
Abstract
Automobiles are becoming ever more complex as advanced safety 
features are integrated into the vehicle platform. As the pace of 
integration and complexity of new features rises, it is becoming 
increasingly difficult for system engineers to assess the impact of new 
additions on vehicle safety and performance. In response to this 
challenge, a new approach for analyzing multiple control systems as 
an extension to the Systems Theoretic Process Analysis (STPA) 
framework has been developed. The new approach meets the growing 
need of system engineers to analyze integrated control systems, that 
may or may not have been developed in a coordinated manner, and 
assess them for safety and performance.

The new approach identifies unsafe combinations of control actions, 
from one or more control systems, that could lead to an accident. For 
example, independent controllers for Auto Hold, Engine Idle Stop, 
and Adaptive Cruise Control may interfere with each other in certain 
situations. This paper demonstrates a method to efficiently identify 
potential unsafe scenarios without requiring a complete enumeration 
or individual analysis of all possible scenarios. As a result, the 
approach is scalable to large systems with many controllers. In this 
paper, the method is demonstrated through a case study involving 
several driver assistance systems including advanced brake controls, 
advanced engine control, and advanced adaptive cruise control. 
Potential conflicts that would prohibit safe and successful operation 
are also efficiently identified, allowing engineers to develop suitable 
controls that prevent these conflicts.

Introduction
Commercial vehicles have recently seen a rapid introduction of new 
software-controlled features, from parallel parking and lane keeping 
to Engine Idle Stop and advanced Adaptive Cruise Control systems. 
As new features are added and integrated with previous systems, the 
overall complexity increases substantially, especially in terms of new 
potential interactions that weren't possible previously. This, in turn, 
has made it much more difficult to analyze all potential interactions 
or to ensure the combined systems will not behave in potentially 

hazardous ways. Some have turned to Use Cases as a way to examine 
expected situations, define the appropriate system responses, and 
consider potential side-effects on other vehicle systems [1]. However, 
Use Cases are inadequate for developing complete requirements in 
complex systems. Use Cases are rarely complete in the sense of 
capturing every potential scenario, and they are also inefficient and 
require individual analysis of many different scenarios to ensure that 
certain behaviors will never happen. In fact, accidents usually occur 
in off-nominal cases, i.e., conditions where the assumptions made in 
the Use Case are incorrect.

Traditional analysis methods, such as Failure Modes and Effects 
Analysis (FMEA) and Fault Tree Analysis (FTA), focus on predicted 
component failures. However, the increased complexity of modern 
systems has changed the types of accidents we see today. More and 
more accidents are being caused not by individual components that 
have failed but by software that operated exactly as required and 
components that have not failed [2]. In fact, most software-related 
accidents are caused by flawed requirements rather than coding errors 
or component failures [3]. To address these problems, new analysis 
methods are needed to identify when the required behavior is flawed 
and to identify potentially unsafe interactions that may result when 
systems are integrated. Furthermore, if the solution is to be practical 
for modern complex systems, it must be efficient and cannot rely on 
manually examining every potential interaction individually.

One way to capture feature interactions is by defining a formal 
executable model and assessing preconditions and postconditions for 
various operations [4, 5, 6, 7]. These approaches can be automated and 
can be much more efficient than manually enumerating each 
individual interaction. However, they require that a formal model of 
the system exists and they assume that the necessary preconditions 
and postconditions are already known and correct. In practice this may 
not be the case, especially during early development phases when 
most safety decisions are made [8]. In addition, interactions with other 
system elements can be challenging because accurate formal models 
of non-software components, such as humans, may never exist.

Integration of Multiple Active Safety Systems using STPA 2015-01-0277

Published 04/14/2015

Seth Placke, John Thomas, and Dajiang Suo
MIT

CITATION: Placke, S., Thomas, J., and Suo, D., "Integration of Multiple Active Safety Systems using STPA," SAE Technical Paper 
2015-01-0277, 2015, doi:10.4271/2015-01-0277.

Copyright © 2015 SAE International

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Systems Theoretic Process Analysis (STPA)
Systems Theoretic Process Analysis (STPA) [9] is a hazard analysis 
technique that can identify a broad array of accident scenarios 
including those due to component failures, dysfunctional interactions, 
flawed requirements, and other causes. One of the strengths of STPA 
is the applicability to early development phases and ability to capture 
interactions between many different types of components including 
hardware, software, human operators, human managers, and other 
components. More detailed comparisons and evaluations of STPA can 
be found in [10, 11, 12, 13]. However, very little guidance has been 
developed to systematically identify undesirable interactions between 
multiple features [14,15]. In this paper, a new process is demonstrated 
to systematically identify undesirable interactions between multiple 
features during an STPA analysis.

STPA begins by defining the system of interest and the system 
accidents, which are any unacceptable losses that the system must not 
experience. The system hazards that may lead to an accident are then 
identified and prioritized. A system hazard is a system state that will 
lead to an accident in a worst-case environment. The system being in 
a hazardous state does not guarantee that an accident will always 
occur, but the hazards should still be prevented and mitigated through 
the system design. The defined system accidents and system hazards 
provide a foundation for traceability throughout the analysis effort, so 
that findings and results from lower levels of analysis may be traced 
backed to their system-level impact.

The system is modeled in terms of a functional control structure 
comprised of hierarchical control loops which may have both social 
and technical components and can be represented at varying levels of 
abstraction. Figure 1 is an example of a simple, generic system 
control structure in which a process is controlled by automated and 
human controllers who act on the process through actuators and 
receive feedback information through sensors.

Figure 1. Generic Control Structure Example

After the functional control structure has been modeled, the first step 
of STPA is to identify how the controllers may issue control actions 
in a manner that is potentially unsafe or otherwise inappropriate. 
There are four ways in which a control action may be hazardous:

1). A control action required for safety is not issued. 
2). A control action is issued when it is unsafe to do so. 
3). A control action is issued too soon or too late. 
4). A continuous control action is applied too long or stopped too 

soon.

Instances when these four types of Unsafe Control Action (UCA) 
may occur are often recorded in a table for easy reference. Once they 
have been identified, UCAs may be translated into safety constraints 
which are high level constraints on system behavior that must be 
enforced to ensure an accident does not occur. STPA then moves to a 
second step that identifies reasons that a UCA may be issued and 
ways in which a correct control action may be issued but not 
executed properly. For example, a controller may have an incorrect 
belief about the state of the system (i.e. an incorrect process model) 
that causes the controller to issue an unsafe control action. A control 
loop with guidewords to prompt the analysts, such as that shown in 
Figure 2, is used to ensure a thorough analysis [3].

Figure 2. STPA Step 2 Guide Loop [3]

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Once identified, the causal factors leading to accidents may be used to 
write requirements for the system components. The results of the causal 
factor analysis may be used to eliminate hazardous scenarios or, if 
elimination is not possible, reduce their occurrence or their impact.

STPA is a top-down methodology capable of analyzing complex 
systems and capturing interactive effects between subsystems. 
Significant guidance is provided throughout the process to ensure the 
system in question is analyzed in a methodical manner. Because the 
method can be used at many levels of abstraction, STPA is useful 
beginning at the concept development stage and through the entire 
design process.

In this paper, additional guidance is developed to efficiently identify 
interactions between multiple controllers during STPA Step 1. Note 
that STPA Step 2 must still be performed to identify causes of unsafe 
control. The new process is demonstrated and evaluated using a case 
study that integrates three automotive features.

Case Study
The case study for this research involves three automotive features. 
Ideally, one would start with the highest level of system goals that, 
through decomposition, would eventually branch into features that 
can be developed by different engineering teams. However, it is often 
the case in industry that an engineer (or engineering team) is 
responsible for integrating legacy systems that were designed 
separately and it may not always be possible to start with a blank 
sheet of paper or develop the integrated system from scratch. The 
approach described in this paper can be applied in either case, 
however the case study below describes the more challenging case of 
three independently developed legacy systems that must be integrated 
safely.

Feature Descriptions
The three features in this case study are Auto-Hold, Engine Stop-
Start, and Adaptive Cruise Control with Stop-Go. These features 
share a similar concept; an embedded controller is integrated into the 
vehicle to control existing hardware in the braking and propulsion 
systems in order to provide new and/or enhanced functionality. Due 
to proprietary considerations, the descriptions used in this paper are 
fictional and do not necessarily reflect the production intent of any 
manufacturers. However, these examples were developed in 
collaboration with professional automotive engineers to ensure that 
they are representative of what three independent features might look 
like before integration efforts and realistic in terms of the potential 
for undesirable interactions. Publicly available information from a 
number of manufacturers was also surveyed to ensure the examples 
are representative in terms of the types of features being introduced 
throughout the industry and their basic functionality.

Auto-Hold
Auto-Hold (AH) is an automatic braking feature that holds the 
vehicle and prevents rollback, allowing the driver to remove his foot 
from the brake pedal without vehicle movement whether it is on an 
incline or not. When the vehicle is brought to rest using the brakes, 
the AH feature will maintain the necessary brake pressure to keep the 
vehicle from moving by capturing the pressure already in the system. 
Once sufficient wheel torque (other than idle torque) is supplied to 

move the vehicle forward, the feature will disengage and release the 
braking system back to its normal state. The AH feature uses existing 
hardware components including Anti-Lock Braking System (ABS) 
and Electronic Parking Brake (EPB) components. Auto-Hold may 
issue the following four high-level commands:

• HOLD: When AH is ENABLED and the vehicle is brought 
to rest using the brake pedal, the HOLD command is issued 
to capture the existing brake pressure and place the feature 
in HOLD-MODE. AH identifies this situation by monitoring 
brake-pressure and wheel speed as provided by the braking 
system. 

• ADDITIONAL PRESSURE: When the system is in HOLD-
MODE and the wheels begin to rotate, the ADDITIONAL-
PRESSURE command is issued to increase brake pressure 
(using the ABS pump) until the vehicle comes to rest. 

• RELEASE: When the system is in HOLD-MODE and one of 
two conditions is met, RELEASE is issued to release the valve 
and return the brake system to normal operation. These two 
conditions are: 1) The propulsion torque is sufficient to move 
the vehicle. 2) Another system takes responsibility for holding 
the vehicle. 

• APPLY EPB: When the AH system is in HOLD-MODE, it 
may engage the EPB. This control action may be issued if the 
hydraulic brakes are not effective.

Engine Stop-Start
Engine Stop-Start (SS) is a feature designed to reduce fuel 
consumption and emissions by turning off an engine that would 
otherwise be idling while the vehicle is stopped. When the vehicle 
comes to a complete stop, the engine is automatically turned off and 
then restarted before motion resumes. The two high-level commands 
are:

• STOP: Once the vehicle is brought to rest using the brake 
pedal, Auto-Stop is issued which shuts down the engine. 

• RESTART: When the system is in AUTO-STOPPED and 
power needs arise, RESTART is issued to restart the engine.

Adaptive Cruise Control with Stop-Go
Adaptive Cruise Control with StopGo (SG) is an enhanced version of 
the legacy cruise control feature. With traditional cruise control, a 
driver may pre-set a speed for the vehicle to maintain, allowing him 
to remove his foot from the accelerator pedal. Traditional cruise-
control systems allow the driver to set the speed, increment the set 
speed up or down, temporarily increase speed using the accelerator 
pedal (such as when passing), and disengage the feature using the 
driver controls or the brake pedal.

Adaptive Cruise Control (ACC) builds upon this traditional 
architecture in that it intelligently considers the distance to vehicles 
and other objects ahead of the primary vehicle in the same lane. 
Radar is mounted in the front of the vehicle that reports the range and 
range-rate to a controller that may utilize the braking and propulsion 
systems to maintain a safe trailing distance.1 As with speed, the driver 
can change the desired trailing gap through the feature controls.

1. Trailing gap may be implemented as a time-gap to the leading vehicle so that it can 
vary dynamically with speed.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



The Stop-Go capability further builds upon this architecture, enabling 
the ACC system to bring the vehicle to a full stop and resume motion 
when following a target vehicle. This is intended to be used in 
stop-and-go traffic when the vehicle may momentarily come to a stop 
before moving forward in concert with the surrounding vehicles. 

• ACCELERATE: When the system is enabled, it may provide 
the accelerate command to accelerate the vehicle using the 
propulsion system. 

• DECELERATE: When the system is enabled, the decelerate 
command will decelerate the vehicle using the braking system.

Potential for Unsafe Interaction
As mentioned previously, all three of these features have some 
control authority over the brake and/or propulsion subsystems and 
thus have the potential to interact through the vehicle dynamics. It is 
possible that the features may interact positively, for example if 
Auto-Hold maintains the vehicle's rest position thereby enabling the 
Engine Stop Start feature to halt fuel consumption while the vehicle 
is held stationary. However, it is also possible for the features to 
interact negatively, for example if the Auto-Hold feature prevents the 
ACC w/Stop-Go feature from taking off after a brief pause in traffic 
or if the Engine Stop-Start feature shuts off the engine while ACC w/
Stop-Go is attempting to accelerate or resume.

Identifying potential instances of these types of negative interactions, 
both inconveniences and potential hazards, is the goal of this case 
study and the techniques demonstrated. We will show that STPA and 
the new technique can identify instances of potentially dysfunctional 
and/or hazardous interaction at the beginning of the engineering 
design process, before significant development work has occurred, 
and prevent significant rework during verification and validation 
testing.

Analysis

System Accidents and System Hazards
Tables 1 and 2 present the sets of vehicle-level system accidents and 
system hazards that were defined at the beginning of the analysis. 
These system accidents represent the losses that should be avoided 
during operation and the system hazards represent the system states 
that might lead to such losses.

Table 1. System Accidents

For example, A-1 could occur if a trailing vehicle rear-ends a leading 
vehicle in city traffic. A-2 could occur if a vehicle collides with a 
pedestrian or a guardrail. A-3 could occur if there is excessive 
deceleration resulting in whiplash.

Table 2. System Hazards

For example, H-1 could occur if a vehicle accelerates into another 
vehicle ahead. H-2 could occur if a vehicle experiences a near miss 
with a pedestrian or other object. H-3 could occur if a vehicle 
accelerates too fast for weather conditions. H-4 could occur if there is 
excessive temperature such as occupant heat exhaustion or burns 
from hot surfaces.

System Control Structure
Following the definition of system accidents and system hazards, the 
system control structure was developed as shown in Figure 3.

The system control structure is a functional representation of the 
system as hierarchical control loops. The control structure consists of 
functional blocks connected by arrows that represent control actions 
and feedback. When drawing the control structure, the analyst assigns 
responsibilities to each functional block and connects them in a 
hierarchy. Defining a global control structure helps ensure that all 
system stakeholders have a common understanding of the system's 
design and operation.

The blocks in Figure 3 represent functional entities in the system. The 
convention used here is that entities higher on the structure have 
authority over entities lower on the structure and that control actions 
flow down while feedback flows up. For visual simplicity, only one 
arrow in a given direction is shown between two blocks-so an arrow 
represents a path rather than an individual command or piece of 
feedback. Multiple terms labeling an arrow represents the set of 
control actions or feedback variables (depending on direction) that 
may exist on the path indicated by the arrow.

The control structure shows that the three feature systems and the 
driver have overlapping control authority and receive feedback from 
common processes. This overlap and commonality creates the 
potential for interaction that may lead to unsafe system behavior.

Identifying Unsafe Control Actions
Figure 3 shows that each of the controllers in the system may issue 
commands, also referred to as control actions. As discussed 
previously, there are four ways in which the issuing of a control 
actions may be unsafe. These four manners of unsafe control must be 
considered for each control action issued in the system. In this 
system, the automated controllers issue a total of nine high-level 
control actions. For space considerations, analysis of only one of 
these control actions will be shown to demonstrate the process 
applied to the entire system.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



When engaged, the Auto-Hold feature may issue the RELEASE 
command to return the braking system to normal operation. The 
circumstances in which it may be unsafe to issue the RELEASE 
command are listed in Table 3.

The UCA's listed in Table 3 may be further refined and formalized as 
shown in the Context Table presented as Table 4. This method of 
formalizing UCA's was developed and first presented by Thomas in 
[16]. The Thomas method rests on the premise that UCA can be 

formally defined by a set of Process Model Variables that define the 
state of the system as viewed by the controller. In other words, the 
Process Model Variables are used by controllers to determine the 
appropriate control actions. Each row in the table corresponds to a 
UCA and asterisks are used to denote which variables do not matter 
for a given row. In addition to providing increased formalism and 
clarity, the Thomas method enables automated identification of 
conflicts and the generation of executable requirements.

Figure 3. Combined System Control Structure

Table 3. UCA Table for the Auto-Hold Command: RELEASE

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Table 4. Context Table for the Auto-Hold Command: RELEASE

Identifying Conflicts between Controllers
One way that conflicts occur is when the effects of one command 
violate the assumptions and conditions of another. As a consequence, 
one or more controllers may be prevented from realizing their 
intended functions resulting in potential performance and safety 
issues.

Another way that conflicts occur is when the effects of one command 
satisfy the assumptions and conditions of another, triggering the 
second command to be issued at an unanticipated time or in an 
uncoordinated manner. This type of conflict is more subtle than the 
first that arises from commands effectively prohibiting each other. In 
this case, the requirements for an individual command to be safe and 
functional are still met; however, from a system perspective, the 
control amongst controllers is uncoordinated such that they may be 
competing against each other.

Creating a Conditions Table
To identify potentially unsafe interactions, a conditions table like the 
one in Table 5 is used. The conditions table is a table that keeps a 
record of the design assumptions, required conditions, and effect on 
the system associated with each command.

Table 5. Conditions Table Format

The fields in the conditions table can be partially populated with the 
results of the UCA analysis presented earlier. The formal analysis of 
UCA's using Context Tables produces the “Required Conditions” input 
for the conditions table. The “Design Assumptions” may also arise 
during the UCA analysis or can be elicited from the engineering design 
team. The “Effect on the System” can be populated by considering the 
process model variables identified previously in STPA.

As an example, the combination of rows in Table 4 that are not marked 
as ‘Providing Causes Hazard’ but are marked as ‘Not Providing Causes 
Hazard’ or ‘Not Providing Required for Function’ can be used to help 
define the required conditions for the AH RELEASE control action. 
These are further refined by the design assumption that RELEASE will 
be issued when AH is holding the brakes (as defined in the context 
table) to produce the results in Table 6.

Table 6. Auto-Hold portion of the Conditions Table

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Table 7. Engine Stop-Start portion of the Conditions Table

Table 8. Adaptive Cruise Control with Stop & Go portion of the Conditions Table

The Condition Tables for Auto-Hold, Engine Stop-Start, and Adaptive 
Cruise Control with Stop & Go are presented below. The generic 
table presented as Table 5 has been inverted and broken into three 
sections (one for each feature controller) for readability. Appending 
tables 6, 7, 8 and inverting the axes will put the information in the 
same format as presented in Table 5.

Searching for Conflicts
The conditions table can be reviewed and searched for instances 
when the effects of one control action conflict with the assumptions 
and required conditions of another. The conditions table grows on the 
order O(n) where n is the number of control actions that must be 

analyzed for interactions and conflicts. In other words the table grows 
linearly for each new control action that must be analyzed. A 
brute-force approach such as enumerating Use Cases can be thought 
of as analyzing and populating an n × n matrix (where n is the 
number of control actions), which exponentially grows on the order 
O(n2) by contrast and only captures pairwise interactions. In contrast, 
a conditions table like Table 5 is much more practical for large 
systems. Although the number of conflicts may inevitably grow as 
more control actions are included, a tool can also be used to 
automatically search a conditions table like Table 5 thereby ensuring 
that the manual effort by the user remains on the order O(n). STPA 
Step 2 can then be performed on the resulting list of conflicting 
control actions to identify potential causes.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



Results
By following this method, more than 60 conflicts were identified 
allowing potential controls to be developed. These conflicts are the 
result of design or requirements flaws, and many of them are not 
immediately obvious without a systematic technique to identify them. 
Many also involve assumptions that may have seemed reasonable for 
individual features but are not appropriate for an integrated system. 
Although only two scenarios are discussed here due to space 
limitations, a more complete demonstration is available in [13].

Conflict Scenario 1
The first example result is a conflict between Auto-Hold and Adaptive 
Cruise Control w/ Stop-Go. When both features are installed on a 
vehicle, they can conflict due to operation of the EPB. The conflict 
was identified as:

Conflict 16: AH APPLY EPB prior to ACC w/SG ACCELERATE 
violates the constraint Vehicle Held: No

When both AH and SG are installed and enabled in a vehicle, the 
following scenario is possible that would lead to a dysfunctional and 
potentially hazardous situation:

• Driver engages ACC w/SG to maintain a selected speed and safe 
following distance. 

• Traffic slows to a stop; SG slows the vehicle and holds it at rest. 
• Once at a stop, AH engages (because the brakes were applied) 

and captures the existing pressure in the brake lines. 
• Some stimulus (see below) triggers AH to engage the EPB.

Outcome: ACC w/SG cannot ACCELERATE because the vehicle is 
held by the EPB…

In this scenario, EPB is not released. Although AH can apply EPB, it 
does not have the ability to release EPB as a safety precaution (see 
Figure 3). AH issuing the APPLY EPB control action will change the 
‘Vehicle Held’ state to ‘Yes.’ This violates the ACC w/SG 
requirement that ‘Vehicle Held’ be ‘No.’ If the vehicle is being held, 
the engine torque from the ACCELERATE command (e.g. when 
traffic clears) will oppose the force holding the vehicle which may 
prevent or delay forward motion or potentially damage systems like 
the parking brake. Recall that as a safety precaution the SG system 
does not have authority to disengage the EPB (see Figure 3).

There are several reasons that the AH feature may engage the EPB, 
one being the driver disabling the AH feature. Other potential reasons 
can be identified in STPA Step 2.

At first glance, this conflict appears to lie outside the safety domain; 
however, it may have safety implications when the driver needs to 
quickly move the vehicle (i.e. it is stopped in an intersection) but is 
unable to do so because he or she must first recognize the EPB is 
applied, and then disengage and take control from SG.

This conflict may be resolved; three potential strategies are described 
below:

1). Require that ACC w/SG monitor the state of the EPB and allow 
it to disengage when appropriate. Allowing ACC w/SG to 

disengage the EPB resolves the conflict, but adds complexity 
in that it must now be decided when it is appropriate for an 
automated system (ACC w/SG) to disengage the EPB. 

2). Require that an issuing of the EPB turns other features ‘off’ and 
requires Driver intervention to disengage the EPB. This change 
is simpler than the first potential resolution and does not require 
giving automation the authority to disengage the EPB. However, 
not giving automated systems the ability to disengage the EPB 
means that each time it is issued, the Driver will be required 
to intervene. If the driver is required to intervene often, this 
strategy may reduce the transparency with which some features 
operate and thus reduce their value. 

3). Require that AH does not engage when ACC w/SG is engaged 
because AH becomes redundant when ACC w/SG is holding the 
vehicle still. Note, this change does not prevent AH and ACC 
w/SG from using the same strategy and physical hardware to 
control the vehicle's brakes. A design solution is that ACC w/
SG effectively ‘implements’ AH when it brings the vehicle to a 
stop; however, this should be done within the ACC w/SG logic 
and the standalone AH system should remain disengaged.

As this conflict exists at a fairly high-level of abstraction and 
concerns the overlap of authority between Auto-Hold and Adaptive 
Cruise Control w/Stop-Go, the third potential resolution is perhaps 
the best choice.

Conflict Scenario 2
The first conflict involved a pair of controllers. This second conflict 
scenario is an example of conflict between three controllers: 
Auto-Hold, Engine Stop-Start, and the Driver. The following conflicts 
were detected using the new approach:

Conflict 21: AH RELEASE while engine AUTO-STOPPED violates 
the AH required condition Propulsion Torque: Yes

Conflict 51: Driver SHIFT prior to ESS RESTART may violate the 
constraint that the Range is in a forward gear

Again consider a vehicle that has both AH and ESS enabled:

• Vehicle comes to a stop, both the AH and ESS features engage 
successfully. 

• Driver attempts to move the vehicle backward: 
 ◦ Driver shifts to Reverse 
 ◦ Driver applies the Accelerator Pedal

Outcome: The vehicle is effectively stuck, because:

• ESS is prevented from restarting the engine by FMVSS 102 
[17]. 

• AH cannot RELEASE because there is insufficient wheel 
torque.

The stopping and starting of a vehicle engine is partially regulated by 
Federal Motor Vehicle Safety Standard (FMVSS) 102. The older 
version of this standard prohibited the engine starter from operating 
while the transmission shift lever is in either the forward or reverse 
drive position. This proves to be a barrier for new technologies, 

Downloaded from SAE International by John Thomas, Monday, March 30, 2015



including hybrid-electric vehicles and idle-stop systems. In response 
to developments in those technologies, an updated version of FMVSS 
102 prohibits the engine from automatically stopping in reverse gear 
but allows it to restart if automatically stopped while in a forward 
gear (i.e. followed the driver shifting to reverse) [17]. The engine 
may not automatically restart in reverse when the service brake pedal 
is not applied and must restart automatically when it is applied. This 
means that in the scenario described above, the engine may not 
automatically restart until the driver applies the service brake: AH 
maintaining brake pressure is not sufficient.

With the engine off, the driver pressing the gas pedal does not 
produce any propulsion torque and AH may not issue the RELEASE 
command. Thus, the vehicle is effectively stuck until the driver 
moves his foot to the service brake and the engine restarts. Once this 
happens, restored engine power will produce engine torque and if the 
driver presses the gas pedal, AH will issue RELEASE. However, this 
sequence may take several seconds during which the vehicle is 
effectively stuck and the sequence of driver actions required for 
recovery may not be obvious.

Resolving this conflict is not as straightforward as the first example 
as it involves several layers of control logic and regulation. Design 
engineers must prioritize the hazards associated with various 
solutions and choose one that is acceptable to all stakeholders.

Summary/Conclusions
This paper introduced a new method to identify potentially hazardous 
interactions among software-intensive features during STPA Step 1. 
The method was demonstrated by applying it to a case study with 
three independently developed features that were to be integrated. A 
number of potentially hazardous interactions were systematically 
identified, including interactions caused by potentially flawed 
requirements. More important, although a large number of potential 
interactions were possible, the method was found to be scalable and 
did not require enumeration of all possible interactions. Instead, 
hazardous interactions and conflicts were efficiently identified using 
much smaller condition tables.

Although a number of formal methods utilize pre-and post-conditions 
to search for undesirable feature interactions, these methods require a 
formal model of the system and assume that the required conditions 
are already known or given. The proposed method was able to derive 
the necessary conditions systematically from the context tables of an 
STPA analysis. In addition, the method did not require a formal 
model of the system to begin the analysis. This is important because 
formal models typically do not exist during early system development 
and may never exist for non-software components such as humans. 
As a consequence, this approach was successfully applied beyond 
software components to identify dangerous human interactions with 
automated systems such as driver shift commands before an ESS 
restart.

Future work includes a case study of greater complexity with a set of 
real vehicle systems. An example with controllers at multiple levels 
in the vehicle control hierarchy should also be considered to 
accurately represent modern production vehicles.

The method in this paper has the potential to be partially automated 
and tools can be developed to search for these types of conflicts. An 
open-source software tool is currently being developed to partially 
automate the STPA process, especially the identification of unsafe 
control actions in STPA Step 1 [18]. Once potential unsafe actions are 
identified, safety requirements can be generated or existing 
requirements can be checked to verify that unsafe behaviors are 
prevented.

References
1. Alladi, V., Wei, J., and Ganesan, S., “Writing Better Real-Time 

System Requirements with Use Cases and Services,” SAE 
Technical Paper 2005-01-1315, 2005, doi:10.4271/2005-01-
1315.

2. Leveson N., Applying Systems Thinking to Analyze and Learn 
from Events, Safety Science 49(1):55-64, 2010.

3. Leveson N., “A New Accident Model for Engineering Safer 
Systems,” Safety Science 42(4):237-270, 2004.

4. Tsui, F., Karam, O., Bernal, B., “Essentials of Software 
Engineering,” (Jones & Bartlett Learning LLC, 2014).

5. Hayes, I. J.. “VDM and Z: a comparative case study.” Formal 
Aspects of Computing 4(1):76-99, 1992.

6. Zave P.. “A practical comparison of Alloy and Spin.” Formal 
Aspects of Computing 2014. Available at Springer via http://
dx.doi.org/10.1007/s00165-014-0302-2

7. Leavens Gary T. and Baker Albert L., “Enhancing the pre-and 
postcondition technique for more expressive specifications.” 
FM'99 - Formal Methods. Springer Berlin Heidelber, 1999. 
1087-1106.

8. Frola, F. R., Miller, C. O., “System safety in aircraft 
acquisition.” Logistics Management Institute. Bethesda, MD. 
1984.

9. Leveson, N., “Engineering a Safer World,” MIT Press, 2012.

10. Balgos V. H., “A systems theoretic application to design for 
the safety of medical diagnostic devices,” Master's thesis, MIT, 
Cambridge, 2012.

11. Torok, R., Geddes, B., “Systems Theoretic Process 
Analysis(STPA) Applied to a Nuclear Power Plant Control 
System,” Presentation at MIT STAMP Workshop, March 2013.

12. Leveson, N., Wilkinson, C., Fleming, C., Thomas, J., Tracy, I., 
“A Comparison of STPA and the ARP 4761 Safety Assessment 
Process,” MIT PSAS Technical Report, 2014.

13. Placke, S., “Application of STPA to the Integration of Multiple 
Control Systems: A Case Study and New Approach,” Master's 
thesis, Engineering Systems Division, Massachusetts Institute of 
Technology, 2014.

14. Ishimatsu, T., Leveson, N., Fleming, C., Katahira, M., 
Miyamoto, Y., and Nakao, H., “Multiple Controller 
Contributions to Hazards,” presented at the 5th IAASS 
Conference, Versailles, France, October 2011.

15. Ishimatsu T., Leveson N., Thomas J., Fleming C., Katahira M., 
Miyamoto Y., Ujiie R., Nakao H. and Hoshino N., “Hazard 
Analysis of Complex Spacecraft using Systems-Theoretic 
Process Analysis,” Journal of Spacecraft and Rockets 
(51)2:509-522, 2014.

Downloaded from SAE International by John Thomas, Monday, March 30, 2015

http://www.sae.org/technical/papers/2005-01-1315
http://dx.doi.org/10.4271/2005-01-1315
http://dx.doi.org/10.4271/2005-01-1315
http://dx.doi.org/10.1007/s00165-014-0302-2
http://dx.doi.org/10.1007/s00165-014-0302-2


16. Thomas J., “Extending and Automating a Systems-
Theoretic Hazard Analysis for Requirements Generation and 
Analysis,” Ph.D. Dissertation, Engineering Systems Division, 
Massachusetts Institute of Technology, 2013.

17. “Federal Motor Vehicle Safety Standards; Transmission Shift 
Position Sequence, Starter Interlock, and Transmission Braking 
Effect,” 49 CFR Part 571, 2005.

18. Thomas, J. and Suo, D. “An STPA Tool.” Presented at 3rd 
STAMP/STPA Conference., MIT, Cambridge, MA, 2014.

Definitions/Abbreviations
ACC - Adaptive Cruise Control

AH - Auto Hold

EPB - Electronic Parking Brake

ESS - Engine Stop Start

FMEA - Failure Modes and Effect Analysis

FTA - Fault Tree Analysis

SG - Stop-Go

STPA - System Theoretic Process Analysis

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the session organizer. The process 
requires a minimum of three (3) reviews by industry experts. 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or 
otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE International. The author is solely responsible for the content of the paper.

ISSN 0148-7191

http://papers.sae.org/2015-01-0277

Downloaded from SAE International by John Thomas, Monday, March 30, 2015

http://papers.sae.org/2015-01-0277

