
AIAA 2001-4763

SYSTEMIC FACTORS IN SOFTWARE-RELATED
SPACECRAFT ACCIDENTS∗

Prof. Nancy G. Leveson
Aeronautics and Astronautics Dept.

Massachusetts Institute of Technology
leveson@mit.edu and http://sunnyday.mit.edu

ABSTRACT

Four relatively recent spacecraft accidents involving
software are examined: the explosion of the Ariane 5
launcher on its maiden flight in 1996; the loss of the
Mars Climate Orbiter in 1999; the destruction of the
Mars Polar Lander sometime during the entry, deploy-
ment, and landing phase in the following year; and the
placing of a Milstar satellite in an incorrect and unus-
able orbit by a Titan IV B in 1999. Important common
factors and similarities were identified.

INTRODUCTION

Some accident reports were examined in a research
project to evaluate a new accident model. The model
requires accounting for each event with related con-
ditions that led to the event and then each con-
dition with the systemic factors that explained the
existence of the conditions. The complete report,
which included aircraft accidents, can be found at
http://sunnyday.mit.edu/accidents.

On the surface, the events involved in the four space-
craft accidents appear to be very different, except for
the fact that software played a role in all of them. How-
ever, a more careful, detailed analysis of these accidents
and the systemic factors involved showed striking sim-
ilarities in the root causes.

The accidents are first briefly described for those un-
familiar with them and then the common factors iden-
tified and discussed.

ARIANE 5

On June 4, 1996, the maiden flight of the Ariane 5
launcher ended in failure. Only about 40 seconds after
initiation of the flight sequence, at an altitude of only
∗This research was partially supported by a grant from the

NASA Ames Design for Safety program and by the NASA IV&V
Center Software Initiative program.

Copyright c© by Nancy G. Leveson. Published by the American
Institute of Aeronautics and Astronautics., Inc., with permis-
sion.

2700 m, the launcher veered off its flight path, broke
up, and exploded. The accident report describes what
they called the “primary cause” as the complete loss
of guidance and attitude information 37 seconds after
start of the main engine ignition sequence (30 seconds
after liftoff). The loss of information was due to specifi-
cation and design errors in the software of the inertial
reference system. The software was reused from the
Ariane 4 and included functions that were not needed
for Ariane 5 but were left in for “consistency.” In fact,
these functions were useful but not required for the
Ariane 4 either.

MARS CLIMATE ORBITER

The Mars Climate Orbiter (MCO) was launched De-
cember 11, 1998 atop a Delta II launch vehicle. Nine
and a half months after launch, in September 1999, the
spacecraft was to fire its main engine to achieve an el-
liptical orbit around Mars. It then was to skim through
the Mars upper atmosphere for several weeks, in a tech-
nique called aerobraking, to move into a low circular
orbit. On September 23, 1999, the MCO was lost when
it entered the Martian atmosphere in a lower than ex-
pected trajectory. The investigation board identified
what it called the “root” cause of the accident as the
failure to use metric units in the coding of a ground
software file used in the trajectory models. Thruster
performance data was in English units instead of the
metric units specified in the software interface specifi-
cation.

MARS POLAR LANDER

During the entry, deployment, and landing (EDL) se-
quence of the Mars Polar Lander (MPL), the three
landing legs were to be deployed from their stowed con-
dition to the landed position at an altitude of about
1500 meters. Each leg was fitted with a Hall Effect
magnetic sensor that generates a voltage when its leg
contacts the surface of Mars. The descent engines were
to be shut down by a command initiated by the flight

1



software when touchdown was detected. The engine
thrust must be terminated within 50 milliseconds after
touchdown to avoid overturning the lander. The flight
software was also required to protect against a prema-
ture touchdown signal or a failed sensor in any of the
landing legs.

The touchdown sensors characteristically generate a
false momentary signal at leg deployment. This be-
havior was understood and the flight software should
have ignored it. The software requirements did not
specifically describe these events, however, and con-
sequently the software designers did not properly ac-
count for them. According to the most likely accident
scenario, the software interpreted the spurious signals
generated at leg deployment as valid touchdown events.
When the sensor data was enabled at an altitude of 40
meters, the software shut down the engines and the
lander free fell to the surface, impacting at a velocity
of 22 meters per second (50 miles an hour) and was
destroyed.

TITAN IV/MILSTAR

On April 30, 1999, a Titan IV B-32/Centaur TC-
14/Milstar-3 was launched from Cape Canaveral. The
mission was to place the Milstar satellite in geosyn-
chronous orbit. An incorrect roll rate filter constant
zeroed the roll rate data, resulting in the loss of roll
axis control and then yaw and pitch control. The loss
of attitude control caused excessing firings of the re-
action control system and subsequent hydrazine deple-
tion. Erratic vehicle flight during the Centaur main
engine burns caused it to achieve an orbit apogee and
perigee much lower than desired, which resulted in the
Milstar being placed in an incorrect and unusable low
elliptical final orbit instead of the intended geosyn-
chronous orbit.

The accident investigation board concluded that fail-
ure of the Titan IV B-32 mission was due to a failed
software development, testing, and quality assurance
process for the Centaur upper stage. That failed pro-
cess did not detect the incorrect entry by a flight soft-
ware engineer of a roll rate filter constant into the In-
ertial Navigation Unit software file.

The roll rate filter itself was included early in the
design phase of the first Milstar spacecraft, but the
spacecraft manufacturer later determined that filtering
was not required at that frequency. A decision was
made to leave the filter in place for the first and later
Milstar flights for “consistency.”

COMMON SYSTEMIC FACTORS

Eliminating the specific events and conditions involved
in a particular accident may prevent a repetition of the

same accident scenario, but not those with different de-
tailed event scenarios stemming from the same root or
systemic problems. Accidents rarely repeat themselves
in exactly the same way and patches to particular parts
of the system may be ineffective in preventing future
accidents. For example, if another Space Shuttle ac-
cident occurs, it is unlikely to be caused by the exact
same type of O-ring problem: An O-ring failure precip-
itated the loss, but the root causes identified in the ac-
cident investigation were related to an accumulation of
problems, including an inadequate problem reporting
system, inadequate trend analysis, misrepresentation
of criticality, inadequate resources devoted to safety,
lack of safety personnel involvement in important dis-
cussions and decisions, etc. Preventing accidents in
the future requires fixing those systemic deficiencies
and not just the symptoms that led to that specific
accident scenario.

From the information provided in the accident re-
ports for the accidents described, the following sys-
temic factors can be identified. They are grouped into
three categories: flaws in the safety culture, ineffec-
tive organizational structure and communication, and
inadequate or ineffective technical activities.

I. Flaws in the Safety Culture

Overconfidence and complacency

Success is ironically one of the progenitors of accidents
when it leads to overconfidence and cutting corners or
making tradeoffs that increase risk. Petroski, in his
book To Engineer is Human, describes this common
phenomenon. It is not new, and it is extremely difficult
to counter when it enters the engineering culture in an
organization.

The Rogers Commission investigating the Chal-
lenger accident noted that Shuttle flights had become
routine: safety margins were relaxed over time and
risks were tolerated because they had been experienced
before—no adequate attempt was made to eliminate
them. NASA and its contractors accepted escalating
risk (although they probably did not realize it was es-
calating) because they had gotten away with it previ-
ously. The Mars Climate Orbiter (MCO) report noted
similarly that because JPL’s navigation of interplane-
tary spacecraft had worked well for 30 years, there was
widespread perception that “orbiting Mars is routine”
and inadequate attention was devoted to risk man-
agement. A similar culture apparently permeated the
Mars Polar Lander (MPL) project.

Complacency can manifest itself in a general ten-
dency of management and decision makers to discount
unwanted evidence of risk. In an analysis of an acci-
dent in the Moura mine in Australia, Hopkins describes
a general phenomenon he calls a culture of denial in

2



which it is generally believed that there is no signifi-
cant risk and production pressures lead to dismissing
any evidence to the contrary.

A recommendation common to several of the space-
craft reports was to pay greater attention to risk iden-
tification and management. The investigators found
that the project management teams appeared primar-
ily focused on meeting mission cost and schedule objec-
tives and did not adequately focus on mission risk. As
an example, a report on the MPL loss concludes that
the pressure of meeting the cost and schedule goals re-
sulted in an environment of increasing risk in which too
many corners were cut in applying proven engineering
practices and in the checks and balances necessary for
mission success.

While management may express their concern for
safety, true priorities are shown during resource al-
location. By the time of the fatal Challenger flight,
reductions had been made in the safety engineering
functions that essentially made those functions ineffec-
tive. MCO and MPL were developed under very tight
“Faster, Better, Cheaper” budgets. The Titan Pro-
gram office had cut support for monitoring the soft-
ware development and test process by 50% since 1994
and had greatly cut the number of engineers working
launch operations. Although budget decisions are al-
ways difficult when resources are reduced (and budgets
are almost always less than is desirable), the first things
to be cut are often system safety, system engineering,
quality assurance, and operations, which are assigned
a low priority and assumed to be the least critical parts
of the project.

Underestimating and Not Understanding Soft-
ware Risks

Accidents involving software often occur within an
engineering culture that has unrealistic expectations
about software and the use of computers. The common
misperceptions (or myths) take two forms: 1) Software
does not fail and all errors will be eliminated through
testing and (2) software can be handled using the same
techniques as hardware.

The first myth stems from an underestimation of the
complexity of most software and an overestimation of
the effectiveness of testing. The Ariane 5 report notes
that software was assumed to be correct until it was
shown to be faulty. This form of complacency also
plays a part in the common proliferation of software
functionality and in unnecessary design complexity.

In the Titan accident, there apparently was no check-
ing of the correctness of the software after the standard
testing performed during development. For example,
on the day of the launch, the attitude rates for the ve-
hicle on the launch pad were not properly sensing the
earth’s rotation rate but no one had the responsibility

to specifically monitor that rate data or to perform a
check to see if the attitude filters were correctly sensing
the earth’s rotation rate. In fact, there were no formal
processes to check the validity of the filter constants
or to monitor attitude rates once the flight tape was
actually loaded into the INU at the launch site. Poten-
tial hardware failures are usually checked up to launch
time, but it may have been assumed that testing re-
moved all software errors and no further checks were
needed. Even right before launch, the programmed
rate check used a default set of constants to filter the
measured rate rather then the actual constants loaded
on the Centaur.

The second myth is that the same techniques used
to make electromechanical systems safe or reliable will
work in software-intensive systems. This myth leads to
ineffective and inadequate technical activities directed
toward safety. The recommended approach in the Mars
Polar Lander report is an example. It and other reports
recommend using FMECA or FTA along with appro-
priate redundancy to eliminate failures. But software
and digital systems bring a totally different game to en-
gineering practice. Some classically trained engineers
have difficulty appreciating the new and very different
engineering environment created by the introduction of
software and the new mindset and approaches required.
Not only are the failures not random (if the term “fail-
ure” makes any sense when applied to something that
is pure design separate from the physical realization of
that design), but the complexity of most software pre-
cludes examining all the ways it could “misbehave.” In
addition, the failure modes are very different than for
physical devices.

Throughout the accident reports, there is an em-
phasis on failures as the cause of accidents. The con-
tribution of software to accidents is very different than
that of hardware, and engineering activities must be
augmented to reflect this. Almost all software-related
accidents can be traced back to flaws in the require-
ments specification and not to coding errors—the soft-
ware performed exactly as specified, but the specifica-
tion was incorrect.

Understanding these differences between software
and other engineering “materials” and implementing
alternative approaches that will be effective for soft-
ware has been slow in engineering. For example, the
JPL report on the MPL loss contains a figure that
shows the “potential failure modes for the [entry, de-
scent, and landing] sequence.” Potential hardware fail-
ures or misbehaviors, such as Propellant line rupture or
Excessive horizontal-velocity causes lander to tip over
at touchdown, are identified for each stage except for
software. Instead, a statement Flight software fails to
execute properly is identified as common to all phases.
The problem with this is that it provides no useful
information—it is equivalent to simply substituting a

3



single statement for all the other hazards identified in
the figure with “hardware fails to execute properly.”
Singling out the JPL engineers is unfair here because
the same types of useless statements about software
can be found in almost all the fault trees and failure
analyses I see in industry, and this practice is not lim-
ited to aerospace.

Software by itself is never dangerous—it is an ab-
straction without the ability to produce energy and
thus to lead directly to a physical loss. Instead, it con-
tributes to accidents through issuing (or not issuing)
instructions to other components in the system. In the
case of the identified probable factor in the MPL loss,
the dangerous behavior was software prematurely shuts
down the descent engines. Such an identified unsafe
behavior would be much more helpful during develop-
ment in identifying ways to mitigate the risk than the
general statement Software fails to execute properly.

Overrelying on Redundancy

Redundancy is commonly used to reduce component
failures and increase system reliability. The Challenger
accident is typical. The engineers and managers relied
on redundancy without properly evaluating whether
the redundancy provided adequate protection. Once
the original evaluation had been completed, they con-
tinued to believe in the independence of failures of
the redundant O-rings long after that independence
assumption had been shown to be incorrect. While
some of this mistaken reliance had a basis in inade-
quate communication and documentation procedures,
reliance was placed on redundancy even by those who
knew the criticality rating had been increased from 1R
(highest criticality but risk mitigated by redundancy)
to 1 (highest criticality).

Accidents are changing their character. This change
is not solely the result of using digital components, but
it is made possible because of the flexibility of software.
Most of the accidents investigated in this research
showed at least some aspects of system accidents, where
all or most of the components implicated in the acci-
dent worked as specified but the combined behavior
of the components led to disastrous system behavior.
Not only did each component in isolation work cor-
rectly (i.e., they satisfied their specifications), but, in
fact, many of the design features that contributed to
the accident involved standard recommended practice.
Protecting against software “failures” will do nothing
to protect against system accidents.

Safety and reliability are different qualities for
software—one does not imply the other. Although con-
fusing reliability with safety is common in engineering,
it is perhaps most unfortunate with regard to software
as it encourages spending most of the effort devoted to
safety on activities that are likely to have no effect.

In this regard, redundancy usually has a greater im-
pact on reliability than safety. System accidents, for
example, will not be decreased at all by the use of re-
dundancy. In fact, the added complexity introduced
by redundancy has frequently resulted in accidents.
In addition, redundancy is most effective against ran-
dom wearout failures and least effective against re-
quirements and design errors—the latter being the only
type found in software. The Ariane report notes that
according to the culture of the Ariane program, only
random failures are addressed and they are primar-
ily handled with redundancy. This approach obviously
failed when both the Inertial Reference System com-
puters shut themselves down (exactly as they were de-
signed to do) in response to the same unexpected input
value.

To cope with software design errors, “diversity” has
been suggested in the form of independent groups writ-
ing multiple versions of software with majority voting
on the outputs. This approach is based on the as-
sumption that such versions will fail in a statistically
independent manner. This independence assumption
has been shown to be false in practice and in a large
number of carefully designed experiments (see, for ex-
ample, [1]). The multiple versions tend to produce in-
correct results processing the same unusual or difficult-
to-handle inputs. In addition, such designs usually in-
volve adding to system complexity, which can result
in failures itself. A NASA study of an experimental
aircraft with two versions of the control system found
that all of the software problems occurring during flight
testing resulted from errors in the redundancy man-
agement system and not in the control software itself,
which worked perfectly [4].

Assuming Risk Decreases over Time

In the Milstar satellite loss, the Titan Program Office
decided that because the software was “mature, stable,
and had not experienced problems in the past,” they
could use the limited resources available after the ini-
tial development effort to address hardware issues. In
several of the accidents, quality and mission assurance
as well as system engineering were also reduced or elim-
inated during operations because it was felt they were
no longer needed or the resources were needed more
elsewhere. In MCO, the operations group did not have
a mission assurance manager. The Challenger accident
report also noted cuts in the operational safety activi-
ties (the “Silent Safety” program). It is very common
to assume that risk is decreasing after repeated suc-
cesses.

In fact, risk usually increases over time, particularly
in software-intensive systems. The Therac-25, a radia-
tion therapy machine that massively overdosed five pa-
tients due to software flaws, operated safely thousands

4



of times before the first accident. Industrial robots op-
erated safely around the world for several million hours
before the first fatality. Risk may increase over time
because caution wanes and safety margins are cut, be-
cause time increases the probability that the unusual
conditions will occur that trigger an accident, or be-
cause the system itself or its environment changes. In
some cases, the introduction of an automated device
may actually change the environment in ways not pre-
dicted during system design. For example, as opera-
tors became more familiar with the Therac-25 oper-
ation, they started to type faster, which triggered a
software error that had not surfaced previously. Soft-
ware also tends to be frequently changed and “evolves”
over time, but changing software without introducing
errors or undesired behavior is much more difficult than
building correct software in the first place. The more
changes that are made to software, the more “brittle”
the software becomes and the more difficult it is to
make changes without introducing errors.

Thus we have the rather surprising conclusion that
as system error rates decrease and reliability increases,
the risk of accidents may actually be increasing.

Ignoring Warning Signs

Warning signs almost always occur before major ac-
cidents. For Challenger, warning signs existed but
were ignored and concerned engineers were unable to
draw attention to the O-ring problems. In several
of the other spacecraft accidents, there were warn-
ing signs that the software was flawed but they went
unheeded. Engineers noticed the problems with the
Titan/Centaur software after it was delivered to the
launch site, but nobody seemed to take them seriously.
The problems experienced with the MCO software dur-
ing the early stages of the flight also did not seem to
raise any red flags.

II. Ineffective Organizational Structure
and Communication

The Ariane 5 report was strangely silent about orga-
nizational and communication issues. However, it in-
cludes a recommendation to “consider a more trans-
parent organization of the cooperation among part-
ners” and concludes that “close engineering cooper-
ation, with clear cut authority and responsibility, is
needed to achieve system coherence, with simple and
clear interfaces between partners.” No other informa-
tion is provided so little can be learned about organi-
zational factors from this accident. The other accident
reports, however, all described classic management fac-
tors related to accidents.

Diffusion of Responsibility and Authority

In many of the accidents, there appeared to be serious
organizational and communication problems among
the geographically dispersed partners. Responsibility
was diffused without complete coverage and without
complete understanding by anyone about what all the
groups were doing. Roles were not clearly allocated.
Both the Titan and Mars ’98 programs were transi-
tioning to process “insight” from process “oversight.”
Just as the MPL reports noted that “Faster, Better,
Cheaper” was not defined adequately to ensure that it
meant more than simply cutting budgets, this change
in management role seems to have been implemented
simply as a reduction in personnel and oversight re-
sponsibility without assurance that anyone was respon-
sible for specific necessary tasks.

The MCO report concludes that project leadership
did not instill the necessary sense of authority and ac-
countability in workers that would have spurred them
to broadcast problems they detected so that those
problems might be “articulated, interpreted, and ele-
vated to the highest appropriate level, until resolved.”
The Titan accident also shows some of these same
symptoms.

Inadequate transition from development to opera-
tions played a role in several of the accidents. En-
gineering management sometimes has a tendency to
focus on development and to put less effort into plan-
ning the operational phase of any project or system.
The operations teams (in those accidents that involved
operations) also seemed isolated from the developers.
The MCO report notes this isolation and provides as an
example that the operators did not know until long af-
ter launch that the spacecraft sent down tracking data
that could have been compared with the ground data,
which might have identified the software error while it
could have been fixed. The operations crew for the Ti-
tan/Centaur also did not detect the obvious problems,
partly because of a lack of the knowledge required to
detect them. Better communications and involvement
of the developers in the launch operations might have
avoided the losses.

Most important, responsibility for safety does not
seem to have been clearly defined outside of the quality
assurance function on any of these programs. As noted
in the Challenger accident report, safety was originally
identified as a separate responsibility by the Air Force
during the ballistic missile programs of the 50s and 60s
to solve exactly the problems seen in these accidents—
to make sure that safety is given due consideration in
decisions involving conflicting pressures and that safety
issues are visible at all levels of decision making. Hav-
ing an effective safety program cannot prevent errors
of judgment in balancing conflicting safety, schedule,
and budget constraints, but it can at least make sure

5



that decisions are informed and that safety is given due
consideration. It also ensures that someone is focusing
attention on what the system is not supposed to do,
i.e., the hazards, and not just on what it is supposed
to do. Both perspectives are necessary if safety is to
be optimized. Placing safety only under the assurance
umbrella instead of treating it as a central engineering
concern is not going to be effective, as has been con-
tinually demonstrated by these and other accidents.

Having an effective safety program cannot prevent
errors in judgement in balancing conflicting require-
ments of risk, schedule, and cost, but it can at least
make sure that decisions are informed and that risk is
given due consideration.

Low-Level Status and Inappropriate Organiza-
tional Placement of the Safety Program

The reports on the recent accidents involving NASA
projects are surprisingly silent about their safety pro-
grams. One would think that the safety activities and
why they had been ineffective would figure prominently
in the reports. In fact, the only time system safety is
mentioned is with respect to quality assurance. Is sys-
tem safety engineering being performed at all on these
projects? Perhaps it is only considered necessary for
missions involving humans or safety is being confused
with reliability. The MPL and MCO accident reports
both lament the lack of “what-if” analysis, which is
the hallmark of system safety engineering. It is very
effective in preventing general losses, not just those in-
volving human life.

More information is needed to determine why this
type of analysis is not being used. System safety en-
gineering techniques may not have been used on these
projects or they may have been ineffective and system
safety marginalized by being limited to the quality as-
surance program: While safety is certainly one prop-
erty among many that needs to be assured, it cannot
be engineered into a design through after-the-fact as-
surance activities alone.

Limited Communication Channels and Poor
Information Flow

In the Titan, Challenger, and Mars Climate Orbiter
accidents, there was evidence that a problem existed
before the loss occurred, but there was no communica-
tion channel established for getting the information to
those who could understand it and to decision makers
or, alternatively, the problem-reporting channel was in-
effective in some way or was simply unused.

All the accidents involved one engineering group not
getting the information they needed from another en-
gineering group. The MCO report cited deficiencies
in communication between the project development

team and the operations team. The MPL report noted
inadequate peer communication and a breakdown in
intergroup communication. The Titan accident also
involved critical information not getting to the right
people. For example, the tests right before launch de-
tected the zero roll rate but there was no communi-
cation channel established for getting that information
to those who could understand it.

In addition, system engineering on several of the
projects did not keep abreast of test results from all
areas and communicate the findings to other areas of
the development project: Establishing and implement-
ing this type of intergroup technical communication is
one of the primary roles for system engineering.

Communication is one of the most important func-
tions in any large, geographically distributed engineer-
ing project and must be carefully planned and fostered.

III. Ineffective or Inadequate Technical
Activities

Although the actual technical errors made were dif-
ferent in each of the accidents, common flaws in the
engineering activities led to these errors.

Inadequate System Engineering

For any project as complex as those involved in these
accidents, good system engineering is essential for suc-
cess. In some of the accidents, system engineering
resources were insufficient to meet the needs of the
project. In others, the process followed was flawed,
such as in the flowdown of system requirements to soft-
ware requirements or in the coordination and commu-
nication among project partners and teams. In the Ti-
tan project, there appeared to be nobody in charge of
the entire process, i.e., nobody responsible for under-
standing, designing, documenting, controlling configu-
ration, and ensuring proper execution of the process.

Preventing system accidents falls into the province
of system engineering—those building individual com-
ponents have little control over events arising from dys-
functional interactions among components. As the sys-
tems we build become more complex (much of that
complexity being made possible by the use of comput-
ers), system engineering will play an increasingly im-
portant role in the engineering effort. In turn, system
engineering will need new modeling and analysis tools
that can handle the complexity inherent in the systems
we are building. Appropriate modeling methodologies
will have to include software, hardware and human
components of systems. Such modeling and analysis
techniques are currently only in their infancy.

6



Flawed Review Process

General problems with the way quality and mission
assurance are practiced were mentioned in several of
the reports. QA often becomes an ineffective activity
that is limited simply to checking that the appropriate
documents are produced without verifying the quality
of the contents. The Titan accident report makes this
point particularly strongly.

Review processes (outside of QA) are also described
as flawed in the reports but few details are provided
to understand the problems. In general, software is
difficult to review and the success of such an effort is
greatly dependent on the quality of the specifications.
However, identifying unsafe behavior, i.e., the things
that the software should not do and concentrating on
that for at least part of the review process, helps to
focus the review and to ensure that critical issues are
adequately considered.

Such unsafe (or mission-critical) behavior will be (or
should be) identified in the system engineering process
before software development begins. The design ra-
tionale and design features used to prevent the unsafe
behavior should have been documented and can be the
focus of such a review. This presupposes, of course, a
system safety process to provide the information, which
does not appear to have existed for these projects.

None of the reports but Titan mentions any indepen-
dent verification and validation (IV&V) review process
(beyond normal system testing) by a group other than
the developers. The Titan program did have an inde-
pendent IV&V process, but it used only default values
for the filter rate constants and never validated the
actual constants used in flight.

Inadequate Specifications

Several of the reports refer to inadequate specification
practices. The Ariane accident report notes that the
structure of the documentation obscured the ability to
review the critical design decisions and their underlying
rationale. Inadequate documentation of design ratio-
nale to allow effective review of design decisions is a
very common problem in system and software specifi-
cations [3]. The Ariane report recommends that justi-
fication documents be given the same attention as code
and that techniques for keeping code and its justifica-
tions consistent be improved.

The MPL report notes that the system-level require-
ments document did not specifically state the failure
modes the requirement was protecting against (in this
case possible transients) and speculates that the soft-
ware designers or one of the reviewers might have
discovered the missing requirement if they had been
aware of the rationale underlying the requirements.
The small part of the requirements specification shown

in the accident report (which may very well be mis-
leading) seems to avoid all mention of what the soft-
ware should not do. In fact, standards and industry
practices even forbid such negative requirements state-
ments. The result is that software specifications often
describe nominal behavior well but are very incomplete
with respect to required software behavior under off-
nominal conditions and rarely describe what the soft-
ware is not supposed to do. Most safety-related re-
quirements and design constraints are best described
using such negative requirements or design constraints.

In general, the vast majority of software-related acci-
dents can be traced to flawed requirements rather than
coding errors. Either (1) the requirements are incom-
plete or contain wrong assumptions about the opera-
tion of the controlled system or the required operation
of the computer or (2) there are unhandled controlled-
system states and environmental conditions. This ex-
periential evidence leads directly to a need for better
specification review and analysis—the system and soft-
ware specifications must be reviewable and easily un-
derstood by a wide range of engineering specialists [3].

Complete and understandable specifications are not
only necessary for development, but they are critical
for operations and the handoff between developers,
maintainers, and operators. In the Titan accident, no-
body other than the control dynamics engineers who
designed the roll rate constants understood their use
or the impact of filtering the roll rate to zero. When
discrepancies were discovered right before launch, no-
body understood them. The MCO operations staff also
clearly had inadequate understanding of the automa-
tion and therefore were unable to effectively monitor
its operation. Good specifications that include require-
ments tracing and design rationale are critical for long-
lived systems and may be able to improve the effective-
ness of the operations personnel.

The Titan report stressed the lack of a different type
of specification: formal documentation of the overall
process flow. The Centaur software process was devel-
oped early in the Titan/Centaur program and many of
the individuals who designed the original process are
no longer involved in it due to corporate mergers and
restructuring and the maturation and completion of
the Titan/Centaur design and development. Much of
the system and process history was lost with their de-
parture and therefore nobody knew enough about the
overall process to detect that it omitted any testing
with the actual load tape or knew that the LMA test
facilities had the capability of running the type of test
that could have caught the error.

7



Violation of Basic Safety Engineering Practices
in the Digital Parts of the System Design

Although system safety engineering textbooks and
standards include principles for safe design, software
engineers are almost never taught them. As a result,
software often does not incorporate basic safe design
principles, for example, separating critical functions,
eliminating unnecessary functionality, designing error-
reporting messages such that they cannot be confused
with critical data (see the Ariane accident), and reason-
ableness checking of inputs and internal states. Con-
sider the MPL loss: The JPL report on the accident
states that the software designers did not include any
mechanisms to protect against transient sensor signals
nor did they think they had to test for transient con-
ditions. They also apparently did not include a check
of the current altitude before turning off the descent
engines. Runtime reasonableness and other types of
checks should be part of the design criteria used for
any real-time software.

Another basic design principle for mission-critical
software is that unnecessary code or functions should
be eliminated or separated from mission-critical code
and its processing. In the case of MPL, code was ex-
ecuting when it was not needed. The same was true
for Ariane and for Titan. Each of these decisions was
surely considered carefully, but the tradeoffs may not
have been made in an optimal way and risk may have
been discounted with respect to other properties.

Inadequate Software Engineering

As a person trained in software engineering, I found
the reports very frustrating in their lack of investiga-
tion of the practices that led to the introduction of the
software flaws and the related lack of recommendations
to fix them. In some cases, software processes were de-
clared to be adequate when all evidence pointed to the
fact that they were not. Only the Titan investigation
board and to a lesser extent the Ariane 5 investiga-
tors looked at the software in enough detail to deter-
mine the conditions and systemic factors related to the
software engineering process (or at least included this
information in the accident report).

Not surprising, the interfaces were a source of prob-
lems. It seems likely from the evidence in several of
the accidents that the interface documentation prac-
tices were flawed. The MPL report includes a recom-
mendation that in the future “all hardware inputs to
the software must be identified . . . The character of the
inputs must be documented in a set of system-level
requirements.” This information is usually included
in the standard interface specifications, and it is sur-
prising that it was not. In the case of MCO, either
the MCO programmers were incompetent (unlikely) or
there is a more likely explanation for the units error

such as the common practice of writing interface and
other specifications after coding has begun, poorly de-
signed specifications that make retrieving information
error prone, software programmers without the neces-
sary science background to understand the importance
of the units used, inadequate information provided to
the programmers for them to understand the role of
the data in the larger system, etc.

There also appear to be problems in software reviews
and perhaps also in implementing the special practices
unique to real-time, embedded software. Why were
unhandled cases not detected? Testing only against the
requirements specification will not uncover errors in the
specification. What type of requirements validation
was performed? Why were defensive programming and
exception-handling practices not used more effectively?

Without further investigation, we cannot learn
enough about the software engineering practices in-
volved in these accidents to prevent future reoccur-
rences. That is very unfortunate.

Flawed or Inadequate Analysis of Software
Functions

Limitations in how thoroughly software can be tested
make simulation and other types of analysis critical for
software-intensive systems. The two identified MPL
software errors involved incomplete handling of soft-
ware states and are both examples of very common
specification flaws and logic omissions. As such, they
were potentially detectable by formal and informal
analysis and review techniques. Software hazard anal-
ysis and requirements analysis techniques exist (and
more should be developed) to detect this type of in-
completeness.

The Ariane report also says that the limitations of
the inertial reference system software were not fully
analyzed in reviews, and it was not realized that the
test coverage was inadequate to expose such limita-
tions. The assumption by the Ariane developers that
it was not possible to perform a complete system in-
tegration test made simulation and analysis even more
important, including analysis of the assumptions un-
derlying any simulation. Executable and easy to read
formal requirements specifications should theoretically
be able to help here. Unfortunately, most of the for-
mal specification languages that have been proposed
use obscure and obtuse notations that are inappropri-
ate for industry projects.

Software Reuse without Appropriate Analysis
of its Safety

Reuse and the use of commercial off-the-shelf soft-
ware (COTS) is common practice today in embedded
software development. It is widely believed that be-

8



cause software has executed safely in other applica-
tions, it will be safe in the new one. This misconcep-
tion arises from a confusion between software reliabil-
ity and safety. Most accidents involve software that is
doing exactly what it was designed to do, but the de-
signers misunderstood what behavior was required and
would be safe.

The blackbox (externally visible) behavior of a com-
ponent can only be determined to be safe by analyzing
its effects on the system in which it will be operating,
that is, by considering the specific operational context.
The fact that software has been used safely in another
environment provides no information about its safety
in the current one. In fact, reused software is probably
less safe because the original decisions about the re-
quired software behavior were made for a different sys-
tem design and using different environmental assump-
tions. Changing the environment in which the software
operates makes all previous usage experience with the
software irrelevant for determining safety. The same
software flaw that led to the overdosing of five patients
by the Therac-25 existed in the Therac-20 software
(which was reused on the Therac-25), but the flaw had
no untoward effects in the different Therac-20 system
design.

A reasonable conclusion to be drawn is not that soft-
ware cannot be reused, but that a safety analysis of
its operation in the new system context is mandatory:
Testing alone is not adequate. For complex designs, the
safety analysis required stretches the limits of current
technology. For this type of analysis to be technically
and financially feasible, reused software must contain
only the features necessary to perform critical func-
tions. As noted earlier, both the Ariane 5 and the Ti-
tan software contained unnecessary functions that led
to the losses and the MPL loss involved a necessary
function operating when it was not necessary. Note,
however, that COTS software is often constructed with
as many features as possible to make it commercially
useful in a variety of systems. Thus there is a ten-
sion between using COTS and being able to perform
a safety analysis or have confidence in the safety of
the system. This tension must be resolved in man-
agement decisions about risk—ignoring it only leads
to accidents and potential losses that are greater than
the additional cost of designing and building new com-
ponents instead of buying them.

If reuse and the use of COTS software are to result
in acceptable risk, then system and software modeling
and analysis techniques must be used to perform the
necessary safety analyses. This process is not easy or
cheap. Introducing computers does not preclude the
need for good engineering practices, and it almost al-
ways involves higher costs, despite the common myth
that introducing automation saves money.

Inadequate System Safety Engineering

Judging only from the information (or lack of informa-
tion) included in the accident reports, none of these
projects appear to have had adequate system safety
engineering.

For example, several of the reports recommend re-
considering the definition they used of critical com-
ponents, particularly for software. Unfortunately, not
enough information is given about how the criticality
analyses were performed (or even if they were done)
to determine why they were unsuccessful. Common
practice throughout engineering, however, is to apply
the same techniques and approaches that were used for
electromechanical systems (e.g., FMEA and FMECA)
to the new software-intensive systems. This approach
will be limited because the contribution of software to
accidents, as noted previously, is different than that of
purely mechanical or electronic components.

There appear to be several instances of flawed risk
tradeoff decisions. For example, in the Ariane accident,
there was a lack of effective analysis to determine which
variables should be protected during execution. Unfor-
tunately, the accident reports describe flawed decisions,
but not the process for arriving at them. Important in-
formation that is missing includes how the analyses and
trade studies were performed and what additional in-
formation or additional analysis techniques could have
allowed better decisions to be made.

Providing the information needed to make safety-
related engineering decisions is the major contribution
of system safety techniques to engineering. It has been
estimated that 70-90% of the safety-related decisions in
an engineering project are made during the early con-
cept development stage [2]. When hazard analyses are
not done, are done only after the fact (for example, as
a part of quality or mission assurance), or are done but
the information is never integrated into the engineering
decision-making environment, they can have no effect
on these decisions and the safety effort reduces to a
cosmetic and perfunctory role.

The Titan accident provides an example of what
happens when hazard analysis is not done. The risk
analysis, in that case, was not based on determining
the steps critical to mission success (a traditional haz-
ard analysis) but instead considered only the problems
that had occurred in previous launches. Software con-
stant generation was considered to be low risk because
there had been no previous problems with it. Not only
is such an approach inadequate for complex systems
in general, but considering only the specific events and
conditions occurring in past accidents is not going to
be effective when new technology is introduced into a
system. Computers are, in fact, introduced in order to
make radical changes in functionality and design. In
addition, software is often used precisely because it is

9



possible to make changes for each mission and through-
out operations—the system being flown today is often
not the same one that existed yesterday. Proper hazard
analysis that examines all the ways the system compo-
nents (including software) or their interaction can con-
tribute to accidents needs to be performed and used in
decision making.

At the same time, system-safety techniques, like
other engineering techniques, need to be expanded to
include software and the complex cognitive decision
making and new roles played by human operators [2].
Existing approaches need to be applied, and new and
better ones developed. When appropriately modified
system safety techniques have been used, they have
been successful. If system hazard analysis is performed
prior to software implementation (not just prior to test-
ing, as is recommended in the MPL report), require-
ments can be analyzed for hazardous states and protec-
tion against potentially hazardous behavior designed
into the logic.

The MCO report and the Challenger report were the
only ones to recommend instituting a classic system
safety engineering program, i.e., continually perform-
ing the system hazard analyses necessary to explicitly
identify mission risks and communicating these risks
to all segments of the project team and institutional
management; vigorously working to make tradeoff de-
cisions that mitigate these risks in order to maximize
the likelihood of mission success; and regularly commu-
nicating the progress of the risk mitigation plans and
tradeoffs to project, program, and institutional man-
agement. The other reports, when changes were sug-
gested, instead described classic reliability engineering
approaches that are unlikely to be effective for system
accidents or software-intensive systems.

One of the benefits of using system-safety engineer-
ing processes is simply that someone becomes respon-
sible for ensuring that particular hazardous behaviors
are eliminated if possible or their likelihood reduced
and their effects mitigated in the design. Almost all
attention during development is focused on what the
system and software are supposed to do. A system
safety engineer or software safety engineer is responsi-
ble for ensuring that adequate attention is also paid to
what the system and software are not supposed to do
and verifying that hazardous behavior will not occur.
It is this unique focus that has made the difference in
systems where safety engineering successfully identified
problems that were not found by the other engineering
processes.

Unnecessary Complexity and Software Func-
tions

One of the most basic concepts in engineering critical
systems is to “keep it simple.” The seemingly unlim-

ited ability of software to implement desirable features
often, as in the case of most of the accidents exam-
ined in this paper, pushes this basic principle into the
background: Creeping featurism is a common problem.
The Ariane and Titan accidents clearly involved soft-
ware that was not needed, but surprisingly the deci-
sion to put in or to keep these features (in the cases
of reuse) was not questioned in the accident reports.
The MPL accident involved software that was execut-
ing when it was not necessary to execute. In the case
of the Titan IVB-32, the report explains that the fil-
ter was not needed but was kept in for “consistency.”
The exact same words are used for the Ariane software.
Neither report explains why consistency was assigned
such high priority. In all these projects, tradeoffs were
obviously not considered adequately, perhaps partially
due to complacency about software risk.

The more features included in software and the
greater the resulting complexity (both software com-
plexity and system complexity), the harder and more
expensive it is to test, to provide assurance through
reviews and analysis, to maintain, and to reuse in the
future. Engineers need to start making these hard de-
cisions about functionality with a realistic appreciation
of their effect on development cost and eventual system
safety and system reliability.

Test and Simulation Environments that do not
Match the Operational Environment

It is always dangerous to conclude that poor testing
was the “cause” of an accident. After the fact, it is
always easy to find a test case that would have uncov-
ered a known error, but it is usually difficult to prove
that the particular test case would have been selected
beforehand even if testing procedures were changed.
By definition, the cause of an accident can always be
stated as a failure to test for the condition that was
determined, after the accident, to have led to the loss.
However, in these accidents, there do seem to be omis-
sions that reflect poor decisions related to testing, par-
ticular with respect to the accuracy of the simulated
operational environment.

A general principle in testing aerospace systems is to
fly what you test and test what you fly. This principle
was violated in all the spacecraft accidents. The test
and simulation processes must reflect the environment
accurately. Although following this process is often
difficult or even impossible for spacecraft, no reason-
able explanation was presented in the reports for some
of the omissions in the testing for these systems. An
example is the use of Ariane 4 trajectory data in the
specifications and simulations of the Ariane 5 software
when the Ariane 5 trajectory was known to be differ-
ent.

For both the Ariane 5 and Mars ’98 projects, a

10



conclusion was reached during development that the
components implicated in the accidents could not be
tested and simulation was substituted. After the fact,
it was determined that such testing was indeed possi-
ble and would have had the ability to detect the de-
sign flaws. The same occurred with the Titan accident,
where default and simulated values were used in sys-
tem testing although the real roll rate filter constants
could have been used. Like Ariane, the engineers in-
correctly thought the rigid-body simulation of the vehi-
cle would not exercise the filters sufficiently. Even the
tests performed on the Titan right before launch (be-
cause anomalies had been detected) used default values
and thus were unsuccessful in detecting the error. Af-
ter wiring errors were discovered in the MPL testing
process, for undisclosed reasons the tests necessary to
detect the software flaw were not rerun.

Better system testing practices are needed for com-
ponents containing software (almost everything these
days), more accurate simulated environments need to
be used in software testing, and the assumptions used
in testing and simulations need to be carefully checked.
Another common problem with testing, particularly
software testing, is inadequate emphasis on off-nominal
and stress testing.

Deficiencies in Safety-Related Information
Collection and Use

Researchers have found that the second most impor-
tant factor in the success of any safety program (after
top management concern) is the quality of the hazard
information system. Both collection of critical informa-
tion as well as dissemination to the appropriate people
for action is required. The Challenger report noted
that what had once been an outstanding hazard in-
formation system had broken down amid cost-cutting
and complacency. The situation at NASA today does
not appear to be any different. The MCO report con-
cludes that lack of discipline in reporting problems and
insufficient followup was at the heart of the mission’s
navigation mishap. In the Titan mishap, the use of
voice mail and email implies there either was no for-
mal anomaly reporting and tracking system (none is
mentioned in the report) or the formal reporting pro-
cedure was not known or used by the process partic-
ipants for some reason. The report states that there
was confusion and uncertainty as to how the roll rate
anomalies should be reported, analyzed, documented
and tracked because it was a “concern” and not a “de-
viation.” There is no explanation of these terms.

In all the spacecraft accidents, the existing formal
anomaly reporting system was bypassed (in Ariane 5,
there is no information about whether one existed) and
informal email and voice mail was substituted. The
problem is clear but not the cause, which was not in-

cluded in the reports and perhaps not investigated.
When a structured process exists and is not used, there
is usually a reason. Some possible explanations may be
that the system is difficult or unwieldy to use or it in-
volves too much overhead. Such systems may not be
changing as new technology changes the way engineers
work. There is no reason why reporting something
within the problem-reporting system should be much
more cumbersome than adding an additional recipient
to the email. The Raytheon CAATS (Canadian Au-
tomated Air Traffic System) implemented an informal
email process for reporting anomalies and safety con-
cerns or issues that reportedly was highly successful.

Operational Personnel not Understanding the
Automation

Neither the MPL nor the Titan mission operations per-
sonnel understood the system or software well enough
to interpret the data they saw as indicating there was
a problem in time to prevent the loss. Complexity
in the automation combined with poor documentation
and training procedures are contributing to this prob-
lem, which is becoming a common factor in aircraft
accidents.

SUMMARY

Software and digital systems provide tremendous
power in building complex systems not previously pos-
sible. But this increase in power comes with a price—
large software systems are fiendishly difficult to get cor-
rect. The difficulty of building such software is often
underestimated by engineers. To avoid future losses,
we need to take a realistic view of the risk accompany-
ing the use of software and develop and use extensions
to standard system and safety engineering techniques
to handle it.

REFERENCES

1. J.C. Knight and N.G. Leveson. An Experimen-
tal Evaluation of the Assumption of Independence
in Multi-Version Programming. IEEE Trans. on
Software Engineering, SE-12:1, Jan. 1986.

2. N.G. Leveson. Safeware: System Safety and Com-
puters. Addison Wesley, 1985.

3. N.G. Leveson. Intent Specifications: An Ap-
proach to Building Human-Centered Specifica-
tions. IEEE Trans. on Software Engineering, SE-
26:1, Jan. 2000.

4. D.A. Mackall. Development and Flight Test Expe-
riences with a Flight-Critical Digital Control Sys-
tem. NASA Technical Paper 2857, Dryden Flight
Research Facility, Nov. 1988.

11


