
The Role of Software in Recent Aerospace Accidents*

Nancy G. Leveson, Ph.D.; Aeronautics and Astronautics Department,
Massachusetts Institute of Technology; Cambridge MA

leveson@mit.edu and http://sunnyday.mit.edu
Keywords: software safety

* This research was partially supported by a grant from
the NASA Ames Design for Safety program and by the
NASA IV&V Center Software Initiative program.

Abstract

This paper describes causal factors related to
software that are common to several recent
spacecraft accidents and what might be done to
mitigate them.

Introduction

In the process of a research project to evaluate
accident models, I looked in detail at a variety of
spacecraft and aircraft accidents that in some
way involved software [8]. The accidents
studied all demonstrated the usual cultural,
organizational, and communications problems
such as complacency, diffusion of or lack of
responsibility and authority for safety, low-level
status and inappropriate organizational
placement of the safety program, and limited
communication channels and poor information
flow. These typical problems are well known
and the solutions clear although sometimes
difficult to implement. Software contributions to
accidents are less well understood, however.

The accidents investigated were the explosion of
the Ariane 5 launcher on its maiden flight in
1996; the loss of the Mars Climate Orbiter in
1999; the destruction of the Mars Polar Lander
sometime during the entry, deployment, and
landing phase in the following year; the placing
of a Milstar satellite in an incorrect and unusable
orbit by the Titan IV B-32/Centaur launch in
1999; the flight of an American Airlines B-757
into a mountain near Cali, Columbia; the
collision of a Lufthansa A320 with an earthbank
at the end of the runway at Warsaw, and the
crash of a China Airlines A320 short of the
runway at Nagoya, Japan.

On the surface, the events and conditions
involved in the accidents appear to be very
different. A more careful, detailed analysis of
the systemic factors, however, reveals striking
similarities. Only the root causes or systemic

factors are considered here, that is, the causal
factors that allowed the specific events to occur
and that affect general classes of accidents. In
the Challenger accident, for example, the
specific even leading to the loss was the O-ring
failure, but the systemic factors included such
things as flawed decision making, poor problem
reporting, lack of trend analysis, a "silent" or
ineffective safety program, communication
problems, etc.

Overconfidence and Overreliance on Digital
Automation: All the accidents involved systems
built within an engineering culture that had
unrealistic expectations about software and the
use of computers. For example, the official
Ariane 5 accident report notes that software was
assumed to be correct until it was shown to be
faulty. The opposite assumption is more
realistic.

Engineers often underestimate the complexity of
software and overestimate the effectiveness of
testing. It is common to see risk assessments
that assume testing will remove all risk
associated with digital components. This form
of complacency plays a part in the common
proliferation of software functionality and in
unnecessary design complexity.

In the aircraft accidents examined,
overconfidence in automation both (1)
encouraged engineers to trust software over
humans and give final authority to the computer
rather than the pilot, and (2) encouraged pilots to
trust their computer-based decision aids beyond
the point where they should have.

Some of the technical inadequacies in high-tech
aircraft system design stem from lack of
confidence in the human and overconfidence in
the automation. In several of the Airbus
accidents, the pilots found themselves fighting
the automation for control of the aircraft---which

had been designed to give ultimate authority to
the automation.

Even if automation is considered to be more
reliable than humans, it may be a mistake not to
allow flexibility in the system for emergencies
and allowance for pilots to override physical
interlocks, such as the inability of the pilots to
operate the ground spoilers and engine thrust
reversers in the Warsaw A-320 accident because
the computers did not think the airplane was on
the ground. Reliable operation of the automation
is not the problem here; the automation was very
reliable in all these cases. Instead the issue is
whether software can be constructed that will
exhibit correct appropriate behavior under every
foreseeable and unforseeable situation and
whether we should be trusting software over
pilots.

At the same time, some of the aircraft accident
reports cited the lack of automated protection
against or nonalerting of the pilots to unsafe
states, such as out-of-trim situations. A
sophisticated hazard analysis and close
cooperation among system safety engineers,
human factors engineers, aerospace engineers,
and software engineers is needed to make these
difficult decisions about task allocation and
feedback requirements.

Engineers are not alone in placing undeserved
reliance on software. Research has shown that
operators of highly reliable automated systems
(such as flight management systems) will
increase their use of and reliance on automation
as their trust in the system increases. At the
same time, merely informing flightcrews of the
hazards of overreliance on automation and
advising them to turn it off when it becomes
confusing is insufficient and may not affect pilot
procedures when it is most needed.

The European Joint Aviation Authorities' Future
Aviation Safety Team has identified "crew
reliance on automation'' as the top potential
safety risk in future aircraft [5]. This reliance on
and overconfidence in software is a legitimate
and important concern for system safety
engineering.

Not Understanding the Risks Associated with
Software: The accident reports all exhibited the
common belief that the same techniques used for
electromechanical components will work in
software-intensive systems. However, the failure

modes for software are very different than those
for physical devices and the contribution of
software to accidents is also different:
Engineering activities must be changed to reflect
these differences. Almost all software-related
accidents can be traced back to flaws in the
requirements specification and not to coding
errors. In these cases, the software performed
exactly as specified (the implementation was
"correct") but the specification was incorrect
because (1) the requirements were incomplete or
contained incorrect assumptions about the
required operation of the system components
being controlled by the software or about the
required operation of the computer or (2) there
were unhandled controlled-system states and
environmental conditions. This in turn implies
that the majority of the software system safety
effort should be devoted to requirements
analysis, including completeness (we have
specified an extensive set of completeness
criteria), correctness, potential contribution to
system hazards, robustness, and possible
operator mode confusion and other operator
errors created or worsened by software design.

Confusing Reliability and Safety: Accidents are
changing their nature. We are starting to see an
increase in system accidents that result from
dysfunctional interactions among components,
not from individual component failure. Each of
the components may actually have operated
according to its specification (as is true for most
software involved in accidents), but the
combined behavior led to a hazardous system
state. When humans are involved, often their
behavior can only be labeled as erroneous in
hindsight–at the time and given the context, their
behavior was reasonable (although this does not
seem to deter accident investigators from placing
all or most of the blame on the operators).

System accidents are caused by interactive
complexity and tight coupling. Software allows
us to build systems with a level of complexity
and coupling that is beyond our ability to
control; in fact, we are building systems where
the interactions among the components cannot be
planned, understood, anticipated, or guarded
against. This change is not solely the result of
using digital components, but it is made possible
because of the flexibility of software.

Standards for commercial aircraft certification,
even relatively new ones, focus on component
reliability and redundancy and thus are not

effective against system accidents. In the aircraft
accidents studied, the software satisfied its
specifications and did not "fail" yet the
automation obviously contributed to the flight
crews' actions and inactions. Spacecraft
engineering in most cases also focuses primary
effort on preventing accidents by eliminating
component failures or preparing for failures by
using redundancy. These approaches are fine for
electromechanical systems and components, but
will not be effective for software-related
accidents.

The first step in handling system accidents is for
engineers to recognize the need for change and
to understand that safety and reliability are
different qualities for software---one does not
imply the other. One of the founders of system
safety, C.O. Miller, cautioned that
"distinguishing hazards from failures is implicit
in understanding the difference between safety
and reliability" [13]. Although confusing
reliability with safety is common in engineering
(and particularly common in software
engineering), it is perhaps most unfortunate with
regard to software as it encourages spending
much of the effort devoted to safety on activities
that are likely to have little or no effect.

Overrelying on Redundancy: Redundancy
usually has a greater impact on reliability than
safety. System accidents, for example, will not
be decreased at all by the use of redundancy. In
fact, the added complexity introduced by
redundancy has frequently resulted in accidents.
In addition, redundancy is most effective against
random wearout failures and least effective
against requirements and design errors–the latter
being the only type found in software. For
example, the Ariane report notes that according
to the culture of the Ariane program, only
random failures are addressed and they are
primarily handled with redundancy. This
approach obviously failed when on the Ariane
5's first flight both Inertial Reference System
computers shut themselves down (exactly as they
were designed to do) as a result of the same
unexpected input value.

To cope with software design errors, "diversity''
has been suggested in the form of independent
groups writing multiple versions of software
with majority voting on the outputs. This
approach is based on the assumption that such
versions will fail in a statistically independent
manner, but this assumption has been shown to

be false in practice and by scientific experiments
(see, for example, [4]). Common-cause (but
usually different) logic errors tend to lead to
incorrect results when the various versions
attempt to handle the same unusual or difficult-
to-handle inputs. In addition, such designs
usually involve adding to system complexity,
which can result in failures itself. A NASA study
of an experimental aircraft with two versions of
the control system found that all of the software
problems occurring during flight testing resulted
from errors in the redundancy management
system and not in the control software itself,
which worked perfectly [12].

Assuming Risk Decreases over Time: In the
Milstar satellite loss, the Titan Program Office
had decided that because the software was
"mature, stable, and had not experienced
problems in the past,'' they could use the limited
resources available after the initial development
effort to address hardware issues. Other
accidents studied had this same flawed approach
to resource prioritization.

A common assumption is that risk decreases
over time as accident-free operation
accumulates. In fact, risk usually increases over
time, particularly in software-intensive systems.
The Therac-25, a radiation therapy machine that
massively overdosed five patients due to
software flaws, operated safely thousands of
times before the first accident. Industrial robots
operated safely around the world for several
million hours before the first fatality.

Risk may increase over time because caution
wanes and safety margins are cut, because time
increases the probability the unusual conditions
will occur that trigger an accident, or because the
system itself or its environment changes. In some
cases, the introduction of an automated device
may actually change the environment in ways
not predicted during system design.

Software also tends to be frequently changed and
"evolves'' over time, but changing software
without introducing errors or undesired behavior
is much more difficult than building correct
software in the first place. The more changes that
are made to software, the more "brittle'' the
software becomes and the more difficult it is to
make changes without introducing errors.

The history of accidents shows that a strong
system safety program is needed during

operations. All changes to the software must be
analyzed for their impact on safety. Such change
analysis will not be feasible unless special steps
are taken during development to document the
information needed. Incident and accident
analysis, as for any system, will also be
important as well as performance monitoring and
periodic operational process audits.

The environment in which the system and
software are operating will change over time,
partially as a result of the introduction of the
automation or system itself. Basic assumptions
made in the original hazard analysis process
must have been recorded and then should be
periodically evaluated to ensure they are not
being violated in practice. For example, in order
not to distract pilots during critical phases of
flight, TCAS includes the ability for the pilot to
switch to a Traffic-Advisory-Only mode where
traffic advisories are displayed but display of
resolution advisories (escape maneuvers) is
inhibited. It was assumed in the original TCAS
system design and hazard analysis that this
feature would be used only during final approach
to parallel runways when two aircraft come close
to each other and TCAS would call for an
evasive maneuver. The actual use of this feature
in practice would be an important assumption to
check periodically to make sure it is not being
used in other situations where it might lead to a
hazard. But that requires that the assumption
was recorded and not forgotten.

Ignoring Warning Signs: Warning signs almost
always occur before major accidents. For
example, all the aircraft accidents considered in
this research had had precursors but priority was
not placed on fixing the causal factors before
they reoccurred or the responses were inadequate
to prevent future loss. Two of the three aircraft
accidents studied involved problems for which
software fixes had been created but for various
reasons had not been installed on the specific
aircraft involved. The reasons for this omission
are complicated and sometimes involved politics
and marketing (and their combination) as much
as complacency or cost factors.

Engineers noticed the problems with the
Titan/Centaur software after it was delivered to
the launch site, but nobody seemed to take them
seriously. The problems experienced with the
Mars Climate Orbiter software during the early
stages of the flight did not seem to raise any red

flags. The system safety information system
should include the collection of such information
and its analysis to detect problems before they
cause serious losses.

Inadequate Cognitive Engineering: Commercial
aviation is the first industry where shared control
of safety-critical functions between humans and
computers has been widely implemented. The
very difficult problems that result, such as those
associated with mode confusion and deficiencies
in situational awareness, are slow to be
recognized and acknowledged. It is more
common to simply blame the pilot for the
accident than to investigate the aspects of system
design that may have led to the human error(s).

All the aircraft accident reports focused on pilot
error. Some of the spacecraft accidents also
focused their investigations on the ground
controllers and why they did not catch the
software problems before the loss instead of
focusing on why the software problems were
introduced in the first place and not caught
before operational deployment of the system.

Cognitive engineering, particularly that directed
at the influence of software design on human
error, is still in its early stages. Human factors
experts have written extensively on the potential
risks introduced by the automation capabilities of
glass cockpit aircraft. Among those identified
are: over reliance on automation; shifting
workload by increasing it during periods of
already high workload and decreasing it during
periods of already low workload; being "clumsy"
or difficult to use; being opaque or difficult to
understand; and requiring excessive experience
to gain proficiency in its use. In the Cali
accident, for example, the accident report noted
task saturation and overload, poor situation
awareness (inadequate mental models of the
automation and the situation), and distraction
from appropriate behavior.

Researchers have suggested that pilots of high-
tech aircraft can lose awareness of the current
aircraft flight mode or exhibit other forms of
mode confusion. In addition, many of the
problems found in human--automation
interaction lie in the human not getting adequate
feedback to monitor the automation and to make
appropriate decisions.

System safety needs to consider these potential
problems in any hazard analysis. Just as hazard

analysis needs to begin in the early conceptual
stages, so does the design of the human--
computer interaction. We have defined a system
engineering process that is both human-centered
and safety-driven [11]. The information
generated by system safety engineers in the
system hazard analysis process can be extremely
useful in defining operator goals and
responsibilities, task allocation principles, and
operator task and training requirements, i.e., in
the activities involved in designing safer human-
-computer interactions.

Inadequate Specifications: The Mars Polar
Lander accident report notes that the system-
level requirements document did not specifically
state the failure modes the requirement was
protecting against (in this case, possible sensor
transients) and speculates that the software
designers or one of the reviewers might have
discovered the missing software requirement if
they had been aware of the rationale underlying
the system requirements. The Ariane accident
report refers in several places to inadequate
specification practices and notes that the
structure of the documentation obscured the
ability to review the critical design decisions and
their underlying rationale.

The small part of the Mars Polar Lander software
requirements specification shown in the accident
report (which may very well be misleading)
avoids all mention of what the software must not
do. In fact, some standards and industry
practices even forbid such negative requirements
statements. The result is that software
specifications often describe nominal behavior
well but are very incomplete with respect to
required software behavior under off-nominal
conditions and rarely describe what the software
is not supposed to do. Most safety-related
requirements and design constraints are best
described using such negative requirements or
design constraints so they are often omitted.

This is a place where good system hazard
analysis can be very helpful. Unfortunately,
many hazard analyses treat software superficially
at best. The hazard analysis produced for the
Mars Polar Lander (MPL) during the accident
investigation is typical. The JPL report on the
MPL loss identifies the hazards for each phase of
the entry, descent, and landing sequence, such as
(1) Propellant Line Rupture, (2) Excessive
horizontal velocity causes lander to tip over at
touchdown, and (3) Premature shutdown of the

descent engines. For software, however, only
one statement---Flight software fails to execute
properly---is identified, and it is labeled as
common to all phases.

The problem with such vacuous statements is
that they provide no useful information---it is
equivalent to simply substituting a single
statement for all the other identified system
hazards with Hardware fails to operate properly.
Singling out the JPL engineers is unfair here
because I find the same types of useless
statements about software in almost all the fault
trees and other hazard analyses I see in industry.
Boxes in fault trees that simply say Software
Fails can be worse than useless because they are
untrue---all software misbehavior will not cause
the identified hazard---and it leads to nonsensical
activities like using a general reliability figure
for software (assuming one believes such a
number can be produced) in quantitative fault
tree analyses when it does not reflect in any way
the probability of the software exhibiting a
particular hazardous behavior.

Instead, specific hazardous software behavior
needs to be identified. In a collision avoidance
system, for example, a fault tree box might
contain: (1) Collision avoidance logic calls for a
reversal of an advisory when the pilot has
insufficient time to respond or (2) two boxes
connected by an AND might contain Software
issues a crossing advisory and The pilot does not
follow his/her advisory. These two identified
hazardous software behaviors might be translated
into two system design constraints:

[1.] The software must not call for a reversal of
an advisory when two aircraft are separated by
less than 200 feet vertically and 10 seconds or
less remain to closest point of approach and
[2.] Crossing maneuvers must be avoided if
possible

along with a pilot procedural requirement to
follow all advisories and to continue to do so
until the advisory is removed.

Complete and understandable specifications are
not only necessary for development, but they are
critical for operations and the handoff between
developers, maintainers, and operators. The
ground operations staff in the spacecraft
accidents and the pilots in the aircraft accidents
all had misunderstandings about the automation
and how to use it. All three aircraft accident

reports cited inadequate, conflicting, or poorly
designed documentation and information
presentation.

A specification method, called Intent
Specifications [7], has been defined that
integrates safety information into the engineering
decision-making environment during the early
stages of system conceptual design and
functional allocation, encourages documentation
of design rationale and safety-related design
assumptions, and provides complete traceability
from high-level requirements and hazard
analyses down through the levels of system
design to the component implementation details
and vice versa. While intent specifications are
useful during the original system design, they
should be particularly helpful during operations
in performing safety assessments on potential
changes to the system and software.

Flawed Review Process: In general, software is
difficult to review and the success of such an
effort is greatly dependent on the quality of the
specifications. However, identifying unsafe
behavior, i.e., the things that the software should
not do and concentrating on that behavior for at
least part of the review process, helps to focus
the review and to ensure that critical issues are
adequately considered. The fact that
specifications usually include only what the
software should do and omit what it should not
do makes this type of review even more
important and effective in finding serious
problems. Such unsafe (or mission-critical)
behavior should be identified in the system
engineering process before software
development begins. The design rationale and
design features used to prevent the unsafe
behavior should also have been documented and
can be the focus of such a review. This
presupposes, of course, a system safety process
to provide the information, which does not
appear to have existed for the projects that were
involved in the accidents studied.

The two identified Mars Polar Lander software
errors, for example, involved incomplete
handling of software states and are both
examples of very common specification flaws
and logic omissions often involved in accidents.
As such, they were potentially detectable by
formal and informal analysis and review
techniques. The Ariane report also says that the
limitations of the inertial reference system
software were not fully analyzed in reviews, and

it was not realized that the test coverage was
inadequate to expose such limitations.

Software hazard analysis and requirements
analysis techniques exist (and more should be
developed) to detect all these types of
incompleteness. To make such a review feasible,
the requirements should include only the
externally visible (blackbox) behavior; all
implementation-specific information should be
put into a separate software design specification
(which will be subject to a later software design
review by a more limited set of reviewers). The
only information relevant to requirements review
at this level is the software behavior that is
visible outside the computer. Specifying only
blackbox behavior (in engineering terms, this is
often referred to as the transfer function across
the digital component) allows a wide set of
reviewers to concentrate on the information of
importance to them without being overwhelmed
by internal design information that has no impact
on externally observable behavior.

The language used to specify the software
requirements is critical to the success of the
review. The best way to find errors in the
software requirements is to include a large range
of disciplines and expertise in the review
process, including system safety engineers.
Formal specification methods have tremendous
potential for enhancing our ability to provide
correct and complete requirements. In addition,
executable specification can be helpful in
understanding the implications of complex
software behavior. We showed in our TCAS
project that it is possible for a formal, executable
requirements specification to be readable and
understandable with a minimum of training and
without requiring advanced degrees in discrete
math and logic [10], but most designers of
formal requirements specification languages
have not put a high priority on readability and
learnability. We have used what we learned
during the TCAS project to design an even more
reviewable new requirements specification
language.

Inadequate System Safety Engineering: All of
the accident reports studied are surprisingly
silent about the safety programs involved. One
would think that the safety activities and why
they had been ineffective would figure
prominently in the investigations, assuming, of
course, there were active safety programs and the
efforts were not marginalized or ignored by the

other engineering activities. Judging only from
the information (or lack of it) provided in the
accident reports, it is likely that none of these
projects had a robust system safety or software
system safety program.

Providing the information needed to make
safety-related engineering decisions is the major
contribution of system safety techniques to
engineering. It has been estimated that 70-90%
of the safety-related decisions in an engineering
project are made during the early concept
development stage [2]. When hazard analyses are
not performed, are done only after the fact (for
example, as a part of quality or mission
assurance of a completed design), or are
performed but the information is never integrated
into the system design environment, they can
have no effect on these decisions and the safety
effort reduces to a cosmetic and perfunctory role.

The Titan accident provides an example of what
happens when such analysis is not done. The risk
analysis, in that case, was not based on
determining the steps critical to mission success
but instead considered only the problems that
had occurred in previous launches. Software
constant generation (an important factor in the
Milstar satellite loss) was considered to be low
risk because there had been no previous
problems with it. There is, however, a
potentially enormous (perhaps unlimited)
number of errors related to software and
considering only those mistakes made
previously, while certainly prudent, is not
adequate. Proper hazard analysis that examines
all the ways the system components (including
software) or their interaction can contribute to
accidents needs to be performed and used in
decision making.

The Mars Climate Orbiter accident report
recommended that the NASA Mars Program
institute a classic system safety engineering
program, i.e., continually performing the system
hazard analyses necessary to explicitly identify
mission risks and communicating these risks to
all segments of the project team and institutional
management; vigorously working to make
tradeoff decisions that mitigate the risks in order
to maximize the likelihood of mission success;
and regularly communicating the progress of the
risk mitigation plans and tradeoffs to project,
program, and institutional management. The
other spacecraft accident reports, in contrast,
recommended applying classic reliability

engineering approaches that are unlikely to be
effective for system accidents or software-related
causal factors.

Violation of Basic Safety Engineering Practices
in the Digital Parts of the System: Although
system safety engineering textbooks and
standards include principles for safe design,
software engineers are almost never taught them.
As a result, software often does not incorporate
basic safe design principles---for example,
separating and isolating critical functions,
eliminating unnecessary functionality, designing
error-reporting messages such that they cannot
be confused with critical data (see the Ariane 5
loss), and reasonableness checking of inputs and
internal states.

Consider the Mars Polar Lander loss as an
example. The JPL report on the accident states
that the software designers did not include any
mechanisms to protect against transient sensor
signals nor did they think they had to test for
transient conditions. They also apparently did
not include a check of the current altitude before
turning off the descent engines. Runtime
reasonableness and other types of checks should
be part of the design criteria used for any real-
time software.

Another basic design principle for mission-
critical software is that unnecessary code or
functions should be eliminated or separated from
mission-critical code and its processing. The
Arian 5 and Titan IVB-32 accidents involved
code that was not needed (it was in some reused
software designed for other spacecraft). In the
case of Mars Polar Lander, the code that caused
the problems was necessary (in fact, it was
critical) but was executing at a time when it was
not needed. I am sure that each of these
decisions was considered carefully, but the
tradeoffs may not have been made in an optimal
way and risk may have been discounted with
respect to other properties.

Software Reuse without Appropriate Safety
Analysis: It is widely believed that because
software has executed safely in other
applications, it will be safe in the new one. This
misconception arises from confusion between
software reliability and safety. As stated, most
accidents involve software that is doing exactly
what it was designed to do, but the designers
misunderstood what behavior was required and
would be safe.

The blackbox (externally visible) behavior of a
component can only be determined to be safe by
analyzing its effects on the system in which it
will be operating, that is, by considering the
specific operational context. The fact that
software has been used safely in another
environment provides no information about its
safety in the current one. In fact, reused software
is probably less safe because the original
decisions about the required software behavior
were made for a different system design and
were based on different environmental
assumptions. Changing the environment in
which the software operates makes all previous
usage experience with the software irrelevant for
determining safety.

A reasonable conclusion to be drawn is not that
software cannot be reused, but that a safety
analysis of its operation in the new system
context is mandatory: Testing alone is not
adequate to accomplish this goal. For complex
designs, the safety analysis required stretches the
limits of current technology. For such analysis to
be technically and financially feasible, reused
software must contain only the features
necessary to perform critical functions: Both the
Ariane 5 and the Titan software contained
unnecessary functions that led to the losses and
the MPL loss involved a necessary function
operating when it was not necessary.

COTS software is often constructed with as
many features as possible to make it
commercially useful in a variety of systems.
Thus there is tension between using COTS
versus being able to perform a safety analysis
and have confidence in the safety of the system.
This tension must be resolved in management
decisions about risk---ignoring it only leads to
accidents and potential losses that are greater
than the additional cost of designing and
building new components instead of buying
them.

If software reuse is to result in acceptable risk,
then system and software modeling and analysis
techniques must be used to perform the
necessary safety analyses. This process is not
easy or cheap. Introducing computers does not
preclude the need for good engineering practices,
and it almost always involves higher costs
despite the common myth that introducing
automation will save money. Our blackbox
formal requirements specification language
contains the information necessary for such a

safety analysis and therefore should be useful not
only in the original system development but
when the software is to be reused.

Unnecessary Complexity and Software
Functions: One of the most basic concepts in
engineering critical systems is to "keep it
simple.'' The seemingly unlimited ability of
software to implement desirable features often,
as in the case of most of the accidents examined
in this paper, pushes this basic principle into the
background: Creeping featurism is a common
problem in software and engineering. As stated
earlier, the Ariane and Titan accidents involved
software functions that were not needed, but
surprisingly the decision to put in or to keep (in
the case of reuse) these unneeded features was
not questioned in the accident reports. The Mars
Polar Lander accident involved software that was
executing when it was not necessary to execute.
In the case of the Titan IVB-32, the report
explains that the software roll rate filter involved
in the loss of the Milstar satellite was not needed
but was kept in for "consistency.'' The exact
same words are used for software functions
leading to the loss of the Ariane 5. Neither
report explains why consistency was assigned
such high priority. In all these projects, tradeoffs
were obviously not considered adequately,
perhaps partially due to complacency about
software risk.

The more features included in software and the
greater the resulting complexity (both software
complexity and system complexity), the harder
and more expensive it is to test, to provide
assurance through reviews and analysis, to
maintain, and to reuse in the future. Engineers
need to start making these hard decisions about
functionality with a realistic appreciation of their
effect on development cost and eventual system
safety and system reliability.

Operational Personnel Not Understanding the
Automation: Neither the MPL nor the Titan
mission operations personnel understood the
system or software well enough to interpret the
data they saw as indicating there was a problem
in time to prevent the loss. Complexity in the
automation combined with poor documentation
and training procedures are contributing to this
problem, which is becoming a common factor in
aircraft accidents. Accidents, surveys, and
simulator studies have emphasized the problems
pilots are having in understanding digital

automation and have shown that pilots are
surprisingly uninformed about how the
automation works [14], [11].

Accidents have further demonstrated that
proficiency in the use of sophisticated
automation, such as a FMS (Flight Management
System), without adequate knowledge about the
logic underlying critical features, such as the
design and programmed priorities of its
navigation database or autopilot override
functions, can lead to its misuse and to accidents.
Problems are especially found with controls and
operations the crews rarely experience in daily
flight, such as unusual mode changes and manual
overrides.

Either the design of the automation we are
building needs to be simplified so it is
understandable or new training methods are
needed for those who must deal with the clumsy,
unpredictable, and inconsistent automation we
are designing, or both.

Test and Simulation Environments that do not
Match the Operational Environment: It is
always dangerous to conclude that poor testing
was the "cause'' of an accident. After the fact, it
is always easy to find a test case that would have
uncovered a known error, but it is usually
difficult to prove that the particular test case
would have been selected beforehand, even if
testing procedures were changed. By definition,
the cause of an accident can always be stated as a
failure to test for the condition that was
determined, after the accident, to have led to the
loss. However, in the accidents studied, there do
seem to be omissions that reflect poor decisions
related to testing, particular with respect to the
accuracy of the simulated operational
environment.

A general principle in testing aerospace systems
is to fly what you test and test what you fly. This
principle was violated in all the spacecraft
accidents, especially with respect to software.
The software test and simulation processes must
reflect the environment accurately. Although
implementing this principle is often difficult or
even impossible for spacecraft, no reasonable
explanation was presented in the reports for
some of the omissions in the testing for these
systems. An example was the use of Ariane 4
trajectory data in the specifications and
simulations of the Ariane 5 software even though
the Ariane 5 trajectory was known to be

different. Another example was not testing the
Titan/Centaur software with the actual load tape
prior to launch.

Deficiencies in Safety-Related Information
Collection and Use: In all the spacecraft
accidents, the existing formal anomaly reporting
system was bypassed (in Ariane 5, there is no
information about whether one existed) and
informal email and voice mail was substituted.
The problem is clear but not the cause, which
was not included in the reports and perhaps not
investigated. When a structured process exists
and is not used, there is usually a reason. Some
possible explanations may be that the system is
difficult or unwieldy to use or it involves too
much overhead. Such systems may not be
changing as new technology changes the way
engineers work.

There is no reason why reporting something
within the problem-reporting system should be
much more cumbersome than adding an
additional recipient to the email. The Raytheon
CAATS (Canadian Automated Air Traffic
System) project implemented an informal email
process for reporting anomalies and safety
concerns or issues that reportedly was highly
successful [3]. New hazards and concerns will
be identified throughout the development
process and into operations, and there must be a
simple and non-onerous way for software
engineers and operational personnel to raise
concerns and safety issues and get questions
answered at any time.

Conclusion: The incidence of system accidents
is increasing as engineering designs rely more
and more on software. But system accidents are
exactly the type of accident that system safety
was invented to handle 50 years ago, and it
should be very effective against the system
accidents stemming from misunderstood
software requirements and the dysfunctional
system interactions typical of software-related
accidents. This approach does not require that
system components exhibit ultra-high reliability,
only that a set of specific behaviors do not occur.
For software, this distinction is critical: It is
much easier to design software to prevent
particular behaviors than to guarantee that it will
always do the "right'' thing. In fact, the latter may
be impossible. Classic reliability engineering
techniques, such as failure analysis and
redundancy, will be less important for software

components than for electromechanical
components.

I have noticed, however, that over the years
system safety engineering has increasingly
drifted toward using reliability engineering
techniques and away from classic system safety
approaches and has, in particular, adopted this
approach for software. This trend may simply be
a result of lack of knowledge about software or it
may reflect a lack of appropriate tools to assist in
applying system safety approaches to software.
A further influence may be that computer science
has always been concerned with computer
reliability and has focused almost exclusively on
this quality. Only recently has safety become an
issue. Therefore, almost all existing software
engineering techniques focus on software
reliability, i.e., assuring that the software
correctly or reliably satisfies the specified
requirements (which may be incomplete,
incorrect, or unsafe).

We have created demonstration projects to show
how classic system safety approaches can be
applied to software-intensive systems (see, for
example, [9] and [11]). In addition, the MIT
Software Engineering Research Laboratory
(SERL) is working to create new techniques and
tools to support software system safety analysis
and design.

References

1. Australia. 1996. Bureau of Air Safety
Investigation, Department of Transport and
Regional Development. Advanced Technology
Aircraft Safety Survey Report. June.

2. Johnson, W. G. 1980. MORT Safety Assurance
Systems. New York: Marcel Dekker, Inc.

3. Joyce, Jeffrey. Conversation w/author, 2001.

4. Knight, J.C., and Nancy G. Leveson. "An
Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming,"
IEEE Transactions on Software Engineering SE-
12, no. 1 (January 1986): 96-109.

5. Learmount, D. "Flight Safety Foundation's
European Aviation Safety Seminar," Flight
International (March 20-26, 2001) 17.

6. Leveson, Nancy G. Safeware: System Safety
and Computers. Boston: Addison Wesley, 1985.

7. Leveson, Nancy G. "Intent Specifications: An
Approach to Building Human-Centered
Specifications," IEEE Transactions on Software
Engineering, SE-26, no. 1 (January 2000) 15-35.

8. Leveson, Nancy G. "Evaluating Accidents
Models using Recent Aerospace Accidents: Part
I. Event-Based Models," MIT Technical Report
2001. http://sunnyday.mit.edu/accidents.

9. Leveson, Alfaro, Alvarado, Brown, Hunt,
Jaffe, Joslyn, Pinnel, Reese, Samarziya, Sandys,
Shaw, Zabinsky, "Demonstration of a Safety
Analysis on a Complex System," paper presented
at Software Engineering Laboratory Workshop,
NASA Goddard, Maryland, USA, December
1997. (Full report can be found at
fttp://sunnyday.mit.edu/papers.html).

10. Leveson, Nancy G., Mats Heimdahl, Holly
Hildreth, and Jon Damon Reese. "Requirements
Specification for Process-Control Systems,"
IEEE Transactions on Software Engineering,
SE-20, no. 9 (September 1994) 684-707.

11. Leveson, Villepin, Daouk, Bellingham,
Srinivasan, Neogi, Bachelder, Flynn, and Pilon,
"A Safety and Human-Centered Approach to
Developing New Air Traffic Management
Tools." To appear in Proceedings of ATM 2001
Conference, New Mexico, December 2001.

12. Mackall, Dale A. National Aeronautics and
Space Administration. November 1988.
Development and Flight Test Experiences with a
Flight-Critical Digital Control System. NASA
Technical Paper 2857. Dryden Flight Research
Facility, California, USA.

13. Miller, C.O. "A Comparison of Military and
Civil Approaches to Aviation System Safety,"
Hazard Prevention, (May/June 1985) 29--34.

14. Sarter, N.D., D.D. Woods, and C.E. Billings,
"Automation Surprises," in Handbook of Human
Factors/Ergonomics, 2nd Edition, ed. G.
Salvendy (New York: John Wiley & Sons, 1997)

Biography

Nancy G. Leveson, Ph.D., Professor, MIT,
Aeronautics & Astronautics Dept., 33-315, 77
Massachusetts Ave., Cambridge MA 02139,
USA, telephone - (617) 258-0505, facs. (617)
253-7397, e-mail - leveson@sunnyday.mit.edu.

Paper Release Form
19th International System Safety Conference

Title of Paper: ___

__

I hereby authorize the System Safety Society to publish the paper listed above in the Proceedings of the
18th International System Safety Conference. Further, I agree to the following policy and notice regarding
copyrights.

It is the policy of the System Safety Society, the sponsor of the International System Safety
Conference, not to copyright the proceedings in order to provide the widest access for academic and
educational use. Authors are free to copyright their papers as long as they agree with this policy. The
policy to be contained in the proceedings is as follows:

Permission to print or copy: The copyright of all materials and commentaries published in these
proceedings rests with the authors. Reprinting or copying for academic or educational use is
encouraged and no fees are required; however, such permission is contingent upon giving full and
appropriate credit to the author and the source of publication.

Author:

Address:

Work Phone: ______________________
Home Phone: ______________________
FAX: ____________________________
E-Mail: __________________________

Signature Date

>>>>>>>>>>

Author:

Address:

Work Phone: ______________________
Home Phone: ______________________
FAX: ____________________________
E-Mail: __________________________

Signature Date

Author:

Address:

Work Phone: ______________________
Home Phone: ______________________
FAX: ____________________________
E-Mail: __________________________

Signature Date

>>>>>>>>>>

Author:

Address:

Work Phone: ______________________
Home Phone: ______________________
FAX: ____________________________
E-Mail: __________________________

Signature Date

Mail to: John Livingston
Boeing Reusable Space Systems
555 Discovery Drive
Mail Code ZA-12
Huntsville, AL 35806-2809
(256) 971-3005, fax (256) 971-2699
john.m.livingston@boeing.com

