
Abstract
The introduction of new safety critical features using software-
intensive systems presents a growing challenge to hazard analysis 
and requirements development. These systems are rich in feature 
content and can interact with other vehicle systems in complex ways, 
making the early development of proper requirements critical. 
Catching potential problems as early as possible is essential because 
the cost increases exponentially the longer problems remain 
undetected. However, in practice these problems are often subtle and 
can remain undetected until integration, testing, production, or even 
later, when the cost of fixing them is the highest.

In this paper, a new technique is demonstrated to perform a hazard 
analysis in parallel with system and requirements development. The 
proposed model-based technique begins during early development 
when design uncertainty is highest and is refined iteratively as 
development progresses to drive the requirements and necessary 
design features. The technique is evaluated by applying it to a 
realistic but generic Shift-By-Wire design concept in two iterations 
with varying levels of detail. In addition, as the requirements and 
design evolve and change over time, the changes can be immediately 
analyzed for new hazards without repeating the entire analysis. The 
approach is also applicable even before requirements are developed, 
providing feedback when some of the most important decisions are 
being made instead of waiting for a finished design or model to begin 
an analysis. In this way, potential issues can be identified immediately 
and more efficiently, thereby reducing the need for future rework.

Introduction
Modern automobiles are incorporating more and more advanced 
software-controlled safety features such as lane keeping assist, 
automatic emergency braking, adaptive cruise control, and a growing 
number of automated or semi-automated systems. Increasingly 
complex behaviors are now being incorporated into safety-critical 
software and there are very few physical constraints that limit the 
complexity of the software elements. While this has allowed many 

innovative features that were not possible in the past, the additional 
complexity has made it much more challenging to develop these 
systems and perform adequate safety analyses. Software-related issues 
are frequently being discovered late in development, testing, and even 
during production when the problems are the most expensive to fix 
and when the range of practical solutions is the most limited.

The software in modern vehicles is not only complex but also 
increasing in size exponentially, making the need for efficient 
analysis techniques increasingly urgent. One manufacturer reports 
two to three million lines of software code for average 2005 models 
[1], six million lines of code for 2007-2008 models [1], and sixteen 
million lines of code in 2013 [2]. Meanwhile, NHTSA data shows 
that more and more software-related issues are being discovered too 
late. About 382,000 U.S. vehicles were indicated in software-related 
recalls in the year 2000, compared to 13 million in 2013 and 48 
million a year later [3]. In fact, some have claimed that up to 50% of 
car warranty costs are related to the electronics and their embedded 
software [4].

The traditional techniques used for analysis have not kept pace with 
the increased complexity of modern software-intensive systems. 
Although most analysis techniques consider individual failures (e.g. 
Fault Tree Analysis, Failure Modes and Effects Analysis, etc.), many 
other safety-critical decisions and assumptions are made during the 
development process and can easily be overlooked in a component 
failure-based analysis. Judgments about what behavioral requirements 
are needed, what interactions could potentially be dangerous, what 
information and feedback the software decisions should be based on, 
how to coordinate multiple distributed controllers, and other issues 
must be determined during development. While these issues are 
typically addressed using engineering best-judgment, they are often 
resolved in a compartmentalized manner without a complete 
understanding of the system-level impact of the proposed solution. As 
a result, unintended interactions are often introduced and may be 
overlooked by standard failure-based analyses.

An Integrated Approach to Requirements Development and 
Hazard Analysis

2015-01-0274

Published 04/14/2015

John Thomas, John Sgueglia, Dajiang Suo, and Nancy Leveson
Massachusetts Institute of Technology

Mark Vernacchia and Padma Sundaram
General Motors Company

CITATION: Thomas, J., Sgueglia, J., Suo, D., Leveson, N. et al., "An Integrated Approach to Requirements Development and Hazard 
Analysis," SAE Technical Paper 2015-01-0274, 2015, doi:10.4271/2015-01-0274.

Copyright © 2015 SAE International

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



In fact, a new class of accidents called “component interaction 
accidents” is becoming increasingly common. Component interaction 
accidents arise due to dysfunctional or unintended interactions among 
several components and often occur without a component failure. For 
example, the software requirements may be incorrect, incomplete, or 
ambiguous. Individual software components may operate exactly as 
required and as designed without failure, but the overall behavior of 
multiple interacting components may still lead to unanticipated 
vehicle behavior. In fact, most software-related accidents are caused 
not by coding errors but flawed software requirements [5, 6, 7,12]. 
Such flaws can be very difficult to identify or anticipate with 
traditional failure-based methods or by analyzing individual 
components in isolation.

Another limitation is that most approaches to safety analysis focus on 
assessment of an existing design as opposed to driving the design and 
requirements from the start. Most techniques require a considerable 
amount of information about the system to perform an effective 
analysis, but some of the most important decisions affecting safety 
are made early during development before the design and 
requirements are known. When a safety analysis is eventually 
performed, the result is often rework or inefficient patches to correct 
earlier mistakes. In many cases the best solutions are no longer 
practical to implement by the time problems are discovered, resulting 
in difficult compromises.

Although system engineering processes continue to emphasize more 
up front hazard and risk assessments, integrating hazard analysis 
techniques into early engineering design processes remains a 
challenge. Engineering and analysis often remain separate sequential 
activities, effectively adding new analysis and assessment tasks to an 
already long list of otherwise unchanged engineering tasks. What is 
needed is not simply more analysis and more paperwork, but more 
efficient and effective ways to do system engineering from the start. 
A truly integrated safety-driven design process should not just 
periodically monitor the design but continuously drive decisions as 
they are made so that safety is “baked in” and less analysis is required 
later. Such a process has the potential to identify problems sooner, 
reduce rework when problems are corrected, reduce the total 
integration time needed later, and simplify the final safety assessment 
by leveraging analysis artifacts already created during development.

The functional safety standard ISO 26262 describes activities and 
requirements throughout the safety lifecycle of safety-related systems 
comprised of electrical, electronic, and software elements that 
provide safety-related functions [8]. The standard is based on the 
popular system engineering V-Model [9] and has the potential to 
encourage consideration of safety aspects much earlier than other 
standards such as IEC 61508 [10,11]. In many areas, ISO 26262 lists 
broad activities that must be done but does not prescribe a specific 
method to be used or provide a specific process to follow. For 
example, Part 3 Clause 7.4.4.2.1 [8] requires that potential sources of 
harm “shall be determined systematically by using adequate 
techniques”. A note suggests that a variety of techniques such as 
brainstorming could be used, but no specific process is provided to 
ensure the requirement is met. Part 3 Clause 7.4.4.2.4 [8] requires 
that “consequences of hazardous events shall be identified.”, but no 
method or process is indicated and “relevant” is left to the reader to 
decide. These are not necessarily weaknesses of the standard, and in 
fact these are advantages in many ways because they offer flexibility 

and can accommodate innovation and advancement as new hazard 
analysis methods are developed.1 However, the standard is not 
enough on its own as it generally stops short of prescribing a specific 
method or technique to be used.2

Hazard analysis methods such as STPA (System Theoretic Process 
Analysis) can be used to satisfy some of these goals. STPA was 
created based on systems theory to address the limitations of 
traditional safety analysis techniques [12]. STPA is a top-down hazard 
analysis method designed to go beyond traditional component failures 
to also identify problems such as dysfunctional interactions, flawed 
requirements, design errors, external disturbances, human error and 
human-computer interaction issues, and other problems. Although 
STPA has been very successful, it is typically applied as a separate 
analysis-i.e. all steps of the traditional STPA analysis are completed 
before the system is fixed, refined, or augmented. More detailed 
comparisons and evaluations of STPA can be found in [13, 14, 15].

This paper proposes and demonstrates a new safety-guided design 
methodology based on STPA that interleaves development and 
analysis tasks to provide an integrated development process. The 
process begins with very little information about the system design 
and proceeds to drive an initial control model and initial behavioral 
requirements. Design decisions can be incorporated in top-down 
fashion as they are made, and the safety implications are immediately 
fed back into the engineering process to reduce future rework. New 
techniques are also incorporated to help systematically ensure 
potential unsafe controls are not overlooked and that the resulting 
behavioral requirements are complete and consistent. This process 
can also be used to help prevent initial mistakes in requirements, 
specification, and design rather than waiting to assess and correct 
mistakes after-the-fact. In addition, all intermediate results of the 
process can be accumulated and assembled at the end to create a 
comprehensive overall safety analysis, thereby reducing extra work 
that is often done at the conclusion of each development stage.

System Theoretic Process Analysis
STPA begins by identifying the system accidents and system hazards 
to be prevented [12]. In STPA, an accident is an event that results in a 
loss and a system hazard is a system state that will lead to an accident 
in a worst-case environment [12]. Although the accidents of interest 
often involve human injury or loss of life, STPA can also be applied 
more generally to other losses that must be prevented [12]. Other 
losses may include quality issues such as loss of customer 
satisfaction, performance issues such as reduced power or efficiency, 
economic issues such as damage to the vehicle, environmental 
pollution, or any other loss that is unacceptable.

STPA uses a model of the control relationships within the system to 
guide the analysis. These relationships are modeled using a safety 
control structure, as shown in Figure 1. Control actions or commands 
that affect lower-level processes are identified as well as feedback 
1. In other areas ISO26262 provides a non-exhaustive list of methods that might be 
used, but stops short of requiring a specific method. For example, Part 9 Clause 8.2 [8] 
lists Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis (FTA), HAZOP, 
and Event Tree Analysis (ETA), although with a note that “The qualitative analysis 
methods listed above can be applied to software where no more appropriate software-
specific analysis methods exist.” Part 4 Clause 7.4.3.1 [8] provides recommendations for 
inductive vs. deductive analysis methods, but does not require a particular method to be 
used.
2. For a more detailed assessment of ISO 26262 and its relationship to system 
engineering and System Theoretic Process Analysis see [11].

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



that is used to inform higher-level controllers. The analysis begins by 
identifying control actions that can be unsafe and may lead to a 
hazard. There are four ways in which a control action may be 
hazardous:

1). A control action required for safety is not provided. 
2). A control action is provided when it is unsafe to do so. 
3). A control action is provided too early or too late. 
4). A continuous control action is applied too long or stopped too soon.

Figure 1. Simplified example control structure

Once Unsafe Control Actions (UCAs) have been identified, the 
analysis proceeds to identify potential causes of the unsafe control. A 
generic control loop with causal factors, as shown in Figure 2 from 
[12], can be used to guide this part of the analysis. One important 
cause of unsafe control actions involves the controller's process 
model, also called a mental model when the controller is a human. The 

process model captures the controller's understanding and beliefs 
about the outside world, including the state of the controlled process 
and assumptions about how the controlled process works. Accidents in 
complex systems, particularly those related to software, often result 
from inconsistencies between the model of the process used by the 
controller and the actual process state, which leads to the controller 
providing unsafe control. Figure 2 also shows other potential causes 
such as missing or inadequate feedback, component failures (such as a 
sensor failure), inadequate control inputs, and others.

In addition to identifying causes of unsafe control actions, STPA also 
identifies how safe control actions may not be followed or executed 
properly. For example, appropriate control actions may be issued but 
the actuator may introduce excessive delays or the controlled process 
may experience a physical failure that prevents the actuator from 
being effective.

The following sections introduce a safety-driven design process 
based on STPA that begins with very little information and proceeds 
to drive initial development and design decisions. The process is 
demonstrated using a realistic but fictional shift-by-wire concept with 
the potential for safety-critical automated behaviors.

New Integrated Approach

Process overview
The safety-driven design process proposed in this paper interleaves 
hazard analysis tasks with development tasks to provide quicker 
feedback to engineers and to provide guidance as the system is being 
developed. The approach can be summarized as:

Figure 2. Causal factors used to create scenarios in STPA [12]

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



First iteration:

1. Define the system accidents and system hazards 
2. Create the initial control structure 
3. Identify initial unsafe control actions 
4. Derive safety constraints/requirements from unsafe control 

actions 
a. Use the safety constraints to revise the control structure and 

design 
5. Identify high-level causal scenarios 
a. Identify controls to eliminate or mitigate the high-level 

scenarios

Second iteration:

6. Formalize the unsafe control actions to identify any missing or 
conflicting UCAs and constraints 

a. Resolve the identified conflicts and revise the safety constraints 
7. For scenarios not already controlled, identify more detailed 

causes by incorporating additional design detail 
a. Provide controls for the new causal factors identified

System Overview
A new vehicle shift-by-wire concept was chosen to demonstrate and 
evaluate the proposed safety-driven design process. The generic 
shift-by-wire concept was chosen because it introduces a new 
software controller with the potential for automated behavior and new 
safety features. It is also a relatively new technology that is under 
active development by several manufacturers. In addition, there are a 
large number of design decisions that clearly impact safety (such as 
what automated behaviors are appropriate and what information the 
controller should monitor) but there are very few regulations, 
industry standards, or processes that provide clear answers.

The shift-by-wire concept replaces traditional mechanical cables 
between the shifter and the transmission with an electronic lever, a 
shift control module, and various electronic actuators and sensors. 
The shift control module senses the shift lever position and 
commands some actuator to achieve the appropriate transmission 
range. Although the shift-by-wire concept may reduce manufacturing 
costs and increase packaging flexibility, there are several important 
safety implications that require careful consideration. Note that many 
details-such as the shift control module algorithm and the method of 
sensing and actuating-are unknown at this early stage and they are 
not needed to begin the proposed safety driven design process.

Building a foundation
The first step is to identify the system accidents and system hazards. 
These form a foundation for the safety-driven design process and 
define the losses or system states are unacceptable and must be 
prevented. At this early phase, the system is the overall vehicle. 
Tables 1 and 2 list the system accidents and system hazards defined 
for this case study. Notice that these are defined at a very high level 
and in fact they will be similar for many automotive systems. The 
system accidents and system hazards help define the scope of the 
effort, and all results from the safety-driven design process will be 
traceable to these system accidents and system hazards.

Note that the term “system hazard” as defined in STPA is different 
from the term “hazard” in ISO 26262, which is defined as any 
potential source of physical injury or damage to the health of people 
[12]. Because STPA is a top-down process, it does not start with a list 
of all potential sources of injury or damage. Instead, it begins with 
system-level states or conditions that must be prevented (i.e. system 
hazards) and proceeds to systematically identify the potential causes.3

Table 1. System Accidents

Table 2. System Hazards

The first system hazard describes vehicles that become too close to 
each other. Because the system hazards are system states and 
conditions by definition, they do not specify potential causes and the 
analysis is not restricted to certain types of causes. The system 
hazards simply specify the system behavior that must be prevented, 
and all relevant causes will be systematically identified later. 
Potential causes of H-1 could involve a vehicle accelerating into 
another vehicle, an unsecured vehicle rolling backwards towards 
another vehicle, a vehicle moving in an unintended direction, 
physical malfunctions, driver errors, confusing automation, etc.

System hazard H-2 is similar to H-1 but refers to vehicles that are too 
close to non-vehicular objects. Examples of other objects include 
pedestrians, animals, bikers, and guardrails. H-3 captures situations in 
which the driver may be unable to use the vehicle's systems to gain 
control. This includes cases in which the vehicle may be travelling too 
fast, the driver's commands are ignored, or a system such as braking or 
power steering is ineffective. H-4 captures additional problems that 
may occur even without nearby objects such as a vehicle rollover, 
excessive deceleration or acceleration, or a vehicle fire.

Note that the System Hazards can lead to the System Accidents. For 
example, H-1 can cause A-1, H-2 can cause A-2, H-3 can lead to any 
of the accidents, and H-4 can lead to A-3.
3. In fact, STPA system accidents and system hazards can be defined much broader 
than ISO 26262 and may include anything that is unacceptable to the user and must be 
prevented. For example, loss of customer satisfaction or damage to the vehicle (without 
human injury) could be included if desired [12].

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Figure 3 shows the high-level system control structure model of the 
traditional mechanical shifter system, while Figure 4 shows the 
high-level control structure model for the proposed shift-by-wire 
system. These control structures are defined directly from the initial 
shift-by-wire description above and do not yet contain much detail. 
This is intentional; by starting at a very high level, the process can 
begin even before the design and requirements are available and 
provide actionable results before rework is needed.

Figure 3. High-level control structure for traditional mechanical shifting

Figure 4. Initial high-level control structure for shift-by-wire system

Initial unsafe control actions and safety constraints
Once the high-level control structure is defined, an initial set of 
unsafe control actions can be identified by considering the four ways 
a control action can be unsafe, as discussed in the introduction. Table 
3 shows the results that can be obtained at this stage of the process 
for the Range Command. The Range Command, also shown in Figure 
4, is a command from the Shift Control Module to select a new range 
(e.g. Park, Reverse, Neutral, Drive, etc.).

Each unsafe control action is then translated into a safety constraint / 
safety requirement to be enforced, as shown in Table 4. As the design 
progresses, these unsafe control actions and safety constraints will be 
refined and examined in more detail.

Table 3. Initial unsafe control actions for shifter control module4

4. Inconsistent means the requested range would cause physical damage, an unsafe change in motion, or violate motor vehicle regulations. Unavailable means a physical fault exists that 
would prevent the vehicle from shifting to the selected range. Also note that each UCA includes a link to the system hazards to provide traceability; every STPA result is traceable to the system 
hazards and accidents defined at the start of the analysis.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



As soon as the initial safety constraints are defined, potential design 
implications can be assessed. Although the process is not finished and 
causal factors have not yet been identified, these preliminary results 
can immediately be used to drive important design decisions and 
identify necessary safety features. The following questions can be 
used to guide this part of the process:

• Does the initial control structure allow the controller to monitor 
the conditions in the constraints? 

• Do additional control actions need to be added to achieve or 
enforce the constraints? 

• Are there other controllers that may interfere with or violate the 
constraints?

Table 4. Safety constraints derived from unsafe control actions

For example, SC-4 states that the shift control module must not issue 
a range command when that range is unavailable. How would the 
controller know which ranges are available or unavailable? The initial 
control structure in Figure 4 does not provide the Shift Control 
Module with that information. This new feedback can be immediately 
identified and added to the control structure without requiring 
additional design details or a detailed analysis. By identifying these 
dependencies early, solutions can be incorporated during early 
development without causing additional rework.

Figure 5 shows a revised control structure with the available range 
feedback. Note that it is not necessary yet to know how the available 
ranges are detected, just that they must be detected. The constraints 
produced at this stage are intentionally flexible to allow the design 
team to determine the most effective solutions. Once specific 

solutions are proposed, the control structure can be refined to include 
additional detail and identify whether any new safety concerns are 
introduced.

Figure 5. Revised control structure

Identifying causal scenarios
Once the control structure has been revised, causal scenarios can be 
identified for each of the unsafe control actions. The causal factors in 
Figure 2 can be used to guide the generation of causal scenarios. 
Notice that more design information may be incorporated at this 
stage, such as information about the controller process model and 
other control inputs. Table 5 shows two causal scenarios that can be 
identified for the first unsafe control action and corresponding safety 
constraint:

Table 5. Causal scenarios that violate SC-1

Once the causal scenarios are identified, potential design implications 
can be assessed. The following questions can be used to help guide 
this part of the process:

• How does the controller determine the information referenced in 
the scenarios? 

• Are additional controls needed to prevent identified flaws? 
• Are new controllers or new functionalities needed? 
• Do new constraints need to be defined?

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



For example, S-2 describes a case where the shift control module 
incorrectly believes a commanded range was achieved. How could 
this incorrect belief arise? In the control structure in Figure 5, the 
controller would only be aware of the last range command sent; there 
are no means for the controller to detect the current range. This reveals 
a potential hidden assumption that the current range matches the 
previous range command. However, if the command is not executed 
for any reason (whether a failure or otherwise), it will lead to S-2. One 
solution is to incorporate an additional feedback for the Shift Control 
Module to directly detect the current range, as shown in Figure 6.

Figure 6. Revised control structure

By identifying these potential issues early, it is possible to drive the 
initial design decisions without causing rework.

So far, the process has focused on what control and feedback 
information will be required to be safe and what basic behaviors must 
be controlled. Specific design details have not yet been included so 
that the process can be performed quickly and extremely early during 
development. However, the design details eventually need to be 
incorporated into the process because they can introduce new safety 
concerns or cause unexpected side-effects. The next section explains 
how the process may be iterated to refine the requirements and 
provide more specific results based on the design details.

Refining and formalizing unsafe control actions
Although the initial set of unsafe control actions in Table 3 can be 
identified quickly to provide immediate feedback to the design team, 
a second iteration can be performed to help identify any additional 
UCAs and to identify and resolve any conflicts between the existing 
safety constraints. In addition, the results from the first iteration may 
have caused new interactions among existing controllers or new 
controllers to be introduced. By applying a formal framework to the 
initial set of unsafe control actions, a revised and more precise set of 
safety constraints and executable requirements can be defined.

A rigorous process for systematically identifying unsafe control using 
a formal framework has been developed in [16]. Missing UCAs and 
potential conflicts can be logically identified using a context table as 
shown in Table 6. Each row in a context table corresponds to an 
unsafe control action, and the columns represent different elements of 
the unsafe control action. For example, the first row of the context 
table in Table 6 corresponds to UCA-3 (Shifter Control Module 
provides range command without driver new range selection). The 
first column specifies that the control action is the range command. 
The next four columns describe the conditions that can make a range 
command unsafe, and asterisks are used to denote which conditions 
do not matter for a given row.

Table 6. Context table for Shifter Control Module UCAs

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



The final two columns indicate whether providing or not providing 
the control action in the given context could cause a hazard. Note that 
the affirmative answers (indicating an unsafe control action) are just 
as important to document as the negative answers (indicating when 
control actions are believed or assumed to be safe). These 
assumptions are important because they influence the UCAs and 
requirements that are (or are not) defined. Although documenting 
assumptions is widely recognized as an important part of system 
engineering and many accidents have been linked to undocumented 
assumptions, very few techniques provide ways to systematically 
identify assumptions as they are made. Using a context table such as 
Table 6 can help make it clear what assumptions are being made and 
ensure that they are recorded so they can be reviewed or revisited if 
changes are later made to the system.

Comparing Table 6 to the initial set of unsafe control actions reveals 
a new unsafe control action. The third row describes a case where the 
range command does not match the driver selected range:

• New UCA-8: Shifter Control Module provides a range 
command that does not match the new range selection provided 
by the driver

The context table can also help identify conflicts between the UCAs 
and identify multiple safety constraints that cannot all be satisfied. 
For example, rows 4 and 5 have conditions that overlap (i.e. the 
driver selected range matches SCM command and the selected range 
is not available) but they give conflicting answers: row 5 indicates 
that it is hazardous to provide the command while row 4 indicates it 
is hazardous not to provide the command. Table 7 shows the two 
UCAs and safety constraints side-by-side. This is an example of an 
unresolved conflict, and the Shifter Control Module as currently 
conceived may have no choice but to cause UCA-1 or UCA-4 
through either action or inaction. In other words, in the current design 
it is not possible to satisfy both of the corresponding safety 
constraints if the driver selects an unavailable range.

Table 7. Unresolved conflict between two safety constraints

Once the conflicts and ambiguities are identified, there are often 
several potential ways to resolve them. In this case, one solution 
might be to design the Shift Control Module to take a special action 
when the driver selects an unavailable range (such as warning the 
driver or re-trying the range). The UCAs and safety constraints can 
then be updated accordingly. However, the most significant challenge 

is often not in ensuring that known problems are solved but in 
ensuring that unknown problems are identified early and will not go 
unnoticed until late in development or even during production. By 
formalizing the unsafe control actions early, the results can be used to 
drive the design and requirements in real time. In this case, SC-1 
could be revised as follows:

• Revised SC-1: Shifter Control Module must provide range 
command when driver selects new range that is available

Because the context table is based on a formal definition of an unsafe 
control action, conflicts may be automatically identified from the 
table using software tools. The completed context table also 
represents a model of the controller that issues the control actions and 
can be used to automatically generate executable safety requirements. 
For more information about automatic conflict detection and 
requirements generation, see [16]. For more information about tools 
being developed for this purpose, see [17].

Scenario refinement and adding design detail
At this point in the process, the causal accident scenarios that have 
been identified do not include much detail about the design. Some of 
the causal scenarios were already resolved without needing to dive 
into the design details. For example, S-2 in Table 5 was addressed by 
adding new feedback to the control structure. However, other 
scenarios may depend on more specific design details. For example, 
consider the following scenario:

• S-3: Shifter Control Module does not provide range command 
because it receives incorrect feedback that the range is already 
selected

Without additional detail, it is not clear what could cause the range 
feedback to be incorrect or what controls are needed to prevent this 
scenario. To refine the scenario, it is necessary to “zoom in” on the 
Current Range feedback in the control structure and incorporate 
decisions such as:

• How are the range commands implemented? 
• How is the current range sensed? 
• What values can be reported to the Shift Control Module?

Notice that none of this information was needed until now, which is 
desirable because the answers may not have been available 
previously if development is occurring in parallel. However, once 
potential solutions are eventually proposed they can be immediately 
incorporated into the model by expanding the appropriate part of the 
control structure. Figure 7 shows a revised control structure with new 
detail shown in the dotted box. A new controller called the Range 
Motor Controller is added to monitor changes in the motor position, 
calculate the current range, and report the result to the Shift Control 
Module. In this example, it was also decided that the available range 
data could be obtained from an existing transmission controller, 
creating a new feedback loop. By refining the control structure and 
adding detail as it becomes available, the existing scenarios can be 
refined to identify more specific causes of unsafe control and 
determine whether the safety constraints are adequately enforced.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Figure 7. Revised control structure with additional detail in the dotted box

Given the additional detail in Figure 7, scenario S-3 can now be 
refined to include more detailed causes such as measurement errors or 
glitches that could result in a fixed offset when the relative 
movements are integrated. Notice that the current design does not yet 
have any way to detect this problem or to recover from it. As shown 
in Table 8, multiple solutions are possible-use a different type of 
measurement, use the transmission controller to independently verify 
the current range, provide a way to manually reset the transmission 
range, etc.

Table 8. Potential design solutions to prevent causal scenarios that violate 
safety constraints

This process can be repeated for any remaining scenarios that are not 
already controlled while scenarios and causes that are already 
prevented at a high level of abstraction do not need to be studied in 
more detail. In this way, the complexity of the analysis and the 
development process is managed while efficiency is improved by 
providing immediate feedback as the development progresses.

Discussion and Conclusions
The model-based safety-driven design process described in this paper 
integrates hazard analysis with the design process to build safety into 
a system as opposed to relying on after-the-fact or periodic analysis. 
The process was demonstrated on an initial shift-by-wire concept that 
replaces mechanical shift controls with electronic and computer 
controls. Intermediate results were used to define the necessary safety 
constraints/requirements, and corresponding design features were 
introduced as needed throughout the process. The process was also 
found to be more efficient because there was no need to wait for a 
completed analysis before making changes to the design, and the full 
analysis did not have to be repeated as design changes were made.

The first iteration can be performed very quickly and requires very 
little information to begin. The issues identified at this stage tend to 
be broad in nature, such as feedback or measurements that are 
altogether missing from the initial system. However, these issues can 
be easily addressed without requiring major rework when the process 
is started early. Most of the accident scenarios identified in the first 
iteration can be immediately addressed, but a few require more 
detailed study.

The second iteration is more rigorous and identifies deeper issues 
such as inconsistent safety constraints or feedback that exists but may 
not be trustworthy. A little more detail is required and the second 
iteration may take longer than the first, but the process is efficient and 
leverages all the results from the first iteration to avoid any wasted 
effort. The detailed scenarios that are identified at this stage do not 
require major design changes but instead tend to be governed by 
decisions naturally made during detailed design (such as the type of 
sensor used to detect the current range).

Some of the issues identified with this approach involve traditional 
component failures such as a failed sensor. However, many of the 
issues involved potential requirements and interaction problems that 
can be much easier to overlook. For example, Table 8 suggests that 
an additional control action and perhaps a new actuator should be 
added to the design concept. If the actuator had been included in the 
initial design then most traditional approaches could easily analyze 
the physical component, apply failure modes, etc. However few 
techniques can systematically identify components that are altogether 
missing from the design and had never even been conceived of. 
Similarly, the proposed approach has the ability to identify potentially 
hidden design assumptions unlike traditional analysis techniques.

Another important result of this approach is that behavioral software 
requirements were easily defined in Table 4 based on the unsafe 
control actions. Although it is fairly straightforward to derive 
hardware reliability requirements such as such as failure rates based 
on overall reliability objectives, other requirements can be much 
more challenging. In particular, there are very few methods that 
systematically produce the necessary software behavioral 

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



requirements such as “Software must provide X output whenever Y 
occurs”. It is also very encouraging that missing requirements could 
be systematically identified using the proposed process (e.g. from 
UCA-8). Given the growing complexity of software requirements and 
the features they provide, this result could play an important role in 
reducing the number of problems discovered late and the amount of 
rework needed during later phases of development.

Although much of the focus has been on software, the process also 
considered important interactions between the vehicle and the human 
driver such as the driver selecting unavailable ranges. The driver was 
modeled just as easily as the software was-both are controllers that 
provide control actions based on beliefs about the system, and both 
use feedback to update an internal process model of the system. The 
causes of unsafe behavior, such as inadequate feedback and incorrect 
beliefs, are also very similar between the two and can be analyzed 
using the same process.

When the process is finished, executable software requirements can 
be generated and used to guide detailed software development, 
produce a controller model, perform model-based simulations, or 
intelligently generate test cases that are relevant for safety. Tools that 
can help produce executable requirements are being developed [17] 
and tools that can simulate the existing requirements are available 
[18, 19, 20].

References
1. Siemens, “Ford Motor Company Case Study,” Siemens PLM 

Software, 2014, Retrieved from http://www.plm.automation.
siemens.com/pub/case-studies/14303?resourceId=14303

2. McKendrick, J. “Cars become ‘datacenters on wheels’, 
carmakers become software companies,” ZDJNet, 2013

3. NHTSA Office of Defect Investigation, Recalls [Data file], 
2014 Retrieved from http://www-odi.nhtsa.dot.gov/downloads/
flatfiles.cfm/FLAT_RCL.zip

4. Charette, R. “This car runs on code,” IEEE Spectrum, 2009.

5. Leveson, N. “Safeware: system safety and computers,” 
Addison-Wesley, Reading, MA, 1995.

6. Lutz, R.R. “Analyzing software requirements errors in safety-
critical, embedded systems,” IEEE International Conference on 
Software Requirements, 1992.

7. Leveson, N. “Role of Software in Spacecraft Accidents,” 
Journal of Spacecraft and Rockets, 41.4 (2004): 564-75.

8. ISO 26262:2011, “Road Vehicles - Functional Safety” 
International Standardization Organization, Nov 2011

9. Handbook of Systems Engineering, V3.2.1, International 
Council of Systems Engineering, 2011

10. IEC 61508, “Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-related Systems,” International 
Electrotechnical Commission. Edition 2.0, 2010-04.

11. Van Eikema Hommes, Q., “Review and Assessment of the ISO 
26262 Draft Road Vehicle - Functional Safety,” SAE Technical 
Paper 2012-01-0025, 2012, doi:10.4271/2012-01-0025.

12. Leveson, N. “Engineering a Safer World,” MIT Press, 
Cambridge, MA, 2012.

13. Balgos V. H., “A systems theoretic application to design for 
the safety of medical diagnostic devices,” Master's thesis, MIT, 
2012

14. Torok, R., Geddes, B., Systems Theoretic Process 
Analysis(STPA) Applied to a Nuclear Power Plant Control 
System, MITSTAMP Workshop, March 2013

15. Leveson, N., Wilkinson, C., Fleming, C., Thomas, J., Tracy, I., 
A Comparison of STPA and the ARP 4761 Safety Assessment 
Process, MIT PSAS Technical Report, 2014

16. Thomas, J. “Extending and Automating a Systems-Theoretic 
Hazard Analysis for Requirements Generation and Analysis,” 
Ph.D. Dissertation, Engineering Systems Division, MIT, 2013.

17. Thomas, J. and Suo, D. “An STPA Tool,” 3rd STAMP/STPA 
Conference, Cambridge, MA, 2014.

18. Leveson, N., Heimdahl, M., and Reese, J. “Designing 
specification languages for process control systems: lessons 
learned and steps to the future,” Proceedings of the 7th ACM 
SIGSOFT International Symposium on Foundations of Software 
Engineering, 1999, Springer-Verlag: Toulouse, France. p. 127-
145.

19. Leveson, N. “Completeness in formal specification language 
design for process-control systems”, Proceedings of the Third 
Workshop on Formal Methods in Software Practice, ACM p75-
87, 2000

20. Bellagamba, L. “Systems Engineering and Architecting: 
Creating Formal Requirements”, CRC Press, 2012

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. The process 
requires a minimum of three (3) reviews by industry experts. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

ISSN 0148-7191

http://papers.sae.org/2015-01-0274

Downloaded from SAE International by John Thomas, Monday, March 30, 2015

http://www.plm.automation.siemens.com/pub/case-studies/14303?resourceId=14303
http://www.plm.automation.siemens.com/pub/case-studies/14303?resourceId=14303
http://www-odi.nhtsa.dot.gov/downloads/flatfiles.cfm/FLAT_RCL.zip
http://www-odi.nhtsa.dot.gov/downloads/flatfiles.cfm/FLAT_RCL.zip
http://www.sae.org/technical/papers/2012-01-0025
http://dx.doi.org/10.4271/2012-01-0025
http://papers.sae.org/2015-01-0274

