication occurred.

Roles and Responsibilities: The MCC had operational control over the Army helicopters while
the CFAC had operational control over fixed-wing aircraft and tactical control over all aircraft in
the TAOR. The Combined Task Force Commander General (who was above both the CFAC and
MCC) had ultimate responsibility for the coordination of fixed-wing aircraft flights with Army
helicopters.
While specific responsibilities of individuals might be considered here in an official accident

analysis, treating the CFAC and MCC as entities is sufficient for the purposes of this example
analysis.

Environmental and Behavior-Shaping Factors: The Air Force operated on a predictable,
well-planned, and tightly executed schedule. Detailed mission packages were organized weeks and
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months in advance. Rigid schedules were published and executed in preplanned packages. In con-
trast, Army aviators had to react to constantly changing local demands, and they prided themselves
on their flexibility [108]. Because of the nature of their missions, exact takeoff times and detailed
flight plans for helicopters were virtually impossible to schedule in advance. They were even more
difficult to execute with much rigor. The Black Hawks’ flight plan contained their scheduled takeoff
time, transit routes between Diyarbakir through Gate 1 to Zakhu, and return time. Because the
Army helicopter crews rarely knew exactly where they would be going within the TAOR until after
they were briefed at the Military Coordination Center at Zakhu, most flight plans only indicated
that Eagle Flight would be “operating in and around the TAOR.”
The physical separation of the Army Eagle Flight pilots from the CFAC operations and Air

Force pilots at Incirlik contributed to the communication difficulties that already existed between
the services.

Dysfunctional Interactions Among Controllers

Dysfunctional communication at this level of the control structure played a critical role in the
accident. These communication flaws contributed to the coordination flaws at this level and at the
lower levels.
A critical safety constraint to prevent friendly fire required that the pilots of the fighter aircraft

know who was in the No-Fly-Zone and whether they were supposed to be there. However, neither
the CTF staff nor the Combined Forces Air Component staff requested nor received timely, detailed
flight information on planned MCC helicopter activities in the TAOR. Consequently, the OPC daily
Air Tasking Order was published with little detailed information regarding U.S. helicopter flight
activities over northern Iraq.
According to the official accident report, specific information on routes of flight and times of

MCC helicopter activity in the TAOR was normally available to the other OPC participants only
when AWACS received it from the helicopter crews by radio and relayed the information on to
the pilots [4]. While those at the higher levels of control may have thought this relaying of flight
information was occurring, that does not seem to be the case given that the Delta point system
(wherein the helicopter crews provided the AWACS controllers with their flight plan) was not used
by the AWACS controllers: When the helicopters went beyond Zakhu, the AWACS controllers did
not know their flight plans and therefore could not relay that information to the fighter pilots and
other OPC participants.
The weekly flight schedules the MCC provided to the CFAC staff were not complete enough

for planning purposes. While the Air Force could plan their missions in advance, the different type
of Army helicopter missions had to be flexible to react to daily needs. The MCC daily mission
requirements were generally based on the events of the previous day. A weekly flight schedule was
developed and provided to the CTF staff, but a firm itinerary was usually not available until after
the next day’s ATO was published. The weekly schedule was briefed at the CTF staff meetings on
Mondays, Wednesday, and Fridays, but the information was neither detailed nor firm enough for
effective rotary-wing and fixed-wing aircraft coordination and scheduling purposes [4].
Each daily ATO was published showing several Black Hawk helicopter lines. Of these, two

helicopter lines (two flights of two helicopters each) were listed with call signs (Eagle 01/02 and
Eagle 03/04), mission numbers, IFF Mode II codes, and a route of flight described only as LLTC
(the identifier for Diyarbakir) to TAOR to LLTC. No information regarding route or duration of
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flight time within the TAOR was given on the ATO. Information concerning takeoff time and entry
time into the TAOR was listed as A/R (as required).
Every evening, the MCC at Zakhu provided a Situation Report (SITREP) to the JOIC (located

at Incirlik), listing the helicopter flights for the following day. The SITREP did not contain complete
flight details and arrived too late to be included in the next day’s ATO. The MCC would call the
JOIC the night prior to the scheduled mission to “activate” the ATO line. There were, however,
no procedures in place to get the SITREP information from the JOIC to those needing to know it
in CFAC.
After receiving the SITREP, a duty officer in the JOIC would send takeoff times and gate

times (the times the helicopters would enter Northern Iraq) to Turkish operations for approval.
Meanwhile, an intelligence representative to the JOIC consolidated the MCC weekly schedule with
the SITREP and used secure intelligence channels to pass this updated information to some of
his counterparts in operational squadrons who had requested it. No procedures existed to pass
this information from the JOIC to those in CFAC with tactical responsibility for the helicopters
(through the ACE and Mission Director) [4]. Because CFAC normally determined who would fly
when, the information channels were designed primarily for one-way communications outward and
downward.
In the specific instance involved in the shootdown, the MCC weekly schedule was provided

on April 8 to the JOIC and thence to the appropriate person in CFAC. That schedule showed a
two-ship, MCC helicopter administrative flight scheduled for April 14. According to the official
accident report, two days before (April 12) the MCC Commander had requested approval for an
April 14 flight outside the Security Zone from Zakhu to the towns of Irbil and Salah ad Din. The
OPC Commanding General approved the written request on April 13, and the JOIC transmitted
the approval to the MCC but apparently the information was not provided to those responsible
for producing the ATO. The April 13 SITREP from MCC listed the flight as “mission support,”
but contained no other details. Note more information was available earlier than normal in this
instance, and it could have been included in the ATO but the established communication channels
and procedures did not exist to get it to the right places. The MCC weekly schedule update, received
by the JOIC on the evening of April 13 along with the MCC SITREP, gave the destinations for
the mission as Salah ad Din and Irbil. This information was not passed to CFAC.
Late in the afternoon on April 13, MCC contacted the JOIC duty officer and activated the ATO

line for the mission. A takeoff time of 0520 and a gate time of 0625 were requested. No takeoff time
or route of flight beyond Zakhu was specified. The April 13 SITREP, the weekly flying schedule
update, and the ATO-line activation request were received by the JOIC too late to be briefed
during the Wednesday (April 13) staff meetings. None of the information was passed to the CFAC
scheduling shop (which was responsible for distributing last minute changes to the ATO through
various sources such as the Battle Staff Directives, morning briefings, etc.), to the ground-based
Mission Director, nor to the ACE on board the AWACS [4]. Note that this flight was not a routine
food and medical supply run, but instead it carried sixteen high-ranking VIPs and required the
personal attention and approval of the CTF Commander. Yet information about the flight was
never communicated to the people who needed to know about it [108]. That is, the information
went up from the MCC to the CTF staff, but not across from MCC to CFAC nor down from the
CTF staff to CFAC (see Figure 6.4).
A second example of a major dysfunctional communication involved the communication of the

proper radio frequencies and IFF codes to be used in the TAOR. About two years before the
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shootdown, someone in the CFAC staff decided to change the instructions pertaining to IFF modes
and codes. According to Snook, no one recalled exactly how or why this change occurred. Before
the change, all aircraft squawked a single Mode I code everywhere they flew. After the change, all
aircraft were required to switch to a different Mode I code while flying in the No-Fly-Zone. The
change was communicated through the daily ATO. However, after the accident it was discovered
that the Air Force’s version of the ATO was not exactly the same as the one received electronically
by the Army aviators—another instance of asynchronous evolution and lack of linkup between
system components. For at least two years, there existed two versions of the daily ATO: one
printed out directly by the Incirlik Frag Shop and distributed locally by messenger to all units at
Incirlik Air Base, and a second one transmitted electronically through an Air Force communications
center (the JOIC) to Army helicopter operations at Diyarbakir. The one received by the Army
aviators was identical in all respects to the one distributed by the Frag Shop, except for the changed
Mode I code information contained in the SPINS. The ATO that Eagle Flight received contained
no mention of two Mode I codes [108].
What about the confusion about the proper radio frequency to be used by the Black Hawks in

the TAOR? Piper notes that the Black Hawk pilots were told to use the enroute frequency while
flying in the TAOR. The Commander of OPC testified after the accident that the use by the Black
Hawks of the enroute radio frequency rather than the TAOR frequency had been briefed to him
as a safety measure because the Black Hawk helicopters were not equipped with HAVE QUICK
technology. The ACO required the F-15s to use non-HAVE QUICK mode when talking to specific
types of aircraft (such as F-1s) that, like the Black Hawks, did not have the new technology. The
list of non-HQ aircraft provided to the F-15 pilots, however, for some reason did not include UH-
60s. Apparently the decision was made to have the Black Hawks use the enroute radio frequency
but this decision was never communicated to those responsible for the F-15 procedures specified
in the ACO (Aircraft Control Order). Note that a thorough investigation of the higher levels of
control is necessary to explain properly the use of the enroute radio frequency by the Black Hawks.
Of the various reports on the shootdown, only Piper notes the fact that an exception had been
made for Army helicopters for safety reasons—the official accident report, Snook’s detailed book
on the accident, and the GAO report do not mention this fact! Piper found out about it from
her attendance at the public hearings and trial. This omission of important information from
the accident reports is an interesting example of how incomplete investigation of the higher levels
of control can lead to incorrect causal analysis. In her book, Piper questions why the Accident
Investigation Board, while producing 21 volumes of evidence, never asked the Commander of OPC
about the radio frequency and other problems found during the investigation.
Other official exceptions were made for the helicopter operations, such as allowing them in

the Security Zone without AWACS coverage. Using STAMP, the accident can be understood as a
process where the operations of the Army and Air Force adapted and diverged without effective
communication and coordination.
Many of the dysfunctional communications and interactions stem from asynchronous evolution

of the mission and the operations plan. In response to the evolving mission in Northern Iraq,
air assets were increased in September 1991 and a significant portion of the ground forces were
withdrawn. Although the original organizational structure of the CTF was modified at this time,
the operations plan was not. In particular, the position of the person who was in charge of com-
munication and coordination between the MCC and CFAC was eliminated without establishing an
alternative communication channel.
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Flawed or Inadequate Control Actions

There were many flawed or missing control actions at this level, including:

• The Black Hawk pilots were allowed to enter the TAOR without AWACS coverage and the
F-15 pilots and AWACS crews were not informed about this exception to the policy. This
control problem is an example of the problems of distributed decision making with other
decision makers not being aware of the decisions of others (see the Zeebrugge example in
Section 3.3).

Prior to September 1993, Eagle Flight helicopters flew any time required, prior to fighter
sweeps and without fighter coverage, if necessary. After September 1993, helicopter flights
were restricted to the security zone if AWACS and fighter coverage were not on station. But
for the mission on April 14, Eagle Flight requested and received permission to execute their
flight outside the security zone. A CTF policy letter dated September 1993 implemented the
following policy for UH-60 helicopter flights supporting the MCC: “All UH-60 flights into Iraq
outside of the security zone require AWACS coverage.” Helicopter flights had routinely been
flown within the TAOR security zone without AWACS or fighter coverage and CTF personnel
at various levels were aware of this. MCC personnel were aware of the requirement to have
AWACS coverage for flights outside the security zone and complied with that requirement.
However, the F-15 pilots involved in the accident, relying on the written guidance in the
ACO, believed that no OPC aircraft, fixed or rotary wing, were allowed to enter the TAOR
prior to a fighter sweep [4].

At the same time, the Black Hawks also thought they were operating correctly. The Army
Commander at Zakhu had called the Commander of Operations, Plans, and Policy for OPC
the night before the shootdown and asked to be able to fly the mission without AWACS
coverage. He was told that they must have AWACS coverage. From the view of the Black
Hawks pilots (who had reported in to the AWACS during the flight and provided their flight
plan and destinations) they were complying and were under AWACS control.

• Helicopters were not required to file detailed flight plans and follow them. Effective procedures
were not established for communicating last minute changes or updates to the Army flight
plans that had been filed.

• F-15 pilots were not told to use non-HQ mode for helicopters.

• No procedures were specified to pass SITREP information to CFAC. Helicopter flight plans
were not distributed to CFAC and the F-15 pilots, but they were given to the F-16 squadrons.
Why was one squadron informed, while another one, located right across the street, was not?
F-15s are designed primarily for air superiority—high altitude aerial combat missions. F-16s,
on the other hand, are all-purpose fighters. Unlike F-15s, which rarely flew low-level missions,
it was common for F-16s to fly low-level missions where they might encounter the low-flying
Army helicopters. As a result, to avoid low-altitude mid-air collisions, staff officers in F-16
squadrons requested details concerning helicopter operations from the JOIC, went to pick it
up from the mail pickup point on the post, and passed it on to the pilots during their daily
briefings; F-15 planners did not [108].
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• Inadequate training on the ROE was provided for new rotators. Piper claims that OPC
personnel did not receive consistent, comprehensive training to ensure they had a thorough
understanding of the rules of engagement and that many of the aircrews new to OPC ques-
tioned the need for the less aggressive rules of engagement in what had been designated a
combat zone [90]. Judging from these complaints (details can be found in [90]) and incidents
involving F-15 pilots, it appears that the pilots did not fully understand the ROE purpose or
need.

• Inadequate training was provided to the F-15 pilots on visual identification.

• Inadequate simulator and spin-up training was provided to the AWACS crews. Asynchronous
evolution occurred between the changes in the training materials and the actual situation in
the No-Fly-Zone. In addition, there were no controls to ensure the required simulator sessions
were provided and that all members of the crew participated.

• Handoff procedures were never established for helicopters. In fact, no explicit or written
procedures, verbal guidance, or training of any kind were provided to the AWACS crews
regarding the control of helicopters within the TAOR [108]. The AWACS crews testified
during the investigation that they lost contact with helicopters all the time but there were
no procedures to follow when that occurred.

• Inadequate procedures were specified and enforced for how the shadow crew would instruct the
new crews.

• The rules and procedures established for the operation did not provide adequate control over
unsafe F-15 pilot behavior, adequate enforcement of discipline, or adequate handling of safety
violations. The CFAC Assistant Director of Operations told the GAO investigators that there
was very little F-15 oversight in OPC at the time of the shootdown. There had been so many
flight discipline incidents leading to close calls that a group safety meeting had been held
a week before the shootdown to discuss it. The flight discipline and safety issues included
midair close calls, unsafe incidents when refueling, and unsafe takeoffs. The fixes (including
the meeting) obviously were not effective. But the fact that there were a lot of close calls
indicates serious safety problems existed and were not handled adequately.

The CFAC Assistant Director of Operations also told the GAO that contentious issues in-
volving F-15 actions had become common topics of discussion at Detachment Commander
meetings. No F-15 pilots were on the CTF staff to communicate with the F-15 group about
these problems. The OPC Commander testified that there was no tolerance for mistakes or
unprofessional flying at OPC and that he had regularly sent people home for violation of
the rules—the majority of those he sent home were F-15 pilots, suggesting there were serious
problems in discipline and attitude among this group [90].

• The Army pilots were given the wrong information about IFF codes to use in the TAOR.
As described above, this mismatch resulted from aynchronous evolution and lack of linkup
(consistency) between process controls, i.e., the two different ATOs.
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Reasons for the Flawed Control

Ineffective Control Algorithms Almost all of the control flaws at this level relate to the
existence and use of ineffective control algorithms. Equipment and procedures were not coordinated
between the Air Force and the Army to make sure communication channels were effective and that
asynchronous evolution had not occurred. The last CTF staff member who appears to have actively
coordinated rotary-wing flying activities with the CFAC organization departed in January 1994. No
representative of the MCC was specifically assigned to the CFAC for coordination purposes. Since
December 1993, no MCC helicopter detachment representative had attended the CFAC weekly
scheduling meetings. The Army Liaison Officer, attached to the MCC helicopter detachment at
Zakhu and assigned to Incirlik AB, was new on station (he arrived April 1994) and was not fully
aware of the relationship of the MCC to the OPC mission [4]
Performance was not monitored to ensure that safety-critical activities were carried out correctly,

that local adaptations had not moved operations beyond safe limits, and that information was being
effectively transmitted and procedures followed. Effective controls were not established to prevent
unsafe adaptations.
The feedback that was provided about the problems at the lower levels were ignored. For

example, the Piper account of the accident includes a reference to helicopter pilots’ testimony that
six months before the shootdown, in October 1993, they had complained that the fighter aircraft
were using their radar to lock onto the Black Hawks an unacceptable number of times. The Army
helicopter pilots had argued there was an urgent need for the Black Hawk pilots to be able to
communicate with the fixed-wing aircraft, but nothing was changed until after the accident, when
new radios were installed in the Black Hawks.

Inaccurate Mental Models The Commander of the Combined Task Force thought that the
appropriate control and coordination was occurring. This incorrect mental model was supported by
the feedback he received flying as a regular passenger on board the Army helicopter flights, where
it was his perception that the AWACS was monitoring their flight effectively. The Army helicopter
pilots were using the Delta Point system to report their location and flight plans, and there was no
indication from the AWACS that the messages were being ignored. The CTF Commander testified
that he believed the Delta Point system was standard on all AWACS missions. When asked at
the court martial of the AWACS Senior Director whether the AWACS crew were tracking Army
helicopters, the OPC Commander replied:

“Well, my experience from flying dozens of times on Eagle Flight, which that—for some
eleven hundred and nine days prior to this event, that was—that was normal procedures
for them to flight follow. So, I don’t know that they had something written about it,
but I know that it seemed very obvious and clear to me as a passenger on Eagle Flight
numerous times that that was occurring” [90].

The Commander was also an active F-16 pilot who attended the F-16 briefings. At these
briefings he observed that Black Hawk times were part of the daily ATOs received by the F-16
pilots and assumed that all squadrons were receiving the same information. However, as noted,
the head of the squadron with which the Commander flew had gone out of his way to procure the
Black Hawk flight information while the F-15 squadron leader did not.
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Many of those involved at this level were also under the impression that the ATOs provided to
the F-15 pilots and to the Black Hawks pilots were consistent, that required information had been
distributed to everyone, that official procedures were understood and being followed, etc.

Coordination Among Multiple Controllers There were clearly problems with overlapping
and boundary areas of control between the Army and the Air Force. Coordination problems between
the services are legendary and were not handled adequately here. For example, two different versions
of the ATO were provided to the Air Force and the Army pilots. The Air Force F-15s and the
Army helicopters had separate control structures, with a common control point fairly high above the
physical process. The problems were complicated by the differing importance of flexibility in flight
plans between the two services. One symptom of the problem was that there was no requirement
for helicopters to file detailed flight plans and follow them and no procedures established to deal
with last minute changes. These deficiencies were also related to the shared control of helicopters
by MCC and CFAC and complicated by the physical separation of the two headquarters.
During the accident investigation, a question was raised about whether the Combined Task

Force Chief of Staff was responsible for the breakdown in staff communication. After reviewing
the evidence, the hearing officer recommended that no adverse action be taken against the Chief of
Staff because he (1) had focused his attention according to the CTF Commander’s direction, (2)
had neither specific direction nor specific reason to inquire into the transmission of info between his
Director of Operations for Plans and Policy and the CFAC, (3) had been the most recent arrival and
the only senior Army member of a predominantly Air Force staff and therefore generally unfamiliar
with air operations, and (4) had relied on experienced colonels under whom the deficiencies had
occurred [113]. This conclusion was obviously influenced by the goal of trying to establish blame.
Ignoring the blame aspects, the conclusion gives the impression that nobody was in charge and
everyone thought someone else was.
According to the official accident report, the contents of the ACO largely reflected the guidance

given in the operations plan dated September 7, 1991. But that was the plan provided before the
mission had changed. The accident report concludes that key CTF personnel at the time of the
accident were either unaware of the existence of this particular plan or considered it too outdated to
be applicable. The accident report states that “Most key personnel within the CFAC and CTF staff
did not consider coordination of MCC helicopter activities to be part of their respective CFAC/CTF
responsibilities” [4].
Because of the breakdown of clear guidance from the Combined Task Force staff to its compo-

nent organizations (CFAC and MCC), they did not have a clear understanding of their respective
responsibilities. Consequently, MCC helicopter activities were not fully integrated with other OPC
air operations in the TAOR.

7.3.7 Conclusions from the Friendly Fire Example

When looking only at the proximate events and the behavior of the immediate participants in the
accidental shootdown, the reasons for this accident appear to be gross mistakes by the technical
system operators (the pilots and AWACS crew). In fact, a special Air Force task force composed of
more than 120 people in six commands concluded that two breakdowns in individual performance
contributed to the shootdown: (1) the AWACS mission crew did not provide the F-15 pilots an
accurate picture of the situation and (2) the F-15 pilots misidentified the target. From the 21-volume
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accident report produced by the Accident Investigation Board, Secretary of Defense William Perry
summarized the “errors, omissions, and failures” in the “chain of events” leading to the loss as:

• The F-15 pilots misidentified the helicopters as Iraqi Hinds.
• The AWACS crew failed to intervene.
• The helicopters and their operations were not integrated into the Task Force running the
No-Fly-Zone operations.

• The Identity Friend or Foe (IFF) systems failed.
According to Snook, these four “causes” have been generally accepted by the military commu-

nity as the explanation for the shootdown.
While there certainly were mistakes made at the pilot and AWACS levels as identified by the

special Air Force Task Force and the four factors identified by the accident report and Perry were
involved in the accident, the use of the STAMP analysis paints a much more complete explanation
including: inconsistent, missing, or inaccurate information; incompatible technology; inadequate
coordination; overlapping areas of control and confusion about who was responsible for what; a
migration toward more efficient operational procedures over time without any controls and checks
on the potential adaptations; inadequate training; and in general a control structure that did not
enforce the safety constraints. While many of these factors result from “breakdowns in individual
performance,” understanding the accident requires understanding the effects of the interactions
among individual actions and decisions.
As noted earlier, STAMP treats an accident as a process. In this case, Army and Air Force

operations adapted and diverged without communication and coordination. OPC had operated
incident-free for over three years at the time of the shootdown. During that time, local adaptations
to compensate for inadequate control from above had managed to mask the ongoing problems until
a situation occurred where local adaptations did not work. A lack of awareness at the highest levels
of command of the severity of the coordination, communication, and other problems is a key factor
in this accident.
Concentrating on an event chain focuses attention on the proximate events associated with

this accident and thus on the principle local actors, namely the pilots and the AWACS personnel.
Treating the accident as a control problem using STAMP clearly identifies other organizational
factors and actors and the role they played. Most important, without this broader view of the acci-
dent, only the symptoms of the organizational problems might have been identified and eliminated
without significantly reducing risk of a future accident caused by the same systemic factors but
involving different symptoms at the lower, technical and operational levels of the control structure.
More information on how to build multiple views of an accident using STAMP in order to aid

understanding can be found in Chapter 8.

7.4 Applying the New Model

The use of STAMP points to new hazard analysis and prevention techniques, new risk assessment
techniques, and new approaches to system monitoring and to the definition of safety metrics, all of
which are described in Part III of this book.
STAMP focuses particular attention on the role of constraints in safety management. Accidents

are seen as resulting from inadequate control or enforcement of constraints on safety-related behav-
ior at each level of the system development and system operations control structures. Accidents
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can be understood, therefore, in terms of why the controls that were in place did not prevent or
detect maladaptive changes, that is, by identifying the safety constraints that were violated at each
level of the control structure as well as why the controls designed to enforce them were inadequate
or, if they were potentially adequate, why the system was unable to exert appropriate control over
their enforcement. The process leading to an accident (loss event) can be described in terms of
an adaptive feedback function that fails to maintain safety as performance changes over time to
meet a complex set of goals and values. Adaptation is critical in understanding accidents, and
the adaptive feedback mechanism inherent in the model allows a STAMP analysis to incorporate
adaptation as a fundamental system property.
We have found in practice that using this model helps us to separate factual data from the

interpretations of that data: While the factors involved in accidents may be clear, their importance
and the explanations for why the factors were present are often subjective. Our models are also more
complete than most accident reports and other models. Each of the explanations for the incorrect
FMS input of R in the Cali American Airlines accident described in Chapter 2, for example, appears
in the STAMP analysis of that accident at the appropriate levels of the control structure where
they operated. The use of STAMP not only helps to identify the factors but also to understand
the relationships among them.
While STAMP models will probably not be useful in law suits as they do not assign blame for

the accident to a specific person or group, they do provide more help in understanding accidents
by forcing examination of each part of the socio-technical system to see how it contributed to the
loss—and there will usually be contributions at each level. Such understanding should help in
learning how to engineer safer systems, including the technical, managerial, organizational, and
regulatory aspects.
To accomplish this goal, a framework for classifying the factors that lead to accidents was

derived from the basic underlying conceptual accident model. This classification can be used in
identifying the factors involved in a particular accident and in understanding their role in the
process leading to the loss. The accident investigation after the Black Hawk shootdown identified
130 different factors involved in the accident. In the end, only the AWACS Senior Director was
court martialed, and he was acquitted. The more one knows about an accident process, the more
difficult it is to find one person or part of the system responsible, but the easier it is to find effective
ways to prevent similar occurrences in the future.
STAMP is useful not only in analyzing accidents that have occurred but in developing new and

perhaps more effective system engineering methodologies to prevent accidents. Hazard analysis can
be thought of as investigating an accident before it occurs. Traditional hazard analysis techniques,
such as fault tree analysis and various types of failure analysis techniques, do not work well for
software and system design errors. Nor do they usually include organizational and management
flaws. The problem is that these hazard analysis techniques are limited by a focus on failure events
and the role of component failures in accidents and do not account for the complex roles that
software and humans are assuming in high-tech systems and the indirect relationships between
events and actions required to understand why the accidents occurred.
STAMP provides a direction to take in creating new hazard analysis and prevention techniques

that go beyond component failure and are more effective against system accidents, accidents related
to the use of software, accidents involving cognitively complex human activities, and accidents
related to societal and organizational factors. Because in a system accident model everything starts
from constraints, the new approach focuses on identifying the constraints required to maintain
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safety and then designing the system and operating conditions to ensure that the constraints are
enforced. Such hazard analysis techniques augment the failure-based methods and encourage a
wider variety of risk reduction measures than simply adding redundancy to deal with component
failures. Chapter 9 provides detailed instructions on how to use STAMP to prevent accidents.
STAMP also can be used to improve performance analysis. Performance monitoring of complex

systems has created some dilemmas. Computers allow the collection of massive amounts of data,
but analyzing that data to determine whether the system is moving toward the boundaries of safe
behavior is difficult. The use of an accident model based on system theory and the basic concept
of safety constraints may provide directions for identifying appropriate safety metrics; determining
whether control over the safety constraints is adequate; evaluating the assumptions about the tech-
nical failures and potential design errors, organizational structure, and human behavior underlying
the hazard analysis; detecting errors in the operational and environmental assumptions underly-
ing the design and the organizational culture; and identifying any maladaptive changes over time
that could increase risk of accidents to unacceptable levels. Chapter 10 discusses approaches to
accomplishing these goals.
Finally, STAMP points the way to very different approaches to risk assessment. Currently,

risk assessment is firmly rooted in the probabilistic analysis of failure events. Attempts to extend
current PRA techniques to software and other new technology, to management, and to cognitively
complex human control activities have been disappointing. This way forward may lead to a dead
end. Significant progress in risk assessment for complex systems will require innovative approaches
starting from a completely different theoretical foundation—see Chapter 10.
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Chapter 8

Analyzing Accidents and Incidents

[This chapter is still in development and will be modified as we learn more about accident analyses
using STAMP and further develop the approach, particularly the notation and models used.]

A systems-theoretic view of accidents sees them as resulting from inadequate control or enforce-
ment of constraints on safety-related behavior at each level of the system development and system
operation control structures. Accidents can be understood, therefore, in terms of why the controls
that were in place did not prevent or detect maladaptive changes, that is, by identifying the safety
constraints that were violated at each level of the control structure as well as why the controls
designed to enforce them were inadequate or, if they were potentially adequate, why the system
was unable to exert appropriate control over their enforcement. The process leading to an accident
(loss event) is described in terms of an adaptive feedback function that fails to maintain safety as
performance changes over time to meet a complex set of goals and values. Adaptation is critical
in understanding accidents, and the adaptive feedback mechanism inherent in the model allows a
STAMP analysis to incorporate adaptation as a fundamental system property.
The use of a systems-theoretic accident model like STAMP does not lead to identifying single

causal factors or variables. Instead it provides the ability to examine the entire socio-technical
system design to understand the role each component plays in ensuring the safety constraints. This
information can be used in an incident or accident investigation to identify the flaws in an existing
structure and identify changes that will not simply eliminate symptoms but root causes. As will be
seen in later chapters, it can also be used in a proactive way during system design, development,
and operation to identify the flaws in the physical system design and safety controls that could
lead to an accident and to use this information to design the physical system and controls to
reduce the likelihood of an accident (Chapter 9), to establish metrics for detecting when the safety
control structure is degrading and risk is becoming unacceptably high Chapter 10), to create new
approaches to risk assessment (Chapter 10), and to assist in decision-making about changes in the
system to determine whether they will increase risk (Chapter 9).
Hazard analysis has been described as analyzing accidents before they occur, so much can be

learned about using STAMP in proactive prevention activities by understanding how it can be used
to analyze accidents that have already happened. Using it for near miss or incident analysis can
be a very effective way to perform root cause analysis and identify weaknesses in the safety control
structure. Note that an accident investigation process is not being specified (a much larger topic),
but only a way to document and analyze the results of such a process.

131
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8.1 Applying STAMP to Accident Analysis

Accident analysis based on STAMP starts by determining the existing socio-technical safety control
structure for the system involved. The accident process is described at each appropriate level of
this control structure in terms of the safety constraints that were violated and why. Thus there will
be multiple views of the accident, depending on the perspective and level from which it is being
viewed.
The first step is to identify the hazard involved in the loss. Next, the hierarchical safety control

structure related to the hazard is constructed and the constraints necessary to control the hazard
are identified for each level. Then, starting from the technical process and using the proximate
events and general application knowledge, any failures and dysfunctional interactions (including
communication problems) involved in the loss are identified. For each constraint, a determination
is made about why it was violated: either the constraint was never identified and enforced or the
enforcement was inadequate. The classification in Figure 7.2 can be used in evaluating inadequate
enforcement.
Any human decisions need to be understood in terms of (at least): the information available to

the decision maker as well as any required information that was not available, the behavior-shaping
mechanisms (the context and pressures on the decision making process), the value structures un-
derlying the decision, and any flaws in the mental models of those making the decisions.
In general, the description of the role of each component in the control structure will include

the following:

1. Safety Requirements and Constraints

2. Controls

3. Context:

(a) Roles and Responsibilities

(b) Environmental and Behavior Shaping Factors

4. Flaws in the Controlled Process

5. Dysfunctional Interactions, Failures, and Flawed Decisions, and Erroneous Control Actions

6. Reasons for Flawed Control Actions and Dysfunctional Interactions

(a) Control Algorithm Flaws

(b) Incorrect Process, Interface, or Mental Models

(c) Inadequate Coordination among Multiple Controllers

(d) Reference Channel Flaws

(e) Feedback Flaws

The Friendly Fire shootdown described in Part II provides an example of a complex accident
analysis using STAMP. While extremely complex, the accident involved only operations and thus
the STAMP model includes only the control structure associated with operations. This chapter
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provides some examples of analyses based on STAMP that also involve technical system design and
development flaws.
One difficulty in trying to analyze accidents from the information provided in accident reports is

that much of the information needed to complete a STAMP model usually is not included because
most are written from the perspective of an event-based model: The events are almost always clearly
described and usually one or several of these events is chosen as the ”root cause(s),” but the analysis
of why those events occurred is usually incomplete. In addition, the analysis frequently stops after
finding someone to blame, usually a human operator. The opportunity to learn important lessons
for improving this and other systems is lost. In this chapter, STAMP is used to identify the
additional questions that need to be answered to fully understand why the accident occurred and
to maximize learning from the loss.
The first accident analyzed is the loss of the Ariane 5 on its first flight. This accident was chosen

because the analysis at the technical level illustrates how the strict use of an event-chain model and
direct links between events (as the Ariane report report did) can lead to ignoring important lessons
that could be learned. Unfortunately, very little information is included in the report about how
the system development and management of the development process led to the technical design
errors.
The second example, the loss of a Milstar satellite being launched by a Titan IV/Centaur,

provides an example of a STAMP analysis of the role played by system development and operations.
A final example of a water contamination accident in Canada provides a very complete example

of the role of not only management but government and regulatory authorities in an accident and
the corresponding analysis based on STAMP. This latter example, again because the information
was included in the very comprehensive accident report, also demonstrates how the migration of
an organization over time (adaptation) leads to accidents and the types of models that can be used
to describe this migration.

8.2 The Ariane 5 Loss

On June 4, 1996, the maiden flight of the Ariane 5 launcher ended in failure: Only about 40 seconds
after initiation of the flight sequence, at an altitude of only 2700 m, the launcher veered off its flight
path, broke up, and exploded. The accident report describes the loss in terms of a chain of technical
events, their inter-relations, and causes [71]. This chapter attempts to explain it using the STAMP
model of accidents. Because the report focused on events as the explanation of the cause of the
loss, it does not include all the information needed for a control focus on causality so the model is
very incomplete. It is still informative, however, to put the available information into the STAMP
format and to examine what additional information would have been useful to learn more from the
accident. In addition, the analysis at the physical and software control levels (most of which can be
gleaned from the report) provide an interesting illustration of the difference between an event-chain
analysis and a systems-theoretic one.
To understand the accident, some background is necessary. The Flight Control System of the

Ariane 5 is of a standard design, and much of the software built for the Ariane 4 was reused on
the Ariane 5. The attitude of the launcher and its movements in space are measured by an Inertial
Reference System (SRI, using the French acronym). The SRI has its own internal computer, in
which angles and velocities are calculated on the basis of information from a strap-down inertial
platform, with laser gyros and accelerometers. The data from the SRI are transmitted through
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the databus to the On-Board Computer (OBC), which executes the flight program and controls
the nozzles of the solid boosters and the Vulcain cryogenic engine, via servovalves and hydraulic
actuators.
In order to improve reliability, there is considerable redundancy at the hardware level: two

SRIs operate in parallel, with identical hardware and software. One SRI is active and the other is
in “hot” standby1. If the OBC detects that the active SRI has failed, it immediately switches to
the standby unit, provided that this backup unit is functioning properly. Likewise, there are two
OBCs, and a number of other units in the Flight Control System are also duplicated.
Exception handling was used to improve software reliability and fault tolerance. To oversimplify

somewhat, when the computer hardware or operating system detects an error (called an exception
or fault) in the application software, it usually stops the execution of the application software. There
are good reasons to stop because most of the time continuing will result in bad consequences. When
exception handling is used in the application software, instead of just stopping its execution, the
hardware or operating system can signal to the application software that a fault or exception has
occurred. This behavior is called raising an exception, and the type of exception raised provides
some limited information about what type of error occurred. The types of exceptions that can be
detected are primarily faults confined to a single instruction, such as an overflow (e.g., bits have
been lost in a variable value as the result of an arithmetic operation or from assigning a variable
value to a location that does not have enough bits to hold the entire value), an attempt to divide
by zero, or an attempt to access a variable in protected memory. In order to handle the signaled
exception, the application program must include special exception-handling code that has been
designed to detect the signal and perform some repair. If no exception-handling code is included
or if the repair attempt is unsuccessful, execution of the application software usually is stopped.
Alternatively, exception-handling software may contain logic to continue execution, perhaps simply
skipping the erroneous instructions.
The losses from the accident included the $5 billion payload, which in accordance with common

practice for test flights was not insured, as well as other unknown financial losses. The accident
also had repercussions in the form of adding two qualification flights that had not been planned,
pushing back commercial flights by more than 2.5 years, and extending Ariane 4 operations until
2003 (it was originally scheduled to be phased out in 2000).

8.2.1 The Launch Vehicle

For the new model, the loss event (accident) is first described with respect to the components
of the technical process, in this case the Ariane launch vehicle. The loss involved the following
dysfunctional interactions in the launch vehicle:

• Ariane 5: A rapid change in attitude and high aerodynamic loads stemming from a high
angle of attack create aerodynamic forces that cause the launcher to disintegrate at 39 seconds
after the command for main engine ignition (H0).

• Nozzles: Full nozzle deflections of the solid boosters and Vulcain main engine lead to an
angle of attack of more than 20 degrees.

1A hot standby operates in parallel with the primary unit but either it does not provide outputs to the databus
or its outputs are ignored.
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Figure 8.1: Lowest Level Control Loop

• Self-Destruct Systems: The self-destruct system is triggered (as designed) by the separa-
tion of the boosters from the main stage at an altitude of 4 km. and a distance of 1 km. from
the launch pad.

The system hazard violated and safety constraint not enforced on the process in this case were:

Hazard: Change of attitude that causes disintegration of launcher.

System Safety Constraint: The launcher must not go outside a safe envelope2.

The next step is to take each part of the technical control loop and evaluate why the system
safety constraint on the process state was not enforced. The factors identified in Figure 7.2 can be
used to assist in this process. The analyst then moves upward in the operations and development
control structures to determine at each level the safety constraints that were violated and why.

8.2.2 The Technical Control Loop

For the Ariane 5, the lowest-level (technical) control loop is shown in Figure 8.1. The OBC (On-
Board Computer) and SRI (Inertial Reference System) along with its backup are the relevant
system components for which safety constraints and their violation need to be examined:

2This constraint would most likely be specified using a more detailed description of the safe envelope, but the
details are unknown to me.
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Inertial Reference System (SRI)

The SRI measures the attitude of the launcher and its movements in space on the basis of infor-
mation provided by a strap-down inertial platform. The requirements stated that in the event of
any type of exception, “the failure should be indicated on the databus, the failure context should
be stored in an EEPROM memory . . . and finally the SRI processor should be shut down.”
The goal of the backup SRI was to take over in case the primary SRI was unable to send guidance

information. The software in both the primary and backup SRIs was identical and therefore provides
protection only against hardware failures.

SRI Safety Constraints Violated: (1) The SRI must continue to send guidance informa-
tion as long as it can get the necessary information from the strapdown inertial platform;
(2) the SRI must not send diagnostic information in a form that could be misinterpreted
as flight data.

Unsafe Behavior: At 36.75 seconds after H0, the SRI detected an internal error in a non-
critical function and turned itself off (as it was designed to do) after putting diagnostic
information on the databus.

Control Algorithm Flaw: The algorithm calculates the horizontal bias (an internal align-
ment variable used as an indicator of alignment precision over time) using the horizontal
velocity input from the strapdown inertial platform (C in Figure 8.1). Conversion of this
variable from a 64-bit floating point value to a 16-bit signed integer led to an unhandled
overflow exception while calculating the horizontal bias. No instructions for handling
this exception were included in the software, and the computer shut itself down after
putting diagnostic information on the databus.

Process Model: The SRI process model did not match the Ariane 5. Instead, it was based
on Ariane 4 trajectory data. The software was reused from the Ariane 4, where the
velocity variables are lower than the Ariane 5. The horizontal bias variable on the
Ariane 4 does not get large enough to cause an overflow.

Backup Inertial Reference System (SRI)

SRI Safety Constraint Violated: The backup SRI must continue to send attitude and
control data as long as it can get the necessary information from the strapdown inertial
platform.

Unsafe Behavior and Dysfunctional Interactions: At 36.7 seconds after H0, the backup
SRI detected an internal error in a non-critical function and turned itself off (as it was
designed to do).

Process Model: The SRI process model did not match the Ariane 5. As in the primary
SRI, the model is based on Ariane 4 trajectory data.

Control Algorithm: This control algorithm was the same as used in the SRI, i.e., it calcu-
lated the horizontal bias using the same horizontal velocity input from the strapdown
inertial platform. Conversion from a 64-bit floating point value to a 16-bit signed inte-
ger led to the same unhandled overflow exception while calculating the horizontal bias.
Because the algorithm was the same in both SRI computers, the overflow results in the
same behavior, i.e., shutting itself off.
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Process Model Flaws: The SRI process model did not match the Ariane 5. As in the
primary SRI, the model is based on Ariane 4 trajectory data, which again assumed
smaller horizontal velocity values than possible on the Ariane 5.

On-Board Computer (OBC)

The on-board computer executed the flight program and controlled the nozzles of the solid boosters
and the Vulcain cryogenic engine, via servovalves and hydraulic actuators.

OBC Safety Constraints Violated: (1) Commands from the OBC to the nozzles must
not result in the launcher operating outside its safe envelope; (2) The OBC must know
the status of the SRI and backup SRI at all times and which computer input to use; (3)
the OBC must not confuse guidance data with other inputs received.

Unsafe Control Commands (A and B): A control command was sent to the booster
nozzles and later to the main engine nozzle to make a large correction for an attitude
deviation that had not occurred.

Control Algorithm Flaws: This algorithm read SRI diagnostic information (indicating it
had an internal error and was shutting down) from the databus, interpreted it as guid-
ance data, and used it for flight control calculations. With both the SRI and the backup
SRI shut down and therefore no possibility of getting correct guidance and attitude in-
formation, the Ariane 5 loss was inevitable. But if the backup SRI had continued to
operate, reading and using diagnostic information from the SRI in flight-control calcu-
lations might have led to the loss on its own so this error is an important one. There
is no information in the accident report to indicate whether the OBC software included
a check for the diagnostic information and it was simply unsuccessful at recognizing it,
whether such a check was omitted, or whether the flaw was in the design of the diagnostic
message itself. A basic safety design principle is that diagnostic and other information
should be sent in a form that is easily distinguishable from (cannot be confused with)
normal data [66]. In addition, no information is provided about whether the OBC al-
gorithm included checks for out-of-range data, another standard defensive programming
strategy.

Flight Information and Diagnostic Inputs (D): The diagnostic information was placed
on the bus by the SRI. The report does not indicate whether (2) this information was
intended for the backup SRI to indicate that the primary SRI computer had ceased
operation and that the backup SRI should take over (i.e., to move from hot standby to
primary and to start sending guidance information to the OBC) or, (2) if the backup
SRI was already sending data, to indicate to the OBC to start using the backup SRI
data.

Process (Spacecraft) Model Flaws: The model of the current launch attitude was in-
correct, i.e., it did not match the spacecraft attitude because it assumed an attitude
deviation had occurred that had not. The incorrect process model led to incorrect con-
trol commands being sent to the nozzles. The internal process model of the inferred
spacecraft state became inconsistent with the actual spacecraft state through an incor-
rect update of the internal model (the spacecraft attitude) using the contents of an SRI
diagnostic message that was incorrectly interpreted as flight information.
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Interface Model Flaws: This model was incomplete or incorrect (not enough information
is provided in the report to determine which), i.e., it did not include the SRI diagnostic
message formats available on the databus or it did not contain adequate information
about these messages. It is unclear from the accident report whether the OBC was ever
intended to read this type of message, although it probably was. The OBC Interface
Model also included a mismatch between its model of the SRI state and the true SRI
state—it thought the SRI was active when it actually was shutdown or it would not have
used its inputs.

Unfortunately, almost no information is included in the accident report about the safety-related
flaws in the OBC software because an argument is made that with the loss of the navigation and
guidance information from the SRIs, the loss was inevitable. While true, this narrow view rules out
the possibility of learning about important software flaws: Even if the backup SRI had continued
to work, interpreting the diagnostic message as flight information might have led to the loss of the
launcher anyway. Several accidents or near misses have resulted from similar misinterpretation of
informational messages by software, for example, the interpretation of a sanity check message as
an indication of a Russian missile attack by a NORAD computer [66].
The requirement for the SRI software to send the diagnostic information was in the SRI software

requirements and was correctly satisfied. What is not included in the report is (1) whether the
OBC software requirements contained a requirement to process the diagnostic data and, if so,
whether the programmers were told to treat the message as an indication that the SRI had failed
and to start using the Backup SRI or to ignore the message (i.e., the message was intended only
for the Backup SRI), (2) whether there was an interface specification (or at least whether one was
available when the OBC software requirements and design were being developed), (3) if there was
an interface specification, whether it was used but it did not contain a description of the diagnostic
data being put onto the databus, or (4) whether the interface specification was correct but the
OBC software developers did not use it or interpreted it incorrectly. These questions need to be
investigated in order to determine the flaws in the development process that led to these software
flaws and to prevent them in the future.
There is also no information about whether potentially unsafe behavior (such as the limits of

safe commands to the servovalves and hydraulic actuators) was identified to the OBC software
developers and whether they attempted to check commands before sending them to determine
whether they lay outside a safe envelope. Alternatively, such checks may have been included but
were based on Ariane 4 trajectory data, as was the SRI software. This question would have been
an important one to answer for full understanding of the accident process.

8.2.3 System Operations Control Structure

The report does not mention anything about operators and presumably they played no role in the
accident.

8.2.4 System Development Control Structure

The next step is to examine the higher levels of control to understand why these control flaws
occurred: why they were introduced, why they were not found before use, and why they were
not successfully handled during operations. For each flaw and for each level of the operations and
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development control structures, we need to understand the decisions involved and to evaluate them
in terms of the information available and the basis for the decision. Why were the decisions made?
Why did they turn out to be flawed, i.e., what was the basic flaw in the decision-making process
and mental models of the decision makers that led to the result? Why, at each level of the control
structure, were the controls inadequate to prevent the accident?
The accident report is almost totally silent about the development control structure and overall

management structure and how organizational and management factors might have impacted the
process leading to the accident. For example, it does not describe the allocation of responsibility
and authority for safety nor the project management and system safety controls in effect during
development. What safety policy and standards were applied? What standards were applied to
decisions about reusing software from the Ariane 4? Was a hazard analysis performed? If so, how
were the results communicated and used?
Enough information is included, however, to give some idea of what an analysis of the accident

might contain using the new model. Where the information necessary to evaluate the accident from
the STAMP perspective was not available, the additional necessary questions that might have been
investigated can be identified.
The following includes the information that was either in the report or could be assumed from

what was included. A generic control structure is shown in Figure 8.2.

8.2.5 Software Engineering

Two sets of software engineers (and system engineers) are involved: those who wrote the original
Ariane 4 software and those working on the Ariane 5 control systems. The report does not indicate
whether there were overlaps in personnel for the two development processes (most likely there was).
There were three important flaws in the SRI software related to the loss: (1) the lack of

protection against overflow for some variables, (2) the conversion of a 64-bit floating point value to
a 16-bit integer value, and (3) the lack of an effective firewall between the critical and non-critical
software-implemented functions so that a flaw in non-critical software could not affect the operation
of the critical functions.

1. Lack of Protection Against Overflow

The horizontal velocity of the Ariane 4 cannot reach a value beyond the limit of the software
(the value will always fit in a 16-bit integer variable), but the acceleration and trajectory of the
Ariane 5 during the first 40 seconds leads to a buildup of horizontal velocity five times more rapid
than that of the Ariane 4.
The report states that during software development, an analysis was performed on every opera-

tion that could give rise to an exception, including an operand error, to determine the vulnerability
of unprotected code. In particular, the conversion of floating point values to integers was analyzed
and operations involving seven variables were determined to be at risk of leading to an operand
(overflow) error. Exception handlers were written for four of the seven variables but not for the
other three, including the horizontal bias variable.
The report says that this decision to leave three variables unprotected was made jointly by the

Ariane project partners at several contractual levels. Presumably this decision was made during
the original software development for the Ariane 4, but the report does not say whether the decision
was revisited during design of the Ariane 5. Apparently, it was not.



140 CHAPTER 8. ANALYZING ACCIDENTS AND INCIDENTS
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Why was this decision made originally?

1. The logic necessary to satisfy all requirements completely would take more than the maximum
workload target of 80% set for the SRI computer. An 80% load factor is usually considered
the maximum acceptable for embedded systems. The extra margin is usually kept for several
reasons, including to allow for mistakes in computation of performance requirements (i.e., to
allow a margin of error), for adding new requirements and functions, and for maintenance and
upgrade. To remove this condition requires either reducing the requirements (not considered
in the accident report but it should have been) or changing computers (also not mentioned).
The latter is usually impractical without seriously impacting schedule and budget. Often be-
cause of the length of the development process for spacecraft, hardware that seemed perfectly
adequate in the early design stages or was the most appropriate at hardware selection time
is obsolete by the time the system is ready for first launch but at that time it is too late to
make changes. The problem is compounded when the software and presumably the hardware
is reused for new upgrades or designs like the Ariane 5.

2. The report says that analysis indicated that the three unprotected variables were either
physically limited or there was a large margin of safety. It also states “there is no evidence
that any trajectory data was used to analyze the behavior of the three unprotected variables,”
It is not clear whether this latter statement is with respect to the original development team
or the Ariane 5 developers (which may have included overlaps). The original designers might
have had no idea that the software would be reused in a different environment where the
environment would falsify the assumptions about the margins of safety. Assuming the original
developers could have no idea about any future reuse decisions, the problem lies in reusing the
software without redoing the analysis. Were the analysis and the decision making involved
in it recorded so that changes in the environment could trigger a re-evaluation? What types
of analysis were performed when a decision to reuse the SRI software on the Ariane 5 was
made? Software reuse has been implicated in many accidents—any reuse must involve careful
evaluation of the differences in the new environment that may violate assumptions made
during the software development. The ability to perform this new analysis requires that the
original design decisions and design rationale have been recorded or can be regenerated easily.

Another consideration not included in the accident report is that even if reuse had not been con-
sidered during the original software development, defensive programming practices would suggest
that protection be provided in the software against unexpected events. While writing exception
handlers might take space, the insertion of in-line checks for potential overflow when moving values
into smaller memory locations takes minimal space and time and is fairly standard practice for
real-time software. In fact, the SRI software was written in Ada, which provides built-in facilities
that can be used to perform this check easily. There is no mention in the report about whether such
a check was attempted in the code and failed to detect the impending overflow or was not included.
Checking for potential overflow is so simple and fast in Ada and involves so little additional space
requirements, there does not seem to be any obvious reason why it would not be performed even
if it had been determined through analysis (which can always potentially be incorrect) that the
variables would never be that large. The same arguments apply to checks by the OBC software
for out-of-range attitude values provided by the SRI; the report is again silent about whether these
might have been included.
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The use of such defensive programming strategies is even more important if there is any chance
that the process being controlled may change or the software may be reused in a different system.
A more complete accident investigation (based on a system-theoretic accident model like STAMP)
might have examined the defensive programming practices used in software development, which
then would have led to an examination of the programming standards that were used on the
project.

2. Decision to Convert a 64-bit Floating Point Value to a 16-bit Integer Value.

The software contains code to convert the horizontal bias value originally stored as a 64-bit
floating point value to a 16-bit integer value. A significant omission in the report is why the
conversion from 64-bit floating point to 16-bit integer was done at all. The potential loss of
information in such a conversion would seem on the surface to be a mistake (although it is not
called out as such in the accident report) and would again violate standard defensive programming
practice unless a very good reason were involved. One reason for the conversion might be the need
for mixed-type arithmetic, although conversion of all values to floating point would be standard safe
practice in that case. Another reason might be related to the 80% load factor criterion applied
to memory usage. Without understanding why the conversion was included, fully understanding
why the accident occurred is not possible. It is odd that the accident report does not question
this programming decision. A similar software flaw almost resulted in the loss of a Telstar satellite
while being launched from the Space Shuttle. As noted above, once such a decision is made, there
is little reason not to include checks to detect potential overflow before it occurs.

3. Lack of an Effective Firewall between the Critical and Non-Critical Software-Implemented Func-
tions.

A basic design principle in any system with critical functions is to design such that non-critical
functions cannot interfere with the provision of the critical functions. Shutting down the com-
puter in the event of an exception in a non-critical function seems to violate safe practices even if
there was assumed to be another backup SRI to provide the necessary functionality. There is not
enough information in the accident report to understand the reason for this flawed software design.
Potential explanations include software engineers not being informed about which functions were
critical, not understanding the need for firewalls, inadequate firewall design, etc. Again, it is sur-
prising that this decision was not discussed in the report, perhaps as part of a larger investigation
into the programming standards used on the project.

8.2.6 Internal and External Reviews

Once again, two sets of reviewers are involved: those for the Ariane 4 development and those for
the Ariane 5. The report says that the Ariane 5 reviews “included all the major partners in the
Ariane 5 program” so Ariane 5 software reviews did take place. For some reason, these reviews
did not uncover the problems. Unfortunately, the report provides no information about the review
process and very little information about why this process failed to uncover the multiple design
flaws.
The only clue as to the deficiencies in the review process come from the recommendations that

suggest including external (to the project) participants when reviewing specifications, code, and
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justification documents and to make sure that these reviews consider the substance of arguments,
rather than check only that verifications have been made. The latter seems to reflect the common
problem of reviewers and assurance personnel simply ticking off on checklists that activities have
been performed without reviewing their quality and substance.
It is clear that the reviewers did not have the necessary information to review the decision

to leave three variables unprotected. The report states that the justification of the decision was
not included directly in the source code, but it is unclear whether it was documented elsewhere.
However, the report also states that “Given the large amount of documentation associated with
any industrial application, the assumption, although agreed, was essentially obscured, though not
deliberately, from any external review.” The next chapter provides an approach to specification
that includes design rationale and enhances the ability to find this information when it is needed.
More important, the report states that neither the Ariane 5 SRI requirements nor specification

included Ariane 5 trajectory data. Instead, Ariane 4 trajectory data was included. The report
states that this was a choice—it was jointly agreed upon by the developers—and was not simply
an inadvertent omission. There is no explanation given, although the decision is so strange that
there must have been some rationale for it. Whenever software is reused, the assumptions about
the environment of the current system must reflect the new environment. A detailed analysis of
differences in the two environments and their impact on the safety of the reused software should
be required.
The quality of the review process is, of course, greatly influenced by the quality of the specifica-

tions. Incorrect assumptions and missing information for reviews lead to process and mental models
that contain a mismatch between the development and the use environment, i.e., the model of the
controlled process and its environment used by the developers, reviewers, and testers is inconsistent
with the actual process and environment.
No information is provided about the review process for the other flaws in the technical control

loop leading to the loss. It would seem, for example, that potentially dangerous coding practices
(such as conversion from a floating point value to an integer) should always trigger a careful review.
Were such reviews performed? Who was included? What information did the reviewers have? What
information did they not have that might have helped them to find the system and software design
flaws?

8.2.7 Testing

A conclusion that poor testing was the “cause” of an accident is always suspect. After the fact,
it is always easy to find a test case that would have uncovered a known error, but it is usually
difficult to prove that the particular test case would have been selected beforehand even if testing
procedures were changed. By definition, the cause of an accident can always be stated as a failure
to test for the condition that was, after the fact, found to have led to the loss. However, in this
case, there do seem to be omissions that reflect some poor decisions related to testing, particularly
with respect to the accuracy of the simulated operational environment.

Safety Constraints Violated: The test environment must match the operational environment
as closely as possible.
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Dysfunctional Interactions, Inadequate Control Actions, and Flawed Decisions: Two
problems are noted in the accident report.

1. Simulations and Test of the SRI Software were Performed using Ariane 4 Trajectory Data.

No test or simulation was performed to verify that the SRI software would behave correctly
when being subjected to the countdown and flight time sequence and the trajectory of the Ariane
5. This testing inadequacy is not surprising given that the specifications included only Ariane 4
trajectory data. Again, there was a process model mismatch between the model of the operational
environment used in test and the real process.

2. System Test and System Simulations were Performed using Simulated Output from the SRI and
not the SRI itself or its Detailed Simulation

The two SRI computers were not present during system test. The precision of the navigation
software in the flight control computer (OBC) depends on the precision of the SRI measurements,
but in the system test facility this precision could not be achieved by the electronics creating the test
signals. The precision of the simulation may be further reduced because the base period of the SRI is
1 millisecond versus 6 milliseconds in the simulation at the system test facility. This difference adds
to the complexity of the interfacing electronics. However, while physical laws preclude the testing
of the SRI as a blackbox in the flight environment, the report states that ground testing is possible
by injecting simulated accelerometric signals in accordance with predicted flight parameters, while
also using a turntable to simulate launcher angular movements. This test was not done.
The report identifies the reason for the lack of such testing as a set of faulty assumptions:

• Assuming that the SRI was fully qualified by unit testing and by previous use on Ariane 4.
This conclusion reflects a confusion between reliability and safety and the need to thoroughly
test and analyze reused software in the new system context.

• Assuming that the simulation of failure modes is not possible with real equipment, but only
with a model. This argument assumes hardware-type failures, not logic errors—the latter
should be detectable during system simulation testing. This flaw in the decision making
reflects misunderstanding of the difference between hardware failures and software “failures”.3

• Assuming that inadequate precision precluded effective ground testing.
A general principle in testing aerospace systems is to fly what you test and test what you fly.

The test and simulation processes need to reflect the environment accurately. Although following
this principle is often difficult or even impossible for spacecraft, there seems to be no excuse for not
including Ariane 5 trajectory data in the specifications and simulations. The report says that

It would have been technically feasible to include almost the entire inertial reference
system in the overall system simulations which were performed. For a number of reasons,
it was decided to use the simulated output of the inertial reference system, not the
system itself or its detailed simulation. Had the system been included, the failure could
have been detected [71].

3The widespread application of the term “failure” to software design errors encourages these types of
misunderstandings.
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8.2.8 System Engineering

Very little information is provided about the system engineering process, although this obviously
was the source of almost all of the technical flaws leading to the accident. However, there is
enough information to examine some of the critical decisions involved in the process and to identify
potential improvements in the control structure in order to reduce flawed engineering decisions and
procedures. The flaws in the SRI process models and control algorithm can be traced back to
the system engineering decision to reuse Ariane 4 software without an adequate safety analysis of
its potential impact on the Ariane 5, flawed (inadequate) fault-tolerant and fail-safe design, and
providing inadequate specifications and information to the development and assurance processes.
Because the flaws are common in many systems today, they are discussed here in greater detail

that is strictly necessary simply to illustrate the use of the new accident model.

1. Decision to Reuse Ariane 4 Software without Effective Safety Analysis:

Information Available: The report is silent about any analysis that might have been generated
to provide information about the safety of this decision.

Context and Influences: Competitive and budgetary pressures are not mentioned in the public
report, but they could explain the reuse and other decisions. The launch market is potentially very
large (estimated to be $60 billion in the next decade) and competitive. Europe was struggling
to defend its greater than 50% market share from competitors such as ILS (a joint venture of
Lockheed Martin, Russian, and Ukrainian firms using the Proton rocket), Boeing with its Delta
Rocket and Sea Launch project, and other possible challengers from Japan, China, and Brazil. Did
this competition affect the development schedule and critical decisions such that Ariane 4 software
was reused and proper analysis and testing was not performed?

Basis for the Decision: The rationale for the decision to reuse the SRI software from Ariane 4
is described only as “for commonality reasons” in the report, which could be interpreted too many
ways to get much information out of the statement.
Reuse (and the related use of commercial off-the-shelf software—COTS) is common practice

today in embedded software development and often imposed on the developers by managers who
think that money will be saved. A very common misconception is that because software oper-
ated safely in other applications, it will be safe in the new one. This misconception arises from a
confusion between software reliability and software safety. Although component reliability is an im-
portant factor in component failure accidents, it is irrelevant for system accidents where none of the
components involved fail. Almost all software-related accidents have been system accidents and in-
volved flaws in the software requirements (the specified blackbox behavior) and not implementation
errors—that is, the software satisfied its requirements and operated “correctly.”
Blackbox behavior of a component can only be determined to be safe by analyzing its effects on

the system in which it will be operating, i.e., by consideration of the specific operational context.
The fact that software was used safely in another environment provides no information about its
safety in the current one. In fact, reused software is probably less safe as the original decisions
about the required software behavior were made for a different context. This fact may account for
the large number of incidents and accidents that have involved reused software.
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The philosophy of the Ariane 5 project, as stated in the accident report, that it was not wise
to change software that had worked well on the Ariane 4 unless it was proven necessary to do
so, is well founded: Errors are often introduced when software is changed, particularly by those
who did not originally write it. However, in this case, there is a tradeoff with safety that needs
to be carefully evaluated. The best solution may not have been to leave the software as it was
but to rewrite it—such a decision depends on the type of change required, the specific design of
the software, and the potential effect of the feature on system safety. In this case, the cost of the
decision to reuse the Ariane 4 software (in terms of both money and program delays) was much
greater than the cost of doing a proper analysis. System engineering should include in the risk
management and system engineering tradeoff process an evaluation of the potential risk of reusing
components (or buying them off-the-shelf) versus creating new ones. If the cost of the analysis for
reused (or COTS) code is prohibitively expensive or beyond the state of the art, then redeveloping
the software or rewriting it may be the appropriate decision.
The implication of this discussion is not that software cannot be reused, but that a safety

analysis of its operation in the current system context is mandatory. (Note that testing is not
adequate to accomplish this goal). For this type of analysis to be both technically and financially
practical, it is important that reused software contain only the features (specified software behaviors
or requirements) necessary to perform the critical functions. Note, however, that COTS software
often is built to include as many features as possible in order to make it commercially useful in a
large variety of systems.
If a decision is made to reuse software, system engineering should analyze it for safety within the

system being developed. This goal can be accomplished by tracing the identified system hazards to
the software (or hardware) component being considered and determining whether the component
is capable of producing this behavior. If it is, protection is required in the form of changes to the
system or component design.

2. Decision to have the SRI continue to execute the alignment function after takeoff.

Information Available: Unknown

Context and Influences: Unknown

Basis for Decision: Unknown

Why Decision was Flawed (Unsafe): The alignment function computes meaningful results
only before liftoff—during flight, the function serves no purpose:

Alignment of mechanical and laser strap-down platforms involves complex mathemat-
ical filter functions to properly align the x-axis to the gravity axis and to find north
direction from Earth rotation sensing. The assumption of preflight alignment is that the
launcher is positioned at a known and fixed position. Therefore, the alignment function
is totally disrupted when performed during flight, because the measured movements of
the launcher are interpreted as sensor offsets and other coefficients characterising [sic]
sensor behaviour [71]
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Normal alignment takes 45 minutes or more. The alignment function in the Ariane 4 was
designed to cope with the unlikely event of a hold in the Ariane 4 countdown, i.e., between liftoff
minus 9 seconds when flight mode starts in the Ariane 4 SRI and liftoff minus 5 seconds when
certain events are initiated in the launcher that would take hours to reset. The alignment function
continues to operate for 50 seconds after the start of flight mode to allow enough time for the
ground equipment to resume control in case of a hold. Without a hold, the additional operation
of this function was useless. This design allowed the countdown to be restarted after a hold and
a short launch window could still be used. The feature was used once in 1989 on Flight 33 of the
Ariane 4. The Ariane 5 has a different preparation sequence, and thus cannot use the feature at
all.
Again, while there may be good reason for not wanting to rewrite or change software that is

being reused (and potentially introduce errors), all such functions at a minimum need to be analyzed
for their impact on safety when reused. The report does question the rationale behind allowing
the alignment function to operate after the launcher has lifted off by including a recommendation
that the alignment function of the SRI be switched off immediately after liftoff. More generally,
it recommends that no software function should execute during flight unless it is needed. It does
not, however, question the decision to include the feature in the Ariane 4 software originally (see
below) nor the decision not to eliminate the feature from the Ariane 5 software.
The flawed decision here is related to a general problem often associated with software-related

accidents. Behavior that is safe while the controller or plant is operating in one mode may not be
safe in a different mode. In this case, providing alignment functions was unsafe only after liftoff,
and the control algorithm should have checked for this mode change. Startup modes and behavior
tend to be particularly error-prone and unsafe. Other accidents have occurred where functions
were incorrectly operating in aircraft when there was weight-on-wheels or, alternatively, incorrectly
operating when there was not weight-on-wheels, i.e., the process model is incomplete and does not
match the process. A likely causal factor in the Mars Polar Lander loss was in software that was
operating when it was not needed. This common accident factor is discussed further with respect
to hazard analysis in Chapter 9.

3. Decision to include an unnecessary but useful feature in the original Ariane 4 SRI software:

Information available: Unknown

Context and Influences: Including the ability to reset quickly in the event of a hold in the
Ariane 4 countdown was undoubtedly a potentially useful feature, as would many other features that
could be included in inertial reference system software. There is always a tendency when designing
systems with software components for the introduction of creeping featurism or the addition of
more and more useful features. Including features that are not critical, however, adds to software
and system complexity, makes testing and analysis harder, and degrades the safety of reusing the
software (or at least adds a very costly, difficult, and error-prone analysis requirement when it is
reused).

Why Decision was Flawed: While the accident report does question the advisability of retain-
ing the unused alignment function from the Ariane 4 software, it does not question whether the
Ariane 4 software should have included such a non-required but convenient software function in
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the first place. Outside of the question of its effect on reuse (which may reasonably not have been
contemplated during Ariane 4 software development), a tradeoff was made between perhaps delay-
ing a launch and simplifying the software. The feature was used only once in Ariane 4 launches.
The more features included in software and the greater the resulting complexity, the harder and
more expensive it is to test, to provide assurance through reviews and analysis, to maintain, and
to reuse in the future.
System engineering needs to include in the risk management and system engineering tradeoff

processes a realistic assessment of the risk of including unnecessary but useful software functions.

4. Decision to shut down the SRI after an exception:
The SRI is designed to shut itself down after an error is encountered. Restart of the inertial

reference system, once it has shut down, is not feasible because attitude is too difficult to recalculate
after a processor shutdown.
The report concludes that it was “the decision to shut down the processor operation that

finally proved fatal” and recommends that no sensors (such as the inertial reference system) should
be allowed to stop sending best effort data. While it is always dangerous to second guess the
investigators’ conclusions from limited information, it seems that this recommendation should be
followed only if the fault (as in this case) does not include critical data. In many cases, sending
known bad results may be as bad, or even worse, than reporting the inability to provide good data,
i.e., the “best effort” data may be unsafe. At the least, hazard identification and analysis should
be performed and realistic hazards eliminated or mitigated in the system design. It should not
be assumed that redundancy will eliminate hazards without a thorough analysis of all potential
hazard causes, particularly for software-based control systems.
It is unclear why the system engineers would opt to shut down the entire inertial guidance system

when an exception was raised in a non-critical function (the alignment function after liftoff). The
report suggests:

The reason behind this drastic action [of shutting down the computer] lies in the culture
within the Ariane programme of only addressing random hardware failures. From this
point of view, exception—or error—handling mechanisms are designed for a random
hardware failure which can quite rationally be handled by a backup system [71].

Mental Model Flaws: This flawed decision might arise from two common mental model flaws:

1. Not understanding the different failure modes of software (design errors versus random fail-
ures), i.e., a backup computer running identical software does not provide any protection
against software design errors.

2. Assuming that software errors will be eliminated during test and thus no additional protec-
tion is needed. This assumption is an extremely common (but obviously erroneous) among
engineers.

The Ariane 5 loss was a classic example of a system accident: Each component worked as
specified but together the specified component behavior led to disastrous system behavior. Not
only did each component in isolation work correctly but, in fact, many of the design features that
contributed to the accident involved standard recommended practice.
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Classical system engineering techniques to protect against accidents caused by component fail-
ure usually involve increasing the reliability (integrity) of the individual components, including
redundancy to protect against component failure and building margins of error into components to
protect against analysis or manufacturing flaws. None of these techniques are useful in protecting
against system accidents, where the problems result from system design flaws: Increasing compo-
nent integrity will have no effect on accidents where the software operated exactly as it was required
and designed to do (but the requirements were incorrect). Standard redundancy, while protecting
against computer hardware failures, will again not protect against software requirements (or even
coding) errors.
The accident report notes that according to the culture of the Ariane program, only random

failures are addressed and they are primarily handled with redundancy. Thus there was a bias
toward the mitigation of random failure and not system faults caused by design error. The misun-
derstanding of software failure modes (and how they differ from hardware failure modes) and the
assumption that software failures will be like those of hardware are widespread and not just limited
to the Ariane program.

5. Inadequate identification of critical components and functions:

Basis for Decision: The report recommends reconsidering the definition used to identify critical
components, taking failures of software components into account (particularly single-point failures).
But there is no information about what definition was used and what procedures were used to
identify critical functions. However, the usual reliance by engineers on FMEA and FTA, which are
inadequate for software-intensive systems and for accidents not involving component failure, may
be part of the problem. A new hazard analysis technique based on STAMP that is more effective
for systms accidents and for software-intensive systems, is described in the next chapter.

6. Decision not to include Ariane 5 data in specifications:

As stated previously, this omission was a choice, not inadvertent. No information is provided
in the accident investigation report to explain this decision. Clearly, the environment in which the
system will operate and the relevant characteristics of any controlled hardware should be completely
and accurately documented and made available to developers, reviewers, and testers.

7. Lack of specification of operational restrictions that emerge from the chosen system design and
component implementation:

Operational restrictions on real-time systems, particularly those related to safety, need to be
documented and communicated to the software engineers to ensure that the software does not
violate these restrictions. In addition, both the system limitations and any additional limitations
resulting from implementation decisions need to be considered during test and thus must be passed
to the testing and external review processes.

8. Inadequate documentation and communication of design rationale.

The report notes that the structure of the documentation obscured the ability to review the
critical design decisions and their underlying rationale. Inadequate documentation of design ratio-
nale to allow effective review of design decisions is a very common problem in system and software
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specifications. Justification for design and coding decisions must be recorded in a way that it can
be easily located, reviewed, and kept up to date when changes are made.

8.2.9 Project Management and the Upper Levels of the Development Control
Structure

The report is silent about any possible role management and the upper levels of the development
structure played in the accident. There is one hint in a final recommendation at the very end of
the report that the accident investigators did find a problem:

“A more transparent organization of the cooperation among partners in the Ariane 5
programme must be considered. Close engineering cooperation, with clear cut author-
ity and responsibility, is needed to achieve system coherence, with simple and clear
interfaces between partners.”

No additional details are provided.
Was an effective communication and authority structure established? What role did project

management play in the reuse decision? Did a system safety program exist and was responsibility,
accountability, and authority for safety established? From the information that is provided, there
appear to be no controls in place to prevent the system engineering errors from being made or
from being detected in time to be correted. There is no indication in the report that hazards
were identified or controlled in the conceptual design or implementation of the automated control
systems nor that there were safety evaluations and reviews. In fact, there is no mention of a system
safety program at all.

Mental Models Flaws: The report does allude to two common mental model flaws among the
system engineers and management. First, it appears that an assumption was made that safety
and reliability are equivalent for software-based control systems and the focus was on component
reliability and correctness (satisfaction of the requirements specification) and on increasing reli-
ability through redundancy. Increasing the reliability of these components, however, would not
have helped with this system accident—as is true for most system accidents—as each individual
component operated exactly as required (specified).
A second mentla model flaw common to most of the flawed development decisions was underes-

timating and misunderstanding software-related risks. The accident report says that software was
assumed to be correct until it was shown to be faulty. This assumption is widespread in engineering
and stems from an underestimation of the complexity of most software and an overestimation of
the effectiveness of software testing. Complacency also probably played a part in the inclusion
of unnecessary complexity and software functions and many of the other ineffective or inadequate
technical activities.

The next section presents an analysis of the Titan/Centaur accident using the new model. More
information is included in the Titan/Centaur accident report about the engineering process and
how it led to the system design flaws. This additional information provides the opportunity for a
better demonstration of the new control-based accident model.
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8.3 The Loss of a Milstar Satellite

On April 30, 1999, at 12:30 EDT, a Titan IV B-32 booster equipped with a Centaur TC-14 upper
stage was launched from Cape Canaveral. The mission was to place a Milstar-3 satellite into
geosynchronous orbit. Milstar is a joint services satellite communications system that provides
secure, jam resistant, worldwide communications to meet wartime requirements. It was the most
advanced military communications satellite system to that date. The first Milstar satellite was
launched February 7, 1994 and the second was launched November 5, 1995. This mission was to
be the third launch.
As a result of some anomalous events, the Milstar satellite was placed in an incorrect and

unusable low elliptical final orbit, as opposed to the intended geosynchronous orbit. Media interest
was high due to this mishap being the third straight Titan IV failure and due to recent failures of
other commercial space launches. In addition, this accident is believed to be one of the most costly
unmanned losses in the history of Cape Canaveral Launch Operations. The Milstar satellite cost
about $800 million and the launcher an additional $433 million.
To their credit, the accident investigation board went beyond the usual chain-of-events model

and instead interpreted the accident in terms of a complex and flawed process:

Failure of the Titan IV B-32 mission is due to a failed software development, testing, and
quality assurance process for the Centaur upper stage. That failed process did not detect
and correct a human error in the manual entry of the I1(25) roll rate filter constant
entered in the Inertial Measurement System flight software file. The value should have
been entered as -1.992476, but was entered as -0.1992476. Evidence of the incorrect
I1(25) constant appeared during launch processing and the launch countdown, but its
impact was not sufficiently recognized or understood and, consequently, not corrected
before launch. The incorrect roll rate filter constant zeroed any roll rate data, resulting
in the loss of roll axis control, which then caused loss of yaw and pitch control. The
loss of attitude control caused excessive firings of the Reaction Control system and
subsequent hydrazine depletion. Erratic vehicle flight during the Centaur main engine
burns caused the Centaur to achieve an orbit apogee and perigee much lower than
desired, which resulted in the Milstar separating in a useless low final orbit [86].

Fully understanding this accident requires understanding why the error in the roll rate filter
constant was introduced in the load tape, why it was not found during the load tape production
process and internal review processes, why it was not found during the extensive independent
verification and validation effort applied to this software, and why it was not detected during
operations at the launch site. In other words, why the safety control structure was ineffective in
each of these instances.
Figure 8.3 shows the hierarchical control model of the accident, or at least those parts that can

be gleaned from the official accident report4. Lockheed Martin Astronautics (LMA) was the prime
contractor for the mission. The Air Force Space and Missile Systems Center Launch Directorate
(SMC) was responsible for insight and administration of the LMA contract. Besides LMA and SMC,
the Defense Contract Management Command (DCMC) played an oversight role, but the report is

4Some details of the control structure may be incorrect because they were not detailed in the report, but the
structure is close enough for the purpose of this chapter.
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not clear about what exactly this role was beyond a general statement about responsibility for
contract management, software surveillance, and overseeing the development process.
LMA designed and developed the flight control software, while Honeywell was responsible for

the IMS software. This separation of control, combined with poor coordination, accounts for some
of the problems that occurred. Analex was the independent verification and validation (IV&V)
contractor, while Aerospace Corporation provided independent monitoring and evaluation. Ground
launch operations at Cape Canaveral Air Station (CCAS) were managed by the Third Space Launch
Squadron (3SLS).
Once again, starting from the physical process and working up the levels of control, a STAMP

analysis examines each level for the flaws in the process at that level that provided inadequate
control of safety in the process level below. The process flaws at each level are then examined
and explained in terms of a potential mismatch in models between the controller’s model of the
process and the real process, incorrect design of the control algorithm, lack of coordination among
the control activities, deficiencies in the reference channel, and deficiencies in the feedback or
monitoring channel. When human decision-making is involved, the analysis results must also
include information about the context in which the decision(s) was made and the information
available (and necessary information not available) to the decision makers.
One general thing to note in this accident is that there were a large number of redundancies

in each part of the process to prevent the loss, but they were not effective. Sometimes (as in this
case), built-in redundancy itself causes complacency and overconfidence, as was illustrated by the
Ariane 501 accident, and is a critical factor in the accident process. The use of redundancy to
provide protection against losses must include a detailed analysis of coverage and any potential
gaps in the safety control provided by the redundancy.

8.3.1 The Physical Process (Titan/Centaur/Milstar)

Components of the Physical Process: The Lockheed Martin Astronautics (LMA) Titan IV
B is a heavy-lift space launch vehicle used to carry government payloads such as Defense Support
Program, Milstar, and National Reconnaissance Office satellites into space. It can carry up to
47,800 pounds into low-earth orbit and up to 12,700 pounds into a geosynchronous orbit. The
vehicle can be launched with no upper stage or with one of two optional upper stages, providing
greater and varied capability.
The LMA Centaur is a cryogenic, high-energy upper stage. It carries its own guidance, naviga-

tion, and control system, which measures the Centaur’s position and velocity on a continuing basis
throughout flight. It also determines the desired orientation of the vehicle in terms of pitch, yaw,
and roll axis vectors. It then issues commands to the required control components to orient the
vehicle in the proper attitude and position, using the main engine or the Reaction Control System
(RCS) engines (Figure 8.4). The main engines are used to control thrust and velocity. The RCS
provides thrust for vehicle pitch, yaw, and roll control, for post-injection separation and orientation
maneuvers, and for propellant settling prior to engine restart.

System Hazards: (1) The satellite does not reach a useful geosynchronous orbit; (2) the satellite
is damaged during orbit insertion maneuvers and cannot provide its intended function.
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Description of Process Controller (INU): The Inertial Navigation Unit (INU) has two parts
(Figure 8.4): (1) the Guidance, Navigation, and Control System (the Flight Control Software
or FCS) and (2) an Inertial Measurement System (IMS). The Flight Control Software computes
the desired orientation of the vehicle in terms of the pitch, yaw, and roll axis vectors and issues
commands to the main engines and the reaction control system to control vehicle orientation and
thrust. To accomplish this goal, the FCS uses position and velocity information provided by the
IMS. The component of the IMS involved in the loss is a roll rate filter, which is designed to prevent
the Centaur from responding to the effects of Milstar fuel sloshing and thus inducing roll rate errors.

Safety Constraint on FCS that was Violated: The FCS must provide the attitude control,
separation, and orientation maneuvering commands to the main engines and the RCS system
necessary to attain geosynchronous orbit.

Safety Constraints on IMS that were Violated: The position and velocity values provided
to the FCS must not be capable of leading to a hazardous control action. The roll rate filter must
prevent the Centaur from responding to the effects of fuel sloshing and inducing roll rate errors.

8.3.2 Description of the Proximal Events Leading to the Loss

There were three planned burns during the Centaur flight. The first burn was intended to put the
Centaur into a parking orbit. The second would move the Centaur into an elliptical transfer orbit
that was to carry the Centaur and the satellite to geosynchronous orbit. The third and final burn
would circularize the Centaur in its intended geosynchronous orbit. A coast phase was planned
between each burn. During the coast phase, the Centaur was to progress under its own momentum
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to the proper point in the orbit for the next burn. The Centaur would also exercise a roll sequence
and an attitude control maneuver during the coast periods to provide passive thermal control and
to settle the main engine propellants in the bottom of the tanks.

First Burn: The first burn was intended to put the Centaur into a parking orbit. The IMS
transmitted a zero or near zero roll rate to the Flight Control software, however, due to the use of
an incorrect roll rate filter constant. With no roll rate feedback, the FCS provided inappropriate
control commands that caused the Centaur to become unstable about the roll axis and not to roll
to the desired first burn orientation. The Centaur began to roll back and forth, eventually creating
sloshing of the vehicle liquid fuel in the tanks, which created unpredictable forces on the vehicle
and adversely affected flow of fuel to the engines. By the end of the first burn (approximately 11
minutes and 35 seconds after liftoff), the roll oscillation began to affect the pitch and yaw rates
of the vehicle as well. The FCS predicted an incorrect time for main engine shutdown due to
the effect on the acceleration of the vehicle’s tumbling and fuel sloshing. The incorrect shutdown
in turn resulted in the Centaur not achieving its intended velocity during the first burn, and the
vehicle was placed in an unintended park orbit.

First Coast Phase: During the coast phases, the Centaur was to progress under its own mo-
mentum to the proper point in the orbit for the next burn. During this coasting period, the FCS
was supposed to command a roll sequence and an attitude control maneuver to provide passive
thermal control and to settle the main engine propellants in the bottom of the tanks. Because of
the roll instability and transients created by the engine shutdown, the Centaur entered this first
coast phase tumbling. The FCS directed the RCS to stabilize the vehicle. Late in the park orbit,
the Centaur was finally stablized about the pitch and yaw axes, although it continued to oscillate
about the roll axis. In stabilizing the vehicle, however, the RCS expended almost 85 percent of the
RCS system propellant (hydrazine).

Second Burn: The FCS successfully commanded the vehicle into the proper attitude for the
second burn, which was to put the Centaur and the satellite into an elliptical transfer orbit that
would carry them to geosynchronous orbit. The FCS ignited the main engines at approximately
one hour, six minutes, and twenty-eight seconds after liftoff. Soon after entering the second burn
phase, however, inadequate FCS control commands caused the vehicle to again become unstable
about the roll axis and begin a diverging roll oscillation.
Because the second burn is longer than the first, the excess roll commands from the FCS

eventually saturated the pitch and yaw channels. At approximately two minutes into the second
burn, pitch and yaw control was lost (as well as roll), causing the vehicle to tumble for the remainder
of the burn. Due to its uncontrolled tumbling during the burn, the vehicle did not achieve the
planned acceleration for transfer orbit.

Second Coast Phase (transfer orbit): The RCS attempted to stabilize the vehicle but it contin-
ued to tumble. The RCS depleted its remaining propellant approximately twelve minutes after the
FCS shut down the second burn.

Third Burn: The goal of the third burn was to circularize the Centaur in its intended geosyn-
chronous orbit. The FCS started the third burn at two hours, thirty-four minutes, and fifteen
seconds after liftoff. It was started earlier and was shorter than had been planned. The vehicle
tumbled throughout the third burn, but without the RCS there was no way to control it. Space ve-
hicle separation was commanded at approximately two hours after the third burn began, resulting
in the Milstar being placed in a useless low elliptical orbit, as opposed to the desired geosynchronous
orbit (Figure 8.5).
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Figure 8.5: Achieved Orbit vs. Intended Orbit

Post Separation: The Mission Director ordered early turn-on of the satellite in an attempt to
save it, but the ground controllers were unable to contact the satellite for approximately three
hours. Six hours and fourteen minutes after liftoff, control was acquired and various survival and
emergency actions were taken. The satellite had been damaged from the uncontrolled vehicle pitch,
yaw, and roll movements, however, and there were no possible actions the ground controllers could
have taken in response to the anomalous events that would have saved the mission.
The mission was officially declared a failure on May 4, 1999, but personnel from LMA and the

Air Force controlled the satellite for six additional days in order to place the satellite in a non-
interfering orbit with minimum risk to operational satellites. It appears the satellite performed as
designed, despite the anomalous conditions. It was shut down by ground control on May 10, 1999.

8.3.3 Physical Process and Automated Controller Failures and Dysfunctional
Interactions

Figure 8.6 shows the automated controller flaws leading to the accident. The Inertial Measurement
System algorithm was incorrect; specifically, there was an incorrect roll rate filter constant in the
IMS software file (Figure 8.6) that led to a dysfunctional interaction with the flight control software.
However, the algorithm operated as designed (i.e., it did not fail).
The Flight Control Software operated correctly (i.e., according to its requirements). However,

it received incorrect input from the IMS, leading to an incorrect internal FCS software model of
the process—the roll rate was thought to be zero or near zero when it was not. Thus there was
a mismatch between the FCS internal model of the process state and the real process state. This
mismatch led to the RCS issuing incorrect control commands to the main engine (to shut down
early) and to the RCS engines. Using STAMP terminology, the loss resulted from a dysfunctional
interaction between the FCS and the IMS. Neither failed—they operated correctly with respect to
the instructions (including constants) and data provided.
The accident report does not explore whether the FCS software could have included sanity

checks on the roll rate or vehicle behavior to detect that incorrect roll rates were being provided
by the IMS. Even if the FCS did detect it was getting anomalous roll rates, there may not have
been any recovery or fail-safe behavior that could have been designed into the system. Without
more information about the Centaur control requirements and design, it is not possible to speculate
about whether the Inertial Navigation Unit software (the IMS and FCS) might have been designed
to be fault tolerant with respect to filter constant errors.
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Figure 8.6: Control Flaws at the Physical Process and Software Controller Levels

Process Models: Both the FCS and the IMS had process models that did not match the real
process state, leading to the hazardous outputs from the software. The FCS model of the vehicle
orientation did not match the actual orientation due to incorrect input about the state of a con-
trolled variable (the roll rate). The IMS provided the bad input because of an incorrect model of
the process, i.e., the I1(25) constant used in the roll rate filter, i.e., the feedback or monitoring
channel of the FCS provided incorrect feedback about the roll rate.
This level of explanation of the flaws in the process (the vehicle and its flight behavior) as well

as its immediate controller provides a description of the “symptom,” but does not provide enough
information about the factors involved to prevent reoccurrences. Simply fixing that particular flight
tape is not enough. We need to look at the higher levels of the control structure for that. Several
questions need to be answered before the accident can be understood: Why was the roll rate error
not detected during launch operations? Why was an erroneous load tape created in the first place?
Why was the error not detected in the regular verification and validation process or during the
extensive independent verification and validation process? How did the error get past the quality
assurance process? What role did program management play in the accident? This accident report
does a much better job in answering these types of questions than the Ariane 5 report.
Figures 8.7 and 8.8 summarize the information in the rest of this section.

8.3.4 Launch Site Operations

The function of launch site operations is to monitor launch pad behavior and tests and to detect
any critical anomalies prior to flight. Why was the roll rate error not detected during launch
operations?

Process Being Controlled: Preparations for launch at the launch site as well as the launch
itself.
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Figure 8.7: STAMP model of Development Process
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Safety Constraint Violated: Critical variables (including those in software) must be monitored
and errors detected before launch. Potentially hazardous anomalies detected at the launch site must
be formally logged and thoroughly investigated and handled.

Context: Management had greatly reduced the number of engineers working launch operations,
and those remaining were provided with few guidelines as to how they should perform their job.
The accident report says that their tasks were not defined by their management so they used their
best engineering judgment to determine which tasks they should perform, which variables they
should monitor, and how closely to analyze the data associated with each of their monitoring tasks.

Controls: The controls are not described well in the report. From what is included, it does
not appear that controls were implemented to monitor or detect software errors at the launch site
although a large number of vehicle variables were monitored.

Roles and Responsibilities: The report is also not explicit about the roles and responsibilities
of those involved. LMA had launch personnel at CCAS, including Product Integrity Engineers
(PIEs). 3SLS had launch personnel to control the launch process as well as software to check
process variables and to assist the operators in evaluating observed data.

Failures, Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Ac-
tions: Despite clear indications of a problem with the roll rate information being produced by the
IMS, it was not detected by some launch personnel who should have and detected but mishandled
by others. Specifically:

1. One week before launch, LMA personnel at CCAS observed much lower roll rate filter values
than they expected. When they could not explain the differences at their level, they raised
their concerns to Denver LMA Guidance Product Integrity Engineers (PIEs), who were now
at CCAS. The on-site PIEs could not explain the differences either, so they directed the CCAS
personnel to call the control dynamics (CD) design engineers in Denver. On Friday, April 23,
the LMA Guidance Engineer telephoned the LMA CD lead. The CD lead was not in his office
so the Guidance Engineer left a voice mail stating she noticed a significant change in roll rate
when the latest filter rate coefficients were entered. She requested a return call to her or to her
supervisor. The Guidance Engineer also left an email for her supervisor at CCAS explaining
the situation. Her supervisor was on vacation and was due back at the office Monday morning
April 26, when the Guidance Engineer was scheduled to work the second shift. The CD lead
and the CD engineer who originally specified the filter values listened to the voice mail from
the Guidance Engineer. They called her supervisor at CCAS who had just returned from
vacation. He was initially unable to find the email during their conversation. He said he
would call back, so the CD engineer left the CD lead’s office. The CD lead subsequently
talked to the Guidance Engineer’s supervisor after he found and read the email. The CD lead
told the supervisor at CCAS that the filter values had changed in the flight tape originally
loaded on April 14, 1999, and the roll rate output should also be expected to change. Both
parties believed the difference in roll rates observed were attributable to expected changes
with the delivery of the flight tape.
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2. On the day of the launch, a 3SLS INU Product Integrity Engineer (PIE) at CCAS noticed
the low roll rates and performed a rate check to see if the gyros were operating properly.
Unfortunately, the programmed rate check used a default set of I1 constants to filter the
measured rate and consequently reported that the gyros were sensing the earth rate correctly.
If the sensed attitude rates had been monitored at that time or if they had been summed
and plotted to ensure they were properly sensing the earth’s gravitational rate, the roll rate
problem could have been identified.

3. A 3SLS engineer also saw the roll rate data at the time of tower rollback, but was not able to
identify the problem with the low roll rate. He had no documented requirement or procedures
to review the data and no reference to compare to the roll rate actually being produced.

The communication channel between LMA Denver and the LMA engineers at CCAS was clearly
flawed. The accident report provides no information about any established reporting channel from
the LMA CCAS or LMA Denver engineers to a safety organization or up the management chain.
No “alarm” system adequate to detect the problem or that it was not being adequately handled
seems to have existed. The report says there was confusion and uncertainty from the time the
roll rate anomaly was first raised by the CCAS LMA engineer in email and voice mail until it was
“resolved” as to how it should be reported, analyzed, documented, and tracked because it was a
“concern” and not a “deviation.” There is no explanation of these terms nor any description of a
formal problem reporting and handling system in the accident report.

Inadequate Control Algorithm: The accident report says that at this point in the prelaunch
process, there was no process to monitor or plot attitude rate data, that is, to perform a check to
see if the attitude filters were properly sensing the earth’s rotation rate. Nobody was responsible
for checking the load tape constants once the tape was installed in the INU at the launch site.
Therefore, nobody was able to question the anomalous rate data recorded or correlate it to the
low roll rates observed about a week prior to launch and on the day of launch. In addition, the
LMA engineers at Denver never asked to see a hard copy of the actual data observed at CCAS, nor
did they talk to the guidance engineer or Data Station Monitor at CCAS who questioned the low
filter rates. They simply explained it away as attributable to expected changes associated with the
delivery of the flight tape.

Process Model Flaws: Five models are involved here (see Figure 8.9):

1. Ground rate check software: The software used to do a rate check on the day of launch
used default constants instead of the actual load tape. Thus there was a mismatch between
the model used in the ground rate checking software and the model used by the actual IMS
software.

2. Ground crew models of the development process: Although the report does not delve into this
factor, it is very possible that complacency may have been involved and that the model of the
thoroughness of the internal quality assurance and external IV&V development process in the
minds of the ground operations personnel as well as the LMA guidance engineers who were
informed of the observed anomalies right before launch did not match the real development
process. There seemed to be no checking of the correctness of the software after the standard
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testing during development. Hardware failures are usually checked up to launch time, but
often testing is assumed to have removed all software errors and therefore further checks are
not needed.

3. Ground crew models of the IMS software design: The ground launch crew had an inadequate
understanding of how the roll rate filters worked. No one other than the control dynamics
engineers who designed the I1 roll rate constants understood their use or the impact of filtering
the roll rate to zero. So when discrepancies were found before launch, nobody at the launch
site understood the I1 roll rate filter design well enough to detect the error.

4. Ground crew models of the rate check software: Apparently, the ground crew was unaware
that the checking software used default values for the filter constants.

5. CD engineers’ model of the flight tape change: The control dynamics lead engineer at the
launch site and her supervisor at LMA Denver thought that the roll rate anomalies were due
to known changes in the flight tape. Neither went back to the engineers themselves to check
this conclusion with those most expert in the details of the Centaur control dynamics.

Coordination: Despite several different groups being active at the launch site, nobody had been
assigned responsibility for monitoring the software behavior after it was loaded into the INU. The
accident report does not mention coordination problems, although it does say there was a lack of
understanding of each other’s responsibilities between the LMA launch personnel (at CCAS) and
the development personnel at LMA Denver and that this led to the concerns of the LMA personnel
at CCAS not being adequately addressed.
A more general question that might have been investigated was whether the failure to act

properly after detecting the roll rate problem involved a lack of coordination and communication
problems between LMA engineers at CCAS and 3SLS personnel. Why did several people notice the
problem with the roll rate but do nothing and why were the anomalies they noticed not effectively
communicated to those who could do something about it? Several types of coordination problems
might have existed. For example, there might have been an overlap problem, with each person who
saw the problem assuming that someone else was handling it or the problem might have occurred
at the boundary between several people’s responsibilities.

Feedback: There was a missing or inadequate feedback channel from the launch personnel to the
development organization.
Tests right before launch detected the zero roll rate, but there was no formal communication

channel established for getting that information to those who could understand it. Instead voice
mail and email were used. The report is not clear, but either there was no formal anomaly reporting
and tracking system or it was not known or used by the process participants.5

The LMA (Denver) engineers requested no hardcopy information about the reported anomaly
and did not speak directly with the Guidance engineer or Data Station Monitor at CCAS.

5Several recent aerospace accidents have involved the bypassing of formal anomaly reporting channels and the
substitution of informal email and other communication—with similar results (see Appendix B).
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8.3.5 Air Force Launch Operations Management: Third Space Launch Squadron
(3SLS)

Process Being Controlled: Activities of the CCAS personnel at the launch site (ground launch
operations).

Safety Constraint: Processes must be established for detecting and handling potentially haz-
ardous conditions and behavior detected during launch preparations.

Context: 3SLS management was transitioning from an oversight role to an insight one without
a clear definition of what such a transition might mean or require.

Control Algorithm Flaws: After the ground launch personnel cutbacks, 3SLS management did
not create a master surveillance plan to define the tasks of the remaining personnel (the formal
insight plan was still in draft). In particular, there were no formal processes established to check
the validity of the I1 filter constants or to monitor attitude rates once the flight tape was loaded
into the INU at Cape Canaveral Air Station (CCAS) prior to launch. 3SLS launch personnel were
provided with no documented requirement nor procedures to review the data and no references
with which to compare the observed data in order to detect anomalies.

Process Model: It is possible that misunderstandings (an incorrect model) about the thorough-
ness of the development process led to a failure to provide requirements and processes for performing
software checks at the launch site. Complacency may also have been involved, i.e., the common
assumption that software does not fail and that software testing is exhaustive and therefore ad-
ditional software checking was not needed. However, this is speculation as the report does not
explain why management did not provide documented requirements and procedures to review the
launch data nor ensure the availability of references for comparison so that discrepancies could be
discovered.

Coordination: The lack of oversight led to a process that did not assign anyone the responsibility
for some specific launch site tasks.

Feedback or Monitoring Channel: Apparently, launch operations management had no “in-
sight” plan in place to monitor the performance of the launch operations process. There is no
information included in the accident report about the process to monitor the performance of the
launch operations process or what type of feedback was used (if any) to provide insight into the
process.

8.3.6 Software/System Development of the Centaur Flight Control System

Too often, accident investigators stop at this point after identifying operational errors that, if they
had not occurred, might have prevented the loss. Occasionally operations management is faulted.
Operator errors provide a convenient place to stop in the backward chain of events from the loss
event. To their credit, the accident investigation board in this case kept digging. To understand
why an erroneous flight tape was created in the first place (and to learn how to prevent a similar
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occurrence in the future), the software and system development process associated with generating
the tape needs to be examined.

Process Description: The INU consists of two major software components developed by differ-
ent companies: LMA developed the Flight Control System software and was responsible for overall
INU testing while Honeywell developed the IMS and was partially responsible for its software de-
velopment and testing. The I1 constants are processed by the Honeywell IMS, but were designed
and tested by LMA.

Safety Constraint Violated: Safety-critical constants must be identified and their generation
controlled and checked.

Dysfunctional Interactions, Flawed Decisions, and Inadequate Control Actions: A
software Constants and Code Words memo was generated by the LMA Control Dynamics (CD)
group and sent to the LMA Centaur Flight Software (FS) group on December 23, 1997. It provided
the intended and correct values for the first I1 constants in hardcopy form. The memo also allocated
space for 10 additional constants to be provided by the LMA Avionics group at a later time and
specified a path and file name for an electronic version of the first 30 constants. The memo did not
specify or direct the use of either the hardcopy or the electronic version for creating the constants
database.
In early February, 1999, the LMA Centaur FS group responsible for accumulating all the soft-

ware and constants for the flight load tape was given discretion in choosing a baseline data file. The
flight software engineer who created the database dealt with over 700 flight constants generated
by multiple sources, in differing formats, and at varying time (some with multiple iterations) all
of which had to be merged into a single database. Some constant values came from electronic files
that could be merged into the database, while others came from paper memos manually input into
the database.
When the FS engineer tried to access the electronic file specified in the software Constants and

Code Words Memo, he found the file no longer existed at the specified location on the electronic
file folder because it was now over a year after the file had been originally generated. The FS
engineer selected a different file as a baseline that only required him to change five I1 values for
the digital roll rate filter (an algorithm with five constants). The filter was designed to prevent the
Centaur from responding to the effects of Milstar fuel sloshing and inducing roll rate errors at 4
radians/second. During manual entry of those five I1 roll rate filter values, the LMA FS engineer
incorrectly entered or missed the exponent for the I1(25) constant. The correct value of the I1(25)
filter constant was -1.992476. The exponent should have been a one but instead was entered as a
zero, making the entered constant one tenth of the intended value or -0.1992476. The flight software
engineer’s immediate supervisor did not check the manually entered values.
The only person who checked the manually input I1 filter rate values, besides the flight software

engineer who actually input the data, was an LMA Control Dynamics engineer. The FS engineer
who developed the Flight Load tape notified the CD engineer responsible for design of the first
thirty I1 constants that the tape was completed and the printout of the constants was ready for
inspection. The CD engineer went to the FS offices and looked at the hardcopy listing to perform
the check and sign off the I1 constants. The manual and visual check consisted of comparing a
list of I1 constants from Appendix C of the Software Constants and Code Words Memo to the
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paper printout from the Flight Load tape. The formats of the floating-point numbers (the decimal
and exponent formats) were different on each of these paper documents for the three values cross-
checked for each I1 constant. The CD engineer did not spot the exponent error for I1(25) and signed
off that the I1 constants on the Flight Load tape were correct. He did not know that the design
values had been inserted manually into the database used to build the flight tapes (remember, the
values had been stored electronically but the original database no longer existed) and that they
were never formally tested in any simulation prior to launch.
The CD engineer’s immediate supervisor, the lead for the CD section, did not review the Signoff

Report nor catch the error. Once the incorrect filter constant went undetected in the Signoff Report,
there were no other formal checks in the process to ensure the I1 filter rate values used in flight
matched the designed filter.

Control Algorithm Flaws:

• A process input was missing (the electronic file specified in the Software Constants and Code
Words memo), so an engineer regenerated it, making a mistake in doing so.

• Inadequate control was exercised over the constants process. No specified or documented
software process existed for electronically merging all the inputs into a single file. There was
also no formal, documented process to check or verify the work of the flight software engineer
in creating the file. Procedures for creating and updating the database were left up to the
flight software engineer’s discretion.

• Once the incorrect filter constant went undetected in the Signoff Report, there were no other
formal checks in the process to ensure the I1 filter rate values used in flight matched the
designed filter.

• The hazard analysis process was inadequate, and no control was exercised over the potential
hazard of manually entering incorrect constants, a very common human error. If system
safety engineers had identified the constants as critical, then a process would have existed for
monitoring the generation of these critical variables. In fact, neither the existence of a system
safety program nor any form of hazard analysis are mentioned in the accident report. If such
a program had existed, one would think it would be mentioned.

The report does say that Quality Assurance engineers performed a risk analysis, but they
considered only those problems that had happened before:

Their risk analysis was not based on determining steps critical to mission success,
but on how often problems previously surfaced in particular areas on past launches.
They determined software constant generation was low risk because there had not
been previous problems in that area. They only verified that the signoff report
containing the constants had all the proper signatures[86].

Considering only the causes of past accidents is not going to be effective for software problems
or when new technology is introduced into a system. Computers are, in fact, introduced
in order to make previously infeasible changes in functionality and design, which reduces
the effectiveness of a “fly-fix-fly” approach to safety engineering. Proper hazard analyses
examining all the ways the system components can contribute to an accident need to be
performed.
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Process Model Flaws: The accident report suggests that many of the various partners were
confused about what the other groups were doing. The LMA software personnel who were respon-
sible for creating the database (from which the flight tapes are generated) were not aware that
IV&V testing did not use the as-flown (manually input) I1 filter constants in their verification and
validation process. The LMA Control Dynamics engineer who designed the I1 rate filter also did
not know that the design values were manually input into the database used to build the flight
tapes and that the values were never formally tested in any simulation prior to launch.
While the failure of the LMA CD engineer who designed the I1 rate filter to find the error during

his visual check was clearly related to the difficulty of checking long lists of differently formatted
numbers, it also may have been partly due to less care being taken in the process due to an incorrect
mental model, i.e., (1) he did not know the values were manually entered into the database (and
were not from the electronic file he had created), (2) he did not know the load tape was never
formally tested in any simulation prior to launch, and (3) he was unaware the load tape constants
were not used in the IV&V process.

Coordination: The fragmentation/stovepiping in the flight software development process, cou-
pled with the lack of comprehensive and defined system and safety engineering processes, resulted in
poor and inadequate communication and coordination among the many partners and subprocesses.
Because the IMS software was developed by Honeywell, most everyone (LMA control dynamics

engineers, flight software engineers, product integrity engineers, SQA, IV&V, and DCMC personnel)
focused on the FCS and had little knowledge of the IMS software.

8.3.7 Quality Assurance (QA)

Process Being Controlled: The quality of the guidance, navigation, and control system design
and development.

Safety Constraint: QA must monitor the quality of all safety-critical processes.

Process Flaw: The internal LMA quality assurance processes did not detect the error in the role
rate filter constant software file.

Control Algorithm Flaws: QA verified only that the signoff report containing the load tape
constants had all the proper signatures, an obviously inadequate process. This accident is indicative
of the problems with QA as generally practiced and why it is often ineffective. The LMA Quality
Assurance Plan used was a top-level document that focused on verification of process completion,
not on how the processes were executed or implemented. It was based on the original General
Dynamics Quality Assurance Plan with recent updates to ensure compliance with ISO 9001. Ac-
cording to this plan, the LMA Software Quality Assurance staff was required only to verify that
the signoff report containing the constants had all the proper signatures; they left the I1 constant
generation and validation process to the flight software and control dynamics engineers. Software
Quality Assurance involvement was limited to verification of software checksums and placing quality
assurance stamps on the software products that were produced.
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8.3.8 Developer Testing Process

Once the error was introduced into the load tape, it could potentially have been detected during ver-
ification and validation. Why did the very comprehensive and thorough developer and independent
verification and validation process miss this error?

Safety Constraint Violated: Testing must be performed on the as-flown software (including
load tape constants).

Flaws in the Testing Process: The INU (FCS and IMS) was never tested using the actual
constants on the load tape:

• Honeywell wrote and tested the IMS software, but they did not have the actual load tape.
• The LMA Flight Analogous Simulation Test (FAST) lab was responsible for system test,
i.e., they tested the compatibility and functionality of the flight control software and the
Honeywell IMS. But the FAST lab testing used a 300 Hertz filter simulation data file for IMS
filters and not the flight tape values. The simulation data file was built from the original,
correctly specified values of the designed constants (specified by the LMA CS engineer), not
those entered by the software personnel in the generation of the flight load tape. Thus the
mix of actual flight software and simulated filters used in the FAST testing did not contain
the I1(25) error, and the error could not be detected by the internal LMA testing.

Process Model Mismatch: The testing capability that the current personnel thought the lab
had did not match the real capability. The LMA FAST facility was used predominantly to test flight
control software developed by LMA. The lab had been originally constructed with the capability
to exercise the actual flight values for the I1 roll rate filter constants, but that capability was not
widely known by the current FAST software engineers until after this accident; knowledge of the
capability had been lost in the corporate consolidation/evolution process so the current software
engineers used a set of default roll rate filter constants. Later it was determined that had they used
the actual flight values in their simulations prior to launch, they would have caught the error.

8.3.9 Independent Verification and Validation (IV&V)

Safety Constraint Violated: IV&V must be performed on the as-flown software and constants.
All safety-critical data and software must be included in the IV&V process.

Dysfunctional Interactions: Each component of the IV&V process performed its function cor-
rectly, but the overall design of the process was flawed. In fact, it was designed in such a way that
it was not capable of detecting the error in the role rate filter constant.
Analex was responsible for the overall IV&V effort of the flight software. In addition to designing

the IV&V process, Analex-Denver performed the IV&V of the flight software to ensure the autopilot
design was properly implemented in the software while Analex-Cleveland verified the design of the
autopilot but not its implementation. The “truth baseline” provided by LMA, per agreement
between LMA and Analex, was generated from the constants verified in the Signoff Report.
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In testing the flight software implementation, Analex-Denver used IMS default values instead
of the actual I1 constants contained on the flight tape. Generic or default I1 constants were
used because they believed the actual I1 constants could not be adequately validated in their
rigid body simulations, i.e., the rigid body simulation of the vehicle would not exercise the filters
sufficiently6. They found out after the mission failure that had they used the actual I1 constants
in their simulation, they would have found the order of magnitude error.
Analex-Denver also performed a range check of the program constants and the Class I flight

constants and verified that format conversions were done correctly. However the process did not
require Analex-Denver to check the accuracy of the numbers in the truth baseline, only to do
a range check and a bit-to-bit comparison against the firing tables, which contained the wrong
constant. Thus the format conversions they performed simply compared the incorrect I1(25) value
in the firing tables to the incorrect I1(25) value after the conversion, and they matched. They did
not verify that the designed I1 filter constants were the ones actually used on the flight tape.
Analex-Cleveland had responsibility for verifying the functionality of the design constant but

not the actual constant loaded into the Centaur for flight. That is, they were validating the design
only and not the “implementation” of the design. Analex-Cleveland received the Flight Dynamics
and Control Analysis Report (FDACAR) containing the correct value for the roll filter constant.
Their function was to validate the autopilot design values provided in the FDACAR. That does
not include IV&V of the I1 constants in the flight format. The original design work was correctly
represented by the constants in the FDACAR. In other words, the filter constant in question was
listed in the FDACAR with its correct value of -1.992476, and not the value on the flight tape
(-0.1992476).

Control Algorithm Flaws: Analex developed (with LMA and government approval) an IV&V
program that did not verify or validate the I1 filter rate constants actually used in flight. The I1
constants file was not sent to Analex-Cleveland for autopilot validation because Analex-Cleveland
only performed design validation. Analex-Denver used default values for testing and never validated
the actual I1 constants used in flight.

Process Model Mismatches: The decision to use default values for testing (both by LMA
FAST lab and by Analex-Denver) was based on a misunderstanding about the development and
test environment and what was capable of being tested. Both the LMA FAST lab and Analex-
Denver could have used the real load tape values, but did not think they could.
In addition, Analex-Denver, in designing the IV&V process, did not understand the generation

or internal verification process for all the constants in the “truth baseline” provided to them by
LMA. The Analex-Denver engineers were not aware that the I1 filter rate values provided originated
from a manual input and might not be the same as those subjected to independent V&V by Analex-
Cleveland.
None of the participants was aware that nobody was testing the software with the actual load

tape values nor that the default values they used did not match the real values.

Coordination: This was a classic case of coordination problems. Responsibility was diffused
among the various partners, without complete coverage. In the end, nobody tested the load tape

6Note that almost identical words were used in the Ariane 501 accident report [71].
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and everyone thought someone else was doing it.

8.3.10 Systems Engineering

System engineering at LMA was responsible for the identification and allocation of the functionality
to be included in the system. In fact, the software filter involved in the loss was not needed and
should have been left out instead of being retained, yet another example of asynchronous evolution.
Why was that decision made? The filter was designed to prevent the Centaur from responding to
the effects of Milstar fuel sloshing and inducing roll rate errors at 4 radians/second. Early in the
design phase of the first Milstar satellite, the manufacturer asked to filter that frequency. The
satellite manufacturer subsequently determined filtering was not required at that frequency and
informed LMA. However, LMA decided to leave the filter in place for the first and subsequent
Milstar flights for “consistency”.7 No further explanation is included in the report.

8.3.11 LMA Project Management (as Prime Contractor)

Process Being Controlled: The activities involved in the development and assurance of the
system and its components.

Safety Constraint: Effective software development processes must be established and moni-
tored. System safety processes must be created to identify and manage system hazards.

Context: The Centaur software process was developed early in the Titan/Centaur program:
Many of the individuals who designed the original process were no longer involved in it due to
corporate mergers and restructuring (e.g., Lockheed, Martin Marietta, General Dynamics) and the
maturation and completion of the Titan IV design and development. Much of the system and
process history and design rationale was lost with their departure.

Control Algorithm Flaws:

• A flawed software development process was designed. For example, no process was provided
for creating and validating the flight constants.

• LMA, as prime contractor, did not exert adequate control over the development process. The
Accident Investigation Board could not identify a single process owner responsible for under-
standing, designing, documenting, or controlling configuration and ensuring proper execution
of the process.

• An effective system safety program was not created.
• An inadequate IV&V program (designed by Analex-Denver) was approved and instituted that
did not verify or validate the I1 filter rate constants used in flight.

Mental Model Flaws: Nobody seemed to understand the overall software development process
and apparently all had a misunderstanding about the coverage of the testing process.

7This factor is similar to the Ariane 501 loss, where unnecessary software code was left in for “commonality
reasons” [71]
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8.3.12 Defense Contract Management Command (DCMC)

Process Being Controlled: The report is vague, but apparently DCMC was responsible for
contract administration, software surveillance, and overseeing the development process.

Control Inadequacies: The report says that DCMC approved an IV&V process with incomplete
coverage and that there was a software quality assurance function operating at DCMC, but it
operated without a detailed understanding of the overall process or program and therefore was
ineffective.

Coordination: No information was provided in the accident report although coordination prob-
lems between SMC and DCMA may have been involved. Were each assuming the other was
monitoring the overall process? What role did Aerospace Corporation play? Were there gaps in
the responsibilities assigned to each of the many groups providing oversight here? How did the
overlapping responsibilities fit together? What kind of feedback did DCMC use to perform their
process monitoring?

8.3.13 Air Force (Program Office): Space and Missile Systems Center Launch
Directorate (SMC)

Process Being Controlled: Management of the Titan/Centaur/Milstar development and launch
control structures. SMC was responsible for “insight” and administration of the LMA contract.

Safety Constraint: SMC must ensure that the prime contractor creates an effective development
and safety assurance program.

Context: Like 3SLS, the Air Force Space and Missile System Center Launch Directorate was
transitioning from a task oversight to a process insight role and had, at the same time, undergone
personnel reductions.

Control Algorithm Flaws:

• The SMC Launch Programs Directorate essentially had no personnel assigned to monitor
or provide insight into the generation and verification of the software development process.
The Program Office did have support from Aerospace Corporation to monitor the software
development and test process, but that support had been cut by over 50 percent since 1994.
The Titan Program Office had no permanently assigned civil service or military personnel
nor full-time support to work the Titan/Centaur software. They decided that because the
Titan/Centaur software was “mature, stable, and had not experienced problems in the past”
they could best use their resources to address hardware issues.

• The transition from oversight to insight was not managed by a detailed plan. AF respon-
sibilities under the insight concept had not been well defined, and requirements to perform
those responsibilities had not been communicated to the workforce. In addition, implementa-
tion of the transition from an oversight role to an insight role was negatively affected by the
lack of documentation and understanding of the software development and testing process.
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Similar flawed transitions to an “insight” role are a common factor in many recent aerospace
accidents.

• The Titan Program Office did not impose any standards (e.g., Mil-Std-882) or process for
safety. While one could argue about what particular safety standards and program could or
should be imposed, it is clear from the complete lack of such a program that no guidance was
provided. Effective control of safety requires that responsibility for safety be assigned at each
level of the control structure. Eliminating this control leads to accidents. The report does not
say whether responsibility for controlling safety was retained at the program office or whether
it had been delegated to the prime contractor. But even if it had been delegated to LMA,
the program office must provide overall leadership and monitoring of the effectiveness of the
efforts. Clearly there was an inadequate safety program in this development and deployment
project. Responsibility for detecting this omission lies with the program office.

In summary, understanding why this accident occurred and making the changes necessary to
prevent future accidents requires more than simply identifying the proximate cause—a human error
in transcribing long strings of digits. This type of error is well known and there should have been
controls established throughout the process to detect and fix it. Either these controls were missing
in the development and operations processes or they were inadequately designed and executed.
The next section presents an example of an accident analysis using STAMP where governmental

and regulatory agencies played important roles in the accident process.

8.4 A Public Water Supply Contamination Accident

In May 2000, in the small town of Walkerton, Ontario, Canada, some contaminants, largely Es-
cherichia coli O157:H7 (the common abbreviation for which is E. coli) and Campylobacter jejuni
entered the Walkerton water system through a well of the Walkerton municipal water system.
About half the people in the town of 4800 became ill and seven died [84]. First the proximate
events are presented and then the STAMP analysis of the accident.

8.4.1 The Proximate Events at Walkerton

The Walkerton water system was operated by the Walkerton Public Utilities Commission (WPUC).
Stan Koebel was the WPUC’s general manager and his brother Frank its foreman. In May 2000,
the water system was supplied by three groundwater sources: Wells 5, 6, and 7. The water pumped
from each well was treated with chlorine before entering the distribution system.
The source of the contamination was manure that had been spread on a farm near Well 5.

Unusually heavy rains from May 8 to May 12 carried the bacteria to the well. Between May 13
and May 15, Frank Koebel checked Well 5 but did not take measurements of chlorine residuals,
although daily checks were supposed to be made.8 Well 5 was turned off on May 15.
On the morning of May 15, Stan Koebel returned to work after having been away fromWalkerton

for more than a week. He turned on Well 7, but shortly after doing so, he learned a new chlorinator
for Well 7 had not been installed and the well was therefore pumping unchlorinated water directly

8Low chlorine residuals are a sign that contamination is overwhelming the disinfectant capacity of the chlorination
process.
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into the distribution system. He did not turn off the well, but instead allowed it to operate without
chlorination until noon on Friday May 19, when the new chlorinator was installed.
On May 15, samples from the Walkerton water distribution system were sent to A&L Labs

for testing according to the normal procedure. On May 17, A&L Labs advised Stan Koebel that
samples from May 15 tested positive for E. coli and total coliforms. The next day (May 18) the
first symptoms of widespread illness appeared in the community. Public inquiries about the water
prompted assurances by Stan Koebel that the water was safe. By May 19 the scope of the outbreak
had grown, and a pediatrician contacted the local health unit with a suspicion that she was seeing
patients with symptoms of E. coli.
The Bruce-Grey-Owen Sound (BGOS) Health Unit (the government unit responsible for public

health in the area) began an investigation. In two separate calls placed to Stan Koebel, the health
officials were told that the water was “okay.” At that time, Stan Koebel did not disclose the lab
results from May 15, but he did start to flush and superchlorinate the system to try to destroy any
contaminants in the water. The chlorine residuals began to recover. Apparently, Mr. Koebel did
not disclose the lab results for a combination of two reasons: he did not want to reveal the unsafe
practices he had engaged in from May 15 to May 17 (i.e., running Well 7 without chlorination),
and he did not understand the serious and potentially fatal consequences of the presence of E. coli
in the water system. He continued to flush and superchlorinate the water through the following
weekend, successfully increasing the chlorine residuals. Ironically, it was not the operation of Well 7
without a chlorinator that caused the contamination; the contamination instead entered the system
through Well 5 from May 12 until it was shut down May 15.
On May 20, the first positive test for E. coli infection was reported and the BGOS Health Unit

called Stan Koebel twice to determine whether the infection might be linked to the water system.
Both times, Stan Koebel reported acceptable chlorine residuals and failed to disclose the adverse
test results. The Health Unit assured the public that the water was safe based on the assurances
of Mr. Koebel.
That same day, a WPUC employee placed an anonymous call to the Ministry of the Environ-

ment (MOE) Spills Action Center, which acts as an emergency call center, reporting the adverse
test results from May 15. On contacting Mr. Koebel, the MOE was given an evasive answer and
Mr. Koebel still did not reveal that contaminated samples had been found in the water distribu-
tion system. The Local Medical Officer was contacted by the health unit, and he took over the
investigation. The health unit took their own water samples and delivered them to the Ministry of
Health laboratory in London (Ontario) for microbiological testing.
When asked by the MOE for documentation, Stan Koebel finally produced the adverse test

results from A&L Laboratory and the daily operating sheets for Wells 5 and 6, but said he could
not produce the sheet for Well 7 until the next day. Later, he instructed his brother Frank to
revise the Well 7 sheet with the intention of concealing the fact that Well 7 had operated without
a chlorinator. On Tuesday May 23, Stan Koebel provided the altered daily operating sheet to the
MOE. That same day, the health unit learned that two of the water samples it had collected on
May 21 had tested positive for E. coli.
Without waiting for its own samples to be returned, the BGOS health unit on May 21 issued

a boil water advisory on local radio. About half of Walkerton’s residents became aware of the
advisory on May 21, with some members of the public still drinking the Walkerton town water as
late as May 23. The first person died on May 22, a second on May 23, and two more on May 24.
During this time, many children became seriously ill and some victims will probably experience
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lasting damage to their kidneys as well as other long-term health effects. In all, seven people died
and more than 2300 became ill.
Looking only at these proximate events and connecting them by some type of causal chain, it

appears that this is a simple case of incompetence, negligence, and dishonesty by WPUC employees.
In fact, the government representatives argued at the accident inquiry that Stan Koebel or the
Walkerton Public Utilities Commission (PUC) were solely responsible for the outbreak and that
they were the only ones who could have prevented it. In May 2003, exactly three years after the
accident, Stan and Frank Koebel were arrested for their part in the loss. But a systems-theoretic
analysis using STAMP provides a much more informative and useful understanding of the accident
besides simply blaming it only on the actions of Koebel brothers.

8.4.2 The System Hazards, System Safety Constraints, and Control Structure

As in the previous examples, the first step in creating a STAMP analysis is to identify the system
hazards, the system safety constraints, and the hierarchical control structure in place to enforce
the constraints.
The system hazard related to the Walkerton accident is public exposure to E. coli or other

health-related contaminants through drinking water. This hazard leads to the following system
safety constraint:

The safety control structure must prevent exposure of the public to contaminated water.

1. Water quality must not be compromised.
2. Public health measures must reduce risk of exposure if water quality is compromised

(e.g., boil water advisories).

Each component of the socio-technical public water system safety control structure plays a role
in enforcing this general system safety constraint and will, in turn, have their own safety constraints
to enforce that are related to the function of the particular component in the overall system. For
example, the Canadian federal government is responsible for establishing a nationwide public health
system and ensuring it is operating effectively. Federal guidelines are provided to the Provinces,
but responsibility for water quality is primarily delegated to each individual Province.
The provincial governments are responsible for regulating and overseeing the safety of the

drinking water. They do this by providing budgets to the ministries involved—in Ontario these
are the Ministry of the Environment (MOE), the Ministry of Health (MOH), and the Ministry
of Agriculture, Food, and Rural Affairs—and by passing laws and adopting government policies
affecting water safety.
According to the report on the official Inquiry into the Walkerton accident [84], the Ministry of

Agriculture, Food, and Rural Affairs in Ontario is responsible for regulating agricultural activities
with potential impact on drinking water sources. In fact, there was no watershed protection plan
to protect the water system from agricultural runoff. Instead, the Ministry of the Environment was
responsible for ensuring that the water systems could not be affected by such runoff.
The Ministry of the Environment (MOE) has primary responsibility for regulating and for

enforcing legislation, regulations, and policies that apply to the construction and operation of mu-
nicipal water systems. Guidelines and objectives are set by the MOE, based on Federal guidelines.
They are enforceable through Certificates of Approval issued to public water utilities operators,
under the Ontario Water Resources Act. The MOE also has legislative responsibility for building
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and maintaining water treatment plants and has responsibility for public water system inspections
and drinking water surveillance, for setting standards for certification of water systems, and for
continuing education requirements for operators to maintain competence as knowledge about water
safety increases.
The Ministry of Health supervises local Health Units, in this case, the Bruce-Grey-Owen-Sound

(BGOS) Department of Health, run by local Officers of Health in executing their role in protecting
public health. The BGOS Medical Dept. of Health receives inputs from various sources, including
hospitals, the local medical community, the Ministry of Health, and the Walkerton Public Utilities
Commission, and in turn is responsible for issuing advisories and alerts if required to protect public
health. Upon receiving adverse water quality reports from the government testing labs or the MOE,
the local public health inspector in Walkerton would normally contact the WPUC to ensure that
followup samples were taken and chlorine residuals maintained.
The public water system in Walkerton is run by the Walkerton Public Utilities Commission

(WPUC), which operates the wells and is responsible for chlorination and for measurement of
chlorine residuals. Oversight of the WPUC is provided by elected WPUC Commissioners. The
Commissioners are responsible for establishing and controlling the policies under which the PUC
operates, while the general manager (Stan Koebel) and staff are responsible for administering these
policies in operating the water facility. Although theoretically also responsible for the public water
system, the municipality left the operation of the water system to the WPUC.
Together, the safety constraints enforced by all of these system control components must be

adequate to enforce the overall system safety constraints. Figure 8.10 shows the overall theoretical
water safety control structure in Ontario and the safety-related requirements and constraints for
each system component.
Each component of the socio-technical public water safety system plays a role in enforcing

the overall system safety constraint. Understanding the accident requires understanding the role
in the accident scenario played by each level of the system’s hierarchical control structure in the
accident by not adequately enforcing its part of the safety constraint. The inadequate control (in
terms of enforcing the safety constraints) exhibited by each component in the Walkerton accident
is described in Sections 8.4.3, through 8.4.7. For each component, the contribution to the accident
is described in terms of the four conditions required for adequate control, i.e., the goal, the actions,
the process or mental models, and feedback. At each level of control, the context in which the
behaviors took place is also considered. It is not possible to understand human behavior without
knowing the context in which it occurs and the behavior-shaping factors in the environment.
This first level of analysis provides a view of the limitations of the static control structure at the

time of the accident. But systems are not static—they adapt and change over time. In STAMP,
systems are treated as a dynamic process that is continually adapting to achieve its ends and to
react to changes in itself and its environment. The original system design must not only enforce the
system safety constraints, but the system must continue to enforce the constraints as changes occur.
The analysis of accidents, therefore, requires understanding not only the flaws in the static control
structure that allowed the safety constraints to be violated but also the changes to the safety control
structure over time (the structural dynamics) and the dynamic processes behind these changes (the
behavioral dynamics). Section 8.4.8 analyzes the structural dynamics of the Walkerton accident
while Section 8.4.9 shows the behavioral dynamics.
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Figure 8.11: The Physical Components of the Water Safety Control Structure.

8.4.3 The Physical Process View of the Accident

As in many system accidents, there were no physical failures involved. If, as in Figure 8.11, we draw
the boundary of the physical system around the wells, the public water system, and public health,
then one can describe the “cause” of the accident at the physical system level as the inability of the
physical design to enforce the physical safety constraint in the face of an environmental disturbance,
i.e., the unusually heavy rains that resulted in the transport of contaminants from the fields to the
water supply. The safety constraint being enforced at this level is that water must be free from
unacceptable levels of contaminants.
Well 5 was a very shallow well: all of its water was drawn from an area between 5m and 8m

below the surface. More significantly, the water was drawn from an area of bedrock, and the
shallowness of the soil overburden above the bedrock along with the fractured and porous nature
of the bedrock itself made it possible for surface bacteria to make its way to Well 5.

8.4.4 The First Level Operations

Besides the physical system analysis, most hazard analysis techniques and accident investigations
consider the immediate operators of the system. Figure 8.12 shows the results of a STAMP analysis
of the flaws by the lower operations levels at Walkerton that were involved in the accident.
The safety requirements and constraints on the operators of the local water system were that

they must apply adequate doses of chlorine to kill bacteria and must measure chlorine residuals.
Stan Koebel, the WPUC Manager, and Frank Koebel, its foreman, were not qualified to hold their
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Context in Which Decisions Made:

Inadequate Control Actions:

Mental Model Flaws:

Inadequate monitoring and supervision of operations
Adverse test results not reported when asked.
Problems discovered during inspections not rectified.

Figure 8.12: The Physical and Operational Components of the Water Safety Control Structure.
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positions within the WPUC. Before 1993, there were no mandatory certification requirements and
after 1993 they were certified through a grandfathering process based solely on experience. Mr.
Koebel knew how to operate the water system mechanically, but he lacked knowledge about the
health risks associated with a failure to properly operate the system and of the importance of
following the requirements for treatment and monitoring of the water quality. The inquiry report
stated that many improper operating practices had been going on for years before Stan Koebel
became manager: He simply left them in place. These practices, some of which went back 20 years,
included misstating the locations at which samples for microbial testing were taken, operating
wells without chlorination, making false entries in daily operating sheets, not measuring chlorine
residuals daily, not adequately chlorinating the water, and submitting false annual reports to the
MOE.
The operators of the Walkerton water system did not intentionally put the public at risk. Stan

Koebel and the other WPUC employees believed the untreated water was safe and often drank it
themselves at the well sites. Local residents also pressed the WPUC to decrease the amount of
chlorine used because they objected to the taste of chlorinated water.
A second first-level control component was the Local Health Units, in this case, the Bruce-Grey-

Owen-Sound (BGOS) Department of Health. Local Health Units are supervised by the Ministry
of Health and run by local Officers of Health to execute their role in protecting public health. The
BGOS Medical Dept. of Health receives inputs (feedback) from various sources, including hospitals,
the local medical community, the Ministry of Health, and the WPUC, and in turn is responsible for
issuing advisories and alerts if required to protect public health. While the local Health Unit did
issue a boil water advisory on local radio when they finally decided that the water system might
be involved, this means of notifying the public was not very effective—other more effective means
could have been employed. One reason for the delay was simply that evidence was not strong that
the water system was the source of the contamination. E. coli is not often spread by meat, thus
its common reference as the “hamburger disease.” In addition, some reported cases of illness came
from people who did not live in the Walkerton water district. Finally, the local health inspector
had no reason to believe that there were problems with the way the Walkerton water system was
operated.
An important event related to the accident occurred in 1996, when the government water testing

laboratories were privatized. Previously, water samples were sent to government laboratories for
testing. These labs then shared the results with the appropriate government agencies as well as the
local operators. Upon receiving adverse water quality reports from the government testing labs or
the MOE, the local public health inspector in Walkerton would contact the WPUC to ensure that
followup samples were taken and chlorine residuals maintained.
After water testing laboratory services for municipalities were assumed by the private sector in

1996, the MOH Health Unit for the Walkerton area sought assurances from the MOE’s local office
that the Health Unit would continue to be notified of all adverse water quality results relating to
community water systems. It received that assurance, both in correspondence and at a meeting, but
it did not receive adverse water test reports and, therefore, without feedback about any problems
in the water system, the local public health authorities assumed everything was fine.
In fact, there were warnings of problems. Between January and April of 2000 (the months

just prior to the May E. Coli outbreak), the lab that tested Walkerton’s water repeatedly detected
coliform bacteria—an indication that surface water was getting into the water supply. The lab
notified the MOE on five separate occasions. The MOE in turn phoned the WPUC, was assured
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the problems were being fixed, and let it go at that. The MOE did not inform the local Walkerton
Medical Office of Health, however, as by law it was required to do.
The WPUC changed water testing laboratories in May 2000. The new laboratory, A&L Canada

Laboratories East, was unaware of any notification guidelines. In fact, they considered test results
to be confidential and thus improper to send to anyone but the client (in this case, the WPUC
manager Stan Koebel).
In 1998, the BGOS Health Unit did receive a report on an MOE inspection of the Walkerton

water system that showed some serious problems did exist. When the local Walkerton public health
inspector read the report, he filed it, assuming that the MOE would ensure that the problems
identified were properly addressed. Note the coordination problems here in an area of overlapping
control. Both the MOE and the local public health inspector should have followed up on the 1998
inspection report, but there was no written protocol instructing the public health inspector on how
to respond to adverse water quality or water system inspection reports. The MOE also lacked such
protocols. Once again, the local public health authorities received no feedback that indicated water
system operations were problematic.
Looking only at the physical system and local operations, it appears that the accident was simply

the result of incompetent water system operators, who initially lied to protect their jobs (but who
were unaware of the potentially fatal consequences of their lies) made worse by an inadequate
response by the local Health Unit. If the goal is to find someone to blame, this conclusion is
reasonable. If, however, the goal is to understand why the accident occurred in order to make
effective changes (beyond simply firing the Koebel brothers) in order to prevent repetitions in the
future or to learn how to prevent accidents in other situations, then a more complete study of the
larger water safety control structure within which the local operations is embedded is necessary.

8.4.5 The Municipal Government

Figure 8.13 summarizes the flaws in the municipal water system control structure that allowed the
dysfunctional interactions and thus the accident to occur.
Operating conditions on the public water system should theoretically have been imposed by the

municipality, the Walkerton Public Utilities Commissioners, and the manager of the WPUC. The
municipality left the operation of the water system to the WPUC. The WPUC Commissioners, who
were elected, became over the years more focused on the finances of the PUC than the operations.
They had little or no training or knowledge of water system operations or even water quality itself.
Without such knowledge and with their focus on financial issues, they gave all responsibility for
operations to the manager of the WPUC (Stan Koebel) and provided no other operational oversight.
The WPUC Commissioners received a copy of the 1998 inspection report but did nothing

beyond asking for an explanation from Stan Koebel and accepting his word that he would correct
the deficient practices. They never followed up to make sure he did. The mayor of Walkerton
and the municipality also received the report but they assumed the WPUC would take care of the
problems.

8.4.6 The Provincial Regulatory Agencies (Ministries)

The Ministry of the Environment (MOE) has primary responsibility for regulating and for enforcing
legislation, regulations, and policies that apply to the construction and operation of municipal water
systems. Guidelines and objectives are set by the MOE, based on Federal guidelines. They are
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Budgets

Financial Information

SamplesReports
Test

WPUC

Mental Model Flaws:
Did not know about reporting guidelines;
Considered test results to be proprietary.

Did not follow provincial guidelines and inform MOE

Safety Requirements and Constraints:

MOE, WPUC, and Medical Dept. of Health (MOH)
Provide timely and accurate reports on testing results to

Inadequate Control Actions:

and MOH of adverse test results.

A&L Canada Laboratories

Unaware of improper treatment and monitoring practices of WPUC operators.

Mental Model Flaws:
Little knowledge of water safety and operation of system.;

Safety Requirements and Constraints:
Oversee operations to ensure water quality is not compromised.

Context in Which Decisions Made:
Elected officials
No training or educational requirements.

Inadequate Control Actions:
Relied on Stan Koebel to identify and resolve any concerns   
related to operation of the water supply.  Did not monitor  
 to ensure problems fixed.  
Did not establish, oversee,  nor enforce policies and practices 
 for operating the Walkerton public water system.

WPUC Commissioners

Concentrated only on financial matters.

Figure 8.13: The Municipal Control Structure and Its Contribution to the Accident.
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No systematic review of existing certificates of approval to determine if conditions should be added for continuous monitoring.

Ministry of the Environment

Inadequate inspections and improperly structured and administered inspection program..

Inadequate training of MOE personnel.

violations uncovered in periodic inspections.

No enforcement of continuing training requirements.
No certification or training requirements for grandfathered operators.
Private labs not informed about reporting guidelines.

No followup on inspection reports noting serious deficiencies.
Approval of Well 5 without attaching operating conditions or special monitoring or inspection requirements.

Did not retroactively apply new approvals program to older facilities when procedures changed in 1992.

MOE inspectors not directed to assess existing wells during inspections.
Did not require continuous monitoring of existing facilities when ODWO amended in 1994.

Relied on voluntary compliance with regulations and guidelines. 

No legally enforceable measures taken to ensure that concerns identified in inspections are addressed.  Weak response to repeated

Inadequate Control Actions:

Budget cuts and staff reductions
Critical information about history of known vulnerable water sources not easily accessible.

Context in Which Decisions Made:

MOE inspectors not provided with criteria for determining whether a given well was at risk.  Not directed to examine daily operating sheets.

Neither MOE nor MOH took responsibility for enacting notification legislation.

Coordination:

Ministry of Health

No written protocol provided to local public health inspector on how to respond to adverse water quality or inspection reports.

Inadequate Control Actions:

Ensure adequate procedures exist for notificatoin and risk abatement if water quality is compromised.

Safety Requirements and Constraints:

Inadequate feedback about state of water quality and water test results.

Feedback:

Incorrect model of state of compliance with water quality regulations and guidelines.

Establish certification and training requirements for water system operators.

Did not monitor effects of privatization on reporting of adverse test results.

Several local MOE personnel did not know E. coli could be fatal.

Mental Model Flaws:

Did not inform Walkerton Medical Officer of Health about adverse test results in January to April 2000 as required to do. 

Ensure those in charge of water supplies are competent to carry out their responsibilities.

Neither MOE nor MOH took responsibility for enacting notification legislation.

Coordination:

Establish feedback channels for adverse test results.  Provide multiple paths so that dysfunctional paths cannot prevent reporting.
Enforce legislation, regulations, and policies applying to construction and operation of municipal water systems.

Establish criteria for determining whether a well is at risk.
Perform continual risk evaluation of existing facilities and establish new controls if necessary.
Perform hazard analyses to provide information about where vulnerabilities are and monitor them.
Perform inspections and enforce compliance if problems found.

Safety Requirements and Constraints:

Figure 8.14: The Role of the Ministries in the Accident.
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enforceable through Certificates of Approval issued to public water utilities operators, under the
Ontario Water Resources Act.
Walkerton Well 5 was built in 1978 and issued a Certificate of Approval by the MOE in 1979.

Despite potential problems—the groundwater supplying the well was recognized as being vulnerable
to surface contamination—no explicit operating conditions were imposed at the time.
Although the original Certificate of Approval for Well 5 did not include any special operating

conditions, over time MOE practices changed. By 1992, the MOE had developed a set of model
operating conditions for water treatment and monitoring that were routinely attached to new
Certificates of Approval for municipal water systems. There was no effort, however, to determine
whether such conditions should be attached to existing certificates, such as the one for Well 5.
The Provincial water quality guidelines were amended in 1994 to require the continuous moni-

toring of chlorine residuals and turbidity for wells supplied by a groundwater source that was under
the direct influence of surface water (as was Walkerton’s Well 5). Automatic monitoring and shutoff
valves would have mitigated the operational problems at Walkerton and prevented the deaths and
illness associated with the E. coli contamination in May 2000 if the requirement had been enforced
in existing wells. However, at the time, there was no program or policy to review existing wells to
determine whether they met the requirements for continuous monitoring. In addition, MOE inspec-
tors were not directed to notify well operators (like the Koebel brothers) of the new requirement
nor to assess during inspections if a well required continuous monitoring.
Stan and Frank Koebel lacked the training and expertise to identify the vulnerability of Well

5 themselves and to understand the resulting need for continuous chlorine residual and turbidity
monitors. After the introduction of mandatory certification in 1993, the Koebel brothers were
certified on the basis of experience even though they did not meet the certification requirements.
The new rules also required 40 hours of training a year for each certified operator. Stan and
Frank Koebel did not take the required amount of training, and the training they did take did not
adequately address drinking water safety. The MOE did not enforce the training requirements and
did not focus the training on drinking water safety.
The Koebel brothers and the Walkerton commissioners were not the only ones with inadequate

training and knowledge of drinking water safety. Evidence at the Inquiry showed that several
environmental officers in the MOE’s local office were unaware that E. coli was potentially lethal
and their mental models were also incorrect with respect to other matters essential to water safety.
At the time of the privatization of the government water testing laboratories in 1996, the MOE

sent a guidance document to those municipalities that requested it. The document strongly rec-
ommended that a municipality include in any contract with a private lab a clause specifying that
the laboratory directly notify the MOE and the local Medical Officer of Health about adverse test
results. There is no evidence that the Walkerton PUC either requested or received this docu-
ment. The MOE had no mechanism for informing private laboratories of the existing guidelines for
reporting adverse results to the MOE and the MOH.
In 1997, the Minister of Health took the unusual step of writing to the Minister of the En-

vironment requesting that legislation be amended to ensure that the proper authorities would be
notified of adverse water test results. The Minister of the Environment declined to propose legis-
lation, indicating that the existing guidelines dealt with the issue. On several occasions, officials
in the MOH and the MOE expressed concerns about failures to report adverse test results to local
Medical Officers of Health in accordance with the protocol. But the anti-regulatory culture and
the existence of the Red Tape Commission discouraged any proposals to make notification legally
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binding on the operators or municipal water systems and private labs.
Another important impact of the 1996 law was a reduction in the MOE water system inspection

program. The cutbacks at the MOE negatively impacted the number of inspections, although the
inspection program had other deficiencies as well.
The MOE inspected the Walkerton water system in 1991, 1995, and 1998. At the time of

the inspections, problems existed relating to water safety. Inspectors identified some of them, but
unfortunately two of the most significant problems—the vulnerability of Well 5 to surface contam-
ination and the improper chlorination and monitoring practices of the PUC—were not detected.
Information about the vulnerability of Well 5 was available in MOE files, but inspectors were not
directed to look at relevant information about the security of water sources and the archived in-
formation was not easy to find. Information about the second problem, improper chlorination and
monitoring practices of the WPUC, was there to be seen in the operating records maintained by the
WPUC. The Walkerton Inquiry report concludes that a proper examination of the daily operating
sheets would have disclosed the problem. However, the inspectors were not instructed to carry out
a thorough review of operating records.
The 1998 inspection report did show there had been problems with the water supply for years:

detection of E. coli in treated water with increasing frequency, chlorine residuals in treated wa-
ter at less than the required 0.5 mg/L, non-compliance with minimum bacteriological sampling
requirements, and not maintaining proper training records.
The MOE outlined improvements that should be made, but desperately short of inspection staff

and faced with small water systems across the province that were not meeting standards, it never
scheduled a follow-up inspection to see if the improvements were in fact being carried out. The
Walkerton Inquiry report suggests that the use of guidelines rather than regulations had an impact
here. The report states that had the Walkerton PUC been found to be in non-compliance with a
legally enforceable regulation, as opposed to a guideline, it is more likely that the MOE would have
taken stronger measures to ensure compliance—such as the use of further inspections, the issuance
of a Director’s Order (which would have required the WPUC to comply with the requirements for
treatment and monitoring), or enforcement proceedings. The lack of any followup or enforcement
efforts may have led the Koebel brothers to believe the recommendations were not very important,
even to the MOE.
Many adverse water quality reports were received from Walkerton between 1995 and 1998.

During the mid to late 1990s, there were clear indications that the water quality was deteriorating.
In 1996, for example, hundreds of people in Collingswood (a town near Walkerton), became ill after
cryptosporidium (a parasite linked to animal feces) contaminated the drinking water. Nobody
died, but it should have acted as a warning that the water safety control structure had degraded.
Between January and April of 2000 (the months just prior to the May E. coli outbreak), the lab
that tested Walkerton’s water repeatedly detected coliform bacteria—an indication that surface
water was getting into the water supply. The lab notified the MOE on five separate occasions. The
MOE in turn phoned the WPUC, was assured the problems were being fixed, and let it go at that.
The MOE failed to inform the Medical Officer of Health, as by law it was required to do.
Looking at the role of this hierarchical level in the Ontario water quality control system provides

greater understanding of the reasons for the Walkerton accident and suggests more corrective actions
that might be taken to prevent future accidents. But examining the control flaws at this level is
not enough to understand completely the actions or lack of actions of the MOE. A larger view of
the Provincial government role in the tragedy is necessary.



8.4. A PUBLIC WATER SUPPLY CONTAMINATION ACCIDENT 185

Provincial Government

(Privatizing without establishing adequate governmental oversight)

Anti−regulatory culture. 
Efforts to reduce red tape.

Context in Which Decisions Made:

Ensure adequate risk assessment is conducted and effective risk management plan is in place.

Inadequate Control Actions:

whether they could be managed.
Privatized laboratory testing of drinking water without requiring labs to notify MOE and health authorities of adverse test results. 

No regulatory requirements for agricultural activities that create impacts on drinking water sources.

Water Sewage Services Improvement Act ended provincial Drinking Water Surveillance program
Spreading of manure exempted from EPA requirements for Certificates of Approval

No accreditation of water testing labs (no criteria established to govern quality of testing personnel, no provisions for licensing, inspection,

Disbanded ACES.
Ignored warnings about deteriorating water quality.

Feedback:
No monitoring or feedback channels established to evaluate impact of changes

No risk assessment or risk  management plan created to determine extent of known risks, whether risks should be assumed, and if assumed,

Relied on guidelines rather than legally enforceable regulations.

or auditing by government).

No law to legislate requirements for drinking water standards,  reporting requirements, and infrastructure funding.
Environmental controls systematically removed or negated.

Provide oversight and feedback loops to ensure that provincial regulatory bodies are doing their job adequately.

Establish regulatory bodies and codes of responsibilities, authority, and accountability for the province.
Provide adequate resources to regulatory bodies to carry out their responsibilities.

Safety Requirements and Constraints:

Enact legislation to protect water quality.

Figure 8.15: The Role of the Provincial Government in the Accident.

8.4.7 The Provincial Government

The last component in the Ontario water quality control structure is the Provincial government.
Figure 8.15 summarizes its role in the accident.
All of the weaknesses in the water system operations at Walkerton (and other municipalities)

might have been mitigated if the source of contamination of the water had been controlled. A
weakness in the basic Ontario water control structure was the lack of a government watershed and
land use policy for agricultural activities that can impact drinking water sources. In fact, at a
meeting of the Walkerton town council in November 1978 (when Well 5 was constructed), MOE
representatives suggested land use controls for the area around Well 5, but the municipality did
not have the legal means to enforce such land use regulations because the government of Ontario
had not provided the legal basis for such controls.
At the same time as the increase in factory farms was overwhelming the ability of the natural

filtration process to prevent the contamination of the local water systems, the spreading of ma-
nure had been granted a long-standing exemption from EPA requirements. Annual reports of the
Environment Commissioner of Ontario for the four years before the Walkerton accident included
recommendations that the government create a groundwater strategy. A Health Canada study
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stated that the cattle counties of Southwestern Ontario, where Walkerton is located, are high-risk
areas for E. coli infections. The report pointed out the direct link between cattle density and E.
coli infection, and showed that 32 percent of the wells in rural Ontario showed fecal contamination.
Dr. Murray McQuigge, the Medical Officer of Health for the BGOS Health Unit (and the man
who handled the Walkerton E. coli outbreak) warned in a memo to local authorities that “poor
nutrient management on farms is leading to a degradation of the quality of ground water, streams,
and lakes.” Nothing was done in response.
With the election of a conservative provincial government in 1995, a bias against environmental

regulation and red tape led to the elimination of many of the government controls over drinking
water quality. A Red Tape Commission was established by the provincial government to minimize
reporting and other requirements on government and private industry. At the same time, the
government disbanded groups like the Advisory Committee on Environmental Standards (ACES),
which reviewed ministry standards, including those related to water quality. At the time of the
Walkerton contamination, there was no opportunity for stakeholder or public review of the Ontario
clean water controls.
Budget and staff reductions by the conservative government took a major toll on environmental

programs and agencies (although budget reductions had started before the election of the new
provincial government). The MOE budget was reduced by 42% and 900 of the 2400 staff responsible
for monitoring, testing, inspection, and enforcement of environmental regulations were laid off. The
official Walkerton Inquiry report concludes that the reductions were not based on an assessment
of the requirements to carry out the MOE’s statutory requirements nor on any risk assessment of
the potential impact on the environment or, in particular, on water quality. After the reductions,
the Provincial Ombudsman issued a report saying that cutbacks had been so damaging that the
government was no longer capable of providing the services that it was mandated to provide. The
report was ignored.
In 1996, the Water Sewage Services Improvement Act was passed, which shut down the govern-

ment water testing laboratories, downloaded control of provincially owned water and sewage plants
to the municipalities, eliminated funding for municipal water utilities, and ended the provincial
Drinking Water Surveillance Program, under which the MOE had monitored drinking water across
the province.
The Provincial water quality guidelines directed testing labs to report any indications of unsafe

water quality to the MOE and to the local Medical Officer Of Health. The latter would then decide
whether to issue a boil water advisory. When government labs conducted all of the routine drinking
water tests for municipal water systems throughout the province, it was acceptable to keep the
notification protocol in the form of a guideline rather than a legally enforceable law or regulation.
However, the privatization of water testing and the exit of government labs from this duty in 1996
made the use of guidelines ineffective in ensuring necessary reporting would occur. At the time,
private environmental labs were not regulated by the government. No criteria were established to
govern the quality of testing or the qualifications or experience of private lab personnel, and no
provisions were made for licensing, inspection, or auditing of private labs by the government. In
addition, the government did not implement any program to monitor the effect of privatization on
the notification procedures followed whenever adverse test results were found.
In 1997, the Minister of Health took the unusual step of writing to the Minister of the Environ-

ment requesting that legislation be amended to ensure that the proper authorities would be notified
of adverse water test results. The Minister of the Environment declined to propose legislation, in-
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dicating that the Provincial water quality guidelines dealt with the issue. On several occasions,
officials in the MOH and the MOE expressed concerns about failures to report adverse test results
to local Medical Officers of Health in accordance with the protocol. But the anti-regulatory culture
and the existence of the Red Tape Commission discouraged any proposals to make notification
legally binding on the operators or municipal water systems and private labs.
A final important change in the safety control structure involved the drinking water surveillance

program in which the MOE monitored drinking water across the province. In 1996, the Provincial
government dropped E. coli testing from its Drinking Water Surveillance Program. The next year,
the Drinking Water Surveillance Program was shut down entirely. At the same time, the provincial
government directed MOE staff not to enforce dozens of environmental laws and regulations still
on the books. Farm operators, in particular, were to be treated with understanding if they were
discovered to be in violation of livestock and waste-water regulations. By June, 1998, the Walkerton
town council was concerned enough about the situation to send a letter directly to the Premier
(Mike Harris), appealing for the province to resume testing of municipal water. There was no reply.
MOE officials warned the government that closing the water testing program would endanger

public health. Their concerns were dismissed. In 1997, senior MOE officials drafted another memo
that the government did heed [26]. This memo warned that cutbacks had impaired the Ministry’s
ability to enforce environmental regulations to the point that the Ministry could be exposed to
lawsuits for negligence if and when an environmental accident occurred. In response, the Provincial
government called a meeting of the Ministry staff to discuss how to protect itself from liability, and
it passed a Bill (“The Environmental Approvals Improvement Act”) which, among other things,
prohibited legal action against the government by anyone adversely affected by the Environment
Minister’s failure to apply environmental regulations and guidelines.
Many other groups warned senior government officials, ministers, and the Cabinet of the danger

of what it was doing, such as reducing inspections and not making the notification guidelines into
regulations. The warnings were ignored. Environmental groups prepared briefs. The Provincial
Auditor, in his annual reports, criticized the MOE for deficient monitoring of groundwater resources
and for failing to audit small water plants across the province. The International Joint Commission
expressed its concerns about Ontario’s neglect of water quality issues, and the Environmental
Commissioner of Ontario warned that the government was compromising environmental protection,
pointing specifically to the testing of drinking water as an area of concern.
In January 2000 (three months before the Walkerton accident), staff at the MOE’s Water Policy

Branch submitted a report to the Provincial government warning that “Not monitoring drinking
water quality is a serious concern for the Ministry in view of its mandate to protect public health.”
The report stated that a number of smaller municipalities were not up to the job of monitoring the
quality of their drinking water. It further warned that because of the privatization of the testing
labs, there was no longer a mechanism to ensure that the MOE and the local Medical Officer of
Health were informed if problems were detected in local water systems. The Provincial government
ignored the report.
The warnings were not limited to groups or individuals. Many adverse water quality reports

had been received from Walkerton between 1995 and 1998. During the mid to late 1990s, there
were clear indications that the water quality was deteriorating. In 1996, for example, hundreds
of people in Collingswood (a town near Walkerton), became ill after cryptosporidium (a parasite
linked to animal feces) contaminated the drinking water. Nobody died, but it should have acted
as a warning that the water safety control structure had degraded.
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The Walkerton Inquiry report notes that the decisions to remove the water safety controls
in Ontario or to reduce their enforcement were taken without an assessment of the risks or the
preparation of a risk management plan. The report says there was evidence that those at the
most senior levels of government who were responsible for the decisions considered the risks to be
manageable, but there was no evidence that the specific risks were properly assessed or addressed.
Up to this point, the Walkerton accident has been viewed in terms of inadequate control and

enforcement of safety constraints. But systems are not static. The next two sections describe the
dynamic aspects of the accident.

8.4.8 Understanding the Structural Dynamics of Accidents

Most hazard analysis and other safety engineering techniques treat systems and their environments
as a static design. But systems are never static: They are continually adapting and changing to
achieve their ends and to react to changes within themselves, in their goals, and in their environ-
ment. The original design must not only enforce appropriate constraints on behavior to ensure
safe operation, but it must continue to operate safely as changes and adaptations occur over time.
Accidents in a systems-theoretic framework are viewed as the result of flawed processes and control
structures that evolve over time.
This tendency for the safety control structure to change over time accounts for the observation

in Part I of this book that accidents in complex systems frequently involve a migration of the
system toward a state where a small deviation (in the physical system, human operator behavior,
or the environment) can lead to a catastrophe. The foundation for an accident is often laid years
before. One event may trigger the loss, but if that event had not happened, another one would
have triggered it. The safety control structure may degrade over time without any particular single
decision to increase risk but simply as a series of decisions that move the plant slowly toward a
situation where any slight error will lead to a major accident.
Humans and organizations can adapt and still maintain a low level of risk as long as the adap-

tations do not involve degradation in the control structure enforcing the system safety constraints.
If this degradation does occur, however, the system moves toward states of increasing risk until an
accident is triggered. The key here is that adaptation is not a random process. Instead, it is an
optimization process, and therefore should be predictable and potentially controllable. The acci-
dent model, in order to handle system adaptation over time, must consider the processes involved
in accidents: Processes control a sequence of events and describe system and human behavior as it
changes and adapts over time rather than considering individual events and human actions.

Asynchronous evolution is one type of dysfunctional adaptation (as described in Part II) that
can lead to degradation of the safety-control structure [63]. In asynchronous evolution, one part of
a system changes without the related necessary changes in other parts. Changes to subsystems may
be carefully designed, but consideration of their effects on other parts of the system, including the
control aspects, may be neglected or inadequate. Asynchronous evolution may also occur when one
part of a properly designed system deteriorates. In both these cases, the erroneous expectations of
users or system components about the behavior of the changed or degraded subsystem may lead
to accidents.
The public water safety control structure in Ontario started out with some weaknesses, which

were mitigated by the presence of other controls. In some cases, the control over hazards was
improved over time, for example, by the introduction of operator certification requirements and by
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requirements added in 1994 for continuous monitoring or chlorine residuals and turbidity in wells
directly influenced by surface water. While these improvements were helpful for new wells, the lack
of a policy to apply them to the existing wells and existing operators left serious weaknesses in the
overall public health structure.
At the same time, other actions, such as the reduction in inspections and the elimination of the

surveillance program reduced the feedback to the MOE and the MOH about the state of the system
components. The water testing laboratory privatization by itself did not degrade safety, it was the
way the privatization was implemented, i.e., without mandatory requirements for the private testing
labs to inform the government agencies about adverse test results and without informing the private
labs about the guidelines for this notification. Without regulations or oversight or enforcement of
safe operating conditions, and with inadequate mental models of the safety requirements, operating
practices have a tendency to change over time in order to optimize a variety of goals that conflict
with safety, in this case, cutting budgets, reducing government, and reducing red tape.
An example of asynchronous evolution of the control structure is the assumption by the munic-

ipal government (Mayor and City Council) that appropriate oversight of the public water system
operations was being done by the WPUC Commissioners. This assumption was true for the early
operations. But the elected Commissioners over time became more interested in budgets and less
expert in water system operation until they were not able to provide the necessary oversight. The
municipal government, not understanding the changes, did not make an appropriate response.
Changes may also involve the environment. The lack of a Provincial watershed protection

plan was compensated for by the Ministry of the Environment ensuring that the water systems
could not be affected by such runoff. The original Walkerton design satisfied this safety constraint.
But factory farms and farming operations increased dramatically and the production of animal
waste overwhelmed the existing design safeguards. The environment had changed, but the existing
controls were not revisited to determine whether they were still adequate. The system safety control
structure had not changed in response to the changes in the environment, allowing an unusual but
possible event (in this case, unusually heavy rain) to lead to a tragedy.
All of these changes in the Ontario water safety control structure over time led to the modified

control structure shown in Figure 8.16. Dotted lines represent communication, control or feedback
channels that still existed but had become ineffective. One thing to notice in comparing the original
structure at the top and the one at the bottom is the disappearance of many of the feedback loops.

8.4.9 Modeling the Behavioral Dynamics of the Walkerton Accident9

As discussed in the previous section, the system’s defenses or safety controls may degrade over
time due to changes in the behavior of the components of the safety control loop. The reasons
for the migration of the system toward a state of higher risk will be system specific and can be
quite complex. In contrast to the usually simple and direct relationships represented in event chain
accident models, most accidents in complex systems involve relationships between events and human
actions that are highly non-linear, involving multiple feedback loops. The analysis or prevention of
these accidents requires an understanding not only of the static structure of the system and of the

9Parts of this section were written by Mirna Daouk, Nicolas Dulac, and Karen Marais, who created the systems
dynamics model of the Walkerton accident. We are working on making these models easier to read and to create
so they can be used more widely by engineers without extensive training but the results of this research are not yet
ready for this book and will be added later.
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changes to this structure over time (the structural dynamics), but also the dynamics behind these
changes (the behavioral dynamics).
The previous section presented an approach to describing and analyzing the static safety control

structure and how to use that to describe the changes to that structure that occur over time. This
section presents a way to model and understand the dynamic processes behind the changes to the
static control structure and why it changed over time, potentially leading to ineffective controls and
unsafe or hazardous states.
The approach proposed uses the modeling techniques of system dynamics. The field of system

dynamics, created at MIT in the 1950’s by Jay Forrester, is designed to help decision makers learn
about the structure and dynamics of complex systems, to design high leverage policies for sustained
improvement, and to catalyze successful implementation and change. Drawing on engineering
control theory and the modern theory of nonlinear dynamical systems, system dynamics involves
the development of formal models and simulators to capture complex dynamics and to create an
environment for organizational learning and policy design.
These ideas are particularly relevant when analyzing system accidents. The world is dynamic,

evolving, and interconnected, but we tend to make decisions using mental models that are static,
narrow, and reductionist [110]. Thus decisions that might appear to have no effect on safety—or
even appear to be beneficial—may in fact degrade safety and increase risk. Using system dynamics,
one can, for example, understand and predict instances of policy resistance or the tendency for well-
intentioned interventions to be defeated by the response of the system to the intervention itself.
Figure 8.17 shows a system dynamics model for the Walkerton accident. The basic structures

in the model are variables, stocks (represented by rectangles), and flows (double arrows into and
out of stocks). Lines with arrows between the structures represent causality links, with a positive
polarity meaning that a change in the original variable leads to a change in the same direction in
the target variable. Similarly, a negative polarity means that a change in the original variable leads
to a change in the opposite direction of the target variable. Double lines across a link represent a
delay. Delays introduce the potential for instabilities in the system.
Modeling the entire systems’ dynamics is usually impractical. The challenge is to choose relevant

subsystems and model them appropriately for the intended purpose. STAMP provides the guidance
for determining what to model when the goal is risk management. In the example provided,
we focused primarily on the organizational factors, excluding the physical processes allowing the
mixing of manure with the source water. Depending on the scope or purpose of the model, different
processes could be added or removed.
According to systems dynamics theory, all the behavior dynamics of the system, despite their

complexity, arise from two types of feedback loops [110]: positive (reinforcing) and negative (bal-
ancing). In system dynamics terms, degradation over time of the safety control structure, as
represented by reinforcing loops, would lead inevitably to an accident, but there are balancing
loops, such as regulation and oversight, that control those changes. In Ontario, as feedback and
monitoring controls were reduced, the mental model of the central government leaders and the
ministries responsible for water quality about the current state of the water system became in-
creasingly divorced from reality. A belief that the water quality controls were in better shape than
they actually were led to disregarding warnings and continued reduction in what were regarded as
unnecessary regulation and red tape.
Accidents occur when the balancing loops do not adequately overcome the influences degrading

the safety controls. Understanding why this degradation occurred (why risk increased) is an im-
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portant part of understanding why the accident occurred and learning how to prevent repetitions
in the future, i.e. how to set up more effective safety control structures. It is also an important
part of identifying when the socio-technical system is moving toward a state of unacceptable risk.
Our Walkerton model includes a number of exogenous variables (pressure to cut budgets, at-

tempts by a conservative government to reduce business and government red tape, etc.) that act
as levers on the behaviors of the system. When these variables are changed without any considera-
tion of the dynamics of the system, the effectiveness of the safety control structure can deteriorate
progressively, with few if any visible signs. For instance, the attempts to reduce red tape decreased
the oversight of the ministries and municipalities. This decrease in oversight in turn had a negative
effect on the control and communication channels between the government and the laboratories
performing water quality analyses. Eventually, the laboratories stopped reporting the results of the
tests. Because of this lack of reporting, the Walkerton municipality was much slower to realize that
the water was contaminated, leading to a delay in the mobilization of the resources needed to deal
with the contamination, and the effectiveness of the advisories issued was thus greatly diminished,
increasing the risk of infection in the population.
Accident investigations often end with blame being assigned to particular individuals, often

influenced by legal or political factors. The system dynamics models, on the other hand, can show
how the attitude and behavior of individuals is greatly affected by the system structure and how
and why such behavior may change over time. For instance, operator competence depends on the
quality of training, which increases with government oversight but may decrease over time without
such oversight due to competing pressures. An operator’s fear of punishment, which in this case
led Stan Koebel to lie about the adverse water quality test reports, is balanced by compliance with
existing rules and regulations. This compliance, in turn, is directly influenced by the extent of
government oversight and by the government’s response to similar behavior in the past.

8.4.10 Addendum to the Walkerton Accident Analysis

The components included in the accident or safety analysis will obviously influence the causal factors
considered. In the Walkerton accident, considering only the technical process and the immediate
operators of the system, which are often the focus of accident investigation and prevention, provides
only a limited view of the causal factors. If assigning blame in an accident investigation is the goal,
then examining these two levels is usually enough to find someone that can be assigned responsibility
for the accident. When designing safer systems is the goal rather than identifying who to punish,
the emphasis needs to shift from cause (in terms of events or errors), which has a limiting, blame
orientation, to understanding accidents in terms of reasons, i.e., why the events and errors occurred.
Each time we have presented this STAMP analysis of the Walkerton accident to a group, one

or two members of the audience (usually employees of government regulatory agencies or accident
investigation authorities) have objected and declared that the government actions were irrelevant
and the accident cause was simply the actions of the Koebel brothers. Indeed, government repre-
sentatives argued this point of view to the Walkerton accident investigators, although the author
of the official Walkerton Inquiry report did not accept the viewpoint. Instead, the Inquiry report
included recommendations to establish regulatory requirements for agricultural activities with po-
tential impacts on drinking water sources, updating of standards and technology, improving current
practices in setting standards, establishing legally enforceable regulations rather than guidelines,
requiring mandatory training for all water system operators and requiring grandfathered operators
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to pass certification examinations within two years, developing a curriculum for operator train-
ing and mandatory training requirements specifically emphasizing water quality and safety issues,
adopting a province-wide drinking water policy and a Safe Drinking Water Act, strictly enforcing
drinking water regulations, and committing sufficient resources (financial and otherwise) to enable
the MOE to play their role effectively. To date, most of these recommendations have not been
implemented, but in May 2003 (exactly three years after the accident), the Koebel brothers were
arrested for their part in the events. Water contamination incidents continue to occur in small
towns in Ontario.

8.5 Conclusions

Accident models provide the basis for safety engineering—both in the analysis of accidents that have
occurred and in the development of techniques to prevent accidents. This paper has suggested that
dealing with safety in software-intensive systems will require more sophisticated accident models
than those currently in use, which were developed for electromechanical systems. A proposal was
made that models based on systems theory would be appropriate. One such model was described
and illustrated using a software-related accident. Other types of models are possible.
A major difference between a systems-theoretic accident model and a chain-of-events model is

that the former does not identify a root cause of an accident. Instead, the entire safety control
structure is examined and the accident process to determine what role each part of the process
played in the loss. While perhaps less satisfying in terms of assigning blame, the systems-theoretic
analysis provides more information in terms of how to prevent future accidents.



Chapter 9

Identifying Hazards and Hazard
Analysis

[I have just started writing this chapter, and it is still very rough and incomplete. Missing sections
will be covered in the class and class notes.]
Chapter 8 described how to use STAMP in analyzing accidents and identifying causal factors.

A major goal in any system program, however, is not just to investigate accidents after they occur
and use that information to improve future safety but to prevent their occurrence in the first place.
In a classic system safety program, system hazards are first identified and then a careful analysis

is performed to determine their potential causes. The resulting information is used in trade studies
to evaluate the risk associated with various system designs and to eliminate or control hazards
in the selected system design. The process of performing such hazard and risk analysis can be
informally defined as investigating an accident before it occurs: STAMP provides a more powerful
basis for performing such analysis in complex, software-intensive, and human-centered systems.
The first section of this chapter outlines the basic process of identifying system hazards and

safety constraints. Then a new type of hazard analysis based on STAMP is described. The final
section shows how risk can be considered in very early system concept definition and trade studies.

9.1 Identifying Hazards and Safety Constraints

The first step in any design for safety program should be the identification of the system hazards.
To do this, accidents must be defined for the particular system being developed. An accident need
not involve loss of life, but it does result in some loss that is unacceptable to the customers or
users. For example, for spacecraft, accidents may include loss of the astronauts (if the spacecraft
is manned), death or injury to the support personnel, nonaccomplishment of the mission, major
equipment damage, environmental pollution, etc. Once an accident has been defined, the hazards
associated with those losses can be identified.
To deal with complex systems, as emphasized continually throughout this book, accidents must

be thought of as complex processes and prevention measures will involve the entire socio-technical
system that can potentially have an affect on this process. Each socio-technical system component
may control only part of the overall accident process. For example, an aircraft collision avoidance
system like TCAS can only provide information and advisories that keep aircraft separated, but has

195
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no control over whether the pilots follow the advisories, the current weather and visibility conditions
and the route of the aircraft with respect to them, performance of the aircraft, performance of the
ground-based air traffic control system, etc. These other aspects are under the control of other
components of the larger air traffic management system.
The hazards associated with a particular system component, therefore, are not equivalent to

accidents but instead are factors involved in accidents. In a chemical plant, the hazard of releasing
toxic chemicals into the atmosphere might not necessarily result in losses if the weather conditions
lead to dissipation of the chemicals into the atmosphere. While the hazard could be defined as the
death or injury of residents around the plant, there may be many factors involved in such a loss
that are beyond the control of the plant designers and operators, such as atmospheric conditions
(amount and direction of wind, etc.) at the time of the release.
For practical reasons, the hazards associated with any particular system component should

be defined as conditions over which the system or subsystem designer has control (or at least
partial control). If the larger socio-technical system is being considered, the number of hazards
and potential actions to prevent them increases, for example, controlling land use near chemical
plants or the siting of plants through zoning laws, and emergency evacuation and medical treatment
planning. Each component of the socio-technical system may have different aspects of the accident
under their control and thus be responsible for different parts of the accident process (hazards).
By considering the larger socio-technical system and not just the technical components, the

most cost-effective way to eliminate or control hazards can be identified. If only part of the larger
system is considered, the compromises required to eliminate or control the system hazard in that
part of the overall system design may be much greater than would be necessary if other parts
of the overall system are considered. For example, a particular hazard associated with launching
a spacecraft might be controllable in the spacecraft design, in the physical launch infrastructure,
by launch procedures, by the launch control system, or by a combination of these. If only the
spacecraft design is considered in the hazard analysis process, hazard control may require more
tradeoffs than if the hazard is partially or completely eliminated or controlled by design features
in other parts of the launch process.
In addition, several components may have responsibilities related to the same hazards. The

designers of the chemical plant and the relevant government agencies, for example, may both be
concerned with plant design features potentially leading to inadvertent toxic chemical release. The
government roles, however, may be restricted to design and construction approvals and inspection
processes while the plant designers have basic design creation responsibilities. Consideration of
hazards from the larger socio-technical will usually allow better solutions to be considered.
For practical reasons, a small set of high-level hazards should be identified first. Even complex

systems usually have fewer than a dozen high-level hazards. Starting with too large a list at the
beginning, usually caused by including refinements and causes of the high-level hazards in the list,
leads to a disorganized and incomplete hazard identification and analysis process.
Consider aircraft collision control. The relevant accident is clearly a collision between two

airborne aircraft. One (but only one) of the controls used to avoid this accident is airborne collision
avoidance systems like TCAS II. The hazards related to TCAS II are:

1. TCAS causes or contributes to a near midair collision (NMAC), defined as a pair of controlled
aircraft violating minimum separation standards.

2. TCAS causes or contributes to a controlled maneuver into the ground.
3. TCAS causes or contributes to the pilot losing control over the aircraft.
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4. TCAS interferes with other safety-related aircraft systems.
5. TCAS interferes with the ground-based Air Traffic Control system (e.g., transponder trans-
missions to the ground or radar or radio services).

6. TCAS interferes with an ATC advisory that is safety-related (e.g., avoiding a restricted area
or adverse weather conditions).

Ground-based Air Traffic Control also plays an important role in collision avoidance, although
it has responsibility for a larger set of hazards:

1. Controlled aircraft violate minimum separation standards (NMAC).
2. An airborne controlled aircraft enters an unsafe atmospheric region.
3. A controlled airborne aircraft enters restricted airspace without authorization.
4. A controlled airborne aircraft gets too close to a fixed obstacle other than a safe point of
touchdown on assigned runway (controlled flight into terrain or CFIT).

5. A controlled airborne aircraft and an intruder in controlled airspace violate minimum sepa-
ration.

6. A controlled aircraft operates outside its performance envelope.
7. An aircraft on the ground comes too close to moving objects or collides with stationary objects
or leaves the paved area.

8. An aircraft enters a runway for which it does not have a clearance.
9. A controlled aircraft executes an extreme maneuver within its performance envelope.
10. Loss of aircraft control.

A system is a recursive concept, that is, a system at one level may be viewed as a subsystem
of a larger system. Unsafe behavior (hazards) at the system level can be translated into hazardous
behaviors at the component or subsystem level. Note, however, that the reverse (bottom-up) process
is not possible. Consider a train with an automated door system. The system level hazards related
to the automated door system include a person being hit by closing doors, someone falling from a
moving train or from a stationary train that is not properly aligned with a station platform, and
passengers and staff being unable to escape from a dangerous environment in the train compartment
(e.g., a fire). Translating these system hazards into the related hazardous behavior of the automated
door system itself results in the following:

1. Door is open when the train starts.
2. Door opens while train is in motion.
3. Door opens while improperly aligned with station platform.
4. Door closes while someone is in the doorway.
5. Door that closes on an obstruction does not reopen or reopened door does not reclose.
6. Doors cannot be opened for emergency evacuation.

After the system and component hazards are identified, the next major goal is to identify the
safety-related requirements and design constraints necessary to prevent the hazards from occurring.
These constraints will be used in the system design and tradeoff analyses. When the system
engineering process decomposes functions and allocates them to various system components, the
constraints must also be refined and identified for each component. The process then iterates over
the individual components.
Figure 9.1 shows an example of the design constraints that might be generated from the au-

tomated train door hazards. Note that the third constraint potentially conflicts with the last one
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HAZARD
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Figure 9.1: Design constraints for train door hazards

and the resolution of this conflict will be an important part of the system design process. Again,
identifying these types of requirements and conflicts early in the design process will lead to better
solutions. As the design process progresses and design decisions are made, these requirements and
constraints will be refined and expanded. An example is shown in Chapter 11.
As a final example, consider the high-level safety-related design constraints for TCAS. These are

shown in Figure [not yet created]. Figure 9.2 shows the high-level requirements and constraints for
some of the air traffic control hazards identified above. Comparing the two is instructive. Some are
closely related, such as the requirement to provide advisories that maintain safe separation between
aircraft. This example of overlapping control raises important concerns about potential conflicts
and coordination problems that need to be resolved. As noted in Chapter 7, accidents often occur
in the boundary areas between controllers and when multiple controllers control the same process.
The inadequate resolution of the conflict between multiple controller responsibilities for aircraft
separation contributed to the collision of two aircraft over the town of Euberlingen (Germany) in
July 2003 when TCAS and the ground air traffic controller provided conflicting advisories to the
pilots.
Hazards can also be related to the interaction between components, for example the interaction

between attempts by air traffic control to prevent collisions and the activities of pilots to maintain
safe control over the aircraft (see constraint 6b in Figure 9.2). These types of potentially dysfunc-
tional interactions obviously need to be considered during system design and included in the system
hazard analysis.
How are the design constraints identified and refined? This process usually involves hazard

analysis. The next section describes a new hazard analysis method, based on STAMP, to assist in
accomplishing this goal.
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Figure 9.2: High-level requirements and constraints for air traffic control
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9.2 STAMP-Based Hazard Analysis (STPA)

Although STPA was first envisioned and developed for the technical parts of the system, we have
since discovered that it works equally well on the social and organizational aspects. This section de-
scribes the use of STPA on technical components. Chapter 10 describes its use in an organizational
risk analysis.
STPA starts in the early life cycle stages and continues through the life of the system. Its use

during design can support a safety-driven design process where the hazard analysis influences and
shapes the early system design decisions and then is iterated and refined as the design evolves and
more information becomes available.
SFTA has the same general goals as any hazard analysis: (1) identification of the system

hazards and the related safety constraints necessary to ensure acceptable risk and (2) accumulation
of information about how those constraints could be violated so it can be used in eliminating,
reducing, and controlling hazards.
The process starts with identifying the system requirements and design constraints necessary

to maintain safety. In later steps, STPA assists in the top-down refinement of the safety-related
system requirements and constraints into requirements and constraints on the individual system
components. The overall process provides the information and documentation necessary to en-
sure the safety constraints are enforced in the system design, development, manufacturing, and
operations.
The process of safety-driven design and the use of STPA to support it is illustrated here with the

design of a non-existent Space Shuttle robotic Thermal Tile Processing System (TTPS)1. A speci-
fication of the example is contained in Appendix F. The TTPS will be responsible for inspecting
and waterproofing the thermal protection tiles on the belly of the Shuttle.
The process starts, like any design process, with identifying general environmental constraints

on the system design. These constraints derive from physical properties of the Orbital Processing
Facility (OPF) at KSC, such as the size constraints on the physical system components and necessity
of any mobile robotic components to deal with crowded work areas and for humans to be in the
area. For example, the mobile robot must enter the facility through personnel access doors 1.1 m
(42”) wide. The layout within the OPF allows a length of 2.5 m (100”) for the robot. There are
some structural beams whose heights are as low as 1.75 m (70”), but once under the orbiter the
tile heights range from about 2.9 meters to 4 meters. Thus the compact roll-in form of the mobile
system must maneuver these spaces and also raise its inspection and injection equipment up to
heights of 4 meters to reach individual tiles while meeting 1 mm accuracy requirements.
The next step, after the high-level system requirements (functional goals such as inspection

and waterproofing) and environmental conditions have been identified, is to identify hazardous
conditions that could be encountered during system operation (i.e., perform a preliminary hazard
analysis).
Different initial system configurations could be chosen that would introduce different hazards.

For our example, the initial configuration selected, given the identified high-level requirements and
environmental constraints, consists of a robot containing a mobile base and a manipulator arm. As
the concept and detailed design proceeds, information generated about hazards and design tradeoffs
may lead to changes in the initial configuration. Alternatively, multiple design configurations may
be considered in parallel.

1Nicolas Dulac created most of the example in this section



9.2. STAMP-BASED HAZARD ANALYSIS (STPA) 201

The next step is to identify the system hazards, such as contact of humans with waterproofing
chemicals, fire or explosion, movement of the robot or manipulator arm causing injury to humans
or damage to the orbiter, etc. Instability of the mobile base is used as the hazard considered in the
rest of this section.
In general, safety-driven design involves first attempting to eliminate the hazard from the design

and, if that is not possible or requires unacceptable tradeoffs, reducing the likelihood the hazard
will occur, reducing the negative consequences of the hazard if it does occur, and implementing
contingency plans for dealing with the hazard.
As design decisions are made, an STPA-based hazard analysis is used to inform those decisions.

Early in the system design process, little information is available so the hazard analysis will be
very general at first and will be refined and augmented as additional information emerges from the
system design activities. For example, instability of the mobile base could lead to human injury or
damage to the orbiter. A possible solution is to make the robot base so heavy that it cannot become
unstable, no matter how the manipulator arm is positioned, thus eliminating the hazard. A heavy
base, however, could increase the damage caused by the base coming into contact with a human or
object or make it difficult for workers to manually move the robot out of the way in an emergency
situation. An alternative solution is to make the base long and wide so the moment created by the
operation of the manipulator is compensated by the moments created by base supports that are far
from the robot’s center of mass. A long and wide base could remove the hazard but may violate
the environmental constraints in the facility layout (the need to maneuver through doors and in
the crowded OPF).
Let’s say that analysis of the environmental constraints results in a maximum length for the

robot of 2.5 m and a width no larger than 1.1 m. Given the required maximum extension length
of the manipulator arm and the weight of the equipment that will need to be carried, a simple
analysis shows that the length of the robot base is sufficient to prevent any longitudinal instability,
but the width of the base is clearly not sufficient to prevent lateral instability.
A solution that might be considered is the use of lateral stabilizer legs that are deployed when

the manipulator arm is extended but must be retracted when the robot base moves.
At the initial stages, we identified only the general hazards, e.g., instability of the robot base

and the related system design constraints that the mobile base must not be capable of falling over
under worst-case operational conditions. As design decisions are proposed and analyzed, they will
lead to additional refinements in the design constraints. For example, a solution to the stability
problem is to use lateral stabilizer legs that are deployed when the manipulator arm is extended
but must be retracted when the robot base moves. Under this scenario, two new safety design
constraints are identified: (1) the manipulator arm must move only when the stabilizers are fully
deployed and (2) the stabilizer legs must not be retracted until the manipulator arm is fully stowed.
STPA is used to further refine these constraints and to evaluate the resulting designs.
STPA starts by defining an initial hierarchical control structure for the system. A candidate

structure for the mobile robot is shown in figure 9.3. As with any part of the system design, the
candidate control structure will have to be revisited when more information become available. In
the candidate structure, a decision is made to introduce a human operator in order to supervise
the robot during its operation and to perform safety-critical tasks. The STPA process will identify
the implications of this decision and will assist in analyzing the allocation of tasks to the various
components to determine the safety tradeoffs involved.
Using the initial control structure, the remaining activities in STPA are to identify poten-
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Figure 9.3: A Candidate Structure for the TTPS

tially hazardous control actions by each of the system components that could violate the safety
constraints, determine the causal factors that could lead to these hazardous control actions, and
prevent or control them in the system design. The process thus involves a top-down identification
of scenarios in which the safety constraints could be violated so they can be used to guide design
decisions. This general process is similar to fault tree analysis, but provides more types of scenarios
and handles design errors better.
In general, a controller can provide four different types of inadequate control:

1. A required control action is not provided.
2. An incorrect or unsafe action is provided.
3. A potentially correct or adequate control action is provided too late or at the wrong time.
4. A correct control action is stopped too soon or continued too long.

For the TTPS mobile based and the preliminary design decisions described above, the stability
constraint may be violated if the component responsible for controlling the position of the stabilizer
legs:

1. Does not command a deployment of the stabilizer legs when arm movements are enabled.
2. Commands a retraction of the stabilizer legs when the manipulator arm is not stowed.
3. Commands a retraction of the stabilizer legs after arm movements are enabled or commands
a retraction of the stabilizer legs before the manipulator arm is stowed.

4. Stops extension of the stabilizer legs before they are fully stowed.

These inadequate control actions can be restated as system safety constraints:
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1. The controller must ensure the stabilizer legs are extended whenever arm movements are
enabled.

2. The controller must not command a retraction of the stabilizer legs when the manipulator
arm is not in a stowed position.

3. The controller must command a deployment of the stabilizer legs before arm movements
are enabled; the controller must not command a retraction of the stabilizer legs before the
manipulator arm is stowed.

4. The controller must not stop the leg extension until the legs are fully extended.

Similar constraints will be identified for all hazardous commands, for example, the arm controller
must not enable manipulator arm movement before the stabilizer legs are completely extended.
The above system safety constraints might be enforced through physical interlocks, human

procedures, etc. The STPA analysis will in the next steps provide information (1) to evaluate and
compare the different design choices, (2) to design fault tolerance features, (3) to guide the test and
verification procedures (or training for humans). We have used a formal behavior system modeling
language, SpecTRM-RL (see Appendix D), to implement a continuous simulation environment to
augment the paper analyses.
To produce detailed scenarios for the violation of safety constraints, the control structure is

augmented with process models. Figure 9.4 shows a process model of the mobile robot containing
the information available at this point in the system design. The preliminary design of the process
models comes from the information necessary to ensure the system safety constraints hold. For
example, the constraint that the arm controller must not enable manipulator movement before
the stabilizer legs are completely extended implies that there must be some type of feedback to
determine when the leg extension has been completed.
Either (1) a general controller model can initially be constructed and the control responsibil-

ities allocated to individual controllers (e.g., leg controllers and arm controllers) in later steps to
optimize fault tolerance and communication requirements or (2) a more preliminary allocation can
be proposed and then analyzed and refined. Decisions about allocation of functionality to system
components are considered as the hazard analysis and system design continues.
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The control loop structure and process models are now used to identify ways the system could
get into a hazardous state, i.e., the identified safety design constraints are violated. The process is
driven by the classification of control flaws leading to hazards shown in Figure 7.2, that is, either
the control actions or the execution of the control actions is inadequate. Each part of the control
loop is evaluated with respect to the control flaw classification in Figure 7.2 and its potential to
lead to the identified reasons for inadequate enforcement of the safety constraints.
As an example, consider how the process model of the state of the stabilizer legs could become

inconsistent with the actual state. One possible scenario involves an external object preventing
the complete extension of the stabilizer legs. In that case, the robot controller (either human or
automated) may assume the stabilizer legs are extended because the extension motors have been
powered up (a common type of design error). Subsequent movement of the manipulator arm would
then violate the identified safety constraints.
Accidents often occur during initial system startup and when restarting after a temporary

shutdown. For example, the requirements for the mobile robot might specify that it must be possible
to move the mobile base out of the way in case of an emergency. If the mobile robot requires an
emergency shutdown while servicing the tiles, the stabilizer legs may have to be manually retracted
in order to move the robot out of the way. When the robot is restarted, the controller may assume
that the stabilizer legs are still extended and arm movements may be commanded that would violate
the safety constraints. Such scenarios must be prohibited in the system design.
In later stages of system development, when the logic of the controller has been specified, it can

be analyzed to ensure that the identified hazardous scenarios cannot occur. The analysis results
are also useful in testing and other review activities.
Additional analysis is required when humans are involved in the control loops. The analysis

cannot simply consider the normative procedures because humans may not follow specified proce-
dures. Humans will adapt their behavior to be consistent with the reality of their work environment
and informal work systems will emerge as a more efficient way of attaining the conflicting goals of
task performance, schedule pressures, and resource scarcity. STPA starts from the hazard, working
backward to identify the types of deviations that could lead to it and can identify the types of
human behavioral deviations from procedures that can lead to hazardous system states. System
dynamics models can be used to assist in this process. Once these hazardous human behaviors are
identified, the system design might be changed to prevent or reduce their occurrence or, if this is not
possible, prevention and mitigation strategies might involve training, monitoring for safety-critical
deviations, and developing operator skills at judging when, when not, and how to adapt procedures
to local circumstances.
Just as operator behavior may degrade or change over time, so may other parts of the hierarchi-

cal safety control structure. An effective safety control structure at the beginning of the system life
cycle may become less effective at enforcing safety constraints as a result of asynchronous evolution
of the components of the structure or eroding control mechanisms. Traditional hazard analyses
are static in nature, focusing on the ability of the system to avoid unsafe states given the current
system design and its environment. In contrast, a STAMP-based hazard analysis assumes that
systems are dynamic in nature and will evolve and adapt based on changes within the system and
in its operating environment as well as economic pressures, tight schedules, and creeping expecta-
tions. A complete hazard analysis must therefore identify the possible changes to the safety control
structure over time that could lead to a high-risk state. We believe system dynamics models can
be useful in identifying migration of the system to states of elevated risk. Chapter 10 describes this
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further. This information can be used to prevent such changes through system design, or, if that is
not possible, to generate operational metrics and auditing procedures to detect such degradation
and to design controls or maintenance, system change, and upgrade activities.

9.3 Integrating Risk into Early System Trade Studies

(See paper on this topic in class directory)
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Chapter 10

Organizational Risk Analysis and
Performance Monitoring

Define risk analysis. Most done in an ad hoc way. This chapter presents a rigorous way to perform
a risk analysis based on STAMP, STPA, and basic system safety principles.
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Chapter 11

Process and Specifications

Safety must be designed into a system from the beginning, which requires that the designers have
the information necessary to accomplish that goal. Too often today, system safety engineers are
busy creating safety analyses while the system engineers are in parallel making critical decisions
about system design and concepts of operations that are not based on that hazard analysis. By
the time the system engineers get the information created by the system safety engineers, it is too
late to have the impact on design decisions that are necessary to be most effective. If and when
they get the results of the system safety activities, often in the form of a critique of the design late
in the development process, the concerns are frequently ignored or argued away because changing
the design at that time is too costly.
Documenting and tracking hazards and their resolution are basic requirements for any effective

safety program. But simply having the safety engineer track them is not enough—information must
be derived from them to inform the system engineering process and that information needs to be
specified and recorded in a way that has an impact on the decisions made during system design
and operations. To have such an impact, the safety-related information required by the engineers
needs to be integrated into the environment in which safety-related engineering decisions are made.
Engineers are unlikely to be able to read through volumes of hazard analysis information and relate
it easily to the specific component upon which they are working. The information the system
safety engineer has painfully generated must be presented to the system designers, implementers,
maintainers, and operators in a way that they can easily find it when they need to make decisions
based on it.
In addition to the conceptual design stages, information needs to be presented in a form that

people can learn from, apply to their daily jobs, and use throughout the life cycle of projects. Too
often, preventable accidents have occurred due to changes that were made after the initial design
period. Accidents are frequently the result of safe designs becoming unsafe over time when changes
(in the system itself or in its environment) violate the basic assumptions of the original hazard
analysis. These problems are most important in complex systems where nobody is able to keep all
the information necessary to make safe decisions in their head.
The key to avoiding these problems lies in specifications. While engineers may have been

able to get away with minimal specifications during development of the simpler electromechanical
systems of the past, specifications are critical to the successful engineering of systems with the size
and complexity we are attempting to build today. Specifications are no longer simply a way of
archiving information, but need to play an active role in the system engineering process.

209



210 CHAPTER 11. PROCESS AND SPECIFICATIONS

Specification languages can help (or hinder) human performance of the various problem-solving
activities involved in system requirements analysis, hazard analysis, design, review, verification
and validation, debugging, maintenance and evolution (sustainment). They do this by including
notations and tools that enhance our ability to reason about particular properties, construct the
system and the software in it to achieve them, and validate (at each step, starting from the very
beginning of system development) that the evolving system has the desired qualities. In addition,
systems and particularly the software components are continually changing and evolving; they must
be designed to be changeable and the specifications must support evolution without compromising
the confidence in the properties that were initially verified.
This chapter describes a system engineering process with system safety integrated and embedded

in it and an approach, called intent specifications, to designing system and software specifications
that potentially enhances human processing and use.

11.1 An Integrated System Engineering/System Safety Process

The system engineering process becomes more critical as our systems increase in size and complexity.
Important system-level properties, such as safety and security, must be built into the design of these
systems from the beginning; they cannot be added on or simply measured afterward. Up-front
planning and changes to the development process are needed to achieve these objectives.
The basic system engineering process is outlined in Chapter 4. This process provides a logical

structure for problem solving. Briefly, first a need or problem is specified in terms of objectives that
the system must satisfy and criteria that can be used to rank alternative designs (see Figure 4.3).
Then a process of system synthesis takes place that results in a set of alternative designs. Each of
these alternatives is analyzed and evaluated in terms of the stated objectives and design criteria,
and one alternative is selected to be implemented. In practice, the process is highly iterative:
The results from later stages are fed back to early stages to modify objectives, criteria, design
alternatives, and so on.
Design alternatives are generated through a process of system architecture development and

analysis. The system engineers break down the system into a set of subsystems, together with the
functions and constraints imposed upon the individual subsystem designs, the major system inter-
faces, and the subsystem interface topology. These aspects are analyzed with respect to desired
system performance characteristics and constraints, and the process is iterated until an accept-
able system design results. The preliminary design at the end of this process must be described
in sufficient detail that subsystem implementation can proceed independently. The subsystem
requirements and design processes are simply subsets of the larger system engineering process.
System engineering views each system as an integrated whole even though it is composed of

diverse, specialized components, which may be physical, logical (software), or human. The objec-
tive is to design subsystems that when integrated into the whole provide the most effective system
possible to achieve the overall objectives. The most challenging problems in building complex sys-
tems today arise in the interfaces between components. One example is the new highly automated
aircraft where most incidents and accidents have been blamed on human error, but more properly
reflect difficulties in the collateral design of the aircraft, the avionics systems, the cockpit displays
and controls, and the demands placed on the pilots.
Building such systems requires integrating both system safety and human factors into the basic

system engineering process. Figure 11.1 shows the types of activities that need to be performed in
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such an integrated process and the system safety and human factors inputs and products.

Select one alternative 
for implementation

Identify objectives and criteria

 

Generate alternative designs,
identifying subsystem functions
and constraints, major system

interfaces, and subsystem
interface topology

objectives and criteria
Evaluate alternatives against

Figure 11.1: System Safety and Human Factors Aspects of the System Engineering Process

During program and project planning, a system safety plan, standards, and safety control
structure need to be developed including policies, procedures, the safety management and control
structure, and communication channels. An organizational risk analysis (see Chapter 10) can
provide into to this process.
The system goals and environmental constraints provide input to the identification and catego-

rization of system hazards, which along with the preliminary hazard analysis assists in identifying
the safety-related system functional, operational, and organizational requirements and design con-
straints.
System hazard analysis should inform and guide the generation of the system conceptual design

and system architecture to ensure that safety is a major consideration in the system design decisions.
System hazard analysis techniques, such as STPA, can be used to generate safe design alternatives
or applied to the design alternatives generated in some other way to determine if and how the
system can get into hazardous states and to eliminate or control hazards in the designs.
Once the general system design concepts are agreed upon, the next step usually involves devel-

opment of the system architecture and allocation of behavioral requirements to the subsystems and
components. Validation of this system architecture should include a subsystem hazard analysis,
perhaps including the modeling and safety analysis of the specified component behavior require-
ments.
The resulting subsystem and component safety requirements and design constraints (which

should be traceable back to the system safety requirements and design constraints) will be used in
the subsystem and component implementation and development activities and in the verification
(testing and reviews).
During field testing and operations, safety change analysis, incident and accident analysis,

periodic audits and performance monitoring is required to ensure that the operational system is
and remains safe.



212 CHAPTER 11. PROCESS AND SPECIFICATIONS

Designing safety into the system in this manner requires that the information needed for decision
making is available to the right people at the right time. Specifications are critical in this process.

11.2 The Role of Specifications in Engineering Complex Systems

While the word complex is used frequently, it is rarely defined. One problem is that there are many
different types or aspects of complexity and reducing it to one definition or metric oversimplifies
the concept. Another problem is that complexity is a moving target—things that were complex to
engineers in the 17th century might seem simple to us now given intervening advances in scientific
and engineering knowledge. The latter observation provides a starting point for a general definition
of complexity: a simple system has a small number of unknowns in its interactions within the system
and with its environment. Systems become increasingly complex as the number of unknowns
increases.
While there are many different aspects of complexity, the underlying factor in each is intellectual

manageability. For example, interactive complexity might be defined in terms of the interactions
among the system components and its environment. A system is interactively complex when the
level of interactions reaches the point where they cannot be thoroughly planned, understood, antic-
ipated, and guarded against. In interactively complex systems, designers find it difficult to consider
all the potential system states and operators have difficulty handling all normal and abnormal sit-
uations and disturbances safely and effectively. Similarly, non-linear complexity might be defined
as occurring when cause and effect are not related in an obvious way, dynamic complexity arises in
those system aspects related to change over time, and one type of structural complexity occurs when
the structural decomposition of the system is not consistent with the functional decomposition.
All of these aspects of complexity are related to intellectual manageability. Complexity is not

simply a property of the system itself, but includes the intellectual capabilities of the designers,
operators, and users of the system. Confidence can be provided about various quality factors of the
systems we build by designing systems that are intellectually manageable. Unfortunately, that puts
severe limits on what we can build and accomplish. An important goal of the tools we create and
use in system engineering is to stretch the limits of intellectual manageability (complexity) that we
can handle. This chapter considers stretching intellectual manageability from the system designers
standpoint. The next one considers who to design systems that are intellectually manageable for
the operators or users.
Appropriate specifications, including models and analysis tools, can stretch our current intel-

lectual limits to allow building more complex systems with confidence they will satisfy our goals,
including safety goals. The rest of this chapter describes an approach, called Intent Specifications,
to achieving these goals that is grounded on psychological principles of how humans use specifica-
tions to solve problems as well as on basic systems theory and system engineering principles. Many
of these principles are derived from what cognitive psychologists, engineers, and human factors ex-
perts have learned about designing and specifying human–machine interfaces. The human-machine
interface provides a representation of the state of the system that the operator can use to solve
problems and perform control, monitoring, and diagnosis tasks. Just as the control panel in a plant
is the interface between the operator and the plant, engineering specifications are the interface
between the system designers and builders and between the builders and maintainers. The spec-
ifications help the designer, builder, tester, debugger, or maintainer understand the system well
enough to create a physical form or to find problems in or change the physical form.
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The next three sections describe the rationale behind the design of intent specifications. Then
intent specifications are defined and an extensive example shown.

11.3 Specifications and Human Problem Solving

The language in which we specify problems has an effect on our problem-solving ability and the
errors we make while solving those problems. Our specification language design should reflect what
is known about human limitations and capabilities.
A problem-solving activity involves achieving a goal by selecting and using strategies to move

from the current state to the goal state. Success depends on selecting an effective strategy or
set of strategies and obtaining the information necessary to carry out that strategy successfully.
Specifications used in problem-solving tasks are constructed to provide assistance in this process.
Cognitive psychology has firmly established that the representation of the problem provided to
problem solvers can affect their performance (see Norman [82] for a survey of this research). In fact,
Woods claims that there are no neutral representations [128]: The representations available to the
problem solver either degrade or support performance. For example, problem-solving performance
can be improved by providing representations that reduce the problem solver’s memory load [59]
and that display the critical attributes needed to solve the problem in a perceptually salient way
[51].
A problem-solving strategy is an abstraction describing one consistent reasoning approach char-

acterized by a particular mental representation and interpretation of observations [98]. Examples of
strategies are hypothesis and test, pattern recognition, decision tree search, reasoning by analogy,
and topological search.
The strategy selected will depend on the problem-solver’s mental model. Each of the users of

a specification may (and probably will) have different mental models of the system, depending on
such factors as prior experience, the task for which the model is being used, and their role in the
system [1, 30, 72, 100]. The same person may have multiple mental models of a system, and even
having two contradictory models of the same system does not seem to constitute a problem for
people [72]
Strategies also seem to be highly variable. A study that used protocol analysis to determine the

trouble-shooting strategies of professional technicians working on electronic equipment found that
no two sequences of actions were identical, even though the technicians were performing the same
task every time (i.e., finding a faulty electronic component) [93]. Not only do search strategies vary
among individuals for the same problem, but a person may vary his or her strategy dynamically
during a problem-solving activity: Effective problem solvers change strategies frequently to circum-
vent local difficulties encountered along the solution path and to respond to new information that
changes the objectives and subgoals or the mental workload needed to achieve a particular subgoal
[93, 28].
It appears, therefore, that to allow for multiple users and for effective problem solving (includ-

ing shifting among strategies), specifications should support all possible strategies that may be
needed for a task to allow for multiple users of the representation, for shedding mental workload by
shifting strategies during problem solving, and for different cognitive and problem-solving styles.
Specifications need to allow users to easily find or infer the information they need regardless of their
mental model or preferred problem-solving strategies. That is, the specification design should be
related to the general tasks users need to perform with the information but not be limited to spe-
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cific predefined ways of carrying out those tasks. The goal of specification language design should
be to make it easy for users to extract and focus on the important information for the specific
task at hand without assuming particular mental models or limiting the problem-solving strategies
employed by the users of the document.
What types of specifications are needed to support humans in the system engineering process

and to specify the results? Design decisions at each stage must be mapped into the goals and
constraints they are derived to satisfy, with earlier decisions mapped (traced) to later stages of
the process, resulting in a seamless and gapless record of the progression from high-level system
requirements down to component requirements and designs. The specifications must also support
the various types of formal and informal analysis used to decide between alternative designs and to
verify the results of the design process. Finally, they must assist in the coordinated design of the
components and the interfaces between them.

11.3.1 What Should Specifications Contain?

This question is critical because cognitive psychologists have determined that people tend to ignore
information during problem solving that is not represented in the specification of the problem. In
experiments where some problem solvers were given incomplete representations while others were
not given any representation at all, those with no representation did better [35, 107]. An incomplete
problem representation actually impaired performance because the subjects tended to rely on it as
a comprehensive and truthful representation—they failed to consider important factors deliberately
omitted from the representations. Thus, being provided with an incomplete problem representation
(specification) can actually lead to worse performance than having no representation at all [118].
One possible explanation for these results is that some problem solvers did worse because they

were unaware of important omitted information. However, both novices and experts failed to use
information left out of the specifications with which they were presented, even though the experts
could be expected to be aware of this information. Fischoff, who did such an experiment involving
fault tree diagrams, attributed it to an “out of sight, out of mind” phenomenon [35].
One place to start in deciding what should be in a system specification is with basic systems

theory, which defines a system as a set of components that act together as a whole to achieve some
common goal, objective, or end. The components are all interrelated and are either directly or
indirectly connected to each other. This concept of a system relies on the assumptions that the
system goals can be defined and that systems are atomistic, that is, capable of being separated into
component entities such that their interactive behavior mechanisms can be described.
The system state at any point in time is the set of relevant properties describing the system at

that time. The system environment is a set of components (and their properties) that are not part
of the system but whose behavior can affect the system state. The existence of a boundary between
the system and its environment implicitly defines as inputs or outputs anything that crosses that
boundary.
It is very important to understand that a system is always a model—an abstraction conceived

by the analyst. For the same man-made system, an observer may see a different purpose than the
designer and may also focus on different relevant properties. Thus, there may be multiple “correct”
system models or specifications. To ensure consistency and enhance communication, a common
specification is required that defines the:

• System boundary,
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• Inputs and outputs,
• Components,
• Structure,
• Relevant interactions between components and the means by which the system retains its
integrity (the behavior of the components and their effect on the overall system state), and

• Purpose or goals of the system that makes it reasonable to consider it to be a coherent entity
[18].

All of these system properties need to be included in a complete system model or specification
along with a description of the aspects of the environment that can affect the system state. Most of
these aspects are already included in our current specification languages. But they are not enough.
One of the most important limitations of the models underlying most current specification

languages, both formal and informal, is that they cannot allow us to infer what is not explicitly
represented in the model, including the intention of (reason for) doing something a particular
way. This limitation became very clear when some graduate students and I attempted to reverse
engineer a requirements specification for the TCAS II aircraft collision avoidance system during
the TCAS II certification effort. We found it impossible to derive the requirements specification
strictly from the pseudocode and an accompanying English language description of the pseudocode
algorithms [69]. Although the basic information was all there, the intent was largely missing and
often the mapping from goals or constraints to specific design decisions. Therefore, distinguishing
between requirements and artifacts of the implementation was not possible in all cases. As has been
discovered by most people attempting to maintain such systems, an audit trail of the decisions and
the reasons why decisions were made is absolutely essential. This was not done by TCAS over the
15 years of its development, and those responsible for the system at the time we got involved were
attempting to reconstruct decision-making information from old memos and corporate memory.
For the most part, only one person was able to explain why some decisions were made or why
things were designed in a particular way.
Intent information is critical in the design and evolution of systems. As Harman has said,

practical reasoning is concerned with what to intend while formal reasoning with what to believe
[44]. “Formal logic arguments are a priori true or false with reference to an explicitly defined
model, whereas functional reasoning deals with relationships between models, and truth depends
on correspondence with the state of affairs in the real world” [44].
There is widespread agreement about the need for design rationale (intent) information in or-

der to understand complex systems or to correctly and efficiently change or analyze the impact of
changes to them. Without a record of intent, important decisions can be undone during mainte-
nance: Many serious accidents and losses can be traced to the fact that a system did not operate
as intended because of changes that were not fully coordinated or fully analyzed to determine their
effects [66].
What is not so clear is the content and structure of the intent information that is needed.

Simply keeping an audit trail of decisions and the reasons behind them as they are made is not
practical. The number of decisions made in any large project is enormous. Even if it were possible
to write them all down, finding the proper information when needed seems to be a hopeless task if
not structured appropriately. What is needed is a specification of the intent—goals, assumptions,
constraints, and design rationale—from the beginning, and it must be specified in a usable and
perceptually salient manner that can be updated as changes are made. That is, we need a framework
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within which to select and specify the design decisions that are needed to develop and maintain
the system.

11.3.2 The Importance of Structure in Specification Design

The structure of a specification is its basis for organizing information. The information may all be
included somewhere, but it may be hard to find or to determine the relationship to information
specified elsewhere.
Problem solving in technological systems takes place within the context of a complex causal

network of relationships [27, 93, 100, 118], and those relationships need to be reflected in the
specification. The information needed to solve a problem may all be included somewhere in the
assorted documentation used in large projects, but it may be hard to find when needed or to
determine the relationship to information specified elsewhere. Psychological experiments in problem
solving find that people attend primarily to perceptually salient information [51]. The goal of
specification language design should be to make it easy for users to extract and focus on the
important information for the specific task at hand, which includes all potential tasks related to
use of the specification.
Cognitive engineers1 speak of this problem as “information pickup” [128]. Just because the

information is in the interface does not mean that the user can find it easily. The same is true for
specifications. The problem of information pickup is compounded by the fact that there is so much
information in system and software specifications while only a small subset of it may be relevant
in any given context.
The problem of locating required information is getting worse as system designs become more

complex. A basic and often noted principle of engineering is to keep things simple. This principle,
of course, is easier to state than to do. Ashby’s Law of Requisite Variety [6] tells us that there is
a limit to how simple we can make control systems and still have them be effective. In addition,
basic human ability is not changing. If humans want to build and operate increasingly complex
systems, we need to increase what is intellectually manageable. That is, we will need to find ways
to augment human ability.
The situation is not hopeless. As Rasmussen observes, the complexity of a system is not

an objective feature of the system [92]. Observed complexity depends upon the level of resolution
upon which the system is being considered. A simple object becomes complex if observed through a
microscope. Complexity, therefore, can only be defined with reference to a particular representation
of a system, and then can only be measured relative to other systems observed at the same level of
abstraction.
Thus, a way to cope with complex systems is to structure the situation such that the observer

can transfer the problem being solved to a level of abstraction with less resolution. The complexity
faced by the builders or users of a system is determined by their mental models (representations) of
the internal state of the system. We build such mental models and update them based on what we
observe about the system, that is, by means of our interface to the system. Therefore, the apparent
complexity of a system ultimately depends upon the technology of the interface system [92], which

1Cognitive engineering is a term that has come to denote the combination of ideas from system engineering,
cognitive psychology, and human factors to cope with the challenges of building high-tech systems composed of
humans and machines. These challenges have necessitated augmenting traditional human factors approaches to
consider the capabilities and limitations of the human element in complex systems.
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includes the specification.
The solution to the complexity problem is to take advantage of the most powerful resources

people have for dealing with complexity. Newman has noted, “People don’t mind dealing with
complexity if they have some way of controlling or handling it . . . If a person is allowed to structure
a complex situation according to his perceptual and conceptual needs, sheer complexity is no bar
to effective performance” [81, 92]. Thus, complexity itself is not a problem if humans are presented
with meaningful information in a coherent, structured context. That leads us back to systems
theory and hierarchy theory, as discussed in Chapter 4.
Two ways humans cope with complexity is to use top-down reasoning and stratified hierarchies.

Building systems bottom-up works for relatively simple systems. But as the number of cases and
objects that must be considered increases, this approach becomes unworkable—we go beyond the
limits of human memory and logical ability to cope with the complexity. Top-down reasoning is a
way of managing that complexity. At the same time, we have found that pure top-down reasoning
is not adequate alone; humans need to combine top-down with bottom-up reasoning. Thus, the
structure of the information must allow reasoning in both directions.
In addition, humans cope with complexity by building stratified hierarchies. Models of complex

systems can be expressed in terms of a hierarchy of levels of organization, each more complex than
the one below, where a level is characterized by having emergent properties and control action
involves imposing constraints upon the activity at lower levels of the hierarchy (see Chapter 4).
Note that describing the emergent properties resulting from the imposition of constraints requires a
language at a higher level (a metalevel) different than that describing the components themselves.
The problem then comes down to determining appropriate types of hierarchical abstraction for

system specifications that allow both top-down and bottom-up reasoning. In engineering specifi-
cations, we have made much use of part-whole abstractions. In such abstractions, each level of a
hierarchy represents an aggregation of the components at a lower level (Figure 11.2).

Subsubsystem 2Subsubsystem1

System

Subsystem 4Subsystem 3Subsystem2Subsystem 1

Figure 11.2: Part-Whole Abstraction

We also use information-hiding abstractions, where each level contains the same conceptual
information but hides some details about the concepts, that is, each level is a refinement of the
information at a higher level (Figure 11.3). Each refinement can be thought of as providing what
information while the next lower level describes how.
Such hierarchies, however, do not provide information about why. Higher-level emergent in-

formation about purpose or intent cannot be inferred from what we normally include in such
specifications. Design errors may result when we either guess incorrectly about higher-level intent
or omit it from our decision-making process. For example, while specifying the system requirements
for TCAS II [69], we learned (orally from a reviewer) that crossing maneuvers (where the aircraft
paths potentially intercept if the maneuvers are not executed correctly) are avoided in the design
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Figure 11.3: Refinement Abstraction

Location and appearance of components
PHYSICAL FORM

FUNCTIONAL PURPOSE
The overall purpose of the system

ABSTRACT FUNCTION
Mass/energy flow and balance

GENERAL FUNCTION
Flow and storage of heat, etc.

PHYSICAL FUNCTION
States of components

what?

what?

what?

what?

what?

How?

How?

How?

How?

why?

why?

why?

why?

Figure 11.4: The structure of a means-ends abstraction for the design of operator interfaces.

for safety reasons. The analysis on which this decision is based comes partly from experience during
TCAS system testing on real aircraft and partly as a result of an extensive safety analysis performed
on the system. This design constraint would not be apparent in most design or code specifications
(it was not recorded anywhere in the extensive TCAS documentation). The constraint could easily
be violated during system modification unless it was documented and easily located.
There are abstractions that can be used in stratified hierarchies other than part–whole and

information-hiding abstractions that overcome these limitations. While investigating the design
of safe human–machine interaction, Rasmussen studied protocols recorded by people working on
complex systems (process plant operators and computer maintainers) and found that they struc-
tured the system along two dimensions: (1) a part–whole abstraction in which the system is viewed
as a group of related components at several levels of physical aggregation, and (2) a means–ends
abstraction [93].
In a means-ends abstraction, each level represents a different model of the same system (Figure

11.4). At any point in the hierarchy, the information at one level acts as the goals (the ends) with
respect to the model at the next lower level (the means). Thus, in a means–ends abstraction, the
current level specifies what, the level below how, and the level above why [93]. In essence, this intent
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information is emergent in the sense of system theory:

When moving from one level to the next higher level, the change in system properties
represented is not merely removal of details of information on the physical or mate-
rial properties. More fundamentally, information is added on higher-level principles
governing the coordination of the various functions or elements at the lower level. In
man-made systems, these higher-level principles are naturally derived from the purpose
of the system, i.e., from the reasons for the configurations at the level considered [93]

A change of level involves both a shift in concepts and in the representation structure as well as
a change in the information suitable to characterize the state of the function or operation at the
various levels [93].
Each level in a means-ends hierarchy describes the system in terms of a different set of attributes

or “language.” Models at the lower levels are related to a specific physical implementation that
can serve several purposes while those at higher levels are related to a specific purpose that can be
realized by several physical implementations. Changes in goals will propagate downward through
the levels while changes in the physical resources (such as faults or failures) will propagate upward.
In other words, states can only be described as errors or faults with reference to their intended
functional purpose. Thus reasons for proper function are derived “top-down.” In contrast, causes
of improper function depend upon changes in the physical world (i.e., the implementation) and
thus they are explained “bottom up” [118].
Mappings between levels are many-to-many: Components of the lower levels can serve several

purposes while purposes at a higher level may be realized using several components of the lower-
level model. These goal-oriented links between levels can be followed in either direction, reflecting
either the means by which a function or goal can be accomplished (a link to the level below) or
the goals or functions an object can affect (a link to the level above). So the means–ends hierarchy
can be traversed in either a top-down (from ends to means) or a bottom-up (from means to ends)
direction.
As stated earlier, our representations of problems have an important effect on our problem-

solving ability and the strategies we use, and there is good reason to believe that representing the
problem space as a means–ends mapping provides useful context and support for decision making
and problem solving. Consideration of purpose or reason (top-down analysis in a means-ends
hierarchy) has been shown to play a major role in understanding the operation of complex systems
[92].
Rubin’s analysis of his attempts to understand the function of a camera’s shutter (as cited

in [94]) provides an example of the role of intent or purpose in understanding a system. Rubin
describes his mental efforts in terms of thinking of the components of the shutter in terms of their
function in the whole rather than explaining how each individual part worked: How they worked
was immediately clear when their function was known. Rasmussen argues that this approach has
the advantage that solutions of subproblems are identifiable with respect to their place in the whole
picture, and it is immediately possible to judge whether a solution is correct or not. In contrast,
arguing from the behavior of the individual parts to the way they function in the whole (which
is what we were trying to do in reverse engineering TCAS requirements) is much more difficult
because it requires synthesis: Solutions of subproblems must be remembered in isolation, and their
correctness is not immediately apparent.
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Support for this argument can be found in the difficulties AI researchers have encountered when
modeling the function of mechanical devices “bottom-up” from the function of the components.
DeKleer and Brown found that determining the function of an electric buzzer solely from the
structure and behavior of the parts requires complex reasoning [24]. Rasmussen suggests that the
resulting inference process is very artificial compared to the top-down inference process guided by
functional considerations as described by Rubin. “In the DeKleer-Brown model, it will be difficult
to see the woods for the trees, while Rubin’s description appears to be guided by a birds-eye
perspective ” [94]. This may be one reason why many large projects using object-oriented design
for control software have run into problems and reverted to the traditional functional decomposition
approaches.
Glaser and Chi suggest that experts and successful problem solvers tend to focus first on ana-

lyzing the functional structure of the problem at a high level of abstraction and then narrow their
search for a solution by focusing on more concrete details [39]. Representations that constrain
search in a way that is explicitly related to the purpose or intent for which the system is designed
have been shown to be more effective than those that do not because they facilitate the type of
goal-directed behavior exhibited by experts [117]. Therefore, we should be able to improve the
problem solving required in system development and evolution tasks by providing a representation
(i.e., specification) of the system that facilitates goal-oriented search by making explicit the goals
related to each functional component.
Viewing a system from a high level of abstraction is not limited to a means–ends hierarchy, of

course. Most hierarchies allow one to observe systems at a less detailed level. The difference is that
the means–ends hierarchy is explicitly goal oriented and thus assists goal-oriented problem solving.
With other hierarchies (such as those based on part–whole abstractions), the links between levels
are not necessarily related to goals. So although it is possible to use higher-levels of abstraction
to select a subsystem of interest and to constrain search, the subtree of the hierarchy connected to
a particular subsystem does not necessarily contain system components relevant to the goals the
problem solver is considering.

11.3.3 Intent Specifications

These basic ideas provide the foundation for what I call intent specifications. Intent specifications
apply means-ends abstractions to system specifications. Figure 11.5 shows the seven levels of an
intent specification.
An intent specification differs from a standard specification primarily in its structure, not its

content: no extra specification is involved but simply organizing the information in a way that has
been found to be most helpful in using it. Most complex systems have voluminous documentation,
much of it redundant or inconsistent, and sometimes missing important information, particularly
information about why something was done the way it was—the intent or design rationale. Trying
to determine whether a change might have a negative impact on safety, if possible at all, is usually
enormously expensive and often involves regenerating analyses and work that was already done
but either not recorded or not easily located when needed. Intent specifications were designed
to help with these problems: Design rationale, safety analysis results, and the assumptions upon
which the system design and validation are based are integrated directly into the specification and
its structure rather then in separate documents so the information is at hand when needed for
decision-making.
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Figure 11.5: The structure of an intent specification.

Intent specifications are organized along three dimensions: intent abstraction, part-whole ab-
straction, and refinement (see Figure 11.5). These dimensions constitute the problem space in
which the human navigates. The part-whole and refinement dimensions allow users to change their
focus of attention to more or less detailed views within each level or model. The vertical dimension
specifies the level of intent at which the problem is being considered, i.e., the language or model
that is currently being used.
Along the horizontal part-whole dimension, intent specifications are broken up into several

parts: (1) Information about characteristics of the environment that affects the ability to achieve
the system goals and design constraints; (2) information about human operators or users to assist in
designing “human-centered automation”; (3) information about the system and its decomposition
into physical and functional components, including safety-related information. Each level also
contains the requirements for and results of verification and validation activities for that level,
including hazard analysis. As shown in the example in the next section, the safety information is
embedded in each level (instead of being maintained in a separate safety log) but linked together
so that it can easily be located.
The vertical intent dimension has seven levels, representing means-ends abstractions rather

than the more usual refinement abstractions. Each level represents a different model or view of the
system from a different perspective and supports a different type of reasoning about it. Refinement
and decomposition occurs within each level of the specification, rather than between levels. Each
level provides information not just about what and how, but why, that is, the design rationale and
reasons behind the design decisions, including safety considerations.
The top level (Level 0) provides a project management view and insight into the relationship

between the plans and the project development status through links to the other parts of the intent
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specification.
Level 1 is the customer view and assists system engineers and customers in agreeing on what

should be built and, later, whether that has been accomplished.
Level 2 is the system engineering view and helps engineers to record and reason about the system

in terms of the physical principles and system-level design principles upon which the system design
is based.
Level 3 specifies the system architecture and serves as an unambiguous interface between system

engineers and component engineers or contractors. At level 3, the system functions defined at Level
2 are decomposed, allocated to components, and specified rigorously and completely. Black box
behavioral component models are used to specify and reason about the logical design of the system
as a whole and the interactions among individual system components without being distracted by
implementation details. We have found these models to be extremely helpful in engineering reviews,
analysis, and simulation.
If the language used at level 3 is formal (rigorously defined), then it can play an important role

in system validation. For example, the models can be executed in system simulation environments
to locate system-level design errors early in the development and can be used to automate the
generation of system and component test data, various types of mathematical analyses, etc. We have
designed a language called SpecTRM-RL for use at Level 3 to accomplish these goals (Appendix D).
Tools currently exist to create and validate the models; check for consistency, completeness, and
robustness; check for the potential to cause mode confusion in users of the automation; execute the
models in a simulation environment; and support STPA. Tools to create alternative visualizations
of the information in the model assist in dealing with very large and complex systems [29].
The next two levels, Design Representation and Physical Representation, provide the infor-

mation necessary to reason about individual component design and implementation issues. Some
parts of Level 4 may not be needed if at least portions of the physical design can be generated
automatically from the models at Level 3 (as is true for software).
The final level, Operations, provides a view of the operational system and is useful in mapping

between the designed system and its underlying assumptions about the operating environment en-
visioned during design and the actual operating environment. It assists in designing and performing
system safety activities during system operations.
Each level of an intent specification supports a different type of reasoning about the system, with

the highest level assisting systems engineers in their reasoning about system-level goals, constraints,
priorities, and tradeoffs. The second level, System Design Principles, allows engineers to reason
about the system in terms of the physical principles and laws upon which the design is based.
The Architecture level enhances reasoning about the logical design of the system as a whole and
the interactions between the components as well as the functional state without being distracted
by implementation issues. The next two levels provide the information necessary to reason about
individual component design and implementation issues.
Mappings (implemented by hyperlinks) between levels provide the relational information that

allows reasoning across hierarchical levels and traceability of requirements to design. Hyperlinks
are used both within and between levels. These mappings provide the relational information that
allows reasoning within and across levels, including the tracing from high-level requirements down
to implementation and vice versa.
The structure of the specification does not imply that the development must proceed from the

top levels down to the bottom levels in that order, only that at the end of the development process,
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Figure 11.6: The structure of an intent specification.

all levels are complete. Almost all development involves work at all of the levels at the same time.
When the system changes, the environment in which the system operates changes, or components
are reused in a different system, a new or updated safety analysis is required. Intent specifications
are designed to make that process feasible.
One of the advantages of using intent specifications lies not only in the capture of domain

knowledge but in the potential reuse of that knowledge and of the system engineering decisions
and artifacts embodying that knowledge. For example, Weiss, Ong, and Leveson have shown how
generic intent specifications, particularly libraries of reusable SpecTRM-RL component models, can
be reused in similar projects (see [125]).

11.3.4 Example Intent Specification

Figure 11.6 shows an example of what might be included in an intent specification. The specific
information needed, of course, will vary with the type and scope of the project, but each level
answers the question “why” for the design decisions in the level below. TCAS II (an airborne
collision avoidance system) is used as the example throughout this section. Figure 11.7 shows the
information included in our example specification.2 Because the intent specification was created
after TCAS had been developed, no management information is included. The need for Level 6
was identified only after the TCAS specification was completed and therefore it also is omitted.
In the intent specifications we have built for real systems, we have found the approach to be

practical; in fact, most of the information in an intent specification is already located somewhere in
2The example TCAS intent specification can be found at: http://sunnyday.mit.edu/papers/intent.ps. Please note

that this example was done in a limited time by the author and with limited resources. It is incomplete and almost
surely differs significantly from the real TCAS system.
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the often voluminous documentation for large systems. The problem in these systems usually lies
in finding specific information when it is needed, in tracing the relationships between information,
and in understanding the overall system design and why it was designed that way.

Management View of the Project (Level 0)

One problem in managing large projects is simply getting visibility into the progress of the project,
particularly when a lot of software is involved. The highest level of an intent specification is the
project management view. Here one might put project plans, such as risk management plans,
pert charts, etc. along with status and pointers to the location of detailed information about each
particular aspect of project development. The system safety plan will reside at this level, with
embedded links to the various parts of the intent specification that implement the parts of the
plan, such as the hazard list, various hazard analysis results, etc.

System Purpose or Customer View (Level 1)

Level 1 is the customer’s view of the project and includes the contractual requirements (shall
statements) and design constraints. Depending on the project, it might also contain the system
goals; high-level functional requirements; system design constraints, including safety constraints;
design evaluation criteria and priorities, including definitions and severity categories to be used
for accidents; hazard lists and preliminary hazard analyses; the results of analyses of other system
properties such as operator task analysis; assumptions about and constraints on the operating envi-
ronment; and documentation of system limitations. Assumptions and rationale for the requirements
and constraints are embedded in the document, as shown in the example below.
Level 1 of our TCAS intent specification includes historical information on previous attempts to

build collision avoidance systems and why they were unsuccessful as well as a general introduction
to the problem and the approach taken for TCAS design. The environment in which TCAS will
execute is described, such as the antennas it can use and the other systems on the aircraft with
which TCAS must interact.

Environment requirements and constraints3 may lead to restrictions on the use of the system
or to the need for system safety and other analyses to determine that the requirements hold for the
larger system in which the system being designed is to be used. Examples for TCAS include:

E1: The behavior or interaction of non-TCAS equipment with TCAS must not degrade the per-
formance of the TCAS equipment or the performance of the equipment with which TCAS
interacts.

E2: Among the aircraft environmental alerts, the hierarchy shall be: Windshear has first priority,
then the Ground Proximity Warning System (GPWS), then TCAS.

E3: The TCAS alerts and advisories must be independent of those using the master caution and
warning system.

Assumptions may also be specified for features of the environment. Examples of environment
assumptions for TCAS are that:

EA1: High-integrity communications exist between aircraft.
3Requirements and design constraints are distinguished here by using shall for requirements and must or must not

for constraints.
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EA2: The TCAS-equipped aircraft carries a Mode-S air traffic control transponder, whose replies
include encoded altitude when appropriately interrogated.

EA3: All aircraft have operating transponders.
EA4: All aircraft have legal identification numbers.
EA5: Altitude information is available from intruding targets with a minimum precision of 100

feet.
EA6: The altimetry system that provides own pressure altitude to the TCAS equipment will satisfy

the requirements in RTCA Standard [. . . ].
EA7: Threat aircraft will not make an abrupt maneuver that thwarts the TCAS escape maneuver.

Examples of high-level functional goals (purpose) for TCAS II are to:

G1: Provide affordable and compatible collision avoidance system options for a broad spectrum of
National Airspace System users.

G2: Detect potential midair collisions with other aircraft in all meteorological conditions.

Usually, in the early stages of a project, goals are stated in very general terms. One of the first
steps in defining system requirements is to refine the goals into testable and achievable high-level
requirements. Examples of high-level functional requirements implementing the goals for TCAS
are:

1.18: TCAS shall provide collision avoidance protection for any two aircraft closing horizontally
at any rate up to 1200 knots and vertically up to 10,000 feet per minute.

Assumption: This requirement is derived from the assumption that commercial aircraft
can operate up to 600 knots and 5000 fpm during vertical climb or controlled descent (and
therefore two planes can close horizontally up to 1200 knots and vertically up to 10,000
fpm).

1.19.1: TCAS shall operate in enroute and terminal areas with traffic densities up to 0.3 aircraft
per square nautical miles (i.e., 24 aircraft within 5 nmi).

Assumption: Traffic density may increase to this level by 1990, and this will be the
maximum density over the next 20 years.

Assumptions are specified, when appropriate, at all levels of the intent specification to explain a
decision or to record fundamental information on which the design is based. These assumptions are
often used in the safety or other analyses or in making lower level design decisions. For example,
operational safety depends on the accuracy of the assumptions and models underlying the design
and hazard analysis processes. The operational system should be monitored to ensure (1) that it
is constructed, operated, and maintained in the manner assumed by the designers, (2) that the
models and assumptions used during initial decision making and design are correct, and (3) that
the models and assumptions are not violated by changes in the system, such as workarounds or
unauthorized changes in procedures, or by changes in the environment [66]. Operational feedback
on trends, incidents, and accidents should trigger reanalysis when appropriate. Linking the as-
sumptions throughout the document with the hazard analysis (for example, to particular boxes in
the system fault trees) will assist in performing safety maintenance activities. Consider the above
requirement labeled 1.18. In the future, if aircraft design changes or there are proposed changes in
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airspace management, the origin of the specific numbers in the requirement (1200 and 10,000) can
be determined and evaluated for their continued relevance. In the absence of the documentation of
such assumptions, numbers tend to become “magic” and everyone is afraid to change them.
Requirements and constraints are also included for the human operator, for the human-computer

interface, and for the environment in which TCAS will operate. Requirements on the operator (in
this case, the pilot) are used to guide the design of the TCAS-pilot interface, the design of the
automation logic, flightcrew tasks and procedures, aircraft flight manuals, and training plans and
programs. Links are provided to show the relationships. Links would also be provided to parts of
the hazard analysis from which safety-related requirements are derived. Example TCAS II operator
requirements are:

OP.4: After the threat is resolved, the pilot shall return promptly and smoothly to his/her previously
assigned flight path (→ FTA-560, ↓3.3).

OP.9: The pilot must not maneuver on the basis of a Traffic Advisory only (→FTA-630, ↓2.71.3).
Note the links to the fault tree analysis (FTA) to provide the reason for the requirement and the
links to lower levels of the intent specification to show where the requirements are applied.

Design constraints are restrictions on how the system can achieve its purpose. For example,
TCAS is not allowed to interfere with the ground-level air traffic control system while it is trying
to maintain adequate separation between aircraft. Avoiding interference is not a goal or purpose
of TCAS—the best way to achieve it is not to build the system at all. It is instead a constraint on
how the system can achieve its purpose, i.e., a constraint on the potential system designs. Because
of the need to evaluate and clarify tradeoffs among alternative designs, separating these two types
of intent information (mission requirements and design constraints) is important.
For safety-critical systems, constraints should be further separated into normal and safety-

related. Examples of non-safety constraints for TCAS II are:

C.1: The system must use the transponders routinely carried by aircraft for ground ATC purposes
(↓2.3, 2.6).

C.4: TCAS must comply with all applicable FAA and FCC policies, rules, and philosophies (↓2.30,
2.79).

Safety-related constraints should have two-way links to the system hazard log and perhaps links
to any analysis results that led to that constraint being identified as well as links to the design
features (usually Level 2) designed to eliminate or control them. Hazard analyses are linked to
Level 1 requirements and constraints, to design features on Level 2, and to system limitations (or
accepted risks). Figure 11.8 shows how each leaf node of a fault tree might be linked to a safety
constraint or safety-related requirement, design feature to mitigate the problem, system limitation,
etc. Figure 11.9 shows a different part of the TCAS fault tree that includes operator errors and
the hyperlinks point to operator procedural requirements (which in turn link to operator procedure
specifications and operator manuals).
The hazard list for TCAS was shown in Section 9.1. An example of a Level 1 safety constraint

derived to prevent hazards is:

SC.3: TCAS must generate advisories that require as little deviation as possible from ATC clear-
ances (↓FTA-550, 2.30).
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<Intruder maneuver causes logic to delay

...
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<Process/display connectors fail>

<Display is preempted by other functions>

Surveillance does not pass adequate track to the logic
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No RA inputs are provided to the display.
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<Threat is non−Mode C aircraft>

<Intruder altitude error>

<Own Mode C altitude error>

<Own radar altimeter error>

<Uneven terrain>

<Surveillance failure>

...

Altitude errors put threat on ground

Altitude errors put threat in non−threat position.

<Self−monitor shuts down TCAS unit>

...

Figure 11.8: Part of a Fault Tree with Hyperlinks on the Leaf Nodes
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<Inadequate alarm design>

...

<Crew is preoccupied>

TCAS displays a resolution advisory that the pilot does not follow.

Pilot does not execute RA at all.

Pilot executes the RA  but inadequately

Crew does not perceive RA alarm.

<Crew does not believe RA is correct.>

<Pilot stops before RA is removed>

<Pilot continues beyond point RA is removed>

<Pilot delays execution beyond time allowed>

2.74, 2.761.6,1.7,1.8

OP.1

OP.10

OP.4

OP.10

Figure 11.9: Part of a Fault Tree Showing Links to Operator Requirements

The link to Level 2 (↓2.30) points to the system design feature on Level 2 of the intent specification
that implements this safety constraint.
The following safety constraint example shows how refinement occurs at the same level of the

intent specification, not at the lower levels. Lower levels are models of the system from a different
perspective, not just a more detailed description of the same model.

SC.2: TCAS must not interfere with the ground ATC system or other aircraft transmissions to the
ground ATC system (→ H5).

SC.2.1: The system design must limit interference with ground-based secondary surveillance
radar, distance-measuring equipment channels, and with other radio services that operate
in the 1030/1090 MHz frequency band (↓2.5.1).
SC.2.1.1: The design of the Mode S waveforms used by TCAS must provide compati-

bility with Modes A and C of the ground-based secondary surveillance radar system
(↓2.6).

SC.2.1.2: The frequency spectrum of Mode S transmissions must be controlled to protect
adjacent distance-measuring equipment channels (↓2.13).

SC.2.1.3: The design must ensure electromagnetic compatibility between TCAS and
[. . . ] [↓2.14).

SC.2.2: Multiple TCAS units within detection range of one another (approximately 30 nmi)
must be designed to limit their own transmissions. As the number of such TCAS units
within this region increases, the interrogation rate and power allocation for each of them
must decrease in order to prevent undesired interference with ATC (↓2.13).

An example of an assumption associated with a safety constraint is:
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SC.6: TCAS must not disrupt the pilot and ATC operations during critical phases of flight nor
disrupt aircraft operation (→ H3, ↓2.2.3, 2.19, 2.24.2).
SC.6.1: The pilot of a TCAS-equipped aircraft must have the option to switch to the Traffic-

Advisory-Only mode where TAs are displayed but display of resolution advisories is in-
hibited (↓ 2.2.3).

Assumption: This feature will be used during final approach to parallel runways,
when two aircraft are projected to come close to each other and TCAS would call
for an evasive maneuver (↓ 6.17).

The specified assumption is critical for evaluating safety during operations. Humans tend to change
their behavior over time and use automation in different ways than originally intended by the
designers. Sometimes, these new uses are dangerous. The hyperlink at the end of the assumption
(↓ 6.17) points to the location in Level 6 where auditing procedures for safety during operations
are defined and where the procedures for auditing this assumption would be specified.
As another example of a safety constraint, consider the following constraints arising from the

TCAS NMAC (near midair collision) hazard:

SC.7: TCAS must not create near misses (result in a hazardous level of vertical separation that
would not have occurred had the aircraft not carried TCAS (→ H1).

SC.7.1: Crossing maneuvers must be avoided if possible (↓ 2.36, ↓ 2.38, ↓ 2.48, ↓ 2.49.2).
SC.7.2: The reversal of a displayed advisory must be extremely rare (↓ 2.51, ↓ 2.56.3, ↓

2.65.3, ↓ 2.66).4

SC.7.3: TCAS must not reverse an advisory if the pilot will have insufficient time to respond
to the RA before the closest point of approach (four seconds or less) or if own and intruder
aircraft are separated by less than 200 feet vertically when ten seconds or less remain to
closest point of approach (↓ 2.52).

Some of the Level 2 design features used to satisfy design constraints SC.7.1 and SC.7.2 are shown
in the next section.
System limitations are specified at Level 1 of an intent specification. Some may be related to

the basic functional requirements, such as:

L4: TCAS does not currently indicate horizontal escape maneuvers and therefore does not (and
is not intended to) increase horizontal separation.

Limitations may also relate to environment assumptions. For example:

L1: TCAS provides no protection against aircraft without transponders or with nonoperational
transponders (→EA3, FTA-430).

L6: Aircraft performance limitations constrain the magnitude of the escape maneuver that the
flight crew can safely execute in response to a resolution advisory. It is possible for these
limitations to preclude a successful resolution of the conflict (→H3, ↓2.38, 2.39).

4This requirement is clearly vague and untestable. Unfortunately, I could find no definition of “extremely rare”
in any of the TCAS documentation to which I had access.
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L4: TCAS is dependent on the accuracy of the threat aircraft’s reported altitude. Separation as-
surance may be degraded by errors in intruder pressure altitude as reported by the transponder
of the intruder aircraft (→EA5).

Assumption: This limitation holds for existing airspace, where many aircraft use pres-
sure altimeters rather than GPS. As more aircraft install GPS systems with greater
accuracy than current pressure altimeters, this limitation will be reduced or eliminated.

Limitations are often associated with hazards or hazard causal factors that could not be com-
pletely eliminated or controlled in the design. Thus they represent accepted risks. For example:

L3: TCAS will not issue an advisory if it is turned on or enabled to issue resolution advisories in
the middle of a conflict (→ FTA-405).

L5: If only one of two aircraft is TCAS equipped while the other has only ATCRBS altitude-
reporting capability, the assurance of safe separation may be reduced (→ FTA-290).

In our TCAS intent specification, both of these system limitations have pointers to boxes in the
fault tree generated during the hazard analysis of TCAS II.
Finally, limitations may be related to problems encountered or tradeoffs made during the system

design process (recorded on lower levels of the intent specification). For example, TCAS has a Level
1 performance monitoring requirement that led to the inclusion of a self-test function in the system
design to determine whether TCAS is operating correctly. The following system limitation relates
to this self-test facility:

L9: Use by the pilot of the self-test function in flight will inhibit TCAS operation for up to 20
seconds depending upon the number of targets being tracked. The ATC transponder will not
function during some portion of the self-test sequence (↓6.52).

Most of these system limitations will be traced down in the intent specification levels to the user
documentation. In the case of an avionics system like TCAS, L9 points to the Pilot Operations
(Flight) Manual on level 6. There may be links to this limitation from information about the design
of the self-test function in the lower levels of the intent specification.

Evaluation criteria and priorities may be included in Level 1 to indicate how conflicts among
goals and design constraints are to be resolved and to guide design choices at lower levels. This
information has not been included in the TCAS example specification due to lakc of information
about how these decisions were made during the TCAS design process.
Finally, Level 1 contains the analysis results for system-level (emergent) properties such as

safety or security. For the TCAS specification, a hazard analysis was performed and is included in
the Level 1 specification with embedded links to the resolution of the hazards and hazard causes. A
fault tree has links from each leaf node to functional requirements, design constraints, system design
features, operational procedures, and system limitations. Whenever changes are made in safety-
critical systems or software (during development or during maintenance and evolution), the safety
of the change needs to be evaluated. This process can be difficult and expensive. By providing links
throughout the levels of the intent specification, it should be easy to assess whether a particular
design decision or piece of code was based on the original safety analysis or safety-related design
constraint.
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System Design Principles (Level 2)

The second level of the specification contains System Design Principles—the basic system design
and scientific and engineering principles needed to achieve the behavior specified in the top level
(as well as any “derived” requirements and design features not related to the Level 1 requirements).
It is at this level that the user of the intent specification can get an overview of the system design
and determine why the design decisions were made.
For TCAS, this level includes such general principles as the basic tau concept, which is related

to all the high-level alerting goals and constraints:

2.2: Each TCAS-equipped aircraft is surrounded by a protected volume of airspace. The boundaries
of this volume are shaped by the tau and DMOD criteria (↑1.20.3).
2.2.1: TAU: In collision avoidance, time-to-go to the closest point of approach (CPA) is

more important than distance-to-go to the CPA. Tau is an approximation of the time in
seconds to CPA. Tau equals 3600 times the slant range in nmi, divided by the closing
speed in knots.

2.2.2: DMOD: If the rate of closure is very low, a target could slip in very close without
crossing the tau boundaries and triggering an advisory. In order to provide added pro-
tection against a possible maneuver or speed change by either aircraft, the tau boundaries
are modified (called DMOD). DMOD varies depending on own aircraft’s altitude regime
(→2.2.4).

The principles are linked to the related higher level requirements, constraints, assumptions,
limitations, and hazard analysis as well as linked to lower-level system design and documentation
and to other information at the same level. Assumptions used in the formulation of the design
principles may also be specified at this level.
For example, design principle 2.51 (related to safety constraint SC-7.2 shown in the previous

section) describes how sense reversals are handled:

2.51: Sense Reversals: (↓ Reversal-Provides-More-Separation) In most encounter situations, the
resolution advisory will be maintained for the duration of an encounter with a threat aircraft
(↑SC-7.2). However, under certain circumstances, it may be necessary for that sense to be
reversed. For example, a conflict between two TCAS-equipped aircraft will, with very high
probability, result in selection of complementary advisory senses because of the coordination
protocol between the two aircraft. However, if coordination communication between the two
aircraft is disrupted at a critical time of sense selection, both aircraft may choose their ad-
visories independently (↑FTA-1300). This could possibly result in selection of incompatible
senses (↑FTA-395).
2.51.1: [. . . ] [information about how incompatibilities are handled]

Design principle 2.51 describes the conditions under which reversals of TCAS advisories can result
in incompatible senses and lead to the creation of a hazard by TCAS. The pointer labeled ↑FTA-395
is to a box in the TCAS fault tree for the near-miss hazard that includes that problem. The fault
tree box ↑FTA-395 in Level 1 would have a complementary pointer to section 2.51 in Level 2. The
design decisions made to handle such incompatibilities are described in 2.51.1, but that part of the
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specification is omitted here. 2.51 also contains a hyperlink (↓Reversal-Provides-More-Separation)
to the detailed Level 3 logic used to implement the design decision.
Information about the allocation of these design decisions to individual system components

and the logic involved is located in Level 3, which in turn has links to the implementation of the
logic in lower levels. If a change has to be made to a system component (such as a change to a
software module), it is possible to trace the function computed by that module upward in the intent
specification levels to determine whether the module is safety critical and if (and how) the change
might affect system safety.
As another example, the TCAS design has a built-in bias against generating advisories that

would result in the aircraft crossing paths (called altitude crossing advisories.

2.36.2: A bias against altitude crossing RAs is also used in situations involving intruder level-offs
at least 600 feet above or below the TCAS aircraft (↑SC.7.1). In such a situation, an altitude-
crossing advisory is deferred if an intruder aircraft that is projected to cross own aircraft’s
altitude is more than 600 feet away vertically (↓ Alt Separation Test).

Assumption: In most cases, the intruder will begin a level-off maneuver when it is
more than 600 feet away and so should have a greatly reduced vertical rate by the time it
is within 200 feet of its altitude clearance (thereby either not requiring an RA if it levels
off more than zthr5 feet away or requiring a non-crossing advisory for level-offs begun
after zthr is crossed but before the 600 foot threshold is reached).

The example above includes a pointer down to the part of the black box requirements specifi-
cation (Alt Separation Test) that embodies the design principle.
As another example of the type of links that may be found between Level 2 and the levels

above and below it, consider the following. TCAS II advisories may need to be inhibited because
of an inadequate climb performance for the particular aircraft on which TCAS II is installed. The
collision avoidance maneuvers posted as advisories (called RAs or Resolution Advisories) by TCAS
II assume an aircraft’s ability to safely achieve them. If it is likely they are beyond the capability of
the aircraft, then TCAS must know beforehand so it can change its strategy and issue an alternative
advisory. The performance characteristics are provided to TCAS through the aircraft interface (via
aircraft discretes). An example design principle (related to this problem) found on Level 2 of the
intent specification is:

2.39: Because of the limited number of inputs to TCAS for aircraft performance inhibits, in some
instances where inhibiting RAs would be appropriate it is not possible to do so (↑L6). In
these cases, TCAS may command maneuvers that may significantly reduce stall margins or
result in stall warning (↑SC9.1). Conditions where this may occur include [. . . ]. The aircraft
flight manual or flight manual supplement should provide information concerning this aspect
of TCAS so that flight crews may take appropriate action (↓ [Pilot procedures on Level 3 and
Aircraft Flight Manual on Level 6).

Finally, principles may reflect tradeoffs between higher-level goals and constraints. As examples:
5The vertical dimension, called zthr, used to determine whether advisories should be issued varies from 750 to

950 feet, depending on the TCAS aircraft’s altitude.
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Figure 11.10: System viewpoint showing the system interface topology for the System Architecture
level of the TCAS specification.

2.2.3: Tradeoffs must be made between necessary protection (↑1.18) and unnecessary advisories
(↑SC.5, SC.6). This is accomplished by controlling the sensitivity level, which controls the tau,
and therefore the dimensions of the protected airspace around each TCAS-equipped aircraft.
The greater the sensitivity level, the more protection is provided but the higher is the incidence
of unnecessary alerts. Sensitivity level is determined by [. . . ]

2.38: The need to inhibit climb RAs because of inadequate aircraft climb performance will increase
the likelihood of TCAS II (a) issuing crossing maneuvers, which in turn increases the pos-
sibility that an RA may be thwarted by the intruder maneuvering (↑SC7.1, FTA-1150), (b)
causing an increase in descend RAs at low altitude (↑SC8.1), and (c) providing no RAs if
below the descend inhibit level (1200 feet above ground level on takeoff and 1000 feet above
ground level on approach).

System Architecture (Level 3)

Level 3 contains the System Architecture, i.e., the allocation of functions to components and the
designed communication paths among those components (including human operators). SpecTRM-
RL is used as the example specification language in this section (see Appendix D). Figure 11.10
shows a system-level view of TCAS II and its environment.
The environment description at Level 3 includes the assumed behavior of the external com-

ponents (such as the altimeters and transponders for TCAS), including perhaps failure behavior,
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RADIO ALTIMETER

Sending Random Values

Failed Self−Test

Not Sending Output

Sending Zeros

Stuck on Single Value

Failure ModeOperating Mode

Sending Max Value

Operating Normally

Malfunction Detected

Malfunction Undetected

Figure 11.11: Part of the SpecTRM-RL description of an environment component (a radio altime-
ter). Modeling failure behavior is especially important for safety analyses. In this example, (1)
the altimeter may be operating correctly, (2) it may have failed in a way that the failure can be
detected by TCAS II (i.e., it fails a self-test and sends a status message to TCAS or it is not sending
any output at all), or (3) the malfunctioning is undetected and it sends an incorrect radio altitude.

upon which the correctness of the system design is predicated, along with a description of the inter-
faces between the TCAS system and its environment. Figure 11.11 shows part of a SpecTRM-RL
description of an environment component, in this case an altimeter.
Remember that the boundaries of a system are purely an abstraction and can be set anywhere

convenient for the purposes of the specifier. In this example, the environment includes any compo-
nent that was already on the aircraft or in the airspace control system and was not newly designed
or built as part of the TCAS effort.
Each arrow in Figure 11.10 represents a communication and needs to be described in more

detail. Each box (component) also needs to be refined. What is included in the decomposition
of the component will depend on whether the component is part of the environment or part of
the system being constructed. The language used to describe the components may also vary.
Figure 11.12 shows part of the SpecTRM-RL description of the behavior of the CAS (collision
avoidance system) subcomponent. SpecTRM-RL specifications are intended to be both easily
readable with minimum instruction and formally analyzable. They are also executable and can
be used in a system simulation environment. Readability was a primary goal in the design of
SpecTRM-RL, as was completeness with regard to safety. Most of the requirements completeness
criteria described in Safeware are included in the syntax of the language to assist in system safety
reviews of the requirements.
SpecTRM-RL explicitly shows the process model used by the controller and describes the re-

quired behavior in terms of this model. A state machine model is used to describe the process
model (the state of the aircraft and the air space around it, in this case) and the ways this model
can change state.
Logical behavior is specified in SpecTRM-RL using and/or tables. Figure 11.12 shows a small

part of the specification of the TCAS collision avoidance logic. For TCAS, an important state
variable is the status of the other aircraft around the TCAS aircraft, called intruders. Intruders
are classified into four groups: Other Traffic, Proximate Traffic, Potential Threat, and Threat. The
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Figure 11.12: Example from the Level 3 SpecTRM-RL model of the collision avoidance logic. It
defines the criteria for downgrading the status of an intruder (into our protected volume) from
being labeled a threat to being considered simply as other traffic. Intruders can be classified in
decreasing order of importance as a threat, a potential threat, proximate traffic, and other traffic.
In the example, the criterion for taking the transition from state Threat to state Other Traffic is
represented by an AND/OR table, which evaluates to true if any of its columns evaluates to true.
A column is true if all of its rows that have a “T” are true and all of its rows with an “F” are
false. Rows containing a dot represent “don’t care” conditions.

figure shows the logic for classifying an intruder as other traffic using an and/or table. We have
tools to visualize this information in additional ways.
The rows of the table represent and relationships while the columns represent or. The state

variable takes the specified value (in this case, Other Traffic) if any of the columns evaluate to
true. A column evaluates to true if all the rows have the value specified for that row in the
column. A dot in the table indicates that the value for the row is irrelevant. Underlined variables
represent hyperlinks. For example, clicking on Alt Reporting would show how the Alt Reporting
variable is defined: In our TCAS intent specification, the altitude report for an aircraft is defined
as Lost if no valid altitude report has been received in the past six seconds. Bearing Valid, Range
Valid, Proximate Traffic Condition, and Proximate Threat Condition are macros, which simply
means they are defined using separate logic tables. The additional logic for the macros could have
been inserted here, but we have found that sometimes the logic gets too complex and it is easier
for specifiers and reviewers if, in those cases, the tables are broken up into smaller pieces (a form
of refinement abstraction). This decision is, of course, up to the creator of the table.
Note that the behavioral descriptions at this level are purely blackbox: They describe the inputs

and outputs of each component and their relationships only in terms of externally visible behavior.
Essentially it represents the transfer function across the component. Any of these components
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(except the humans, of course) could be implemented either in hardware or software (and, in fact,
some of the TCAS surveillance functions are implemented using analog devices by some vendors).
Decisions about physical implementation, software design, internal variables, and so on are limited
to levels of the specification below this one. Thus, this level serves as a rugged interface between
system designers and component designers and implementers (including subcontractors).
Other information at this level might include flight crew requirements such as description of

tasks and operational procedures, interface requirements, and the testing requirements for the
functionality described on this level. We have developed a visual operator task modeling language
that permits integrated simulation and analysis of the entire system, including human–computer
interactions [8, 101].
We have found that the models at this level provide the best place to provide component

reuse and build component libraries. Reuse of application software at the code level has been
problematic at best, contributing to a surprising number of accidents (see Appendix B). Level 3
blackbox behavioral specifications provide a way to make the changes almost always necessary to
reuse software in a format that is both reviewable and verifiable. Our Level 3 model of TCAS
has been used for the past 12 years to maintain TCAS and to specify and validate changes before
they are made in the various manufacturer’s products. Once the changed Level 3 specifications
have been validated, the links to the modules implementing the modeled behavior can be used to
determine which modules need to be changed and how. Libraries of component models can also
be developed and used in a plug-and-play fashion, making changes as required, in order to develop
software product families [124].

Design Representation (Level 4)

The next two levels of an intent specification provide the information necessary to reason about
component design and implementation. The fourth level, Design Representation, contains design
information. Its content will depend on whether the particular function is being implemented using
analog or digital devices or both. This level is the highest level of the intent specification that
includes information about the physical or logical implementation of the components.
The design intent information may not all be completely linked and traceable upward to the

levels above the Design Representation—for example, design decisions based on performance or
other issues unrelated to requirements or constraints, such as the use of a particular graphics
package because the programmers are familiar with it or it is easy to learn. Knowing that these
decisions are not linked to higher level purpose is important during software maintenance and
evolution activities.
The fourth level of the example TCAS intent specification simply contains the official pseu-

docode design specification (which was used by the FAA to specify the TCAS requirements), but
any appropriate design specification language might be used. To assist in software code reviews
and walkthroughs, the unoptimized code sections might be shown in the refinement of the Design
Representation along with mappings to the actual optimized code at the lower implementation
level. Reviewers often have difficulty reviewing and understanding code that has been optimized.
If the modeling language used to specify the system architecture (Level 3) is formal (rigorously
defined), the potential exists for automatically generating code from it.
Other information at Level 4 might include hardware design descriptions, the human–computer

interface design specification, and verification requirements for the requirements and design specified
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on this level.

Physical Representation (Level 5)

The fifth level represents the implementer and manufacturing view and contains a description of
the physical implementation of the levels above. It might include software code, hardware assembly
or manufacturing instructions, engineering drawings, etc.

Operations (Level 6)

Level 6 documents the interface between development and operations. It contains performance
auditing procedures, operator manuals, training materials, error reports and change requests, etc.
Again, hyperlinks are used to maintain traceability, particularly traceability to design rationale and
safety-critical decisions and design constraints.

11.3.5 Use of Intent Specification

As stated earlier, our representations of problems have an important effect on our problem-solving
ability and the strategies we use. Intent specifications were designed to support the problem
solving required to perform system, software, and safety engineering tasks, including tasks involving
education and program understanding, search, design, validation, safety assurance, maintenance,
and evolution.

Education and Program Understanding

Curtis et.al. [23] did a field study of the requirements and design process for 17 large systems. They
found that substantial design effort in projects was spent coordinating a common understanding
among the staff of both the application domain and of how the system should perform within it.
The most successful designers understood the application domain and were adept at identifying
unstated requirements, constraints, or exception conditions and mapping between these and the
computational structures. This is exactly the information that is included in the higher levels of
intent specifications and the mappings to the software. Using intent specifications should help with
education in the most crucial aspects of the system design for both developers and maintainers and
augment the abilities of both, i.e., increase the intellectual manageability of the task.

Search Strategies

Vicente and Rasmussen have noted that means-ends hierarchies constrain search in a useful way
by providing traceability from the highest level goal statements down to implementations of the
components [118]. By starting the search at a high level of abstraction and then deciding which
part of the system is relevant to the current goals, the user can concentrate on the subtree of the
hierarchy connected to the goal of interest: The parts of the system not pertinent to the function
of interest can easily be ignored. This type of “zooming-in” behavior has been observed in a large
number of psychological studies of expert problem solvers. Recent research on problem-solving
behavior consistently shows that experts spend a great deal of their time analyzing the functional
structure of a problem at a high level of abstraction before narrowing in on more concrete details
[11, 17, 39, 93, 114].
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With other hierarchies, the links between levels are not necessarily related to goals. So although
it is possible to use higher levels of abstraction in a standard decomposition or refinement hierarchy
to select a subsystem of interest and to constrain search, the subtree of the hierarchy connected
to a particular subsystem does not necessarily contain system components that are relevant to the
goals and constraints that the problem solver is considering.
Upward search in the hierarchy, such as that required for trouble shooting, maintenance, and

evolution, is also supported by intent specifications. Vicente and Rasmussen claim (and have
experimental evidence to support) that in order for operators to correctly and consistently diagnose
faults, they must have access to higher-order functional information since this information provides
a reference point defining how the system should be operating. States can only be described as
errors or faults with reference to the intended purpose. Additionally, causes of improper functioning
depend upon aspects of the implementation. Thus they are explained bottom up. The same
argument applies to software debugging.

Minimizing the Effects of Requirements Changes

Hopefully, the highest levels of the specification will not change, but sometimes they do, especially
during development as system requirements become better understood. Functional and intent
aspects are represented throughout an intent specification, but in increasingly abstract and global
terms at the higher levels. The highest levels represent more stable design goals that are less likely
to change (such as detecting potential threats in TCAS), but when they do they have the most
important (and costly) repercussions on the system and software design and development, and
they may require analysis and changes at all the lower levels. We need to be able to determine the
potential effects of changes and, proactively, to design to minimize them.
Reversals in TCAS are an example of this. About four years after the original TCAS spec-

ification was written, experts discovered that it did not adequately cover requirements involving
the case where the pilot of an intruder aircraft does not follow his or her TCAS advisory and
thus TCAS must change the advisory to its own pilot. This change in basic requirements caused
extensive changes in the TCAS design, some of which introduced additional subtle problems and
errors that took years to discover and rectify.
Anticipating exactly what changes will occur and designing to minimize the effects of those

changes is difficult, and the penalties for being wrong are high. Intent specifications theoretically
provide the flexibility and information necessary to design to ease high-level requirements changes
without having to predict exactly which changes will occur: The abstraction and design are based
on intent (system requirements) rather than on part-whole relationships (which are the least likely
to change with respect to requirement or environment changes).
An example of a design criterion for this goal might be to minimize the number of one-to-many

mappings between levels in order to constrain downward search and limit the effects of changes in
higher levels upon the lower levels. Minimizing many-to-many (or many-to-one) mappings would,
in addition, ease activities that require following upward links and minimize the side effects of
lower-level changes.
Intent specifications assist in identifying intent-related structural dependencies (many-to-many

mappings across hierarchical levels) to allow minimizing them during design, and they clarify the
tradeoffs being made between conflicting goals.
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Safety Assurance

A complete safety analysis and methodology for building safety-critical systems requires identifying
the system-level safety requirements and constraints and then tracing them down to the components
[66]. After the safety-critical behavior of each component has been determined (including the
implications of its behavior when the components interact with each other), verification is required
that the components do not violate the identified safety-related behavioral constraints. In addition,
whenever any change is made to the system or when new information is obtained that brings the
safety of the design into doubt, revalidation is required to ensure that the change does not degrade
system safety. To make this verification (and reverification) easier, safety-critical parts of the
software should be isolated and minimized.
In addition, whenever any change is made to the system, revalidation is required to ensure that

the change does not affect system safety. Many accidents can be traced to the fact that the system
did not operate as intended because of changes that were not fully coordinated or fully analyzed
to determine their effect on the system [66]. Changes can inadvertently eliminate important safety
features or diminish the effectiveness of hazard controls. For this reason, re-analysis of the design’s
safety features must always be performed when some known change occurs or when new information
is obtained that brings the safety of the design into doubt.
This analysis cannot be performed efficiently unless those making decisions about changes and

those actually making the changes know which parts of the system affect a particular safety design
constraint. Specifications need to include a record of the design decisions related to basic safety-
related system goals, constraints, and hazards (including both general design principles and criteria
and detailed design decisions), the assumptions underlying these decisions, and why the decisions
were made and particular design features included. Intent specifications capture this information
and provide the ability to trace design features upward to specific high-level system goals and
constraints.

Software Maintenance and Evolution

Although intent specifications provide support for a top-down, rational design process, they may
be even more important for the maintenance and evolution process than for the original designer.
Software evolution is challenging because it involves many cognitive processes that require complex
problem-solving strategies—such as understanding the system’s structure and function, understand-
ing the code and documentation and the mapping between the two, and locating inconsistencies
and errors.
Intent specifications provide the structure required for recording the most important design

rationale information, i.e., that related to the purpose and intent of the system, and locating it
when needed. They, therefore, can assist in the software change process.
While trying to build a model of TCAS, we discovered that the original conceptual model of

the TCAS system design had degraded over the years as changes were made to the pseudocode
to respond to errors found, new requirements, better understanding of the problem being solved,
enhancements of various kinds, and errors introduced during previous changes. The specific changes
made often simplified the process of making the change or minimized the amount of code that needed
to be changed, but complicated or degraded the original model. Not having any clear representation
of the model also contributed to its degradation over the ten years of changes to the pseudocode.
By the time we tried to build a representation of the underlying conceptual model, we found that
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the system design was unnecessarily complex and lacked conceptual coherency in many respects,
but we had to match what was actually flying on aircraft. I believe that making changes without
introducing errors or unnecessarily complicating the resulting conceptual model would have been
simplified if the TCAS staff had had a blackbox requirements specification of the system. Evolution
of the pseudocode would have been enhanced even more if the extra intent information had been
specified or organized in a way that it could easily be found and traced to the code. In fact,
the specification of TCAS II we provided to the FAA in 1992 (which included only Level 3 using
a modeling language that was a predecessor of SpecTRM-RL) is still used to evaluate potential
changes to TCAS before they are provided to the TCAS equipment manufacturers.

Reuse and Component-Based System Engineering
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Chapter 13

Safety Culture and Management

[I have just started writing this chapter, and it is still very rough and incomplete. Missing or
incomplete sections will be covered in the class and the class notes.]

Many of the ideas in this section come from discussions and papers with my colleagues at
the MIT Sloan School of Management, Engineering Systems Division, including Joel Cutcher-
Gershenfeld, John Carroll, and Betty Barrett.
Safety culture has always been a critical part of achieving safety goals, but its importance has

recently been underlined in the Columbia Accident Investigation Board Report:

The foam debris hit was not the single cause of the Columbia accident, just as the
failure of the joint seal that permitted O-ring erosion was not the single cause of Chal-
lenger. Both Columbia and Challenger were lost also because of the failure of NASA’s
organizational system [38, p. 195].

Perhaps the most important finding of the report was the insistence that NASA go beyond analysis
of the immediate incident to address the “political, budgetary, and policy decisions” that impacted
the Space Shuttle Program’s “structure, culture, and safety system,” which was, ultimately, re-
sponsible for flawed decision-making.
What is safety culture? A culture is a shared set of norms and values, a way of looking at

and interpreting the world and events around us (our mental model) and taking action in a social
context. Safety culture is the subset of culture that reflects the general attitude and approaches to
safety and risk management.
Schein argues that organization culture can be divided into three tiers: (1) surface-level cultural

artifacts (the routine aspects of everyday practice); (2) a middle level of stated organizational rules,
values, and practices; and (3) an often invisible, but pervasive, underlying level of deep cultural
operating assumptions under which actions are taken and decisions are made [103]. Culture change
is difficult, Schein notes, because it requires change at all three levels and each is progressively
harder to address.
Management, resources, capabilities, and culture are intertwined, and trying to change the

culture without changing the environment within which the culture operates is doomed to failure.
At the same time, simply changing the organizational structures (including policies, goals, missions,
job descriptions, and standard operating procedures related to safety) may lower risk over the short
term, but superficial fixes that do not address the set of shared values and social norms are very
likely to be undone over time. As an example, the changes and protections instituted at NASA after
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the Challenger accident degraded over time to the point where the same performance pressures and
unrealistic expectations implicated in the Challenger loss contributed also to the Columbia loss. To
achieve lasting results requires making broad changes that provide protection from and appropriate
responses to the continuing environmental influences and pressures that tend to degrade the safety
culture over time.
A common cultural flaw found in accident investigations is a culture of denial, where risk

assessment is unrealistic and where credible risks and warnings are dismissed without appropriate
investigation. Such a culture of denial is common where embedded, operational assumptions do
not match the stated organizational policies. To “engineer” a safety culture, or, in other words,
to bring the operational practices and values into alignment with the stated safety values requires
first identifying the desired organizational safety principles and values and then establishing and
engineering the organizational infrastructure to achieve those values and to sustain them over time.
“Sloganeering” is not enough—all aspects of the culture that affect safety must be engineered to be
in alignment with the organizational safety principles. Successfully achieving this alignment process
requires understanding why an organization’s operational practices have deviated from the stated
principles and not only making the appropriate adjustments but instituting protections against
future misalignments.
The following are all important social system aspects of a strong safety culture:

• The formal organizational structure including the safety groups as well as the formal safety
roles and responsibilities of executives, managers, engineers, civil servants, union leaders, and
others. This formal structure is usually not static but rather a dynamic, constantly evolving
set of formal relationships.

• Organizational subsystems that impact the safety culture and risk management including
open and multi-directional communication systems; safety information systems to support
planning, analysis and decision making; reward and reinforcement systems; selection and
retention systems that promote safety knowledge, skills, and ability; learning and feedback
systems from incidents, operational anomalies, and other aspects of operational experience;
and channels and procedures for expressing safety concerns and resolving conflicts. Both
formal and informal communication channels are important as well as the safety informa-
tion system, which should include at least the hazard logs, problem reports, lessons learned,
safety metrics, and root cause analyses. The reward and reinforcement systems should sup-
port attention to safety and not create conflicting incentives, such as rewards for schedule
performance that risk compromising safety. Selection and retention systems are relevant to
safety with respect to the skill sets and mindsets that are emphasized in hiring, as well as the
knowledge and skills that are lost through retirements and other forms of turnover. Learning
and feedback systems are central to the development and sustainment of safety knowledge
and capability, while complaint and conflict resolution systems provide an essential feedback
loop (including support for periodic whistle-blowing actions).

• Informal organizational structures and social interaction processes, including leadership, ne-
gotiations, problem solving, decision-making, and partnership. Here the focus is on leadership
and decision making about safety matters at every level of the organization. Problem solving
after incidents and operational anomalies is an important component of the safety culture,
particularly as it relates to identifying and eliminating root causes rather than merely the
symptoms of the deeper problems.
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• Individual capability and motivation, including knowledge, skills, and ability; group dynamics,
and many psychological factors including fear of surfacing safety concerns, learning from
mistakes without blame, commitment to safety values, and so on.

• Safety rules and procedures along with their underlying values and assumptions and a clearly
expressed system safety vision. The vision must be shared among all the organization’s
members, not just articulated by the leaders. There is often great variance in the degree to
which safety visions expressed by leaders are shared among all the participants.

13.0.6 Organizational Structure

The organizational structure includes the formal organizational chart, various operating structures
(such as integrated product and process design teams), various formal and informal networks,
institutional arrangements, and other elements. As organizational change experts have long known,
structure drives behavior.
When determining the most appropriate placement for safety activities within the organizational

structure, some basic principles should be kept in mind, including:

• System safety needs a direct link to decision makers and influence on decision making;
• System safety needs to have independence from project management (but not engineering);
• Direct communication channels are needed to most parts of the organization.
These structural principles serve to ensure that system safety is in a position where it can

obtain information directly from a wide variety of sources so that information is received in a
timely manner and without filtering by groups with potential conflicting interests. The safety
activities also must have focus and coordination. Although safety issues permeate every part of
the development and operation of a complex system, a common methodology and approach will
strengthen the individual disciplines. Communication is also important because safety motivated
changes in one subsystem may affect other subsystems and the system as a whole. Finally, it is
important that System Safety efforts do not end up fragmented and uncoordinated. While one
could argue that safety staff support should be integrated into one unit rather than scattered in
several places, an equally valid argument could be made for the advantages of distribution. If the
effort is distributed, however, a clear focus and coordinating body are needed. A case can be made
that centralization of system safety in a quality assurance organization (matrixed to other parts of
the organization) that is neither fully independent nor sufficiently influential was a major factor in
the decline of the safety culture at NASA preceding the Columbia loss.

Influence and Prestige of Safety Function: It is important to first recognize that there are
many aspects of system safety and that putting them all into one organization may be a mistake.
Safety concerns span the life cycle and safety should be involved in just about every aspect of
development and operations. Safety concerns are an integral part of most engineering activities.
Putting all of the safety engineering activities into the quality assurance organization with a

weak matrix structure that provides safety expertise to the projects has set up the expectation that
system safety is an after-the-fact or auditing activity only. In fact, the most important aspects of
system safety involve core engineering activities such as building safety into the basic design and
proactively eliminating or mitigating hazards. By treating safety as an assurance activity only,
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safety concerns are guaranteed to come too late in the process to have an impact on the critical
design decisions.
Beyond associating safety only with assurance, placing it in an assurance group can have a

negative impact on its stature and thus influence. Assurance groups often do not have the prestige
necessary to have the influence on decision making that safety requires.

Independence of the Safety Function: Ironically, organizational changes made after the Chal-
lenger accident in order to increase independence of safety activities had the opposite result. The
project manager decided how much safety was to be “purchased” from this separate function.
Therefore, as noted in the CAIB report, the very livelihoods of the safety experts hired to oversee
the project management depend on satisfying this “customer.” Boards and panels that were origi-
nally set up as independent safety reviews and alternative reporting channels between levels, over
time, were effectively taken over by the Project Office.
The CAIB report recommended the establishment of an Independent Technical Authority, but

there needs to be more than one type and level of independent authority in an organization. For
example, there should be an independent technical authority within the program but independent
from the Program Manager and his/her concerns with budget and schedule. There also needs to
be an independent technical authority outside the programs to provide organization-wide oversight
and maintain standards.
Independent technical authority and review is also needed outside the projects and programs.

For example, authority for tailoring or relaxing of safety standards should not rest with the project
manager or even the program. The amount and type of safety applied on a program should be a
decision that is made outside of the project, in a company at the corporate level and in a government
agency like NASA at the headquarters level.
There also needs to be an external safety review process. The Navy, for example, achieves

this review partly through a project-independent board called the Weapons System Explosives
Safety Review Board (WSESRB) and an affiliated Software Systems Safety Technical Review Board
(SSSTRB). WSESRB and SSSTRB assure the incorporation of explosives safety criteria in all
weapon systems by reviews conducted throughout all the system’s life cycle phases. Similarly, a
Navy Safety Study Group is responsible for the study and evaluation of all Navy nuclear weapon
systems. An important feature of these groups is that they are separate from the programs and
thus allow an independent evaluation and certification of safety.

Safety Oversight and Communication: Insight versus oversight. Increased reliance on con-
tracting necessitates more effective communication and more extensive safety oversight processes,
not less.
In military procurement programs, oversight and communication is enhanced through the use of

safety working groups. In establishing any type of oversight process, two extremes must be avoided:
“getting in to bed” with the project and losing objectivity or backing off too far and losing insight.
Working groups are an effective way of avoiding these extremes. They assure comprehensive and
unified planning and action while allowing for independent review and reporting channels. Working
groups usually operate at different levels of the organization.
As an example, the Navy Aegis system development was very large and included a System Safety

Working Group at the top level chaired by the Navy Principal for Safety with permanent members
being the prime contractor’s system safety lead and representatives from various Navy offices.
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Contractor representatives attended meetings as required. Members of the group were responsible
for coordinating safety efforts within their respective organizations, for reporting the status of
outstanding safety issues to the group, and for providing information to the WSESRB. Working
groups also functioned at lower levels, providing the necessary coordination and communication for
that level and to the levels above and below.
A surprisingly large percentage of the reports on recent aerospace accidents have implicated

improper transitioning from an oversight to insight process. This transition implies the use of
different levels of feedback control and a change from prescription management control to man-
agement by objectives, where the objectives are interpreted and satisfied according to the local
context. For these ccidents, the change in management role from oversight to insight seems to have
been implemented simply as a reduction in personnel and budgets without assuring that anyone
was responsible for specific critical tasks.
As an example, the Mars Climate Orbiter accident report says NASA management of out-of-

house missions was changed from oversight to insight—with far fewer resources devoted to contract
monitoring. In Mars Polar Lander, there was essentially no JPL line management involvement
or visibility into the software development and minimal involvement by JPL technical experts.
Similarly, the MCO report suggests that authority and accountability were a significant issue in
the accident and that roles and responsibilities were not clearly allocated. There was virtually no
JPL oversight of Lockheed-Martin Astronautics subsystem development.
NASA is not the only group with this problem. The Air Force transition from oversight to

insight was implicated in the April 30, 1999 loss of a Milstar-3 satellite being launched by a Titan
IV/Centaur, as described in Chapter 8. The Air Force Space and Missile Center Launch Directorate
and the 3rd Space Launch Squadron were transitioning from a task oversight to a process insight
role. That transition had not been managed by a detailed plan and responsibilities, and how to
perform them under the insight concept were not well defined.

13.0.7 Organizational Subsystems and Social Interaction Processes

As noted earlier, organizational subsystems include various communications system, information
systems, reward and reinforcement systems, selection and retention systems, learning and feedback
systems, career development systems, complaint and conflict resolution systems, and other such
sub-systems. Each of these subsystems is staffed by technical experts who have to simultaneously
fulfill three major functions: to deliver services to the programs/line operations, to monitor the
programs/line operations to maintain standards (sometimes including legal compliance), and to
help facilitate organizational transformation and change. In the context of system safety, each
subsystem has an interdependent and contributing role. Furthermore, these roles interact with
various social interaction processes, including leadership, teamwork, negotiations, problem solving,
decision-making, partnership, entrepreneurship, and other such interaction processes. Vast litera-
tures exist with respect to each dimension of this interaction process. Only two are covered here:
(1) leadership and professional interactions and (2) safety information systems.

Leadership and Professional Interactions: Professional communication is critical for safety.
In an interview shortly after he became Center Director at KSC, Jim Kennedy suggested that the
most important cultural issue the Shuttle program faces is establishing a feeling of openness and
honesty with all employees where everybody’s voice is valued. Statements during the Columbia
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accident investigation and anonymous messages posted on the NASA Watch web site document
a lack of trust of NASA employees to speak up. At the same time, a critical observation in the
CAIB report focused on the managers’ claims that they did not hear the engineers’ concerns.
The report concluded that this was due in part to the managers not asking or listening. Managers
created barriers against dissenting opinions by stating preconceived conclusions based on subjective
knowledge and experience rather than on solid data. In the extreme, they listened to those who
told them what they wanted to hear. Just one indication of the atmosphere existing at that time
were statements in the 1995 Kraft report that dismissed concerns about Shuttle safety by labeling
those who made them as being partners in an unneeded “safety shield” conspiracy.
Changing such interaction patterns is not easy. Management style can be addressed through

training, mentoring, and proper selection of people to fill management positions, but trust will
take a while to regain. Carroll participated in culture change activities at the Millstone Nuclear
Power Plant in 1996 due to a NRC review concluding there was an unhealthy work environment,
which did not tolerate dissenting views and stifled questioning attitudes among employees [?]. The
problems at Millstone are surprisingly similar to those at NASA and the necessary changes were the
same: Employees needed to feel psychologically safe about reporting concerns and to believe that
managers could be trusted to hear their concerns and to take appropriate action while managers
had to believe that employees were worth listening to and worthy of respect. Through extensive
new training programs and coaching, individual managers experienced personal transformations
in shifting their assumptions and mental models and in learning new skills, including sensitivity
to their own and others’ emotions and perceptions. Managers learned to respond differently to
employees who were afraid of reprisals for speaking up and those who simply lacked confidence
that management would take effective action.
There is a growing body of literature on leadership that points to the need for more distributed

models of leadership appropriate to the growing importance of network-based organizational struc-
tures. One intervention technique that is particularly effective in this respect is to have leaders serve
as teachers [?]. Such activities pair leaders with expert trainers to help manage group dynamics,
but the training itself is delivered by the program leaders. The Ford Motor Company used this
approach as part of what they termed their Business Leadership Initiative (BLI) and have since
extended it as part of their Safety Leadership Initiative (SLI). They found that employees pay more
attention to a message delivered by their boss than by a trainer or safety official. Also, by learning
to teach the materials, supervisors and managers are more likely to absorb and practice the key
principles.

Safety Information Systems: Creating and sustaining a successful safety information system
requires a culture that values the sharing of knowledge learned from experience. In lieu of a
comprehensive information system, past success and unrealistic risk assessment are often used as
the basis for decision-making.
Common problems in safety information systems are that necessary data is not collected and

what is collected is often filtered and inaccurate; methods are lacking for the analysis and sum-
marization of causal data; and information is not provided to decision makers in a way that is
meaningful and useful to them.
As a consequence, learning from previous experience is delayed and fragmentary and use of the

information in decision-making is limited. For example, hazard tracking and safety information
systems are important sources for identifying the metrics and data to collect to use as leading
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indicators of potential safety problems and as feedback on the hazard analysis process. When
numerical risk assessment techniques are used, operational experience can provide insight into
the accuracy of the models and probabilities used. In various studies of the DC-10 by McDonnell
Douglas, for example, the chance of engine power loss with resulting slat damage during takeoff was
estimated to be less than one in a billion flights. However, this highly improbable event occurred
four times in the DC-10s in the first few years of operation without raising alarm bells before it
led to an accident and changes were made. Even one event should have warned someone that the
models used might be incorrect.
Aerospace (and other) accidents have often involved unused reporting systems. In a Ti-

tan/Centaur/Milstar loss and in the Mars Climate Orbiter (MCO) accident, for example, there
was evidence that a problem existed before the losses occurred, but there was no communication
channel established for getting the information to those who could understand it and to those mak-
ing decisions or, alternatively, the problem-reporting channel was ineffective in some way or was
simply unused.
The MCO accident report states that project leadership did not instill the necessary sense of

authority and accountability in workers that would have spurred them to broadcast problems they
detected so that those problems might be “articulated, interpreted, and elevated to the highest
appropriate level, until resolved.” The report also states that “Institutional management must
be accountable for ensuring that concerns raised in their own area of responsibility are pursued,
adequately addressed, and closed out.” The MCO report concludes that lack of discipline in
reporting problems and insufficient follow-up was at the heart of the mission’s navigation mishap.
E-mail was used to solve problems rather than the official problem tracking system.
A critical deficiency in Mars Climate Orbiter project management was the lack of discipline in

reporting problems and insufficient follow-up. The primary, structured problem-reporting proce-
dure used by the Jet Propulsion Laboratory—the Incident, Surprise, Anomaly process—was not
embraced by the whole team. The key issue here is not that the formal tracking system was by-
passed, but understanding why this took place. What are the complications or risks for individuals
in using the formal system? What makes the informal e-mail system preferable?
In the Titan/Centaur/Milstar loss, voice mail and e-mail were also used instead of a formal

anomaly reporting and tracking system. The report states that there was confusion and uncertainty
as to how the roll rate anomalies detected before flight (and eventually leading to loss of the
satellite) should be reported, analyzed, documented and tracked. In all these accidents, the existing
formal anomaly reporting system was bypassed and informal email and voice mail was substituted.
The problem is clear but not the cause, which was not included in the reports and perhaps not
investigated. When a structured process exists and is not used, there is usually a reason. Some
possible explanations may be that the system is difficult or unwieldy to use or it involves too much
overhead. There may also be issues of fear and blame that might be associated with logging certain
kinds of entries in such as system. It may well be that such systems are not changing as new
technology changes the way engineers work.

13.0.8 Capability and Motivation

[etc.]
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Appendix A

Definitions

As people have been arguing about these definitions for decades, it is unlikely that everyone will
agree with all (or perhaps even any) of the following definitions. They reflect, however, the use of
these terms in this paper.

Accident An undesired and unplanned event that results in a loss (including loss of human life or
injury, property damage, environmental pollution, etc.).

Safety Freedom from accidents (loss events).

Hazard A system state or set of conditions that, together with a particular set of worst-case
environment conditions, will lead to an accident (loss).

Hazard Analysis The process of identifying hazards and their potential causal factors.

System Safety Engineering The system engineering processes used to prevent accidents by
identifying and eliminating or controlling hazards. Note that hazards are not the same as
failures; dealing with failures is usually the province of reliability engineering.

Hazard Level A function of the hazard severity (worst case damage that could result from the
hazard given the environment in its most unfavorable state) and the likelihood (qualitative or
quantitative) of its occurrence (Figure A.1).

Hazard Assessment The process involved in determining the hazard level.

Risk Factors Factors leading to an accident, including both hazards and the conditions or states
of the environment associated with that hazard leading to an accident.

Risk Analysis The process of identifying risk factors and their potential causal factors.

Risk Level A function of the hazard level combined with (1) the likelihood of the hazard leading
to an accident and (2) hazard exposure or duration.

Risk Assessment The process of determining the risk level (quantifying risk).
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Figure A.1: The Components of Risk.
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Figure A.2: The Components of Risk.



Appendix B

The Role of Software in Spacecraft
Accidents1

Software is playing an increasingly important role in aerospace systems. Is it also playing an
increasing role in accidents and, if so, what type of role? In the process of a research project to
evaluate accident models, I looked in detail at a variety of aerospace accidents that in some way
involved software [67, 126] and was surprised at the similarity of the factors contributing to these
losses.2 To prevent accidents in the future, we need to attack these problems.
The spacecraft accidents investigated were the explosion of the Ariane 5 launcher on its maiden

flight in 1996; the loss of the Mars Climate Orbiter in 1999; the destruction of the Mars Polar Lander
sometime during the entry, deployment, and landing phase in the following year; the placing of a
Milstar satellite in an incorrect and unusable orbit by the Titan IV B-32/Centaur launch in 1999;
and the loss of contact with the SOHO spacecraft in 1998.
On the surface, the events and conditions involved in the accidents appear to be very different.

A more careful, detailed analysis of the systemic factors, however, reveals striking similarities.
These weaknesses not only contributed to the accident being investigated—for the Space Shuttle
Challenger that might be a flawed design of the O-rings—but also can affect future accidents.
For Challenger, the latter includes flawed decision making, poor problem reporting, lack of trend
analysis, a “silent” or ineffective safety program, communication problems, etc.
The accidents are first briefly described for those unfamiliar with them, and then the common

factors are identified and discussed. These factors are divided into three groups: (1) flaws in the
safety culture, (2) management and organizational problems, and (3) technical deficiencies.

B.1 The Accidents

Ariane 501

On June 4, 1996, the maiden flight of the Ariane 5 launcher ended in failure. About 40 seconds after
initiation of the flight sequence, at an altitude of 2700 m, the launcher veered off its flight path,
broke up, and exploded. The accident report describes what they called the “primary cause” as the

1A version of this appendix is in press for publication in the AIAA Journal of Spacecraft and Rockets.
2The detailed analyses of these accidents and their causes using a hierarchical accident model can be found in

[67, 126].
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complete loss of guidance and attitude information 37 seconds after start of the main engine ignition
sequence (30 seconds after liftoff) [71]. The loss of information was due to specification and design
errors in the software of the inertial reference system. The software was reused from the Ariane 4
and included functions that were not needed for Ariane 5 but were left in for “commonality.” In
fact, these functions were useful but not required for the Ariane 4 either.

Mars Climate Orbiter (MCO)

The Mars Climate Orbiter (MCO) was launched December 11, 1998 atop a Delta II launch vehicle.
Nine and a half months after launch, in September 1999, the spacecraft was to fire its main engine to
achieve an elliptical orbit around Mars. It then was to skim through the Mars upper atmosphere for
several weeks, in a technique called aerobraking, to move into a low circular orbit. On September
23, 1999, the MCO was lost when it entered the Martian atmosphere in a lower than expected
trajectory. The investigation board identified what it called the “root” cause of the accident as
the failure to use metric units in the coding of a ground software file used in the trajectory models
[109]. Thruster performance data was instead in English units.

Mars Polar Lander (MPL)

Like MCO, Mars Polar Lander (MPL) was part of the Mars Surveyor program. It was launched
January 3, 1999, using the same type of Delta II launch vehicle as MCO. Although the cause of
the MPL loss is unknown, the most likely scenario is that the problem occurred during the entry,
deployment, and landing (EDL) sequence when the three landing legs were to be deployed from
their stowed condition to the landed position [50, 130]. Each leg was fitted with a Hall Effect
magnetic sensor that generates a voltage when its leg contacts the surface of Mars. The descent
engines were to be shut down by a command initiated by the flight software when touchdown
was detected. The engine thrust must be terminated within 50 milliseconds after touchdown to
avoid overturning the lander. The flight software was also required to protect against a premature
touchdown signal or a failed sensor in any of the landing legs.
The touchdown sensors characteristically generate a false momentary signal at leg deployment.

This behavior was understood and the flight software should have ignored it. The software require-
ments did not specifically describe these events, however, and consequently the software designers
did not account for them. It is believed that the software interpreted the spurious signals generated
at leg deployment as valid touchdown events. When the sensor data was enabled at an altitude of
40 meters, the software shut down the engines and the lander free fell to the surface, impacting at
a velocity of 22 meters per second (50 miles an hour) and was destroyed.

Titan/Centaur/Milstar

On April 30, 1999, a Titan IV B-32/Centaur TC-14/Milstar-3 was launched from Cape Canaveral.
The mission was to place the Milstar satellite in geosynchronous orbit. An incorrect roll rate filter
constant zeroed the roll rate data, resulting in the loss of roll axis control and then yaw and pitch
control. The loss of attitude control caused excessive firings of the reaction control system and
subsequent hydrazine depletion. This erratic vehicle flight during the Centaur main engine burns
in turn led to an orbit apogee and perigee much lower than desired, placing the Milstar satellite in
an incorrect and unusable low elliptical final orbit instead of the intended geosynchronous orbit.
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The accident investigation board concluded that failure of the Titan IV B-32 mission was due to
a failed software development, testing, and quality assurance process for the Centaur upper stage
[86]. That failed process did not detect the incorrect entry by a flight software engineer of a roll
rate filter constant into the Inertial Navigation Unit software file.
The roll rate filter itself was included early in the design phase of the first Milstar spacecraft, but

the spacecraft manufacturer later determined that filtering was not required at that frequency. A
decision was made to leave the filter in place for the first and later Milstar flights for “consistency.”

SOHO (SOlar Heliospheric Observatory)

SOHO was a joint effort between NASA and ESA to perform helioseismology and to monitor
the solar atmosphere, corona, and wind. The spacecraft completed a successful two-year primary
mission in May 1998 and then entered into its extended mission phase. After roughly two months
of nominal activity, contact with SOHO was lost June 25, 1998. The loss was preceded by a routine
calibration of the spacecraft’s three roll gyroscopes and by a momentum management maneuver.
The flight operations team had modified the ground operations procedures as part of a ground

systems reengineering effort to reduce operations costs and streamline operations, to minimize
science downtime, and to conserve gyro life. Though some of the modifications were made at the
request of the SOHO science team, they were not necessarily driven by any specific requirements
changes. A series of errors in making the software changes along with errors in performing the
calibration and momentum management maneuver and in recovering from the emergency safing
mode led to the loss of telemetry [80]. Communication with the spacecraft was never restored.

B.2 Flaws in the Safety Culture

The safety culture is the general attitude and approach to safety reflected by those working in an
industry. Safety culture flaws reflected in the accident reports include complacency and discounting
the risks associated with software, confusing safety with reliability in software-intensive systems,
assuming risk decreases over time, and ignoring warning signs.

B.2.1 Complacency and Discounting of Risks

Success is ironically one of the progenitors of accidents when it leads to overconfidence and cutting
corners or making tradeoffs that increase risk. This phenomenon is not new, and it is extremely
difficult to counter when it enters the engineering culture in an organization. Complacency is the
root cause of most of the other accident factors described in this paper and was exhibited in all the
accidents studied.
The Mars Climate Orbiter (MCO) report noted that because JPL’s navigation of interplanetary

spacecraft had worked well for 30 years, there was widespread perception that “orbiting Mars is
routine” and inadequate attention was devoted to risk management. A similar culture apparently
permeated the Mars Polar Lander (MPL) project.
In the SOHO loss, overconfidence and complacency, according to the accident report, led to

inadequate testing and review of changes to ground-issued software commands to the spacecraft,
a false sense of confidence in the team’s ability to recover from a safe-hold mode (emergency sun
reacquisition) from which a recovery sequence must be commanded and executed under ground
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operator control, the use of tight schedules and compressed timelines that eliminated any time to
handle potential emergencies, inadequate contingency planning, responses to emergencies without
taking the designed-in time to consider the options, etc. Protections built into the process, such
as the review of critical decisions, were bypassed. After two previous SOHO spacecraft retreats
to safe mode, the software and procedures were not reviewed because higher priority had been
assigned to other tasks. The report concludes that the success in recovering from the previous safe
mode entries led to overconfidence by the operations team in their ability to recover and a lack of
appreciation of the risks involved in entering and recovering from the safing mode.
All the accidents involved systems built within an engineering culture that had unrealistic

expectations about software and the use of computers. It is common for engineers to underestimate
the complexity of most software and to overestimate the effectiveness of testing. The Ariane 5
accident report notes that software was assumed to be correct until it was shown to be faulty. The
opposite assumption is more realistic.
In the Titan/Centaur accident, there apparently was no checking of the correctness of the

software after the standard testing performed during development. For example, on the day of
the launch, the attitude rates for the vehicle on the launch pad were not properly sensing the
earth’s rotation rate (the software was consistently reporting a zero roll rate) but no one had
the responsibility to specifically monitor that rate data or to perform a check to see if the software
attitude filters were operating correctly. In fact, there were no formal processes to check the validity
of the filter constants or to monitor attitude rates once the flight tape was actually loaded into the
Inertial Navigation Unit at the launch site. Potential hardware failures are usually checked up to
launch time, but it may have been assumed that testing removed all software errors and no further
checks were needed.
Complacency can also manifest itself in a general tendency of management and decision makers

to discount unwanted evidence of risk. A culture of denial [46] arises in which any evidence of
significant risk is dismissed.
A recommendation common to several of the spacecraft reports was to pay greater attention to

risk identification and management. The investigators found that the project management teams
appeared primarily focused on meeting mission cost and schedule objectives and did not adequately
focus on mission risk. As an example, a report on the MPL loss concludes that the pressure of
meeting the cost and schedule goals resulted in an environment of increasing risk in which too many
corners were cut in applying proven engineering practices and in the checks and balances necessary
for mission success.
While management may express their concern for safety and mission risks, true priorities are

shown during resource allocation. MCO and MPL were developed under very tight “Faster, Better,
Cheaper” budgets. The Titan program office had cut support for monitoring the software devel-
opment and test process by 50% since 1994 and had greatly cut the number of engineers working
launch operations. Although budget decisions are always difficult when resources are reduced—
and budgets are almost always less than is optimal—the first things to be cut are often system
safety, system engineering, quality assurance, and operations, which are assigned a low priority and
assumed to be the least critical parts of the project.
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B.2.2 Confusing Safety and Reliability in Software-Intensive Systems

Throughout the accident reports, there is an emphasis on failures as the cause of accidents. But
accidents involving software are much more likely, in the author’s experience, to be system accidents
that result from dysfunctional interactions among components, not from individual component
failure. Almost all the software accidents known to the author have resulted from the computer
doing something wrong rather than the computer hardware or software failing to operate at all. In
fact, each of the software or hardware components may have operated according to its specification
(i.e., they did not fail), but the combined behavior of the components led to disastrous system
behavior. All the accidents investigated for this paper displayed some aspects of system accidents.
System accidents are caused by interactive complexity and tight coupling [87]. Software allows

us to build systems with a level of complexity and coupling that is beyond our ability to control;
in fact, we are building systems where the interactions among the components (often controlled by
software) cannot all be planned, understood, anticipated, or guarded against. This change is not
solely the result of using digital components, but it is made possible because of the flexibility of
software. Note that the use of redundancy only makes the problem worse—the added complexity
introduced by redundancy has resulted in accidents that otherwise might not have occurred.
Engineering activities must be augmented to reflect the ways that software contributes to ac-

cidents. Almost all software-related aerospace accidents can be traced back to flaws in the re-
quirements specification and not to coding errors—the software performed exactly as the designers
intended (it did not “fail”), but the designed behavior was not safe from a system viewpoint. There
is not only anecdotal but some hard data to support this hypothesis. Lutz examined 387 software
errors uncovered during integration and system testing of the Voyager and Galileo spacecraft [73].
She concluded that the software errors identified as potentially hazardous to the system tended
to be produced by different error mechanisms than non-safety-related software errors. She showed
that for these two spacecraft, the safety-related software errors arose most commonly from (1)
discrepancies between the documented requirements specifications and the requirements needed for
correct functioning of the system and (2) misunderstandings about the software’s interface with
the rest of the system.
Software and digital systems require changes to some important aspects of engineering practice.

Not only are failures not random (if the term “failure” makes any sense when applied to something
like software that is pure design separated from the physical realization of that design), but the
complexity of most software precludes examining all the ways it could “misbehave.” And the
failure modes (the way it misbehaves) can be very different than for physical devices. The JPL
Mars Polar Lander accident report, like others, recommends using FMECA (Failure Modes and
Effects Analysis) and FTA (Fault Tree Analysis) along with appropriate redundancy to eliminate
failures. But these techniques were developed to cope with random wearout failures in hardware
and are not very effective against design errors, the only type of error found in software.5 The
Ariane 5 accident report notes that according to the culture of the Ariane program, only random
failures are addressed and they are primarily handled with redundancy. This approach obviously
failed in the Ariane 5’s first flight when both the primary and backup (redundant) Inertial Reference
System computers shut themselves down—exactly as they were designed to do—as a result of the

5Although computer hardware can fail, software itself is pure design and thus all errors are design errors, even
typos, which could be categorized as a type of inadvertent design error. One could argue that typos have a random
aspect, but typos are usually caught in testing and have not contributed to a large number of spacecraft accidents.
In any event, FTA and FMEA would not be very helpful in identifying potential software typos.
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same unexpected input value.
To cope with software design errors, “diversity” has been suggested in the form of independent

groups writing multiple versions of software with majority voting on the outputs. This approach is
based on the assumption that such versions will fail in a statistically independent manner, but this
assumption has been shown to be false in practice and by scientific experiments (see, for example,
[58]). Common-cause (but usually different) logic errors tend to lead to incorrect results when
the various versions attempt to handle the same unusual or difficult-to-handle inputs. In addition,
such designs usually involve adding to system complexity, which can result in failures itself. A
NASA study of an experimental aircraft with two versions of the control system found that all
of the software problems occurring during flight testing resulted from errors in the redundancy
management system and not in the control software itself, which worked perfectly [75].
The first step in handling system accidents is for engineers to recognize the need for change

and to understand that system safety and component or even functional reliability are different
qualities. For software especially, one does not imply the other. Although confusing reliability with
safety is common in engineering (and particularly common in software engineering), it is perhaps
most unfortunate with regard to software as it encourages spending much of the effort devoted to
safety on activities that are likely to have little or no effect. In some cases, increasing component
or system reliability actually decreases safety and vice versa.

B.2.3 Assuming Risk Decreases over Time

In the Milstar satellite loss, the Titan Program Office had decided that because the software
was “mature, stable, and had not experienced problems in the past,” they could use the limited
resources available after the initial development effort to address hardware issues. In several of
the accidents, quality and mission assurance as well as system engineering were also reduced or
eliminated during operations because it was felt they were no longer needed or the resources were
needed more elsewhere. In MCO, for example, the operations group did not even have a mission
assurance manager.
During SOHO operations, there was a lack of analysis of prior emergency sun reacquisitions,

inadequate staffing, no apparent mission assurance and quality assurance functions, inadequate
attention paid to changes, etc. The SOHO Mission Management Plan required that the NASA
Project Operations Director be responsible for programmatic matters, provide overall technical
direction to the flight operations team, and interface with the ESA technical support director.
The position had been descoped over time by NASA from a dedicated individual during launch
and commissioning to one NASA individual spending less than 10% of his time tracking SOHO
operations. ESA was to retain ownership of the spacecraft and to be responsible for its technical
integrity and safety, but they were understaffed to perform this function in other than routine
situations. It is very common to assume that risk is decreasing after an extended period of success
and to let down one’s guard.
In fact, risk usually increases over time, particularly in software-intensive systems, because

caution wanes and safety margins are cut, because time increases the probability the unusual con-
ditions will occur that trigger an accident, or because the system itself or its environment changes.
In some cases, the introduction of an automated device may actually change the environment in
ways not predicted during system design.
The Therac-25, a radiation therapy machine that massively overdosed five patients due to
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software flaws, operated safely thousands of times before the first accident [66]. As operators
became more familiar with the Therac-25 operation, they started to type faster, which triggered
a software error that had not surfaced previously. Similar changes in pilot behavior have been
observed as they become more familiar with automation.
Software also tends to be frequently changed and “evolves” over time, The more changes that

are made to software, the more the original design erodes and the more difficult it becomes to make
changes without introducing errors. In addition, the assumptions and rationale behind the design
decisions are commonly not documented and are easily violated when the software is changed.
Changes to software appear to be easy and complacency can rear its ugly head again.
While it is indeed easy to change software, it is very difficult to change it correctly. Modifications

to the SOHO command procedures were subjected to very little testing and review, perhaps because
they were considered to be minor. The Mars Climate Orbiter software was changed to include a
new thruster equation but a 4.45 correction factor (the difference between the metric and imperial
units), buried in the original code, was not noticed when the new vendor-supplied equation was
used to update the software [34].
To prevent accidents, all changes to software must be thoroughly tested and, in addition, ana-

lyzed for their impact on safety. Such change analysis will not be feasible unless special steps are
taken during development to document the information needed. Incident and accident analysis,
as for any system, are also important as well as performance monitoring and periodic operational
process audits.
The environment in which the system and software are operating will change over time, partially

as a result of the introduction of the automation or system itself. Basic assumptions made in the
original hazard analysis process must have been recorded and then should be periodically evaluated
to ensure they are not being violated in practice. For example, in order not to distract pilots during
critical phases of flight, TCAS (an airborne collision avoidance system required on most commercial
aircraft flying in U.S. airspace) includes the ability for the pilot to switch to a Traffic-Advisory-Only
mode where traffic advisories are displayed but display of resolution advisories (escape maneuvers)
is inhibited. It was assumed in the original TCAS system design and hazard analysis that this
feature would be used only during final approach to parallel runways when two aircraft come close
to each other and TCAS would call for an evasive maneuver. The actual use of this feature in
practice would be an important assumption to check periodically to make sure it is not being used
in other situations where it might lead to a hazard. But that requires that the assumption was
recorded and not forgotten. It also assumes that a system hazard analysis was performed during
the original system development.

B.2.4 Ignoring Warning Signs

Warning signs almost always occur before major accidents. In several of the accidents considered
here, warning signs existed that the software was flawed but they went unheeded.
Engineers noticed the problems with the Titan/Centaur software after it was delivered to the

launch site, but nobody seemed to take them seriously. A deficiency report on the difficulty in using
the SOHO telemetry data interface had been submitted four years prior to the spacecraft loss, but
never resolved. The problems experienced with the Mars Climate Orbiter (MCO) software during
the early stages of the flight did not seem to raise any red flags. During the first four months of
the MCO mission, the ground software angular momentum desaturation (AMD) files were not used
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in the orbit determination process because of multiple file format errors and incorrect spacecraft
attitude data specifications. Four months were required to fix the files. Almost immediately
(within a week) it became apparent that the files contained anomalous data that was indicating
underestimation of the trajectory perturbations due to desaturation events. Despite all these hints
that there were serious problems in the software and perhaps the development process, reliance was
still placed on the supposedly fixed software without manual checks or alternative calculations.
A good argument can be made that it is unfair to judge too harshly those who have ignored warn-

ings: Too many accident warnings that prove to be unfounded may desensitize those in decision-
making positions and result in real warnings being ignored. Hindsight is always 20/20, and warning
signs are always easier to identify after the accident has occurred. Nevertheless, people have a ten-
dency to disregard events that do not lead to major accidents. Indications of potential problems
almost always occur before major losses, and accidents could be prevented if these warning signs
could be identified and heeded.

B.3 Management and Organizational Factors

The five accidents studied during this exercise, as well as most other major accidents, exhibited
common organizational and managerial flaws, notably. a diffusion of responsibility and authority,
limited communication channels, and poor information flow.

B.3.1 Diffusion of Responsibility and Authority

In most of the accidents, there appeared to be serious organizational and communication problems
among the geographically dispersed partners. Responsibility was diffused without complete cover-
age and without complete understanding by anyone about what all the groups were doing. Roles
were not clearly allocated. Both the Titan and Mars ’98 programs were transitioning to process
“insight” from process “oversight.” Just as the MPL reports noted that “Faster, Better, Cheaper”
was not defined adequately to ensure that it meant more than simply cutting budgets, this change
in management role from oversight to insight seems to have been implemented simply as a reduc-
tion in personnel and budgets without assuring that anyone was responsible for specific critical
tasks. One of the results of faster-better-cheaper was a reduction in workforce while maintaining
an expectation for the same amount of work to be accomplished. In many of these accidents, the
people were simply overworked—sometimes driven by their own dedication.
The MCO report concludes that project leadership did not instill the necessary sense of authority

and accountability in workers that would have spurred them to broadcast problems they detected
so that those problems might be “articulated, interpreted, and elevated to the highest appropriate
level, until resolved.” The Titan/Centaur accident also shows some of these same symptoms.
For SOHO, a transfer of management authority to the SOHO Project Scientist resident at God-

dard Space Flight Center left no manager, either from NASA or ESA, as the clear champion of
spacecraft health and safety. Instead, the transfer encouraged management decisions that maxi-
mized science return over spacecraft risk. In addition, the decision structure for real-time divergence
from agreed-upon ground and spacecraft procedures was far from clear. The flight operations staff
was apparently able to change procedures without proper review.
Inadequate transition from development to operations played a role in several of the accidents.

Engineering management sometimes has a tendency to focus on development and to put less effort
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into planning the operational phase. The operations teams (in those accidents that involved opera-
tions) also seemed isolated from the developers. The MCO report notes this isolation and provides
as an example that the operators did not know until long after launch that the spacecraft sent down
tracking data that could have been compared with the ground data, which might have identified
the software error while it could have been fixed. The operations crew for the Titan/Centaur also
did not detect the obvious software problems, partly because of a lack of the knowledge required
to detect them.
Most important, responsibility for safety does not seem to have been clearly defined outside

of the quality assurance function on any of these programs. All the accident reports (except the
Titan/Centaur) are surprisingly silent about their safety programs. One would think that the safety
activities and why they had been ineffective would figure prominently in the reports.
Safety was originally identified as a separate responsibility by the Air Force during the ballistic

missile programs of the 50s and 60s to solve exactly the problems seen in these accidents—to make
sure that safety is given due consideration in decisions involving conflicting pressures and that
safety issues are visible at all levels of decision making. An extensive system safety program was
developed by NASA after the Apollo launch pad fire in 1967. But the Challenger accident report
noted that the system safety program had become “silent” over time and through budget cuts.
Has this perhaps happened again? Or are the system safety efforts just not handling software
effectively?
One common mistake is to locate the safety efforts within the quality assurance function. Placing

safety only under the assurance umbrella instead of treating it as a central engineering concern is
not going to be effective, as has been continually demonstrated by these and other accidents. While
safety is certainly one property (among many) that needs to be assured, it cannot be engineered
into a design through after-the-fact assurance activities alone.
Having an effective safety program cannot prevent errors of judgment in balancing conflicting

safety, schedule, and budget constraints, but it can at least make sure that decisions are informed
and that safety is given due consideration. It also ensures that someone is focusing attention on
what the system is not supposed to do, i.e., the hazards, and not just on what it is supposed to do.
Both perspectives are necessary if safety is to be optimized.

B.3.2 Limited Communication Channels and Poor Information Flow

In the Titan/Centaur and Mars Climate Orbiter accidents, there was evidence that a problem
existed before the loss occurred, but there was no communication channel established for getting
the information to those who could understand it and to those making decisions or, alternatively,
the problem-reporting channel was ineffective in some way or was simply unused.
All the accidents involved one engineering group not getting the information they needed from

another engineering group. The MCO report cited deficiencies in communication between the
project development team and the operations team. The MPL report noted inadequate peer com-
munication and a breakdown in intergroup communication. The Titan/Centaur accident also in-
volved critical information not getting to the right people. For example, tests right before launch
detected the zero roll rate but there was no communication channel established for getting that in-
formation to those who could understand it. SOHO had similar communication problems between
the operations team and technical experts. For example, when a significant change to procedures
was implemented, an internal process was used and nobody outside the flight operations team was
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notified.
In addition, system engineering on several of the projects did not keep abreast of test results from

all areas and communicate the findings to other areas of the development project: Communication
is one of the most important functions in any large, geographically distributed engineering project
and must be carefully planned and fostered.
Researchers have found that the second most important factor in the success of any safety

program (after top management concern) is the quality of the hazard information system. Both
collection of critical information as well as dissemination to the appropriate people for action is
required. The MCO report concludes that lack of discipline in reporting problems and insufficient
followup was at the heart of the mission’s navigation mishap. In the Titan/Centaur loss, the use of
voice mail and email implies there either was no formal anomaly reporting and tracking system or
the formal reporting procedure was not known or used by the process participants for some reason.
The report states that there was confusion and uncertainty as to how the roll rate anomalies should
be reported, analyzed, documented and tracked because it was a “concern” and not a “deviation.”
There is no explanation of these terms.
In all the accidents, the existing formal anomaly reporting system was bypassed (in Ariane

5, there is no information about whether one existed) and informal email and voice mail was
substituted. The problem is clear but not the cause, which was not included in the reports and
perhaps not investigated. When a structured process exists and is not used, there is usually a
reason. Some possible explanations may be that the system is difficult or unwieldy to use or it
involves too much overhead. Such systems may not be changing as new technology changes the
way engineers work.
There is no reason why reporting something within the problem-reporting system should be

much more cumbersome than adding an additional recipient to email. Large projects have success-
fully implemented informal email processes for reporting anomalies and safety concerns or issues.
New hazards and concerns will be identified throughout the development process and into oper-
ations, and there must be a simple and non-onerous way for software engineers and operational
personnel to raise concerns and safety issues and get questions answered at any time.

B.4 Technical Deficiencies

These cultural and managerial flaws manifested themselves in the form of technical deficiencies: (1)
inadequate system and software engineering, (2) inadequate review activities, (3) ineffective system
safety engineering, (4) inadequate cognitive engineering, and (5) flaws in the test and simulation
environments.

B.4.1 Inadequate System and Software Engineering

For any project as complex as those involved in these accidents, good system engineering is essential
for success. In some of the accidents, system engineering resources were insufficient to meet the
needs of the project. In others, the process followed was flawed, such as in the flowdown of system
requirements to software requirements or in the coordination and communication among project
partners and teams.
In the Titan project, there appeared to be nobody in charge of the entire process, i.e., nobody re-

sponsible for understanding, designing, documenting, controlling configuration, and ensuring proper
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execution of the process. The Centaur software process was developed early in the Titan program
and many of the individuals who designed the original process were no longer involved in it due
to corporate mergers and restructuring and the maturation and completion of the Titan/Centaur
design and development. Much of the system and process history was lost with their departure and
therefore nobody knew enough about the overall process to detect that it omitted any testing with
the actual load tape or knew that the test facilities had the capability of running the type of test
that could have caught the error.
Preventing system accidents falls into the province of system engineering—those building in-

dividual components have little control over events arising from dysfunctional interactions among
components. As the systems we build become more complex (much of that complexity being made
possible by the use of computers), system engineering will play an increasingly important role
in the engineering effort. In turn, system engineering will need new modeling and analysis tools
that can handle the complexity inherent in the systems we are building. Appropriate modeling
methodologies will have to include software, hardware and human components of systems.
Given that software played a role in all the accidents, it is surprising the reports reflected so

little investigation of the practices that led to the introduction of the software flaws and a dearth
of recommendations to fix them. In some cases, software processes were declared in the accident
reports to have been adequate when the evidence shows they were not.
These accidents all involved very common system and software engineering problems, including

poor specification practices, unnecessary complexity and software functions, software reuse without
appropriate safety analysis, and violation of basic safety engineering design practices in the digital
components.

Poor or Missing Specifications

The vast majority of software-related accidents have been related to flawed requirements and mis-
understanding about what the software should do. This experiential evidence points to a need for
better specification review and analysis—the system and software specifications must be reviewable
and easily understood by a wide range of engineering specialists.
All the reports refer to inadequate specification practices. The Ariane accident report mentions

poor specification practices in several places and notes that the structure of the documentation
obscured the ability to review the critical design decisions and their underlying rationale. Inad-
equate documentation of design rationale to allow effective review of design decisions is a very
common problem in system and software specifications [3]. The Ariane report recommends that
justification documents be given the same attention as code and that techniques for keeping code
and its justifications consistent be improved.
The MPL report notes that the system-level requirements document did not specifically state

the failure modes the requirement was protecting against (in this case possible transients) and
speculates that the software designers or one of the reviewers might have discovered the missing
requirement if they had been aware of the rationale underlying the requirements. The small part
of the requirements specification shown in the accident report (which may very well be misleading)
seems to avoid all mention of what the software should not do. In fact, standards and industry prac-
tices often forbid such negative requirements statements. The result is that software specifications
often describe nominal behavior well but are very incomplete with respect to required software
behavior under off-nominal conditions and rarely describe what the software is not supposed to
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do. Most safety-related requirements and design constraints are best described using such negative
requirements or design constraints.
Not surprising, the interfaces were a source of problems. It seems likely from the evidence in

several of the accidents that the interface documentation practices were flawed. The MPL report
includes a recommendation that in the future “all hardware inputs to the software must be identified
. . . The character of the inputs must be documented in a set of system-level requirements.” This
information is usually included in the standard interface specifications, and it is surprising that it
was not.
There are differing accounts of what happened with respect to the MCO incorrect units problem.

The official accident report seems to place blame on the programmers and recommends that the
software development team be provided additional training in “the use and importance of following
the Mission Operations Software Interface Specification (SIS).” Although it is not included in the
official NASA Mars Climate Orbiter accident report, James Oberg in an IEEE Spectrum article on
the accident [83] claims that JPL never specified the units to be used. It is common for specifications
to be incomplete or not to be available until late in the development process. A different explanation
for the error was provided by the developers [34]. According to them, the files were required to
conform to a Mars Global Surveyor (MGS) heritage software interface specification. The equations
used in the erroneous calculation were supplied by the vendor in English units.

Although starting from MGS-heritage software, the coded MGS thruster equation had
to be changed because of the different size RCS thruster that MCO employed (same
vendor). As luck would have it, the 4.45 conversion factor, although correctly included in
the MGS equation by the previous development team, was not immediately identifiable
by inspection (being buried in the equation) or commented in the code in an obvious
way that the MCO team recognized it. Thus, although the SIS required SI units, the
new thruster equation was inserted in the place of the MGS equation—without the
conversion factor[34].

This explanation raises questions about the other software specifications, including the requirements
specification, which seemingly should include descriptions of the computations to be used. Either
these did not exist or the software engineers did not refer to them when making the change. Formal
acceptance testing apparently did not use the software interface specification because the test oracle
(computed manually) used for comparison contained the same error as the output file [34] and thus
testing did not detect the error. Similarly, informal interface testing by the Navigation team of
ground software changes after launch did not test the correctness of the file formats (consistency
with the interface specification) but concentrated on making sure the file could be moved across on
the file server [34].
Complete and understandable specifications are not only necessary for development, but they

are critical for operations and the handoff between developers, maintainers, and operators. In
the Titan/Centaur accident, nobody other than the control dynamics engineers who designed the
roll rate constants understood their use or the impact of filtering the roll rate to zero. When
discrepancies were discovered right before the Titan/Centaur/Milstar launch, nobody understood
them. The MCO operations staff also clearly had inadequate understanding of the automation and
therefore were unable to monitor its operation effectively. The SOHO accident report mentions that
no hard copy of the software command procedure set existed and the latest versions were stored
electronically without adequate notification when the procedures were modified. The report also
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states that the missing software enable command (which led to the loss) had not been included in
the software module due to a lack of system knowledge of the person who modified the procedure:
he did not know that an automatic software function must be re-enabled each time Gyro A was
despun. Such information, particularly about safety-critical features, obviously needs to be clearly
and prominently described in the system specifications.
In some cases, for example the problems with the Huygens probe from the Cassini spacecraft,

the designs or parts of designs are labeled as “proprietary” and cannot be reviewed by those who
could provide the most important input [70]. Adequate system engineering is not possible when
the system engineers do not have access to the complete design of the spacecraft.
Good specifications that include requirements tracing and design rationale are critical for com-

plex systems, particularly those that are software-controlled. And they must be reviewable and
reviewed in depth by domain experts.

Unnecessary Complexity and Software Functionality

One of the most basic concepts in engineering critical systems is to “keep it simple.”

The price of reliability is the pursuit of the utmost simplicity. It is a price which the
very rich find most hard to pay [45].

The seemingly unlimited ability of software to implement desirable features often, as in the case
of most of the accidents examined in this paper, usually pushes this basic principle into the back-
ground: Creeping featurism is a common problem in software-intensive systems.
The Ariane and Titan/Centaur accidents involved software functions that were not needed, but

surprisingly the decision to put in or to keep (in the case of reuse) these unneeded features was
not questioned in the accident reports. The software alignment function in the reused Ariane 4
software had no use in the different Ariane 5 design. The alignment function was designed to cope
with the unlikely event of a hold in the Ariane 4 countdown: the countdown could be restarted
and a short launch window could still be used. The feature had been used once (in 1989 in flight
33 of the Ariane 4). The Ariane 5 has a different preparation sequence and cannot use the feature
at all. In addition, the alignment function computes meaningful results only before liftoff—during
flight, it serves no purpose but the problem occurred while the function was operating after takeoff
in the Ariane 5. The Mars Polar Lander accident also involved software that was executing when
it was not necessary to execute, although in that case the function was required at a later time in
the descent sequence.
The Titan/Centaur accident report explains that the software roll rate filter involved in the

loss of the Milstar satellite was not needed but was kept in for consistency. The same justification
is used to explain why the unnecessary software function leading to the loss of the Ariane 5 was
retained from the Ariane 4 software. Neither report explains why consistency was assigned such
high priority. While changing software that works can increase risk, executing unnecessary software
functions is also risky.
For SOHO, there was no reason to introduce a new function into the module that eventually led

to the loss. A software function already existed to perform the required maneuver and could have
been used. There was also no need to despin Gyro A between gyro calibration and the momentum
maneuvers. In all these projects, tradeoffs were obviously not considered adequately (considering
the consequences), perhaps partially due to complacency about software risk.
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The more features included in software and the greater the resulting complexity (both software
complexity and system complexity), the harder and more expensive it is to test, to provide assurance
through reviews and analysis, to maintain, and to reuse in the future. Engineers need to start
making these hard decisions about functionality with a realistic appreciation of their effect on
development cost and eventual system safety and system reliability.

Software Reuse without Appropriate Safety Analysis

Reuse and the use of commercial off-the-shelf software (COTS) is common practice today in embed-
ded software development. The Ariane 5 software involved in the loss was reused from the Ariane
4. According to the MCO developers [34], the small forces software was reused from the Mars
Global Surveyor project, with the substitution of a new thruster equation. Technical management
accepted the “just like MGS” argument and did not focus on the details of the software.
It is widely believed that because software has executed safely in other applications, it will

be safe in the new one. This misconception arises from confusion between software reliability
and safety, as described earlier: most accidents involve software that is doing exactly what it was
designed to do, but the designers misunderstood what behavior was required and would be safe,
i.e., it reliably performs the wrong function.
The blackbox (externally visible) behavior of a component can only be determined to be safe

by analyzing its effects on the system in which it will be operating, that is, by considering the
specific operational context. The fact that software has been used safely in another environment
provides no information about its safety in the current one. In fact, reused software is probably less
safe because the original decisions about the required software behavior were made for a different
system design and were based on different environmental assumptions. Changing the environment
in which the software operates makes all previous usage experience with the software irrelevant for
determining safety.
A reasonable conclusion to be drawn is not that software cannot be reused, but that a safety

analysis of its operation in the new system context is mandatory: Testing alone is not adequate
to accomplish this goal. For complex designs, the safety analysis required stretches the limits of
current technology. For such analysis to be technically and financially feasible, reused software
must contain only the features necessary to perform critical functions—another reason to avoid
unnecessary functions.
COTS software is often constructed with as many features as possible to make it commercially

useful in a variety of systems. Thus there is tension between using COTS versus being able to
perform a safety analysis and have confidence in the safety of the system. This tension must be
resolved in management decisions about specific project risk—ignoring the potential safety issues
associated with COTS software can lead to accidents and potential losses that are greater than the
additional cost would have been to design and build new components instead of buying them.
If software reuse and the use of COTS components are to result in acceptable risk, then sys-

tem and software modeling and analysis techniques must be used to perform the necessary safety
analyses. This process is not easy or cheap. Introducing computers does not preclude the need
for good engineering practices nor the need for difficult tradeoff decisions, and it almost always
involves higher costs despite the common myth that introducing automation, particularly digital
automation, will save money.
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Violation of Basic Safety Engineering Practices in the Digital Components

Although system safety engineering textbooks and standards include principles for safe design,
software engineers are almost never taught them. As a result, software often does not incorporate
basic safe design principles—for example, separating and isolating critical functions, eliminating
unnecessary functionality, designing error-reporting messages such that they cannot be confused
with critical data (as occurred in the Ariane 5 loss), and reasonableness checking of inputs and
internal states.
Consider the Mars Polar Lander loss as an example. The JPL report on the accident states that

the software designers did not include any mechanisms to protect against transient sensor signals
nor did they think they had to test for transient conditions. Runtime reasonableness and other
types of checks should be part of the design criteria used for any real-time software.

B.4.2 Inadequate Review Activities

General problems with the way quality and mission assurance are practiced were mentioned in
several of the reports. QA often becomes an ineffective activity that is limited simply to checking
boxes signifying the appropriate documents have been produced without verifying the quality of
the contents. The Titan/Centaur accident report makes this point particularly strongly.
Review processes (outside of QA) are also described as flawed in the reports but few details are

provided to understand the problems. The Ariane 5 report states that reviews including all major
partners in the Ariane 5 program took place, but no information is provided about what types
of reviews were held or why they were unsuccessful in detecting the problems. The MCO report
recommends that NASA “conduct more rigorous, in-depth reviews of the contractor’s and team’s
work,” which it states were lacking on the MCO. The report also concludes that the operations team
could have benefited from independent peer reviews to validate their navigation analysis technique
and to provide independent oversight of the trajectory analysis. There is no mention of software
quality assurance activities or the software review process in the MCO report.
In the MPL descent engine control software reviews, apparently nobody attending was famil-

iar with the potential for spurious Hall Effect sensor signals. There have also been cases where
concerns about proprietary software have prevented external reviewers familiar with the space-
craft from a systems viewpoint from reviewing the software (see, for example, the Cassini/Huygens
communications link enquiry board report [70]).
The SOHO accident report states that the changes to the ground-generated commands were

subjected to very limited review. The flight operations team placed high reliance on ESA and
Matra Marconi Space representatives who were quite knowledgeable about the spacecraft design,
but there were only two of them and neither was versed in the computer language used to define the
commands. A simulation was performed on the new compressed SOHO timelines, but the analysis
of a problem detected during simulation was still going on as the new procedures were being used.
The Ariane report says that the limitations of the inertial reference system software were not

fully analyzed in reviews, and it was not realized that the test coverage was inadequate to expose
such limitations. An assumption by the Ariane 5 developers that it was not possible to perform
a complete system integration test made simulation and analysis even more important, including
analysis of the assumptions underlying any simulation.
The Titan/Centaur report was the only one to mention the existence of an independent verifi-

cation and validation review process by a group other than the developers. In that process, default
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values were used for the filter rate constants and the actual constants used in flight were never
validated.
In general, software is difficult to review and the success of such an effort is greatly dependent

on the quality of the specifications. However, identifying unsafe behavior, i.e., the things that the
software should not do and concentrating on that behavior for at least part of the review process,
helps to focus the review and to ensure that critical issues are adequately considered.
Such unsafe (or mission-critical) behavior should be identified in the system engineering process

before software development begins. The design rationale and design features used to prevent the
unsafe behavior should also have been documented and can be the focus of such a review. This
presupposes, of course, a system safety process to provide the information, which does not appear
to have existed for the projects that were involved in the accidents studied.
As mentioned earlier, almost all software-related accidents have involved incomplete require-

ments specification and unhandled or mishandled system states or conditions. The two identified
Mars Polar Lander software errors, for example, involved incomplete handling of software states
and are both examples of very common specification flaws and logic omissions often involved in
accidents. Such errors are most likely to be found if spacecraft and subsystem experts participate
actively in the reviews.
Software hazard analysis and requirements analysis techniques and tools exist to assist in finding

these types of incompleteness. To make such a review feasible, the requirements should include
only the externally visible (blackbox) behavior; all implementation-specific information should be
put into a separate software design specification (which can be subjected to a later software design
review by a different set of reviewers). The only information relevant for a software requirements
review is the software behavior that is visible outside the computer. Specifying only blackbox
behavior (in engineering terminology, the transfer function across the digital component) allows
the reviewers to concentrate on the information of importance to them without being overwhelmed
by internal design information that has no impact on externally observable behavior.
The language used to specify the software requirements is also critical to the success of such

a review. The best way to find errors in the software requirements is to include a wide range of
disciplines and expertise in the review process. They must be able to read and understand the
specifications without extensive training and, ideally, the notation should not differ significantly
from standard engineering notations. While formal and executable specification languages have
tremendous potential for enhancing our ability to understand the implications of complex software
behavior and to provide correct and complete requirements, most of the languages created by
computer scientists require too much reviewer training to be practical. A high priority on readability
and learnability has not been placed on the development of such languages.

B.4.3 Ineffective System Safety Engineering

All of the accident reports studied are surprisingly silent about the safety programs and system
safety activities involved. Take SOHO for example. A hazard analysis surely would have shown
that the roll rate and the status of gyros A and B were critical, and this information could have
guided the design of feedback channels to the operators about their status. A rigorous system safety
process also would have triggered special safety analysis when changes were made to the SOHO
operational procedures involving safety-critical components. In addition, a strong system safety
program would have ensured that high priority was given to the analysis of previous emergency
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sun reacquisitions, that greater controls were placed on safety-critical operational procedures, and
that safety-related open operational reports, such as the one reporting the difficulty the SOHO
operators were having in reviewing telemetry data, did not stay open for four years and instead
were tracked and resolved in a timely manner.
There did appear to be a criticality analysis performed on many of these projects, albeit a

flawed one. Several of the reports recommend reconsidering the definition they used of critical
components, particularly for software. Unfortunately, not enough information is given about how
the criticality analyses were performed (or in some cases if they were done at all) to determine why
they were unsuccessful. Common practice throughout engineering, however, is to apply the same
techniques and approaches that were used for electromechanical systems (e.g., FMEA and FMECA)
to the new software-intensive systems. This approach will be limited because the contribution of
software to accidents, as noted previously, is different than that of purely mechanical or electronic
components. In particular, software does not fail in the sense assumed by these techniques.
Often hazard analyses simply omit software, and when included it is often treated superficially

at best. The hazard analysis produced after the Mars Polar Lander loss is typical. The JPL report
on the loss identifies the hazards for each phase of the entry, descent, and landing sequence, such
as Propellant line ruptures, Excessive horizontal velocity causes lander to tip over at touchdown,
and Premature shutdown of the descent engines. For software, however, only one hazard—Flight
software fails to execute properly—is identified, and it is labeled as common to all phases.
The problem with such vacuous statements about software hazards is that they provide no

useful information—they are equivalent to simply substituting the single statement Hardware fails
to operate properly for all the other identified system hazards. What can engineers do with such
general statements? Singling out the JPL engineers here is unfair because the same types of useless
statements about software are common in the fault trees and other hazard analyses found in almost
all organizations and industries. The common inclusion of a box in a fault tree or failure analysis
that says simply Software Failure or Software Error can be worse than useless because it is untrue—
all software misbehavior will not cause a system hazard in most cases—and it leads to nonsensical
activities like using a general reliability figure for software (assuming one believes such a number
can be produced) in quantitative fault tree analyses when such a figure does not reflect in any way
the probability of the software exhibiting a particular hazardous behavior.
Software by itself is never dangerous—it is an abstraction without the ability to produce energy

and thus to lead directly to a physical loss. Instead, it contributes to accidents through issuing (or
not issuing) instructions to other components in the system. In the case of the identified probable
factor in the MPL loss, the dangerous behavior was Software prematurely shuts down the descent
engines. Such an identified unsafe behavior would be much more helpful during development in
identifying ways to mitigate risk than the general statement Software fails to execute properly.
There are several instances of flawed risk tradeoff decisions associated with these accidents. For

example, in the Ariane accident, there was a lack of effective analysis to determine which software
variables should be protected during execution. Unfortunately, the accident reports describe flawed
decisions, but not the process for arriving at them. Important information that is missing includes
how the analyses and trade studies were performed and what additional information or additional
analysis techniques could have allowed better decisions to be made.
Providing the information needed to make safety-related engineering decisions is the major

contribution of system safety techniques to engineering. It has been estimated that 70-90% of the
safety-related decisions in an engineering project are made during the early concept development
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stage [36]. When hazard analyses are not performed, are done only after the fact (for example, as
a part of quality or mission assurance of a completed design), or are performed but the information
is never integrated into the system design environment, they can have no effect on these decisions
and the safety effort reduces to a cosmetic and perfunctory role.
The description of the MCO problem by the developers [34] says that the best chance to find and

eliminate the problem existed at the early stages of development, but the team failed to recognize
the importance of the small forces ground software and it was not given the same attention as the
flight software.
The Titan/Centaur accident provides another example of what happens when such analysis is

not done. The risk analysis, in that case, was not based on determining the steps critical to mission
success but instead considered only the problems that had occurred in previous launches. Software
constant generation (a critical factor in the loss) was considered to be low risk because there had
been no previous problems with it. There is, however, a potentially enormous (perhaps unlimited)
number of errors related to software and considering only those mistakes made previously, while
certainly prudent, is not adequate.
Not only is such a fly-fix-fly approach inadequate for complex systems in general, particularly

when a single loss is unacceptable, but considering only the specific events and conditions occurring
in past accidents is not going to be effective when new technology is introduced into a system.
Computers are, in fact, introduced in order to make radical changes in functionality and design.
In addition, software is often used precisely because it is possible to make changes for each mission
and throughout operations—the system being flown today is often not the same one that existed
yesterday. Proper hazard analysis that examines all the ways the system components (including
software) or their interaction can contribute to accidents needs to be performed and used in the
original development and when making changes during operations.
At the same time, system-safety techniques, like other engineering techniques, need to be ex-

panded to include software and the complex cognitive decision making and new roles played by
human operators [66]. Existing approaches need to be applied, and new and better ones developed.
Where appropriately modified system safety techniques have been used, they have been successful.
If system hazard analysis is performed prior to software implementation (not just prior to test-
ing, as is recommended in the MPL report), requirements can be analyzed for hazardous states
and protection against potentially hazardous behavior designed into the software logic from the
beginning.
The Mars Climate Orbiter accident report recommended that the NASAMars Program institute

a classic system safety engineering program, i.e.,

• Continually performing the system hazard analyses necessary to explicitly identify mission
risks and communicating these risks to all segments of the project team and institutional
management;

• Vigorously working to make tradeoff decisions that mitigate the risks in order to maximize
the likelihood of mission success; and

• Regularly communicating the progress of the risk mitigation plans and tradeoffs to project,
program, and institutional management.

The other spacecraft accident reports, in contrast, recommended applying classic reliability engi-
neering approaches that are unlikely to be effective for system accidents or software-related causal
factors.
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One of the benefits of using system-safety engineering processes is simply that someone becomes
responsible for ensuring that particular hazardous behaviors are eliminated if possible or their like-
lihood reduced and their effects mitigated in the design. Almost all attention during development is
focused on what the system and software are supposed to do. A system safety engineer or software
safety engineer is responsible for ensuring that adequate attention is also paid to what the system
and software are not supposed to do and verifying that hazardous behavior will not occur. It is
this unique focus that has made the difference in systems where safety engineering successfully
identified problems that were not found by the other engineering processes.

B.4.4 Flaws in the Test and Simulation Environments

It is always dangerous to conclude that poor testing was the “cause” of an accident. After the
fact, it is always easy to find a test case that would have uncovered a known error. It is usually
difficult, however, to prove that the particular test case would have been selected beforehand, even
if testing procedures were changed. By definition, the cause of an accident can always be stated as
a failure to test for the condition that was determined, after the accident, to have led to the loss.
However, in the accidents studied, there do seem to be omissions that reflect poor decisions related
to testing, particularly with respect to the accuracy of the simulated operational environment.
A general principle in testing aerospace systems is to fly what you test and test what you fly.

This principle was violated in all the spacecraft accidents, especially with respect to software. The
software test and simulation processes must reflect the environment accurately. Although imple-
menting this principle is often difficult or even impossible for spacecraft, no reasonable explanation
was presented in the reports for some of the omissions and flaws in the testing for these systems.
An example was the use of Ariane 4 trajectory data in the specifications and simulations of the
Ariane 5 software even though the Ariane 5 trajectory was known to be different. Another example
was not testing the Titan/Centaur software with the actual load tape prior to launch. Testing of
SOHO operational procedures was primarily performed using a simulator, but the simulator had
not been maintained with all the on-board software changes that had been implemented on the
spacecraft, essentially making such testing useless.
For both the Ariane 5 and Mars ’98 projects, a conclusion was reached during development that

the components implicated in the accidents could not be tested and simulation was substituted.
After the fact, it was determined that such testing was indeed possible and would have had the
ability to detect the design flaws. The same occurred with the Titan/Centaur accident, where
default and simulated values were used in system testing although the real roll rate filter constants
could have been used. Like Ariane, the Titan/Centaur engineers incorrectly thought the rigid-body
simulation of the vehicle would not exercise the filters sufficiently. Even the tests performed on
the Titan/Centaur right before launch (because anomalies had been detected) used default values
and thus were unsuccessful in detecting the error. After wiring errors were discovered in the MPL
testing process, for undisclosed reasons the tests necessary to detect the software flaw were not
rerun.
Not all problems in testing can be traced to the simulation environment, of course. There have

been cases of spacecraft losses involving inadequate, inappropriate, and ill-suited testing. A basic
problem is one of piecemeal testing and not testing at the system level for system-level effects and
emergent behavior. The rush to get the ground software operational after a problem was discovered
post-launch in MCO resulted in the testing program being abbreviated. At a November 10, 1999
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press conference, Alfred Stephenson, the chief accident investgator, admitted, “Had we done end-
to-end testing, we believe this error would have been caught.” But the rushed and inadequate
preparations left no time to do it right. The problem lies not only in testing, but in relying on
software that had not been adequately tested without additional manual or other checks to gain
confidence. The same lack of system test also contributed to the WIRE (Wide-Field Infrared
Explorer Mission) spacecraft where a contributing cause cited in the accident report was that no
system level end-to-end test with live pyrotechnic devices in the as-flown configuration had been
done [14].
A final very common problem in software testing is inadequate emphasis on off-nominal and

stress testing.
Better system testing practices are needed for components containing software (almost every-

thing these days), more accurate simulated environments need to be used in software testing, and
the assumptions used in testing and simulations need to be carefully checked.

B.5 Inadequate Cognitive Engineering

Cognitive engineering, particularly that directed at the influence of software design on human
error, is still in its early stages. Human factors experts have written extensively on the potential
risks introduced by the automation capabilities of glass cockpit aircraft. Among those identified
are: mode confusion and situational awareness difficulties; inadequate feedback to support effective
monitoring and decision making; over reliance on automation; shifting workload by increasing it
during periods of already high workload and decreasing it during periods of already low workload;
being “clumsy” or difficult to use; being opaque or difficult to understand; and requiring excessive
experience to gain proficiency in its use. Accidents, surveys and simulator studies have emphasized
the problems pilots are having in understanding digital automation and have shown that pilots
are surprisingly uninformed about how the automation works [16, 102]. Not all of this information
seems to have affected engineering practice: After commercial aircraft accidents, it is more common
to simply blame the pilot for the accident than to investigate the aspects of system design that
may have led to the human error(s).
As more sophisticated automation has been introduced into spacecraft control and control of

safety-critical functions is increasingly shared between humans and computers, the same problems
found in high-tech aircraft are appearing. Neither the Mars Climate Orbiter nor the Titan mission
operations personnel understood the system or software well enough to interpret the data they
saw as indicating there was a problem in time to prevent the loss. Complexity in the automation
combined with poor documentation and training procedures are contributing to these problems.
Problems abound in the design of the interfaces between humans and automation. The SOHO

operations personnel had filed a report (which had not been resolved in four years) about the dif-
ficulty they were having interpreting the telemetry data using the interface they were given. In
addition, several places in the SOHO accident report hint at the controllers not having the infor-
mation they needed about the state of the gyros and the spacecraft in general to make appropriate
decisions. The misdiagnosis of Gyro B as the bad one and its subsequent deactivation raises many
important questions about the information provided to the operators that are not answered in the
accident report.
Complexity in the automation combined with poor documentation and training procedures are

contributing to the problems we are seeing. Sometimes the incorrect assumption is made that
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introducing computers lessens the need for in-depth knowledge by operational personnel but the
opposite is true. Some of the spacecraft accidents where operators were implicated involved a
failure to transfer skill and knowledge from those who operated spacecraft in prior missions, and
they were therefore unable to detect the software deficiencies in time to save the mission.
Either the design of the automation we are building needs to be improved from a cognitive

engineering viewpoint or new training methods are needed for those who must deal with the clumsy
automation and confusing, error-prone interfaces we are designing.

B.6 Conclusions

Complacency and misunderstanding software and its risks were at the root of all these accidents.
Software presents tremendous potential for increasing our engineering capabilities. At the same
time, it introduces new causal factors for accidents and requires changes in the techniques used to
prevent the old ones. We need to apply the same good engineering practices to software development
that we apply to other engineering technologies while also understanding the differences and making
the appropriate changes to handle them. There is no magic in software—it requires hard work and
is difficult to do well, but the result is worth the effort.
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Appendix D

SpecTRM-RL Description

SpecTRM (Specification Tools and Requirements Methodology) is a system engineering toolset
that focuses on the early stages of system development, where the foundation is set for later
implementation, operations, and maintenance activities. The SpecTRM toolset includes support
for requirements development and management, hazard analysis, requirements tracing, recording of
design rationale, and modeling and analysis of blackbox logic requirements. The formal modeling
language, SpecTRM-RL (SpecTRM Requirements Language), is executable and therefore can be
used in a simulation environment. In addition, the models are analyzable and tools have been
developed to check for completeness, consistency, and robustness.
The design of SpecTRM-RL is greatly influenced by the desire to provide a combined spec-

ification and modeling language. System specifications (particularly requirements specifications)
need to be reviewed and used by people with a large variety of backgrounds and expertise, most
of whom are not computer scientists or trained in formal logic or discrete math and may not even
be engineers. Therefore, it is not practical to use most formal modeling languages as specification
languages. On the other hand, industrial projects rarely have the resources to provide a separate
modeling effort for the specification, and the continual changes common to most software develop-
ment projects will require frequent updates to ensure that the formal model is consistent with the
current requirements and system design.
SpecTRM-RL was designed to satisfy both objectives: to be easily readable enough to serve as

part of the official specification of the blackbox behavioral requirements and, at the same time, to
have an underlying formal model that can be executed and subjected to mathematical analysis.
This underlying formal model based on a Mealy automaton, which we call the requirements

state machine (RSM), is very low-level and not appropriate as a specification language for complex
systems. Instead, SpecTRM-RL acts as the specification language (or visualization of the under-
lying model) that overlays the low-level model. As long as the mapping from SpecTRM-RL to the
RSM is unambiguous and well-defined, formal analysis is possible on both the underlying RSM
formal model as well as the higher-level SpecTRM-RL specification itself. Leveson and her stu-
dents at MIT are experimenting with additional capabilities to augment the current SpecTRM-RL
features, and these will be added eventually to the commercial language.
To assist in readability, we use graphical, tabular, symbolic, and structural notations where

we have found each most appropriate for the type of information being specified. Decisions about
how things are specified were based on the research literature on visualization, feedback from
users of RSML (a previous version of the language) and SpecTRM-RL, our own attempts to build
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Figure D.1: The Parts of a SpecTRM-RL Graphical Model

specifications for real systems using the language, observation of the notations engineers use for
specifying these properties, and formal experiments on readability of particular types of language
features [131].
The SpecTRM-RL notation is driven by the intended use of the language to define a blackbox

function from outputs to inputs. Some features are also the result of wanting to remain as close
as possible to the way engineers draw and define control loops in order to enhance usability of the
language. Other goals for the language design were to eliminate error-prone features, to make the
language easy to learn and easy to read and review, and to encourage completeness in specifications.
The SpecTRM-RL language includes a graphical overview of the system structure along with

specification of output messages, inputs, state variables, macros, and functions. The rest of this
appendix describes each of these features.

Graphical Specification of the System Model : Figure D.1 shows the four main components
of a SpecTRM-RL specification: (1) a specification of the supervisory modes of the controller being
modeled, (2) a specification of its control modes (3) a model of the controlled process (or plant
in control theory terminology) that includes the inferred operating modes and system state (these
are inferred from the measured inputs), and (4) a specification of the inputs and outputs to the
controller. The graphical notation mimics the typical engineering drawing of a control loop.
Every automated controller has at least two interfaces: one with the supervisor(s) that issues

instructions to the automated controller (the supervisory interface) and one with each controlled
system component (controlled system interface). The supervisory interface is shown to the left of
the main controller model while the interface with the controlled component is shown to the right.
The supervisory interface consists of a model of the operator controls and a model of the displays
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or other means of communication by which the component relays information to the supervisor.
Note that the interface models are simply the logical view that the controller has of the interfaces—
the real state of the interface may be inconsistent with the assumed state due to various types of
design flaws or failures. By separating the assumed interface from the real interface, it is possible
to model and analyze the effects of various types of errors and failures (e.g., communication errors
or display hardware failures). In addition, separating the physical design of the interface from
the logical design (required content) will facilitate changes and allow parallel development of the
software and the interface design. During development, mockups of the physical screen or interface
design can be generated and tested using the output of the SpecTRM-RL simulator.
The bottom left quadrant of Figure D.1 provides information about the control modes of the

controller itself. These are not internal states of the controller (which are not included in our
specifications) but simply represent externally visible behavior about the controller’s modes of
operation (described further below).
The right half of the controller model represents inferred information about the operating modes

and states of the controlled system (the plant in control theory terminology). The model for a simple
plant like a thermostat might include only one or two variables while that for a more complex
system, e.g., air traffic control, might contain a large number of variables and include operational
modes and models of multiple subcomponents. In a hierarchical control system, the controlled
process may itself be a controller of another process. For example, the flight management system
may be controlled by a pilot and may issue commands to a flight control computer, which issues
commands to an engine controller. Parts of a SpecTRM-RL model can be reused or changed to
represent different members of a product family [125].
Figure D.2 shows the graphical part of a SpecTRM-RL specification of a simple altitude switch.

The specification is based on an unpublished specification of an altitude switch by Steve Miller
at Rockwell Collins. This switch turns on a Device of Interest (DOI) when the aircraft descends
through a threshold altitude.
In SpecTRM-RL, state values in square boxes in the right side of the diagram represent inferred

values used in the control of the computation of the blackbox I/O function. Such variables are
necessarily discrete in value 1 and thus can be represented as a state variable with a finite number
of possible values. In practice, such state variables almost always have only a few relevant values
(e.g., altitude below a threshold, altitude at or above a threshold, cannot-be-determined, and
unknown). Values for state variables in the plant model are required in SpecTRM-RL to include
an unknown value. The meaning and purpose of the unknown state value are described below.
In the altitude switch example, defining the control algorithm requires using information about

the aircraft altitude level with respect to a given threshold, the inferred status of the DOI, and the
validity of the altimeter information being provided as well as the measured variables and various
constants defined elsewhere in the specification.
The possible values for a state variable are shown with a line connecting the boxes. The line

simply denotes that the values are disjoint, that is, the variable may assume only one value at a
time. A small arrow pointing at a box denotes the default (startup) value for the state variable or
mode. For example, the DOI-Status can have the values On, Off, Unknown, and Fault-Detected.
The default value is Unknown.
The altitude switch has two control inputs (shown on arrows to the left of the Component

1If they are not discrete, then they are not used in the control of the function computation, but in the computation
itself and can simply be represented in the specification by arithmetic expressions involving input variables.
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diagram): a reset signal that has the value true or false and an inhibit button that inhibits operation
of the altitude switch. The inhibit button can either be in the on or off position. The only display
in the altitude switch example is a fault indicator lamp that can also either be on or off, but its
content is controlled through the watchdog timer and not directly by the altitude switch. There is
only one supervisory mode—cockpit controlled—which is shown in the upper left quadrant of the
component model.
Inputs representing the state of the plant (monitored or measured variables) are shown with

arrows pointing to the controller. For the altitude switch, these variables provide (1) the current
status (on or off) of the device of interest (DOI) that the altitude switch turns on and (2) inputs
about the status and value of three altimeters on the aircraft (one analog and two digital) that
provide information to the altitude switch about the current measured altitude of the aircraft as
well as the status of that information (i.e., normal operation, test data, no computed data provided,
or failed).
The output commands are denoted by outward pointing arrows. In the example, they include

a signal to power-on the device (DOI) and a strobe to a watchdog timer so that proper action can
be taken (by another system component) if the altitude switch fails. The outputs in this example
are simple “high” signals on a wire or line to the device.
Note that the internal design of the altitude switch is not included in the model. The altitude

switch operating modes are externally visible (and must be known for the pilot to understand its
operation) and the aircraft model is used to describe the externally visible behavior of the altitude
switch in terms of the process being controlled (and not in terms of its own internal data structures
and algorithms). Thus the specification is blackbox.
Because of the simplicity of the altitude switch example, there are a few features of SpecTRM-

RL that are not needed or are not well illustrated. Almost all of the missing features involve
the ability to specify modes. Modes are abstractions on states and are not necessary for defining
blackbox behavior. They are useful, however, in understanding or explaining the behavior of
complex systems. While some formal specification languages use the term “mode” as a synonym for
state (all modes are states and vice versa), SpecTRM-RL uses the more limited definition of mode
common in engineering, i.e., as a state variable that plays a particular role in the state machine.
In this usage, modes partition the state space into disjoint sets of states. For example, the state
machine may be in normal operational mode or in a maintenance mode. Our definition was chosen to
assist in reviewability of the specification by domain experts and in formal analysis of specifications
for particular properties commonly involved in operator mode confusion [68]. SpecTRM-RL allows
specifying several types of modes: supervisory modes, control modes, controlled-system operating
modes, and display modes.

Supervisory modes are useful when a component may have multiple supervisors at any time.
For example, a flight control computer in an aircraft may get inputs from the flight management
computer and also directly from the pilot. Required behavior may differ depending on which
supervisory mode is currently in effect. Mode-awareness errors related to confusion in coordination
between multiple supervisors can be defined (and the potential for such errors theoretically identified
from the models) in terms of these supervisory modes.

Control Modes control the behavior of the controller itself. Modern avionics systems may have
dozens of modes. Control modes may be used in the interpretation of the component’s interfaces
or to describe the component’s required process-control behavior. In the altitude switch, two types
of control modes are useful in specifying the blackbox behavior: (1) whether the switch is in the
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startup, operational, and internal-fault-detected mode (the latter will result in the fault indicator
light being lit in the cockpit and cessation of activity until the reset button is pushed) and (2)
whether the operation of the altitude switch is partially inhibited or not. These two sets of modes
cannot be combined in this case as they are not disjoint. In fact, in our original specification of the
altitude switch, they were combined. We later found that error through the use of our completeness
criteria.
A third type of mode, controlled-system or plant operating modes, can be used to specify sets of

related behaviors of the controlled-system (plant) model. They are used to indicate its operational
status. For example, it may be helpful to define the operational state of an aircraft in terms of it
being in takeoff, climb, cruise, descent, or landing mode. Such operating modes are not needed to
define the behavior of the altitude switch and thus are not included in the example.
In systems with complex displays (such as Air Traffic Control systems), it may also be useful

to define various display modes.

Output Message Specification : Everything starts from outputs in SpecTRM-RL. By starting
from the output specification, the specification reader can determine what inputs trigger that
output and the relationship between the inputs and outputs. This relationship is the most critical
in understanding and reviewing a system requirements specification, and therefore saliency of this
information can assist in these tasks. Other state-machine specification languages, such as RSML
and Statecharts, do not explicitly show this relationship, although it can be determined, with some
effort, by examining the specification.
An example output specification is shown in Figure D.3. The information included is influenced

by the completeness criteria we previously defined for safety-critical blackbox specifications [48, 66].
The completeness criteria play an important role in the hazard analysis process described in Chapter
9.
The following information can and should be included in the specification of the output message:

destination of the output; acceptable values; timing behavior including any initiation delay or
completion deadline along with any required exception-handling behavior if the deadlines cannot be
met, output load and capacity limitations, etc.; feedback information about how the controller
will determine that the output command has been successfully implemented; and the identity of
any other output commands that reverse this output.
In many systems, it is important to indicate a maximum time in which the output command

remains effective before it is executed. After this time, the output essentially “times out” and should
not be executed. This data age information can either be provided in the output message (if the
timeout is implemented by the output command actuator) or included in the reversal information
if the controller must issue a reversal to undo the command’s effect. Reversal information is also
useful in identifying accidentally omitted behavior from the specification, i.e., most output actions
to provide a change in the controlled plant or supervisory interface have complementary actions
to undo that change. References are pointers to other levels of the intent specification related to
this part of the specification and are used for traceability.
Some of this information may not be applicable or important for a particular system. However,

by including a place for it in the specification language syntax, the specifier must either include it
or indicate that the information is not applicable or important. The implementers and maintainers
need to know that these behaviors are not important and why not and also need to know that it
was considered by the original specifiers and not simply forgotten. Lots of accidents and incidents
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result from such a lack of consideration of these factors by designers and implementers.
The conditions under which an output is triggered (sent) can be specified by a predicate logic

statement over the various states, variables, and modes in the specification. In our experience in
specifying complex systems, however, we found that the triggering conditions required to accurately
capture the requirements are often extremely complex. We also found propositional logic notation
did not scale well to complex expressions in terms of readability and error-proneness. To overcome
this problem, we developed a tabular representation of disjunctive normal form (DNF) that we call
and/or tables.
The far-left column of the and/or table lists the logical phrases of the predicate. Each of the

other columns is a conjunction of those phrases and contains the logical values of the expressions.
If one of the columns evaluates to true, then the entire table evaluates to true. A column evaluates
to true if all of its elements match the truth values of the associated predicates. An asterisk denotes
“don’t care.”
For SpecTRM-RL, we kept the very successful and/or tables, but made one addition based on

human factors considerations. We now recommend that the output condition tables be organized
into two parts: an upper part denoting the relevant control modes for that column and a lower part
describing any additional conditions for triggering the output. We have found that this separation
assists in completeness checking, particularly when humans are writing and reviewing specifications.
For completeness reasons, every output command column must include a reference to the control
mode(s) under which the command is sent. It is assumed that if a particular mode is not specified,
then the output cannot occur in that mode.
For the altitude switch DOI-Power-On output in the example shown in Figure D.3, the com-

mand is triggered (sent) when all the following conditions are true: the altitude switch is in the
operational and not-inhibited modes, the DOI is not on, the altitude is below the threshold, and the
previous altitude was at or above the threshold (the requirements for the altitude switch say that if
the switch is turned off while the aircraft is below the threshold altitude, the DOI is not powered on
again until the aircraft goes above the threshold altitude and again passes down through it). The
Prev built-in function, which is a feature of the underlying formal RSM model, allows referring to
previous values of modes, state variables, inputs, and outputs. References to time are also allowed
in the specification of trigger conditions. An example is shown later.

Input Definition : Our desire to enforce completeness in the language itself (to satisfy our
completeness requirements) leads to language features that allow the inclusion of information (if
relevant) about input arrival rates, exceptional-condition handling, data-age requirements, etc. No
input data is good forever; after some point in time it becomes obsolete and should not be used.
We provide a special value, obsolete, that an input variable assumes a specified time after the last
value is received for that variable.
In the example shown in Figure D.4, the specification states that the value comes from the

altitude field in the DA1-message and is assigned when a message arrives. If no message has arrived
in the past 2 seconds, the previous value is used. If the last message arrived more than 2 seconds
before, the data is considered obsolete. The input variable also starts with the obsolete (undefined)
value upon startup. Because of the similarity of the form of most input definitions, we may simplify
the notation in the future.
When the controller has multiple supervisory modes, these must be specified to denote which

inputs should be used at any particular time.
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Field

Command

Value

HIgh

DO Status changed to Fault Detected

Output Command

Destination: DOI

Fields:
Name:

Type:
Acceptable Values:
Units:
Granularity:
Hazardous Values:
Description:
Comments:

Timing Behavior

{high}
Discrete signal

Command

Feedback Information:

Initiation Delay:
Completion Deadline:
Exception-Handling: (What to do if cannot issue command within deadline time)

50 milliseconds
0 milliseconds

Variables:
Values: high (on)
Relationship: Should be on if ASW sent signal to turn on
Min. time (latency): 2 seconds
Max. time: 4 seconds
Exception Handling:

Reversed By:

Comments:

Turned off by some other component or components.  Do not know which ones.

I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that 

This product in the family will turn on the DOE only when the aircraft descends below the
threshold altitude.  Only this page needs to change for a product in the family that is 
triggered by rising above the threshold.

the reason for the restriction is simple hysteresis and not possible damage to the device.

MESSAGE CONTENTS

TRIGGERING CONDITION

State Values

Control Mode

Previous value of Altitude in state At Or Above Threshold

Altitude in state Below Threshhold

DOI Status in state On

Not Inhibited

Operational

T

T

F

T

T

DOI Power On

DOI Status Signal

Figure D.3: Example of an Output Specification
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F

Digital Altimeter 1

Values below -20 are treated as -20 and values above 2500 as 2500 

DA1 Alt Signal was Never Received *

*

*

*

*

*

*

*

Altitude

100 milliseconds
none

T

F

Input Value

Source:

Type:

Possible Values (Expected Range):

Exception-Handling:

Units:

Granularity:

Arrival Rate (Load):

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence:

Exception-Handling:

Description:

Comments:

integer

-20..2500

2 seconds

feet AGL

 1 foot

one per second average

DA1 Alt Signal

Assumes value Obsolete

Appears in:

DEFINITION

= Obsolete

System Start

= New Data for DA1 Alt Signal

= Previous Value of DA1 Alt Signal

DA1 Alt Signal was Received

DA1 Alt Signal was Received

Time Since DA1 Slt Signal was last received > 2 seconds

DA1 Alt Signal was Received

Time Since DA1 Alt Signal was last received > 2 seconds

F

T

T

T

Figure D.4: Example of an Input Specification
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State Variable Definition : State variable values are inferred from the values of input vari-
ables or from other state variable values. Figure D.5 shows a partial example of a state variable
description for the altitude switch.
As stated earlier, all state variables that describe the process state should include an unknown

value. Unknown is the default value upon startup or upon specific mode transitions (for example,
after temporary shutdown of the computer). This feature is used to ensure consistency between
the computer model of the process state and the real process state upon startup or after leaving
control modes where processing of inputs has been interrupted. By making unknown the default
state value and by assuming the unknown value upon changing to a control mode where normal
input processing is interrupted (for example, a maintenance mode), the use of an unknown state
value forces resynchronization of the model with the outside world after an interruption in processing
inputs. Many accidents have been caused by the assumption that the process state does not change
while the computer is idle or by incorrect assumptions about the initial value of state variables on
startup or restart.
If a model of a supervisory display is included in the specification, unknown is used for state

variables in the supervisory display model only if the state of the display can change independently
of the software. Otherwise, such variables must specify an initial value (e.g., blank, zero, etc.) that
should be sent when the computer is restarted.

Macros and Functions : Macros, although not strictly necessary, were added to the language
for human factors considerations. They are simply named pieces of and/or tables that can be
referenced from within another table. For example, the macro in Figure D.6 is used in the definition
of the state variable altitude in the altitude switch example. Its use simplifies the specification
of altitude and thus makes it easier to understand while also simplifying making changes and
enhancing specification reuse. Macros, for the most part, correspond to typical abstractions used
by application experts in describing the requirements and therefore add to the understandability
of the specification. In addition, we have found this feature convenient for expressing hierarchical
abstraction and enhancing hierarchical review and understanding of the specification. For very
complex models (e.g., a flight management system), we have found that macros are an important
tool for humans to be able to handle the complexity involved in constructing the specification.
Rather than including complex mathematical functions directly in the transition tables, func-

tions may be specified separately and referenced in the tables. In addition, functions are used in
output specifications to define the value computed for the output (e.g., the differential equation
used to define a control law).
The macros and functions, as well as other features of SpecTRM-RL, not only help structure

a model for readability, they also help organize models to enable specification reuse. Conditions
commonly used in the application domain can be captured in macros and common functions can be
captured in reusable functions. Naturally, to accomplish reuse, care has to be taken when creating
the original model to determine what parts are likely to change and to modularize these parts so
that substitutions can be easily made.
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* *

*

*

*

*

*

*

*

*

altitude will change to Unknown if all input signals are lost for 2 seconds.
Because the altitude-status-signals change to obsolete after 2 seconds,

When at least one altimeter reports an altitude below the threshold, then the aircraft is

T T F

2.12.1assumed to be below the threshold.

* *

**

* *

Analog ALT in state Unknown

Dig1-Alt in state Unknown

Dig2-Alt in state Unknown

Dig1 Valid And Below

The altitude is assumed to be unknown at startup, when the pilot issues
a reset  command, and when no recent input has come from any altimeter.

At least one altimeter reports a valid altitude below the threshold..

At least one altimeter reports a valid altitude above the threshold and none below.

No valid data is received from any altimeter (all report test or failed status).

DOI Power On

State Value

Altitude

T

T

T

T

T

Obsolescence: 2 seconds

Exception-Handling:

Description:

T

T

T

FTT T

F

F F

F FT

F

T

T F T

Comments:

DEFINITION
= Unknown

T

T

T

System Start

Reset  is High

Appears in:

T

T

T

Analog Valid And Below

Analog Valid and Above

Dig1 Valid and Above

Dig2 Valid and Above

Dig2 Valid And Below

Analog Alt in state Invalid

Dig1 Alt in state Invalid

Dig2 Alt in state Invalid

= Below threshold

= At Or Above Threshold

= Cannot Be Determined

Figure D.5: Example of an Inferred State Variable Specification



302 APPENDIX D. SPECTRM-RL DESCRIPTION

Altitude

T

T

Description:

Comments:

Macro

Appears in:

DEFINITION

Dig1 Alt in state Valid

DA1Alt Signal < 2000

Dig1 Valid and Below

Figure D.6: Example of a Macro Specification



Appendix E

A Brief Introduction to System
Dynamics Modeling

SpecTRM-RL, like most models, describes the static structure of systems. In order to handle the
organizational components of open systems and the adaptation and changes that occur over time
for such human-centered systems, we needed to be able to model dynamic system aspects. For this
we used system dynamics models [110].
By focusing on the events immediately preceding accidents, event chains treat a system as a

static, unchanging structure. But systems and organizations continually experience change and
adaptation to existing conditions. Systems dynamics models are one way to describe dynamic
change in systems. They have been used to examine the potential undesired consequences of
organizational decision-making.
As noted in Part I of this book, a system’s defenses or safety controls may degrade over time

due to changes in the behavior of the components of the safety control loop. The reasons for the
migration of the system toward a state of higher risk will be system specific and can be quite
complex. In contrast to the usually simple and direct relationships represented in event-chain
accident models, most accidents in complex socio-technical systems involve relationships between
events and human actions that are highly non-linear, involving multiple feedback loops. The
prevention of accidents in these systems therefore requires an understanding not only of the static
structure of the system (the structural complexity) and of the changes to this structure over time
(the structural dynamics), but also the dynamics behind these changes (the behavioral dynamics).
SpecTRM-RL models capture the static control structure and are useful in performing a hazard
analysis that examines complex control structures and the dynamics or structural changes (failures
and dysfunctional interactions) that occur over time in these structures, but not the behavioral
dynamics, i.e., the dynamic processes behind these structural changes. To model the behavioral
dynamics, we are adapting the modeling techniques of system dynamics to model and understand
the dynamic processes behind the changes to the static safety control structure: how and why
the safety control structure might change over time, potentially leading to ineffective controls and
unsafe or hazardous states.
The field of system dynamics, created at MIT in the 1950’s by Jay Forrester, is designed to help

decision makers learn about the structure and dynamics of complex systems, to design high leverage
policies for sustained improvement, and to catalyze successful implementation and change. System
dynamics provides a framework for dealing with dynamic complexity, where cause and effect are not

303
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obviously related. It is grounded in the theory of non-linear dynamics and feedback control, but also
draws on cognitive and social psychology, organization theory, economics, and other social sciences
[110]. System dynamics models, like SpecTRM-RL are formal and can be executed. The models
and simulators help to capture complex dynamics and to create an environment for organizational
learning and policy design. The combination of STPA, SpecTRM-RL and systems dynamics models
provides an extremely powerful integrated risk management approach that goes far beyond what
is possible using current techniques.
System dynamics is particularly relevant when analyzing system accidents. The world is dy-

namic, evolving, and interconnected, but we tend to make decisions using mental models that are
static, narrow, and reductionist. Thus decisions that might appear to have no effect on safety—or
even appear to be beneficial—may in fact degrade safety and increase risk. System dynamics makes
it possible, for example, to understand and predict instances of policy resistance or the tendency
for well-intentioned interventions to be defeated by the response of the system to the intervention
itself. In related but separate research, Marais and Leveson are working on defining archetypical
system dynamic models often associated with accidents to assist in creating the models for specific
systems [76].
System behavior in system dynamics is modeled by using feedback (causal) loops, stock and

flows (levels and rates), and the non-linearities created by interactions between system components.
In this view of the world, behavior over time (the dynamics of the system) can be explained by the
interaction of positive and negative feedback loops [104]. The models are constructed from three
basic building blocks: positive feedback or reinforcing loops, negative feedback or balancing loops,
and delays. Positive loops (called reinforcing loops) are self-reinforcing while negative loops tend
to counteract change. Delays introduce potential instability into the system.
Figure E.1a shows a reinforcing loop, which is a structure that feeds on itself to produce growth

or decline. Reinforcing loops correspond to positive feedback loops in control theory. An increase in
variable 1 leads to an increase in variable 2 (as indicated by the “+” sign), which leads to an increase
in variable 1, and so on. The “+” does not mean that the values necessarily increase, only that
variable 1 and variable 2 will change in the same direction. If variable 1 decreases, then variable
2 will decrease. A “-” indicates that the values change in opposite directions. In the absence
of external influences, both variable 1 and variable 2 will clearly grow or decline exponentially.
Reinforcing loops generate growth, amplify deviations, and reinforce change [110].
A balancing loop (Figure E.1b) is a structure that changes the current value of a system variable

or a desired or reference variable through some action. It corresponds to a negative feedback loop
in control theory. The difference between the current value and the desired value is perceived as
an error. An action proportional to the error is taken to decrease the error so that, over time, the
current value approaches the desired value.
The third basic element is a delay, which is used to model the time that elapses between

cause and effect. A delay is indicated by a double line as shown in Figure E.1c. Delays make it
difficult to link cause and effect (dynamic complexity) and may result in unstable system behavior.
For example, in steering a ship there is a delay between a change in the rudder position and a
corresponding course change, often leading to over-correction and instability.
Accident and hazard analysis of socio-technical systems using STAMP starts with a static

SpecTRM-RL model of the safety control structure and then uses system dynamics modeling to
predict and explain changes in that structure over time.
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a.  A Reinforcing Loop
b.  A Balancing Loop

R

c.  A Balancing Loop with a Delay

delay

B
Error Action

B
Error Action

Desired Value

Desired Value

Variable 1 Variable 2

of Variable 

Variable 

Variable 

of Variable 

Figure E.1: The Three Basic Components of System Dynamics Models
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Appendix F

The Thermal Tile Processing System
(TTPS) Class Example

F.1 High-Level Description

(The following description is adapted from A Mobile Robot System for Ground Servicing Operations
on the Space Shuttle by K. Dowling, R. Bennett, M. Blackwell, T. Graham, S. Gatrall, R. O’Toole,
and H. Schempf. The original Tessellator robot was designed as a research project in the Robotics
Dept. at CMU with NASA funding. Changes have been made from the original specification in
order to satisfy different goals).

The Thermal Tile Processing System (TTPS) is designed to service tiles (the thermal protection
system) on the Space Shuttle, thus saving humans from a laborious task that begins within minutes
after the Shuttle lands and ends just prior to launch—typically three to four months. Upon landing
at either the Dryden facility in California or Kennedy Space Center in Florida, the orbiter is brought
to either the Mate–Demate Device (MDD) or the Orbiter Processing Facility (OPF). These large
structures provide access to all areas of the orbiters.
The Shuttle is covered with several types of heat resistant tiles that protect the orbiter’s alu-

minum skin during the heat of reentry. While the majority of the upper surfaces are covered with
flexible insulation blankets, the lower surfaces are covered with silica tiles. These tiles have a glazed
coating over soft and highly porous silica fibers. The tiles are 95% air by volume which makes them
extremely light but also makes them capable of absorbing a tremendous amount of water. Water in
the tiles causes a substantial weight problem that can adversely affect launch and orbit capabilities
for the shuttles. Because the orbiters may be exposed to rain during transport and on the launch
pad, the tiles must be waterproofed. This task is accomplished through the use of a specialized
hydrophobic chemical, DMES, which is injected into each and every tile. There are approximately
17,000 lower surface tiles covering an area that is roughly 25m x 40m.
In the current process, DMES is injected into a small hole in each tile by a handheld tool that

pumps a small quantity of chemical into the nozzle. The nozzle is held against the tile and the
chemical is forced through the tile by a pressurized nitrogen purge for several seconds. The nozzle
diameter is about 1 cm but the hole in the tile surface is about 0.1 cm. The heights range from
290 cm to 400 cm from the floor of the OPF. It takes about 240 person hours to rewaterproof the
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tiles on an orbiter. Because the chemical is toxic, human workers have to wear heavy suits and
respirators while injecting the chemical and, at the same time, maneuvering in a crowded work
area. One goal for using a robot to perform this task is to eliminate a very tedious, uncomfortable,
and potentially hazardous human activity.
The tiles must also be inspected. By inspecting the tiles more accurately than the human eye,

it is hoped that the Thermal Tile Servicing System will reduce the need for multiple inspections.
During launch, reentry, and transport, a number of defects can occur on the tiles. These defects
are evidenced as scratches, cracks, gouges, discoloring, and erosion of surfaces. The tiles are
examined for such defects to determine if they warrant replacement, repair, or no action. The
typical procedure involves visual inspection of each tile to see if there is any damage and then
assessment and categorization of the defects according to detailed checklists. Later, work orders
are issued for repair of individual tiles.
The TTPS has three main parts: a mobile robot, a separate (off-board) computer (called the

Workcell Controller) that controls the overall thermal tile processing tasks, and a human operator
to monitor and control the other two components.
The mobile robot is designed to inspect each tile and inject the waterproofing chemical. Because

there are so many tiles, the robot divides its work area into uniform work spaces, inspecting tiles
in each area with as little overlap between work spaces as possible.
Before each inspection shift, the operator enters instructions into the Workcell Controller about

shuttle position and inspection sequence. The Workcell Controller workstation creates jobs for the
mobile robot and updates other NASA databases after the robot uploads data gathered during the
course of the shift. This data includes tile images, records of tiles injected and inspected, and other
pertinent job data. In addition, robot status data is used to monitor robot operation.
At the beginning of the shift, the mobile robot is downloaded a job. The job consists of a

series of files describing the locations, sequences, target IDs, orbiter parking measurements, etc.
The robot then uses a rotating laser to position itself under the shuttle, and the robot’s camera
locates the exact tile to be inspected. Because the shuttle’s belly is not flat, the robot customizes its
upward movement to each tile: Two vertical beams on either side of the robot raise the manipulator
arm, which holds the injection tools and camera. A smaller lifting device raises the arm the rest of
the way.
By comparing the current state of each tile with the state of the tile at previous inspections, the

mobile robot characterizes anomalies in tiles as cracks, scratches, gouges, discoloring, or erosion.
The robot also indicates when it is unsure what is wrong with a tile, so the supervisor can reanalyze
the tile on the screen of the Workcell Controller. At the end of a shift, the robot’s updated tile
information is entered into existing NASA databases.
On board, computers control the mobile robot’s high-level processing tasks while low-level

controllers and amplifiers direct arm and wheel motions. Two more computers control the robot’s
vision and injection systems.
The mobility and positioning system (MAPS) issues movement commands to the motor con-

troller, which directs the wheel motors on the mobile base. MAPS in turn is controlled either
by the operator or an on-board computer called the Tile Servicing Subsystem (TSS). The opera-
tor controls robot movement and positioning using a hand-held joystick. The TSS controls robot
movement and positioning by providing MAPS with a specification of the destination and route.
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F.2 Accident Definition

An accident is an unacceptable loss, as defined by NASA Shuttle program management. Unaccept-
able losses and their severity levels are:

Level 1:

A1-1: Loss of orbiter and crew (e.g., inadequate thermal protection)

A1-2: Loss of life or serious injury in processing facility

Level 2:

A2-1: Damage to orbiter or to objects in the processing facility that results in the delay of a launch
and/or result in a loss of greater than TBD dollars.

A2-2: Injury to humans requiring hospitalization or medical attention and leading to long-term or
permanent physical effects.

Level 3:

A3-1: Minor human injury (does not require medical attention or requires only minimal intervention
and does not lead to long-term or permanent physical effects)

A3-2: Damage to orbiter that does not delay launch and results in a loss of less than TBD dollars.

A3-3: Damage to objects in the processing facility (both on the floor or suspended) that does not
result in delay of a launch nor a loss of greater than TBD dollars.

A3-4: Damage to the mobile robot.

Assumption: It is assumed that there is a backup plan in place for servicing the orbiter
thermal tiles in case the TTPS has a mechanical failure and that the same backup
measures can be used in the event the robot is out of commission due to other types of
damage.

F.3 Safety Policy

General Safety Policy: All hazards related to human injury or damage to the orbiter must
be eliminated or mitigated by the system design. A reasonable effort must be made to eliminate
or mitigate hazards resulting at most in damage to the robot or objects in the work area. For
any hazards that cannot be eliminated, the hazard analysis as well as the design features and
development procedures, including any tradeoff studies, used to reduce the hazard level must be
documented and presented to the customer for acceptance.

Hazard level will be determined by worst potential severity. Hazards that can result in human
injury or damage to the orbiter must be eliminated or mitigated if they are not judged to be
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physically impossible or they are caused by physical conditions that are judged to have a likelihood
of occurrence of more than one in a million over a 20 year period. All types of software (logical)
errors will be considered to be possible and likelihood arguments cannot be used to reduce safety
effort related to those errors. A qualitative evaluation of software-related hazard likelihood is
acceptable, but as with quantitative evaluations, must be justified to Shuttle Program management
and cannot be based simply on the use of testing and good software engineering processes.

F.4 Hazard List

1. Violation of minimum separation between mobile base and objects (including orbiter and
humans).

2. Mobile robot becomes unstable (e.g., could fall over).

3. Manipulator arm hits something.

4. Fire or explosion.

5. Contact of human with DMES.

6. Inadequate thermal protection (e.g., damaged tiles not detected, DMES not applied correctly).

7. Damage to robot.

F.5 Work Area (Environment) Assumptions

EA1: The work areas of the Orbiter Processing Facility can be very crowded. The facilities
provide access to all areas of the orbiters through the use of intricate platforms that are laced
with plumbing, wiring, corridors, lifting devices, etc. After entering the facility, the orbiters
are jacked up and leveled. Substantial structure then swings around and surrounds the orbiter
at all sides and at all levels. With the exception of the jackstands that support the orbiters,
the floorspace directly beneath the orbiter is initially clear but the surrounding structure can
be very crowded.

EA2: The mobile robot must enter the facility through personnel access doors 1.1 m (42”)
wide. The layout within the OPF allows a length of 2.5 m (100”) for the robot. There are
some structural beams whose heights are as low as 1.75 m (70”), but once under the orbiter
the tile heights range from about 2.9 meters to 4 meters. Thus the compact roll-in form of
the mobile system must maneuver these spaces and also raise its inspection and injection
equipment up to heights of 4 meters to reach individual tiles while still meeting the 1 mm
accuracy requirements.

EA3: Additional constraints involve moving around the crowded workspace. The robot
must negotiate jackstands, columns, workstands, cables, and hoses. In addition, there are
hanging cords, clamps, and hoses. Because the robot might cause damage to the ground
obstacles, cable covers will be used for protection and the robot system must traverse these
covers.


