Systemic Factors in Software-Related
Spacecraft Accidents®

Nancy G. Leveson
Aeronautics and Astronautics
Massachusetts Institute of Technology
leveson@mit.edu and http://sunnyday.mit.edu

As part of a research project, I examined some recent spacecraft accident reports that involved
software: the explosion of the Ariane 5 launcher on its maiden flight in 1996; the loss of the Mars
Climate Orbiter in 1999; the destruction of the Mars Polar Lander sometime during the entry,
deployment, and landing phase in the following year; and the placing of a Milstar satellite in an
incorrect and unusable orbit by a Titan IV B in 1999. My goal was to evaluate a new type of
accident model that might be used for investigating accidents. The model requires accounting for
each event with the related conditions that led to the event and each condition with the systemic
factors that explained the existence of the conditions.! In all but one of the accidents, the event
chain included in the accident report had to be expanded in order to completely explain the loss. By
going through this careful process and ensuring that each event and condition was accounted for,
some factors related to the accident but not cited as a cause in the original report were identified
and many of these turned out to be common to several or all of the accidents.

An important consideration in identifying common factors is that only those factors actually
included in the accident reports can be considered and not those that are omitted or filtered out.
The accident reports, particularly the causes identified, like most accident reports exhibited some
limitations in what was considered. Given this incompleteness, any conclusions about common
factors in accidents must necessarily be limited. Some factors that may be common to all the
accidents may only have been investigated by one of the investigation boards—but that does not
mean it did not play an important role in the other accidents.

Having stated these limitations, however, there are many intriguing similarities in the reports
that do not seem to stem from obvious biases in such reports. On the surface, the events and
factors involved in the five spacecraft accidents appear to be very different except that software
played a role in all of them. But a more careful, detailed analysis of these accidents shows striking
similarities in the systemic factors (so-called root causes).

The next section briefly describes the accidents for those unfamiliar with them. Then the
common systemic factors related are described.

1 Ariane 5

On June 4, 1996, the maiden flight of the Ariane 5 launcher ended in failure. Only about 40
seconds after initiation of the flight sequence, at an altitude of only 2700 m, the launcher veered

*This research was partially supported by a grant from the NASA Ames Design for Safety program and by the
NASA IV&V Center Software Initiative program.

!The complete report, which included aircraft accidents, can be found at http: //sunnyday.mit.edu/accidents. The
same directory includes copies of the original accident reports.

off its flight path, broke up, and exploded. The accident report describes what they called the
“primary cause” as the complete loss of guidance and attitude information 37 seconds after start
of the main engine ignition sequence (30 seconds after liftoff). The loss of information was due to
specification and design errors in the software of the inertial reference system. The software was
reused from the Ariane 4 and included functions that were not needed for Ariane 5 but were left
in for “consistency.” In fact, these functions were useful but not required for the Ariane 4 either.
The investigation board concluded:

The extensive reviews and tests carried out during the Ariane 5 Development Pro-
gramme did not include adequate analysis and testing of the inertial reference system
or of the complete flight control system, which could have detected the potential failure.

The losses from the accident included the $5 billion payload, which in accordance with common
practice for test flights was not insured, as well as other unknown financial losses. The accident
also had repercussions in the form of adding two qualification flights that had not been planned,
pushing back commercial flights by more than 2.5 years, and extending Ariane 4 operations beyond
when it had been planned to be phased out.

2 Mars Climate Orbiter

The Mars Climate Orbiter (MCO) was launched December 11, 1998 atop a Delta IT launch vehicle.
Nine and a half months after launch, in September 1999, the spacecraft was to fire its main engine to
achieve an elliptical orbit around Mars. It then was to skim through the Mars upper atmosphere for
several weeks, in a technique called aerobraking, to move into a low circular orbit. Friction against
the spacecraft’s solar array was to have lowered the altitude of the spacecraft as it dipped into
the atmosphere, reducing its orbital period from more than 15 hours to 2 hours. On September
23, 1999, the MCO was lost when it entered the Martian atmosphere in a lower than expected
trajectory. The investigation board identified what it called the “root” cause of the accident as the
failure to use metric units in the coding of a ground software file used in the trajectory models.
Thruster performance data was in English units instead of the metric units specified in the software
interface specification. Processing of the erroneous data by the navigation software underestimated
the effect on the spacecraft trajectory by a factor of 4.5, which is the required conversion factor
from force pounds to Newtons.

3 Mars Polar Lander

The entry, deployment, and landing (EDL) sequence of the Mars Polar Lander (MPL) included
parachute deployment, heatshield jettison, lander leg deployments, radar ground acquisition, sepa-
ration of backshell with parachute from the lander, and powered descent to the surface. The three
landing legs were to be deployed from their stowed condition to the landed position at an altitude
of about 1500 meters while the lander was still attached to the parachute. Each leg was fitted
with a Hall Effect magnetic sensor that generates a voltage when its leg contacts the surface of
Mars. The descent engines were to be shut down by a command initiated by the flight software
when the first landing leg sensed touchdown. If the touchdown sensor in that leg failed to detect
the touchdown, the second leg to touch down was supposed to trigger the engine shutdown. This
logic was intended to prevent the lander from tipping over when it has a skewed attitude relative
to the surface. The engine thrust must be terminated within 50 milliseconds after touchdown to

avoid overturning the lander. The flight software was also required to protect against a premature
touchdown signal or a failed sensor in any of the landing legs.

The spacecraft design provided no entry, descent, and landing data (due to budget constraints),
which prevented an analysis of the MPL performance to provide some certainty about the cause.
The investigation board, however, found compelling evidence that the premature shutdown of the
descent engines due to spurious signals generated at lander leg deployment was the cause of the
loss.

The touchdown sensors characteristically generate a false momentary signal at leg deployment.
This behavior was understood and the flight software should have ignored it. The software require-
ments did not specifically describe these events, however, and consequently the software designers
did not properly account for them. According to the most likely accident scenario, the software
interpreted the spurious signals generated at leg deployment as valid touchdown events. When the
sensor data was enabled at an altitude of 40 meters, the software shut down the engines and the
lander free fell to the surface, impacting at a velocity of 22 meters per second (50 miles an hour)
and was destroyed.

4 Titan IV /Milstar

On April 30, 1999, a Titan IV B-32/Centaur TC-14/Milstar-3 was launched from Cape Canaveral.
The mission was to place the Milstar satellite in geosynchronous orbit. An incorrect roll rate
filter constant zeroed the roll rate data, resulting in the loss of roll axis control and then yaw and
pitch control. The loss of attitude control caused excessing firings of the reaction control system
and subsequent hydrazine depletion. Erratic vehicle flight during the Centaur main engine burns
caused it to achieve an orbit apogee and perigee much lower than desired, which resulted in the
Milstar being placed in an incorrect and unusable low elliptical final orbit instead of the intended
geosynchronous orbit.

This accident is believed to be one of the most costly unmanned losses in the history of Cape
Canaveral launch operations. The Milstar satellite cost about $800 million and the launcher an
additional $433 million. The accident investigation board concluded that failure of the Titan TV
B-32 mission was due to a failed software development, testing, and quality assurance process for
the Centaur upper stage. That failed process did not detect and correct the incorrect entry by
a flight software engineer of a roll rate filter constant into the Inertial Navigation Unit software
file. The correct value of the filter constant, which was one of forty constants in the file, was
—1.992476. It was incorrectly entered as 0.1992476 (i.e., the exponent should have been a 1 instead
of a 0) making the entered constant one tenth of the intended value. The incorrect constant went
undetected during the signoff process by the responsible engineer and became part of a baseline file
used for generating all flight software. The Centaur upper stage software and system testing and
quality assurance process (including both an internal quality assurance process and an independent
verification and validation process) did not detect the error. Evidence of the incorrect constant
appeared during launch processing and the launch countdown, but its impact was not sufficiently
recognized or understood.

The roll rate filter itself was included early in the design phase of the first Milstar spacecraft, but
the spacecraft manufacturer later determined that filtering was not required at that frequency. A
decision was made to leave the filter in place for the first and later Milstar flights for “consistency.”?

*Note the similarity to the reason given for leaving in unneeded code in the Ariane 5 accident.

5 Common Systemic Factors Found in the Accidents

Eliminating the specific events and conditions involved in a particular accident may prevent a
repetition of the same accident scenario, but not those with different detailed event scenarios
stemming from the same root or systemic problems. Accidents rarely repeat themselves in exactly
the same way and patches to particular parts of the system may be ineffective in preventing future
accidents. For example, if another Space Shuttle accident occurs, it is unlikely to be caused by the
exact same type of O-ring problem: An O-ring failure precipitated the loss, but the root causes
identified in the accident investigation were related to an accumulation of problems including an
inadequate problem reporting system, inadequate trend analysis, misrepresentation of criticality,
inadequate resources devoted to safety, lack of safety personnel involvement in important discussions
and decisions, etc. Preventing fixes in the future requires fixing those systemic deficiencies and not
just the specific symptoms that led to the specific accident scenario.

From the information provided in the accident reports for the accidents described, the following
systemic factors can be identified. They are grouped into three categories: flaws in the safety cul-
ture, ineffective organizational structure and communication, and inadequate or ineffective technical
activities.

I. Flaws in the Safety Culture
Qwerconfidence and complacency

Success is ironically one of the progenitors of accidents when it leads to overconfidence and cut-
ting corners or making tradeoffs that increase risk. Petroski, in his book To Engineer is Human,
describes this common phenomenon. It is not new, and it is extremely difficult to counter when it
enters the engineering culture in an organization.

The Rogers Commission investigating the Challenger accident noted that Shuttle flights had
become routine: safety margins were relaxed over time and risks were tolerated because they
had been experienced before—no adequate attempt was made to eliminate them. NASA and its
contractors accepted escalating risk (although they probably did not realize it was escalating)
because they had gotten away with it previously. The Mars Climate Orbiter (MCO) report noted
similarly that because JPL’s navigation of interplanetary spacecraft had worked well for 30 years,
there was widespread perception that “orbiting Mars is routine” and inadequate attention was
devoted to risk management. A similar culture apparently permeated the Mars Polar Lander
(MPL) project.

Complacency can manifest itself in a general tendency of management and decision makers to
discount unwanted evidence of risk. In an analysis of an accident in the Moura mine in Australia,
Hopkins describes a general phenomenon he calls a culture of denial in which it is generally believed
that there is no significant risk and production pressures lead to dismissing any evidence to the
contrary.

A recommendation common to several of the spacecraft reports was to pay greater attention to
risk identification and management. The investigators found that the project management teams
appeared primarily focused on meeting mission cost and schedule objectives and did not adequately
focus on mission risk. As an example, the MCO report recommended that:

Risk management should be employed throughout the life cycle of the project, much
the way cost, schedule, and content are managed. Risk, therefore, becomes the “fourth
dimension” of project management—treated equally as important as cost and schedule.

A report on the MPL loss concludes that the pressure of meeting the cost and schedule goals
resulted in an environment of increasing risk in which too many corners were cut in applying
proven engineering practices and in the checks and balances necessary for mission success.

While management may express their concern for safety, true priorities are shown during re-
source allocation. By the time of the fatal Challenger flight, reductions had been made in the
safety engineering functions that essentially made those functions ineffective. MCO and MPL were
developed under very tight “Faster, Better, Cheaper” budgets. The Titan Program office had cut
support for monitoring the software development and test process by 50% since 1994 and had
greatly cut the number of engineers working launch operations. Although budget decisions are al-
ways difficult when resources are reduced (and budgets are almost always less than is desirable), the
first things to be cut are often system safety, system engineering, quality assurance, and operations,
which are assigned a low priority and assumed to be the least critical parts of the project.

Underestimating and Not Understanding Software Risks

Accidents involving software often occur within an engineering culture that has unrealistic expec-
tations about software and the use of computers. The common misperceptions (or myths) take two
forms: 1) Software does not fail and all errors will be eliminated through testing and (2) software
can be handled using the same techniques as hardware.

The first myth stems from an underestimation of the complexity of most software and an over-
estimation of the effectiveness of testing. Even software engineers can fall prey to these misbeliefs,
as in the Ariane 5 where it led to unprotected variables, lack of assertions and range checks, etc.
The Ariane 5 report notes that software was assumed to be correct until it was shown to be faulty.
This form of complacency also plays a part in the common proliferation of software functionality
and in unnecessary design complexity.

In the Titan accident, there apparently was no checking of the correctness of the software after
the standard testing performed during development. For example, on the day of the launch, the
attitude rates for the vehicle on the launch pad were not properly sensing the earth’s rotation rate
but no one had the responsibility to specifically monitor that rate data or to perform a check to see
if the attitude filters were correctly sensing the earth’s rotation rate. In fact, there were no formal
processes to check the validity of the filter constants or to monitor attitude rates once the flight
tape was actually loaded into the INU at the launch site. Potential hardware failures are usually
checked up to launch time, but it may have been assumed that testing removed all software errors
and no further checks were needed. Even right before launch, the programmed rate check used a
default set of constants to filter the measured rate rather then the actual constants loaded on the
Centaur.

The second myth is that the same techniques used to make electromechanical systems safe or
reliable will work in software-intensive systems. This myth leads to ineffective and inadequate
technical activities directed toward safety. The recommended approach in the Mars Polar Lander
report is an example. It and other reports suggest using FMECA or FTA along with appropriate
redundancy to eliminate failures. But software and digital systems bring a totally different game
to engineering practice. Some classically trained engineers have difficulty appreciating the new and
very different engineering environment created by the introduction of software and the new mindset
and approaches required. Not only are the failures not random (if the term “failure” makes any
sense when applied to something that is pure design separate from the physical realization of that
design), but the complexity of most software precludes examining all the ways it could “misbehave.”
In addition, the failure modes are very different than for physical devices.

Throughout the accident reports, there is an emphasis on failures as the cause of accidents.

The contribution of software to accidents is very different than that of hardware and engineering
activities must be augmented to reflect this. Almost all software-related accidents can be traced
back to flaws in the requirements specification and not to coding errors—the software performed
exactly as specified, but the specification was incorrect.

Understanding these differences between software and other engineering “materials” and imple-
menting alternative approaches that will be effective for software has been slow in engineering. For
example, Figure 6-1 (page 22) of the JPL report on the MPL loss contains a figure that shows the
“potential failure modes for the [entry, descent, and landing] sequence.” Potential hardware failure
or misbehavior, such as Propellant line rupture or Ezcessive horizontal-velocity causes lander to
tip over at touchdown, is identified for each stage except for software. Instead, a statement Flight
software fails to execute properly is identified as common to all phases. The problem with this is
that it provides no useful information—it is equivalent to simply substituting a single statement for
all the other hazards identified in the figure with “hardware fails to execute properly.” Singling out
the JPL engineers is unfair here because I find the same types of useless statements about software
in almost all the fault trees and failure analyses I see in industry, and this practice is not limited
to aerospace.

Software by itself is never dangerous—it is an abstraction without the ability to produce energy
and thus to lead directly to a physical loss. Instead, it contributes to accidents through issuing (or
not issuing) instructions to other components in the system. In the case of the identified probable
factor in the MPL loss, the dangerous behavior was software prematurely shuts down the descent
engines. Such an identified unsafe behavior would be much more helpful during development in
identifying ways to mitigate the risk than the general statement Software fails to execute properly,
which provides no guidance to the system or software designers and reviewers. In fact, software
probably should not appear in this figure at all—it should instead be identified in a later (more
detailed) analysis step in terms of potential specific undesired software behaviors that could lead
to many of the hardware failure modes that are listed.

Because of these fundamental differences, changes are necessary in the way complex, software-
intensive systems are designed and engineered. Researchers will need to create new engineering
techniques that accomplish the goals of the old ones but account for the difference in the components
from which complex systems are being built.

Accidents are changing their character. This change is not solely the result of using digital
components, but it is made possible because of the flexibility of software. Most of the accidents
investigated in this research showed at least some aspects of system accidents, where all or most
of the components implicated in the accident worked as specified but the combined behavior of
the components led to disastrous system behavior. Not only did each component in isolation work
correctly (i.e., they satisfied their specifications), but, in fact, many of the design features that
contributed to the accident involved standard recommended practice. Protecting against software
“failures” will do nothing to protect against system accidents. What we will need in order to deal
with system accidents is discussed below, but the first required step is for the engineering culture
to recognize the need for change and to recognize that safety and reliability are different qualities
for software—one does not imply the other. Although confusing reliability with safety is common
in engineering, it is perhaps most unfortunate with regard to software as it encourages spending
most of the effort devoted to safety on activities that are likely to have no effect.

Overrelying on Redundancy

Redundancy is commonly used to reduce component failures and increase system reliability. The
Challenger accident is typical. The engineers and managers relied on redundancy without properly

evaluating whether the redundancy provided adequate protection. Once the original evaluation
had been completed, they continued to believe in the independence of failures of the redundant
O-rings long after that independence assumption had been shown to be incorrect. While some of
this mistaken reliance had a basis in inadequate communication and documentation procedures,
mistaken reliance was placed on redundancy even by those who knew the criticality rating had been
increased from 1R (highest criticality but risk mitigated by redundancy) to 1 (highest criticality).

Redundancy usually has a greater impact on reliability than safety. System accidents, for exam-
ple, will not be decreased at all by the use of redundancy. In fact, the added complexity introduced
by redundancy has frequently resulted in accidents. In addition, redundancy is most effective
against random wearout failures and least effective against requirements and design errors—the
latter being the only type found in software. The Ariane report notes that according to the culture
of the Ariane program, only random failures are addressed and they are primarily handled with
redundancy. This approach obviously failed when both the Inertial Reference System computers
shut themselves down (exactly as they were designed to do) in response to the same unexpected
input value.

To cope with software design errors, “diversity” has been suggested in the form of independent
groups writing multiple versions of software with majority voting on the outputs. This approach
is based on the assumption that such versions will fail in a statistically independent manner. This
independence assumption has been shown to be false in practice and in a large number of carefully
designed experiments (see, for example, [3]). Common cause (but usually different) logic errors
tend to lead to incorrect results when the various versions attempt to handle the same unusual or
difficult-to-handle inputs. In addition, such designs usually involve adding to system complexity,
which can result in failures itself. A NASA study of an experimental aircraft with two versions of
the control system found that all of the software problems occurring during flight testing resulted
from errors in the redundancy management system and not in the control software itself, which
worked perfectly [6].

Assuming Risk Decreases over Time

In the Milstar satellite loss, the Titan Program Office decided that because the software was “ma-
ture, stable, and had not experienced problems in the past,” they could use the limited resources
available after the initial development effort to address hardware issues. In several of the accidents,
quality and mission assurance as well as system engineering was also reduced or eliminated during
operations because it was felt they were no longer needed or the resources were needed more else-
where. In MCO, the operations group did not have a mission assurance manager. The Challenger
accident report also noted cuts in the operational safety activities (the “Silent Safety” program).
It is very common to assume that risk is decreasing after repeated successes.

In fact, risk usually increases over time, particularly in software-intensive systems. The Therac-
25, a radiation therapy machine that massively overdosed five patients due to software flaws, oper-
ated safely thousands of times before the first accident. Industrial robots operated safely around the
world for several million hours before the first fatality. Risk may increase over time because caution
wanes and safety margins are cut, because time increases the probability that the unusual condi-
tions will occur that trigger an accident, or because the system itself or its environment changes.
In some cases, the introduction of an automated device may actually change the environment in
ways not predicted during system design. For example, as operators became more familiar with
the Therac-25 operation, they started to type faster, which triggered a software error that had not
surfaced previously. Software also tends to be frequently changed and “evolves” over time, but
changing software without introducing errors or undesired behavior is much more difficult than

building correct software in the first place. The more changes that are made to software over
time, the more “brittle” the software becomes and the more difficult it is to make changes without
introducing errors.

Thus we have the rather surprising conclusion that as system error rates decrease and reliability
increases, the risk of accidents may actually be increasing.

Ignoring Warning Signs

Warning signs almost always occur before major accidents. For example, all the aircraft accidents
considered had had precursors but priority was not placed on fixing the causal factors before they
reoccurred. For Challenger, warning signs existed but were ignored and concerned engineers were
unable to draw attention to the O-ring problems. In several of the other spacecraft accidents, there
were warning signs that the software was flawed but they went unheeded. Engineers noticed the
problems with the Titan/Centaur software after it was delivered to the launch site, but nobody
seemed to take them seriously. The problems experienced with the MCO software during the early
stages of the flight also did not seem to raise any red flags.

II. Ineffective Organizational Structure and Communication

The Ariane 5 report was strangely silent about organizational and communication issues. However,
it includes a recommendation to “consider a more transparent organization of the cooperation
among partners” and concludes that “close engineering cooperation, with clear cut authority and
responsibility, is needed to achieve system coherence, with simple and clear interfaces between
partners.” No other information is provided so little can be learned about organizational factors
from this accident. The other accident reports, however, all described classic management factors
related to accidents.

Diffusion of Responsibility and Authority

In many of the accidents, there appeared to be serious organizational and communication prob-
lems among the geographically dispersed partners. Responsibility was diffused without complete
coverage and without complete understanding by anyone about what all the groups were doing.
Roles were not clearly allocated. Both the Titan and Mars ’98 programs were transitioning to
process “insight” from process “oversight.” Just as the MPL reports noted that “Faster, Better,
Cheaper” was not defined adequately to ensure that it meant more than simply cutting budgets,
this change in management role seems to have been implemented simply as a reduction in personnel
and oversight responsibility without assurance that anyone was responsible for specific necessary
tasks.

The MCO report concludes that project leadership did not instill the necessary sense of authority
and accountability in workers that would have spurred them to broadcast problems they detected
so that those problems might be “articulated, interpreted, and elevated to the highest appropriate
level, until resolved.” The Titan accident also shows some of these same symptoms.

Inadequate transition from development to operations played a role in several of the accidents.
Engineering management sometimes has a tendency to focus on development and to put less effort
into planning the operational phase of any project or system. The operations teams (in those
accidents that involved operations) also seemed isolated from the developers. The MCO report
notes this isolation and provides as an example that the operators did not know until long after
launch that the spacecraft sent down tracking data that could have been compared with the ground
data, which might have identified the software error while it could have been fixed. The operations

crew for the Titan/Centaur also did not detect the obvious problems, partly because of a lack of
the knowledge required to detect them. Better communications and involvement of the developers
in the launch operations might have avoided the losses.

Most important, responsibility for safety does not seem to have been clearly defined outside
of the quality assurance function on any of these programs. As noted in the Challenger accident
report, safety was originally identified as a separate responsibility by the Air Force during the
ballistic missile programs of the 50s and 60s to solve exactly the problems seen in these accidents—
to make sure that safety is given due consideration in decisions involving conflicting pressures and
that safety issues are visible at all levels of decision making. Having an effective safety program
cannot prevent errors of judgment in balancing conflicting safety, schedule, and budget constraints,
but it can at least make sure that decisions are informed and that safety is given due consideration.
It also ensures that someone is focusing attention on what the system is not supposed to do, i.e.,
the hazards, and not just on what it is supposed to do. Both perspectives are necessary if safety
is to be optimized. Placing safety only under the assurance umbrella instead of treating it as a
central engineering concern is not going to be effective, as has been continually demonstrated by
these and other accidents.

Having an effective safety program cannot prevent errors in judgement in balancing conflicting
requirements of risk, schedule, and cost, but it can at least make sure that decisions are informed
and that risk is given due consideration.

Low-Level Status and Inappropriate Organizational Placement of the Safety Program

The reports on the recent accidents involving NASA projects are surprisingly silent about their
safety programs. One would think that the safety activities and why they had been ineffective
would figure prominently in the reports. In fact, the only time system safety is mentioned is with
respect to quality assurance. Is system safety engineering being performed at all on these projects?
Perhaps it is only considered necessary for missions involving humans or safety is being confused
with reliability. The MPL and MCO accident reports both lament the lack of “what-if” analysis,
which is the hallmark of system safety engineering. It is very effective in preventing general losses,
not just those involving human life.

More information is needed to determine why this type of analysis is not being used. System
safety engineering techniques may not have been used on these projects or they may have been
ineffective and system safety marginalized by being limited to the quality assurance program: While
safety is certainly one property among many that needs to be assured, it cannot be engineered into
a design through after-the-fact assurance activities alone.

Limited Communication Channels and Poor Information Flow

In the Titan, Challenger, and Mars Climate Orbiter accidents, there was evidence that a problem
existed before the loss occurred, but there was no communication channel established for getting
the information to those who could understand it and to decision makers or, alternatively, the
problem-reporting channel was ineffective in some way or was simply unused.

All the accidents involved one engineering group not getting the information they needed from
another engineering group. The MCO report cited deficiencies in communication between the
project development team and the operations team. The MPL report noted inadequate peer com-
munication and a breakdown in intergroup communication. The Titan accident also involved crit-
ical information not getting to those who could use it. For example, the tests right before launch
detected the zero roll rate but there was no communication channel established for getting that

information to those who could understand it.

In addition, system engineering on several of the projects did not keep abreast of test results
from all areas and communicate their finding to other areas of the development project: Establishing
and implementing this type of intergroup technical communication is one of the primary roles for
system engineering.

Communication is one of the most important functions in any large, geographically distributed
engineering project and must be carefully planned and fostered.

I11. Ineffective or Inadequate Technical Activities

Although the actual technical errors made were different in each of the accidents, common flaws in
the engineering activities led to these errors.

Inadequate System Engineering

For any project as complex as those involved in these accidents, good system engineering is essential
for success. In some of the accidents, system engineering resources were insufficient to meet the
needs of the project. In others, the process followed was flawed, such as in the flowdown of
system requirements to software requirements or in the coordination and communication among
project partners and teams. In the Titan project, there appeared to be nobody in charge of
the entire process, i.e., nobody responsible for understanding, designing, documenting, controlling
configuration, and ensuring proper execution of the process.

Preventing system accidents falls into the province of system engineering—those building in-
dividual components have little control over events arising from dysfunctional interactions among
components. As the systems we build become more complex (much of that complexity being made
possible by the use of computers), system engineering will play an increasingly important role in
the engineering effort. In turn, system engineering will need new modeling and analysis tools that
can handle the complexity inherent in the systems we are building. Appropriate modeling method-
ologies will have to include software, hardware and human components of systems. Such modeling
and analysis techniques are currently only in their infancy.

Flawed Review Process

General problems with the way quality and mission assurance are practiced were mentioned in
several of the reports. QA often becomes an ineffective activity that is limited simply to checking
that the appropriate documents are produced without verifying the quality of the contents. The
Titan accident report makes this point particularly strongly.

General review processes (outside of QA) are also described as flawed in the reports but few
details are provided to understand the problems. The Ariane 5 report states that reviews included
all the major partners in the Ariane 5 program, but no information is provided about what types
of reviews were held or why they were unsuccessful in detecting the problems. The MCO report
recommends that NASA “conduct more rigorous, in-depth reviews of the contractor’s and the
team’s work,” which it states were lacking on the MCO. Consistent with the report’s emphasis
on operations, it concludes that “the operations team could have benefited from independent peer
reviews to validate their navigation analysis technique and to provide independent oversight of the
trajectory analysis.” There is no mention, however, of software quality assurance activities or the
software review process.

In the MPL case, reviews were held and the two software errors could have been caught there.
Those apparently attending the review of the descent engine control software did not include anyone

10

familiar with the potential for the spurious Hall Effect sensor signals. In general, software is
difficult to review and the success of such an effort is greatly dependent on the quality of the
specifications. However, identifying unsafe behavior, i.e., the things that the software should not
do and concentrating on that for at least part of the review process, helps to focus the review and
to ensure that critical issues are adequately considered. The fact that specifications usually include
only what the software should do and omit what it should not do makes this type of review even more
important and effective in finding serious problems. Such unsafe (or mission-critical) behavior will
be (or should be) identified in the system engineering process before software development begins.
The design rationale and design features used to prevent the unsafe behavior should have been
documented and can be the focus of such a review. This presupposes, of course, a system safety
process to provide the information, which does not appear to have existed for these projects.

None of the reports but Titan mentions any independent verification and validation (IV&V)
review process (beyond normal system testing) by a group other than the developers. The Titan
program did have an independent IV&V process, but it used only default values for the filter rate
constants and never validated the actual constants used in flight.

Inadequate Specifications

Several of the reports refer to inadequate specification practices. The Ariane accident report refers
in several places to inadequate specification practices and notes that the structure of the documen-
tation obscured the ability to review the critical design decisions and their underlying rationale.
Inadequate documentation of design rationale to allow effective review of design decisions is a very
common problem in system and software specifications [5]. The Ariane report recommends that
justification documents be given the same attention as code and that techniques for keeping code
and its justifications consistent be improved.

The MCO report does not mention anything about specifications (or other system and software
development artifacts) but clearly good specifications might have helped in educating the operators
in the areas where their lack of knowledge about the engineering features prevented them from
noticing problems or taking appropriate action. Also, poor specifications may have led to the use
of the wrong units in the software.

The MPL report notes that the system-level requirements document did not specifically state
the failure modes the requirement was protecting against (in this case possible transients) and
speculates that the software designers or one of the reviewers might have discovered the missing
requirement if they had been aware of the rationale underlying the requirements. The small part
of the requirements specification shown in the accident report (which may very well be misleading)
seems to avoid all mention of what the software should not do. In fact, standards and industry prac-
tices even forbid such negative requirements statements. The result is that software specifications
often describe nominal behavior well but are very incomplete with respect to required software
behavior under off-nominal conditions and rarely describe what the software is mot supposed to
do. Most safety-related requirements and design constraints are best described using such negative
requirements or design constraints.

In general, the vast majority of software-related accidents can be traced to flawed requirements
rather than coding errors. Either (1) the requirements are incomplete or contain wrong assumptions
about the operation of the controlled system or the required operation of the computer or (2) there
are unhandled controlled-system states and environmental conditions. This experiential evidence
leads directly to a need for better specification review and analysis—the system and software
specifications must be reviewable and easily understood by a wide range of engineering specialists

[5].

11

Complete and understandable specifications are not only necessary for development, but they
are critical for operations and the handoff between developers, maintainers, and operators. In
the Titan accident, nobody other than the control dynamics engineers who designed the roll rate
constants understood their use or the impact of filtering the roll rate to zero. When discrepancies
were discovered right before launch, nobody understood them. The MCO operations staff also
clearly had inadequate understanding of the automation and therefore were unable to effectively
monitor its operation. Good specifications that include requirements tracing and design rationale
are critical for long-lived systems and may be able to improve the effectiveness of the operations
personnel.

The Titan report stressed the lack of a different type of specification: formal documentation of
the overall process flow. The Centaur software process was developed early in the Titan/Centaur
program and many of the individuals who designed the original process are no longer involved
in it due to corporate mergers and restructuring and the maturation and completion of the Ti-
tan/Centaur design and development. Much of the system and process history was lost with their
departure and therefore nobody knew enough about the overall process to detect that it omitted
any testing with the actual load tape or knew that the LMA test facilities had the capability of
running the type of test that could have caught the error.

Violation of Basic Safety Engineering Practices in the Digital Parts of the System Design

Although system safety engineering textbooks and standards include principles for safe design,
software engineers are almost never taught them. As a result, software often does not incorporate
basic safe design principles, for example, separating critical functions, eliminating unnecessary
functionality, and designing error-reporting messages such that they cannot be confused with critical
data (see the Ariane accident), and reasonableness checking of inputs and internal states. Consider
the MPL loss: The JPL report on the accident states that the software designers did not include
any mechanisms to protect against transient sensor signals nor did they think they had to test for
transient conditions and they also apparently did not include a check of the current altitude before
turning off the descent engines. Runtime reasonableness and other types of checks should be part
of the design criteria used for any real-time software.

Another basic design principle for mission-critical software is that unnecessary code or functions
should be eliminated or separated from mission-critical code and its processing. In the case of MPL,
code was executing when it was not needed. The same was true for Ariane and for Titan. I am sure
that each of these decisions was considered carefully, but the tradeoffs may not have been made in
an optimal way and risk may have been discounted with respect to other properties.

Inadequate Software Engineering

As a person trained in software engineering, I found the reports very frustrating in their lack of
investigation of the practices that led to the introduction of the software flaws and the related lack
of recommendations to fix them. In some cases, software processes were declared to be adequate
when all evidence pointed to the fact that they were not. Only the Titan investigation board and
to a lesser extent the Ariane 5 investigators looked at the software in enough detail to determine
the conditions and systemic factors related to the software engineering process (or at least included
this information in the accident report).

Not surprising, the interfaces were a source of problems. It seems likely from the evidence in
several of the accidents that the interface documentation practices were flawed. The MPL report
includes a recommendation that in the future “all hardware inputs to the software must be identified

12

... The character of the inputs must be documented in a set of system-level requirements.” This
information is usually included in the standard interface specifications, and it is surprising that it
was not. In the case of MCO, either the MCO programmers were incompetent (unlikely) or there
is a more likely explanation for the units error such as the common practice of writing interface
and other specifications after coding has begun, poorly designed specifications that make retriev-
ing information error prone, software programmers without the necessary science background to
understand the importance of the units used, inadequate information provided to the programmers
for them to understand the role of the data in the larger system, etc.

There also appear to be problems in software reviews and perhaps also in implementing the
special practices unique to real-time, embedded software. Why were unhandled cases not detected?
Testing only against the requirements specification will not uncover errors in the specification.
What type of requirements validation was performed? Why were defensive programming and
exception-handling practices not used more effectively?

Without further investigation, we cannot learn enough about the software engineering practices
involved in these accidents to prevent future reoccurrences. That is very unfortunate.

Flawed or Inadequate Analysis of Software Functions

Limitations in how thoroughly software can be tested make simulation and other types of analysis
critical for software-intensive systems. The two identified MPL software errors involved incomplete
handling of software states and are both examples of very common specification flaws and logic
omissions. As such, they were potentially detectable by formal and informal analysis and review
techniques. Software hazard analysis and requirements analysis techniques exist (and more should
be developed) to detect this type of incompleteness.

The Ariane report also says that the limitations of the inertial reference system software were
not fully analyzed in reviews, and it was not realized that the test coverage was inadequate to
expose such limitations. The assumption by the Ariane developers that it was not possible to
perform a complete system integration test made simulation and analysis even more important,
including analysis of the assumptions underlying any simulation. Executable and easy to read
formal requirements specifications should theoretically be able to help here. Unfortunately, most of
the formal specification languages that have been proposed use obscure and obtuse notations that
are inappropriate for industry projects.

Software Reuse without Appropriate Analysis of its Safety

Reuse and the use of commercial off-the-shelf software (COTS) is common practice today in embed-
ded software development. It is widely believed that because software has executed safely in other
applications, it will be safe in the new one. This misconception arises from a confusion between
software reliability and safety. Most accidents involve software that is doing exactly what it was
designed to do, but the designers misunderstood what behavior was required and would be safe.
The blackbox (externally visible) behavior of a component can only be determined to be safe by
analyzing its effects on the system in which it will be operating, that is, by considering the specific
operational context. The fact that software has been used safely in another environment provides no
information about its safety in the current one. In fact, reused software is probably less safe because
the original decisions about the required software behavior were made for a different system design
and using different environmental assumptions. Changing the environment in which the software
operates makes all previous usage experience with the software irrelevant for determining safety.
The same software flaw that led to the overdosing of five patients by the Therac-25 existed in the

13

Therac-20 software (which was reused on the Therac-25), but the flaw had no untoward effects in
the different Therac-20 system design.

A reasonable conclusion to be drawn is not that software cannot be reused, but that a safety
analysis of its operation in the new system context is mandatory: Testing alone is not adequate.
For complex designs, the safety analysis required stretches the limits of current technology. For
this type of analysis to be technically and financially feasible, reused software must contain only
the features necessary to perform critical functions. As noted earlier, both the Ariane 5 and the
Titan software contained unnecessary functions that led to the losses and the MPL loss involved
a necessary function operating when it was not necessary. Note, however, that COTS software is
often constructed with as many features as possible to make it commercially useful in a variety of
systems. Thus there is a tension between using COTS and being able to perform a safety analysis
or have confidence in the safety of the system. This tension must be resolved in management
decisions about risk—ignoring it only leads to accidents and potential losses that are greater than
the additional cost of designing and building new components instead of buying them.

If reuse and the use of COTS software are to result in acceptable risk, then system and software
modeling and analysis techniques must be used to perform the necessary safety analyses. This
process is not easy or cheap. Introducing computers does not preclude the need for good engineering
practices, and it almost always involves higher costs, despite the common myth that introducing
automation saves money.

Inadequate System Safety Engineering

Judging only from the information (or lack of information) included in the accident reports, none
of these projects appear to have had adequate system safety engineering.

For example, several of the reports recommend reconsidering the definition they used of critical
components, particularly for software. Unfortunately, not enough information is given about how
the criticality analyses were performed (or even if they were done) to determine why they were
unsuccessful. Common practice throughout engineering, however, is to apply the same techniques
and approaches that were used for electromechanical systems (e.g., FMEA and FMECA) to the new
software-intensive systems. This approach will be limited because the contribution of software to
accidents, as noted previously, is different than that of purely mechanical or electronic components.

There appear to be several instances of flawed risk tradeoff decisions. For example, in the Ariane
accident, there was a lack of effective analysis to determine which variables should be protected
during execution. Unfortunately, the accident reports describe flawed decisions, but not the process
for arriving at them. Important information that is missing includes how the analyses and trade
studies were performed and what additional information or additional analysis techniques could
have allowed better decisions to be made.

Providing the information needed to make safety-related engineering decisions is the major
contribution of system safety techniques to engineering. It has been estimated that 70-90% of the
safety-related decisions in an engineering project are made during the early concept development
stage [1]. When hazard analyses are not done, are done only after the fact (for example, as a
part of quality or mission assurance), or are done but the information is never integrated into the
engineering decision-making environment, they can have no effect on these decisions and the safety
effort reduces to a cosmetic and perfunctory role.

The Titan accident provides an example of what happens when such analysis is not done. The
risk analysis, in that case, was not based on determining the steps critical to mission success (a
traditional hazard analysis) but instead considered only the problems that had occurred in previous
launches. Software constant generation was considered to be low risk because there had been no

14

previous problems with it. Not only is such an approach inadequate for complex systems in general,
but considering only the specific events and conditions occurring in past accidents is not going to
be effective when new technology is introduced into a system. Computers are, in fact, introduced
in order to make radical changes in functionality and design. In addition, software is often used
precisely because it is possible to make changes for each mission and throughout operations—the
system being flown today is often not the same one that existed yesterday. Proper hazard analysis
that examines all the ways the system components (including software) or their interaction can
contribute to accidents needs to be performed and used in decision making.

At the same time, system-safety techniques, like other engineering techniques, need to be ex-
panded to include software and the complex cognitive decision making and new roles played by
human operators [4]. Existing approaches need to be applied, and new and better ones developed.
When appropriately modified system safety techniques have been used, they have been successful.
If system hazard analysis is performed prior to software implementation (not just prior to testing,
as is recommended in the MPL report), requirements can be analyzed for hazardous states and
protection against potentially hazardous behavior designed into the logic.

The MCO report and the Challenger report were the only ones to recommend instituting a
classic system safety engineering program, i.e., continually performing the system hazard analyses
necessary to explicitly identify mission risks and communicating these risks to all segments of
the project team and institutional management; vigorously working to make tradeoff decisions
that mitigate these risks in order to maximize the likelihood of mission success; and regularly
communicating the progress of the risk mitigation plans and tradeoffs to project, program, and
institutional management. The other reports, when changes were suggested, instead described
classic reliability engineering approaches that are unlikely to be effective for system accidents or
software-intensive systems.

One of the benefits of using system-safety engineering processes is simply that someone becomes
responsible for ensuring that particular hazardous behaviors are eliminated if possible or their like-
lihood reduced and their effects mitigated in the design. Almost all attention during development is
focused on what the system and software are supposed to do. A system safety engineer or software
safety engineer is responsible for ensuring that adequate attention is also paid to what the system
and software are not supposed to do and verifying that hazardous behavior will not occur. It is
this unique focus that has made the difference in systems where safety engineering successfully
identified problems that were not found by the other engineering processes.

Unnecessary Complexity and Software Functions

One of the most basic concepts in engineering critical systems is to “keep it simple.” The seem-

ingly unlimited ability of software to implement desirable features often, as in the case of most of
the accidents examined in this paper, pushes this basic principle into the background: Creeping
featurism is a common problem. The Ariane and Titan accidents clearly involved software that
was not needed, but surprisingly the decision to put in or to keep these features (in the cases of
reuse) was not questioned in the accident reports. The MPL accident involved software that was
executing when it was not necessary to execute. In the case of the Titan IVB-32, the report explains
that the filter was not needed but was kept in for “consistency.” The exact same words are used
for the Ariane software. Neither report explains why consistency was assigned such high priority.
In all these projects, tradeoffs were obviously not considered adequately, perhaps partially due to
complacency about software risk.

The more features included in software and the greater the resulting complexity (both software
complexity and system complexity), the harder and more expensive it is to test, to provide assurance

15

through reviews and analysis, to maintain, and to reuse in the future. Engineers need to start
making these hard decisions about functionality with a realistic appreciation of their effect on
development cost and eventual system safety and system reliability.

Test and Simulation Environments that do not Match the Operational Environment

It is always dangerous to conclude that poor testing was the “cause” of an accident. After the fact,
it is always easy to find a test case that would have uncovered a known error, but it is usually
difficult to prove that the particular test case would have been selected beforehand even if testing
procedures were changed. By definition, the cause of an accident can always be stated as a failure
to test for the condition that was determined, after the accident, to have led to the loss. However,
in these accidents, there do seem to be omissions that reflect poor decisions related to testing,
particular with respect to the accuracy of the simulated operational environment.

A general principle in testing aerospace systems is to fly what you test and test what you fly. This
principle was violated in all the spacecraft accidents. The test and simulation processes must reflect
the environment accurately. Although following this process is often difficult or even impossible for
spacecraft, no reasonable explanation was presented in the reports for some of the omissions in the
testing for these systems. An example is the use of Ariane 4 trajectory data in the specifications
and simulations of the Ariane 5 software when the Ariane 5 trajectory was known to be different.

In both the Ariane 5 and Mars ’98 projects, a conclusion was reached that the components
implicated in the accidents could not be tested and simulation was substituted. After the fact, it
was determined that such testing was indeed possible and would have had the ability to detect the
design flaws. The same occurred with the Titan accident, where default and simulated values were
used in system testing although the real roll rate filter constants could have been used. Like Ariane,
the engineers incorrectly thought the rigid-body simulation of the vehicle would not exercise the
filters sufficiently. Even the tests performed on the Titan right before launch (because anomalies
had been detected) used default values and thus were unsuccessful in detecting the error. After
wiring errors were discovered in the MPL testing process, for undisclosed reasons the tests necessary
to detect the software flaw were not rerun.

Better system testing practices are needed for components containing software (almost every-
thing these days), more accurate simulated environments need to be used in software testing, and
the assumptions used in testing and simulations need to be carefully checked. Another common
problem with testing, particularly software testing, is inadequate emphasis on off-nominal and
stress testing.

Deficiencies in Safety-Related Information Collection and Use

Researchers have found that the second most important factor in the success of any safety program
(after top management concern) is the quality of the hazard information system. Both collection of
critical information as well as dissemination to the appropriate people for action is required. The
Challenger report noted that what had once been an outstanding hazard information system had
broken down amid cost-cutting and complacency. The situation at NASA today does not appear
to be any different. The MCO report concludes that lack of discipline in reporting problems and
insufficient followup was at the heart of the mission’s navigation mishap. In the Titan mishap,
the use of voice mail and email implies there either was no formal anomaly reporting and tracking
system (none is mentioned in the report) or the formal reporting procedure was not known or
used by the process participants for some reason. The report states that there was confusion and
uncertainty as to how the roll rate anomalies should be reported, analyzed, documented and tracked

16

because it was a “concern” and not a “deviation.” There is no explanation of these terms.

In all the spacecraft accidents, the existing formal anomaly reporting system was bypassed (in
Ariane 5, there is no information about whether one existed) and informal email and voice mail
was substituted. The problem is clear but not the cause, which was not included in the reports
and perhaps not investigated. When a structured process exists and is not used, there is usually
a reason. Some possible explanations may be that the system is difficult or unwieldy to use or it
involves too much overhead. Such systems may not be changing as new technology changes the way
engineers work. There is no reason why reporting something within the problem-reporting system
should be much more cumbersome than adding an additional recipient to the email. The Raytheon
CAATS (Canadian Automated Air Traffic System) implemented an informal email process for
reporting anomalies and safety concerns or issues that reportedly was highly successful [2].

Operational Personnel not Understanding the Automation

Neither the MPL nor the Titan mission operations personnel understood the system or software
well enough to interpret the data they saw as indicating there was a problem in time to prevent the
loss. Complexity in the automation combined with poor documentation and training procedures
are contributing to this problem, which is becoming a common factor in aircraft accidents.

6 Summary

Software and digital systems provide tremendous power in building complex systems not previously
possible. But this increase in power comes with a price—large software systems are fiendishly
difficult to get correct. The difficulty of building such software is often underestimated by engineers.
To avoid future losses, we need to take a realistic view of the risk accompanying the use of software
and develop and use extensions to standard system and safety engineering techniques to handle it.

References

[1] William G. Johnson. MORT Safety Assurance Systems. Marcel Dekker, Inc., New York,
1980.

[2] Jeffrey Joyce. Personal Communication.

[3] John C. Knight and Nancy G. Leveson. An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming. IEEE Transactions on Software Engineering,
Vol. SE-12, No. 1, January 1986, pp- 96-109.

[4] Nancy G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 1985.

[6] Nancy G. Leveson. Intent Specifications: An Approach to Building Human-Centered Speci-
fications. IEEE Transactions on Software Engineering, Vol. SE-26, No. 1, January 2000.

[6] Dale A. Mackall. Development and Flight Test Experiences with a Flight-Critical Digital Con-
trol System. NASA Technical Paper 2857, National Aeronautics and Space Administration,
Dryden Flight Research Facility, November 1988.

17

