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Integrated modular avionics systems present new opportunities and benefits for developing advanced aircraft

avionics, as well as a series of challenges related to hazard analysis and certification. This paper addresses some

of those challenges and proposes a new procedure for improving hazard analysis of integrated modular avionics

systems. A significant objective of integrated modular avionics architectures is the ability to develop individual

software applications independently and then integrate those applications onto one platform. It has been very

difficult for both designers and certifiers to understand and predict how the system will behave when the

applications are integrated into one system. Traditional fault-based hazard analysis techniques are limited with

respect to this problem. Therefore, this paper uses a different technique, called Systems-theoretic Process Analysis, to

identify hazardous behavior that emerges when individual applications are integrated. Systems-theoretic process

analysis is a systems-theoretic hazard analysis technique that accounts for hazardous behavior due to component

interaction, including cases when the components have not failed or faulted. Systems-theoretic process analysis is

extended in this paper to account for behavior that emerges when software applications share data, which is a

requirement in aircraft systems. The paper illustrates the new approach with an example that includes real-world

avionics functions.

I. Introduction

I NTEGRATEDmodular avionics, or IMA, “is a shared set of flexible, reusable, and interoperable hardware and software resources that, when
integrated, form a platform that provides services, designed and verified to a defined set of safety and performance requirements, to host

applications performing aircraft functions” [1]. By putting multiple applications onto one platform, IMA architectures yield savings in space,
weight, power, and maintenance infrastructure.
However, due to the lack of physical infrastructure and the design constraints associated with architectures where individual avionics functions

must be physically connected, there is a concern that the use of IMAwill result in a rapid increase in system complexity, unintended interaction
amongst components, and integration responsibilities for the IMAdeveloper. The existing regulatory regime,whichwas developed for traditional
federated architectures, is considered to be inadequate for the predicted future explosion in complexity [2,3]. Avital component of the regulatory
approach is the safety assessment, and this too is inadequate [4]:

Traditional safety assessment guidance such as Society of Automotive Engineers (SAE) Aerospace Recommended Practice (ARP) 4754
[5] and SAE ARP 4761 [6] are being applied to IMA.
The existing ARP guidance is well suited for an individual system tied directly to an aircraft function. However, the existing safety
assessment guidance lacks focus on the integration aspects of an IMA system. As opposed to traditional avionics, IMA’s integration of
multiple functions with shared resources requires the system safety assessment (SSA) process to focusmore on commonmode, common
cause, and cascading effects in addressing the integration of functions and the multiple loss [sic] of functions. A different approach is
needed.

In addition, because independent development of applications is an attractive potential benefit of IMA, developers would like to modify or
upgrade applications and airframe manufacturers may want to insert entirely new applications [7]. Therefore, a change impact analysis,
particularly with respect to hazardous behavior, is also needed from a regulatory perspective [3].
This paper outlines a new approach for analyzing hazardous behavior due to interactions among functions in a complex avionics suite such as

IMA. In addition to a hazard analysis technique for IMA, this paper also introduces a change impact hazard analysis that captures hazardous
behavior due to changes in application behavior, data sharing between applications, and other changes such as mechanical or hardware
modifications. The method potentially reduces the amount of rework required for certification of a modified or inserted application. This paper
first introduces the concepts and underlying assumptions of IMA, introduces a new approach for safety analysis that could aid in the certification
of IMA systems, and then describes the approach using an example IMA implementation.

II. Background

To understand the new analysis approach being suggested, some basic information about integrated modular avionics, the current regulatory
regime, and the limitations of the current techniques is helpful.
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A. IMA Architectures

Traditional, federated avionics architectures have distributed, self-contained, and dedicated computing, communication, and input/output
services. In contrast, IMA involves the execution of multiple applications on a common hardware resource. Figure 1 compares the two
architectural concepts [8].
By replacing numerous separate processors and line replaceable unitswith fewer,more centralized processing units, IMAarchitectures promise

significant weight reduction, reduced power consumption, andmaintenance savings formodern aircraft systems [9]. In addition toweight savings
and power reduction, IMA considerably reduces the amount of required wiring and the attendant burden put on airframe designers and
maintenance staff.
Another attractive benefit of the modular approach is the potential for independent development of software applications by distinct groups

across organizational boundaries within a manufacturer or groups from entirely different companies or organizations.

B. Regulatory Approach

The current regulatory approach for IMA systems is fundamentally similar to that used for traditional federated systems. For example, failure
modes and effects analysis (FMEA) is typically used as a recommended practice for developing a system safety assessment [2]. FMEA focuses on
individual component failures, which are the “inability of a component to perform its designed function within specified limits” [10].
The system safety assessment from the FMEA is used to guide application software developers in certain life-cycle processes. These processes

include design reviews, coding practices, verification and testing, and integration, all of which are commensurate with the required level of safety
derived from the FMEA [11].
A key requirement for designing IMA systems is the use of partitioning. Partitioning allocates time andmemory to an application, allowing the

IMA to host multiple applications with different responsibilities and to operate on shared resources. The shared resources include the real-time
operating systems (RTOSs), central processing unit(s), memorymanagement unit(s), and input/output handlers [12]. Partitioning, which is part of
the development paradigmused in traditional federated architectures, necessarily becomesmore important in an IMAsystem.Due to the emphasis
on partitioning, an additional set of recommendations is put forth as part of IMA development, including considerations for the development of a
“robust partition” (which is called robust to emphasize its importance in IMA, as compared to standard partitioning), as well as a common
application interface for separate software developers [13].
In theory, robust partitioning facilitates the isolation of individual applications. This isolation then allows traditional hazard analysis techniques,

such as FMEA, to focus on identifying potential faulted modes of these individual components and their effects on system performance.

C. Integration and Interface Control

There are two key concepts necessary to ensure that application software can be developed independently: integration and interface control.
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Fig. 1 Comparison of federated and IMA architectures [8] (SW, software; OS, operating system).
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Individual developers must ensure that the software design adheres to an application programming interface (API), and the IMA system
developer must ensure that all applications are integrated properly on the operating system [14]. Partitioning then limits the amount of interaction
between applications. The number and type of applications that can runwithin a partition are limited by the constraints designed into the operating
system, according to the partition management hardware and software typically developed by the IMA system integrator.
However, applications can and must share information (and, indeed, applications may share control commands in some instances), leading to

the second requirement, which is interface control. Interfaces are typically specified, in an interface control document (ICD), for electrical
interactions, mechanical or physical interactions, and software modules. A typical software interface specification would include the following
items, according to [15]: 1) digital signal characteristics; 2) data transmission format, coding, timing, and updating requirements; 3) Data and data
element definition; 4) message structure and flow; 5) operational sequence of events; and 6) error detection and recovery procedures.
In particular, a software interface should “define the actions taken to process the data and return the results of the process” [15]. The ICD

approach emphasizes the instructions necessary to input or output data but does not explicitly prescribe the underlying logic or behavior that
actually generates the variables that should go back onto the interface. (In fact, if the ICDdid specify the underlying behavior of a softwaremodule
or application, it should technically not be considered an ICD.)

D. Limitations

There are significant assumptions embedded in relying on partitioning and interface control documents to assure safety in IMA. The
first assumption is that robust partitioning, combined with some form of interface control, will result in the isolation of avionics functions.
The second assumption is that interface control will lead to a thorough understanding of those interactions between functions that are not
“eliminated” by partitioning. These assumptions do not hold in all cases, however, particularly when there is a high degree of data dependence and
control dependence between avionics applications. The current approach is particularly limited with respect to understanding hazardous
interactions among applications, designing the system and its applications to reflect this understanding, and certifying the resulting system
[2–4,12,16].
To a certain degree, robust partitioning does help to achieve these aims, but data dependency is still a necessary and desirable property of

avionics functions. There are two types of dependency involved here. “Data coupling” is the sharing of information both within and outside of a
partition. A second type of coupling, “control coupling,” exists when one software component influences the execution of another software
component [17]. Despite the implementation of robust partitioning, coupling can still exist because aircraft avionics necessarily require
information from other functions. In fact, due to the virtualization of interfaces between functions, future avionics systemsmay have even “more”
coupling than the physical, federated systems of the past. The wiring and harness used to route data in traditional federated systems is certainly
cumbersome and difficult tomanage, but it also provides an intrinsic constraint on the degree of coupling between avionics. Virtualization of these
physical interfaces eliminates this constraint.
In a survey outlining the gaps in Federal Aviation Administration (FAA) systems integration and safety assurance [2], uses the following

incident. The incident provides an example of how important it is to thoroughly evaluate component coupling and cascading effects in order to
properly assure safety, and how difficult this evaluation can become. The information comes from the serious incident investigation report of a
B747 incident, issued by the South African Civil Aviation Authority [18]. The report offered the following executive summary of the incident:

The serious incident involved the uncommanded retraction of the automatic Group ‘A’ leading edge flaps on rotation for a period of about
23 seconds. Subsequent to the initiation of the retraction of the Group ‘A’ leading edge flaps, the aircrewwas faced with unexpected stall
warnings. At no time was the aircrew aware that the Group ‘A’ leading edge flaps had retracted or as to the circumstances leading to the
stall warnings. They were however aware that the thrust reverser in-transit EICAS amber message on the P2-Pilots Center Instruments
Panel did display during takeoff roll prior to rotation : : :No evidence was found that the thrust reversers had in fact deployed.
The automatic retraction of the Group ‘A’ leading edge flaps based on dual thrust reverser in-transit signals from either both inboard or
both outboard engines was part of the original 747-400 type design. All model 747 airplanes will automatically retract the Group ‘A’ LE
flaps upon movement of the reverse thrust handle. This is to prevent thrust reverser efflux air from impinging directly onto the flap panel
surfaces in order to improve the fatigue life of the panels and their attachments. The original type design added the auto-retract feature
based upon receipt of a thrust reverser unlock signal : : :
[The occurrence was] caused by the automatic LE flap retraction logic retracting the Group ‘A’ LE flaps on receipt of spurious thrust
reverser unlock signals from the no. 2 and no. 3 engines. The possibility of such an occurrence had not been identified during amendment
of the retraction logic.

Note that the flight crewwas able to keep the aircraft flying until the leading-edge (LE) flaps reextended. Figure 2 shows the sequence of events
in simplified, graphical form. Bartley and Lingberg [3] observed that the secondary effects caused by failure of shared or coupled resources were
not immediately obvious, and the preceding example of theB747 certainly corroborates that conclusion. These kinds of “unintended interactions”
are not unique to IMA systems and happened on decades-old systems. However, with the virtualization of interfaces inherent in IMA architecture,
systemswith IMAwill becomemuchmore complex, and the potential interaction between IMA functions and their virtual interfacesmay increase
by orders of magnitude compared to simpler, federated systems. The result of this increase in complexity is that many “secondary” effects may
become evenmore obscured thanwhat was already the case in the past. Themethods currently being used to analyze these systems are not enough
to understand and manage this complexity, and thus properly design and develop them.
One suggested approach to assess whether a change impact analysis is necessary is by determining whether an interface control document

revision is necessary [3,15]. The assumption underlying the use of the ICD is that the separate functions are isolated from each other by robust
partitioning and can only communicate via a very defined and specific mechanism that minimizes data and control coupling between partitions.
Therefore, if a change to a certain function does not require a change to the ICD, which defines the output parameters from that function, then the
functions using those parameters cannot be impacted by the change.
This assumption is false. Bartley and Lingberg [3] provided an example involving flaps control. Figure 3 shows the interface between the flaps

system controller where a discrete variable of “flaps extended” is passed between supposedly independent avionics functions. Without further
definition of the exact technical meaning of flaps extended, a true state of the flaps-extended discrete variable could possibly mean any of the
following:

• Both left and right trailing-edge (TE) flap surfaces are detected in the 1 or greater flap detent.‡

• Both left and right trailing-edge flap surfaces are not detected in the “up” flap detent.

‡A detent is a device used to mechanically resist or arrest the rotation of a wheel, axle, or spindle.
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• The flap lever handle is detected in the 1 or greater flap handle detent.
• The flap lever handle is not detected in the up flap handle detent.
All four of these possibilities have differing characteristics from each other, and different receiving functions might use the flaps-extended

discrete in a different way. For example, once the trailing-edge flaps begin to move, the logic that determines “flaps not in the up position”will be
satisfied almost immediately. In contrast, the flaps may take 5 to 10 s to fully reach the “flaps detected in the ‘1’ detent” position. Furthermore, if
the flap surfaceswill not respond to avalid commanddue to a hydraulic system failure, the flap lever positionwill no longer reflect the true position
of the flap surfaces once the lever is moved out of the up detent. Obviously, how a signal is computed needs to be understood by the designers of
any function that uses that particular signal. Differences such as those described may be of critical importance to using the system.
If only the information in Fig. 3 is communicated via the data bus, then a change in the logic of the flap system controller may negatively impact

the behavior of the function using the flaps-extended variable. The receiving system(s) developers will thus not be privy to the change, and the
system-level impact will not be understood. For example, a problem discovered later in the development cycle, after the design of the individual
applications have been ”finalized,”may lead to a change in the logic of the flap system controller. One potentialmethod of addressing this problem
with the flap alert logic is to compute the flaps-extended variable using the flap lever position instead of the actual flap surface position. The
physical meaning of the flaps-extended variable has changed.
The following is according to [3]:

The point illustrated is that it cannot not [sic] be left to the designers and system experts of the function being updated (in this example, the
flap system) to determine the effect of that change on downstream users. The experts that are required to assess the impact of the change
are the designers and analysts of the using system, not the source system. AChange Impact Analysis that crosses functional boundaries is

Function A –
Thrust Reverser Unlock

Parameter invalid

LE Flaps Retract  True

ParameterI/O

Function C  Function B  
Retract

(Mode = Takeoff)

Flap Retraction
(No Crew Alert)

Logic
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Flawed Shared Resource

invalid

Fig. 2 Simplified example of secondary effects of shared resource, adapted from [18].

Invalid               00     

Flaps Ext           01 

Flaps Not Ext    10      

Not Used           11      

Flap System Discrete           Bits 12

Data Word             & 13

Data Bus

Flap System Controller                     Receiving System

Fig. 3 Flaps-extended (Ext) discrete data transmission [3].

400 FLEMING AND LEVESON

D
ow

nl
oa

de
d 

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 (
M

IT
-C

A
M

B
R

ID
G

E
) 

on
 A

ug
us

t 1
5,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
01

64
 



clearly required for this example, even though the ICD for the source function did not change. Additionally, this example illustrates why
robust partitioning does not totally insulate functions residing in one partition from changes to a function in a different partition.

Some organizations suggest the use of an interface definition document, which is a unilateral document controlled by the end-item provider,
where the user has no input intowhat should (or should not) be specified on the interface [19]. This approachmerely exacerbates someof the issues
outlined in the previous flaps-extended example.
Robust partitioning and interface control documents are clearly valuable and necessary aspects of IMA system development. However, as the

aforementioned examples illustrate, there must be additional tools to aide in the design, integration, and certification of these systems.
Traditional hazard analysis techniques such as FMEAand fault tree analysis focus on individual component failure or faultedmodes. This focus

on component reliability assumes that robust partitioning and interface control are valid and that components do not interact either directly or
indirectly. However, as the previous examples illustrate, these assumptions usually do not hold for complex systems.

E. Related Research

While the regulatory, industry, and research communities recognize the differences between traditional avionics architectures and IMA, there
has been relatively little research directly focused on hazard analysis and certification of IMA systems. Conmy andMcDermid proposed a failure
analysis technique driven by guidewords related to generic IMA functions [20]. Guidewords such as omission, commission, early, late, or value
are used to generate deviations from expected behavior for each IMA function. For each deviation, a set of causes is then generated and associated
mitigation strategies are generated. Furthermore, Conmy and McDermid developed a contracts-based approach where interdependent functions
supply behavioral “contracts” to user functions. [21]. The Conmy andMcDermid approach focuses on failure or faultedmodes of operation only.
They do not handle hazardous behavior resulting from interactions of functions that are behaving nominally, such as in the flaps controller
example.
Rushby suggested a composition framework for certification of modular architectures [12]. Such a framework should have three properties,

even in the presence of faults: composability, where properties of components or prior compositions are preserved when new components are
added; compositionality, where system properties are derived solely from component properties; and monotonicity, system properties are not
reduced when a component is replaced by a superior one having more properties. Rushby suggested that formal methods based on infinite
bounded model checking may provide the necessary capability for analyzing such properties. The three properties of Rushby’s composition
framework may very well contribute to an improvement in the modular software development paradigm. However, the composition framework
may violate a fundamental principle of systems theory,which is “emergence.”Emergence is the principle that whole entities exhibit properties that
are meaningful only when attributed to the whole, and not to its parts [22]. Leveson, and others, has argued that system safety is an emergent
property rather than a property of individual component behavior [23].
Yong et al. proposed an incremental certification methodology where different modules can be added to the certification artifacts as the design

matures [24], and Ruiz et al. proposed a case-based reasoning approach for software reuse [25]. Ruiz et al., in particular, presents a rigorous and
concisemethod for documenting the introduction of newdata and for retrieving existing data.NeitherYong et al. [24] norRuiz et al. [25], however,
suggested appropriate ways to perform the hazard analyses that lead to the artifacts in their methodologies.
The hazard and operability study (HAZOP), which is used in the process industries, is simply a different form of failure analysis, where failures

are defined as deviations from nominal behavior [26]. Most of the attempts to apply HAZOP to software [27,28] are simply a form of FMEA and
have not been successful [29].
While the hazard analysis techniques proposed in Sec. III have been used to analyze very large, complex systems both in aerospace and other

domains [30–34], they have limited application to IMA systems. Suo et al. has developed an intent specification approach that uses the same
hazard analysis techniques proposed in this paper [35]. Suo et al. generates a set of unsafe control actions for aspects of the IMA operating system
and then develops a set of hierarchical safety requirements based on those unsafe control actions. Suo et al.’s work does not, however, focus on
analyzing aircraft functions that operate on the IMA platform.
All of these approaches either focus on failures or faults of IMA components, do not pertain to hazard analysis of complex avionics systems, or

do not deal with unforeseen behavior due to coupling of nominal component behavior. Our approach differs in that it looks beyond the underlying
components of an IMA system, such as the operating system and health monitor. Of course, these are vital aspects of IMA, but we are interested in
analyzing the applications that run on the IMA platform. Of particular importance is the ability to capture hazardous behavior due to interactions
between IMA (or other aircraft) functions and the introduction of hazardous behavior due to changes in the behavior of those functions or the
coupling between them.

III. Proposed Approach

Our approach is based on a new accident causality model called the systems-theoretic accident model and processes (STAMP), which extends
the types of accidents and causes that can be considered by including nonlinear, indirect, and feedback relationships among events [23]. STAMP
extends the traditional chain-of-failure events causalitymodel to include new types of accident causes arising from component interactions (rather
than just component failures), cognitively complex human mistakes, software errors, requirements errors, etc. Accidents or unacceptable losses
can result not only from system component failures but also from interactions among system components, both physical and social, that violate
system safety constraints.
In systems theory, emergent properties (like safety) associatedwith a set of components are related to constraints upon the degrees of freedomof

those components’ behavior [22]. System safety, then, can be reformulated as a system control problem rather than a component reliability
problem: accidents or losses occur when component failures, external disturbances, and/or dysfunctional interactions among system components
are not handled adequately or controlled: where controls may be managerial, organizational, physical, operational, or manufacturing.
In a systems-theoretic view of safety, emergent behaviors are controlled or enforced by a set of safety constraints related to the behavior of the

system components. Safety constraints specify those relationships among system variables or components that constitute the nonhazardous or
safe system states: for example, the powermust never be onwhen the access door to the high-power source is open; two aircraft must never violate
minimum separation requirements; pilots in a combat zonemust be able to identify targets as hostile or friendly; and the public health systemmust
prevent the exposure of the public to contaminated water and food products. Accidents result from interactions among system components that
violate these constraints: in other words, from a lack of appropriate constraints on component and system behavior.

A. Systems-Theoretic Process Analysis

System-theoretic process analysis is a hazard analysis technique built on STAMP. It is used in this paper to identify the system constraints
necessary to ensure safe development and operation of IMA systems. As described previously, accidents are viewed in STAMP as resulting from
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inadequate enforcement of constraints on systembehavior. STPAhas three components: system-level analysis, identification of potentially unsafe
control actions (called STPA step 1), and performing causal analysis on unsafe control actions from previous step (called STPA step 2). The rest of
the section describes each step in greater detail.
STPAuses systemhazards, safety constraints, and a functional control diagram.Ahazard is a system state or set of conditions that, togetherwith

a particular set of worst-case environmental conditions, will lead to an accident or loss.
An example hazard for aviation is “two aircraft violateminimum separation.”Related safety constraints for this hazardmight include “air traffic

controller must provide advisories that maintain safe separation between aircraft” or “warnings must be provided to flight crews when separation
is violated.” Both the hazards and safety constraints are refined and allocated to each component of the system.
Safety constraints are enforced through a hierarchical control structure. Figure 4 shows a generic functional control structure for a

sociotechnical system. (The general control structure includes several levels of management and government oversight, but the analysis in the
following section only considers the lower levels of operation.) Each hierarchical level of the control structure represents a control process and
control loopwith actions and feedback, and each level imposes constraints on the activity of the level beneath it.While classic component failures
may lead to violation of the constraints, violations can also result from unsafe interactions among components operating as designed where
software or human controllers issue unsafe control actions.
Identifying the potentially unsafe control actions for the specific system being considered is the first step in STPA. There are four types of

hazardous control actions that need to be eliminated or controlled to prevent accidents:
1) A control action required for safety is not provided
2) An unsafe control action is provided that leads to a hazard
3) A potentially safe contrtl action is provided too late, too early, or out of sequence
4) A safe control action is stopped too soon or applied too long.

The case must also be considered where a control action required for safety is provided but is not followed (executed).
These unsafe control actions are used to create safety requirements and constraints on the behavior of both the system and its components.

Additional analysis can then be performed to identify the detailed scenarios leading to the violation of the safety constraints and used to generate
more detailed safety requirements. As in any hazard analysis, these scenarios are the basis for designing controls and mitigation measures for the
hazards. Any hazards that cannot be adequately controlled at the system level must be allocated in the form of behavioral requirements on the
lower-level system components.
Human and automated controllers use a process model (usually called a mental model for humans) to determine what control actions are

needed. The process model contains the controller’s understanding of 1) the current state of the controlled process, 2) the desired state of the
controlled process, and 3) the ways the process can change state. Software and human errors often result from incorrect process models; for
example, the software thinks the spacecraft has landed and shuts off the descent engines. Accidents can therefore occur when an incorrect or
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Standards
Resources

Legislation

Work Instructions

Accident and Incident
Reports
Operations Reports
Maintenance Reports
Change Reports
Whistleblowers

Operations Reports

Status Reports
Risk Assessments
Incident Reports

Project
Management

Design,
Documentation

Implementation
and Assurance

Manufacturing
Management

Manufacturing

Maintenance
and Evolution

Safety Standards

Policy, Standards

Hazard Analyses
Progress Reports

Hazard Analyses
Safety-Related Changes
Progress Reports

Test Reports
Hazard Analyses
Review Results

Fig. 4 General sociotechnical control structure.
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incomplete process model causes a controller to provide control actions that are hazardous. While process model flaws are not the only causes of
accidents involving software and human errors, they are a major contributor to hazardous behavior when software or humans are involved.
Figure 5 shows a control loop for a simple model of the flaps controller. Observe the “Process Model” box within the controller. The process

model contains the information necessary tomake safe control actions, and if anyof this information is inaccurate or if the algorithm for generating
actions is flawed, the controller may generate unsafe commands. The processmodel contains several “processmodel variables” (for example, flap
position and altitude), and these process model variables can take on different values listed in the figure.
The next step in STPA is to determine how each potentially hazardous control action identified in the previous step can occur. The generic

control loop shown in Fig. 6 is used to generate these scenarios. The specific causal factors are identified using the general causal factors in the
figure, examining each part of the loop for a specific controller and controlled process and using the relevant existing design details of that loop. By
identifying the causes shown on the control loop, the analysis captures typical hardware failures but also helps identify flawed requirements in
maintaining accurate and consistent process models.
The rest of this paperwill use these important notions of processmodel, processmodel variables, system states, and the context inwhich control

actions are generated.

B. Global Process Model© Variable

The previous section described the importance of controllers’ process models and process model variable states, and it outlined the fact that
initializing and maintaining an accurate process model is vital to ensuring safe behavior. Section II described data coupling and the potential for
greater coupling in IMAsystems. Increasingly, a controller that performs a specific functionwill have amodel of part of the system state that is also
used by other controllers that perform different functions. For example, both the ground proximitywarning system and flightmanagement system
need to have a model of the aircraft altitude, but they have very different responsibilities. In Fig. 7, there are n processes, and each process has
different safety-related constraints. Each controller has a model of the same component of the controlled system state: “State i.2.”
Again, in the general STPA framework, an important contributor to hazardous behavior is an incorrect or inconsistent process model. This has

typically meant that the controller’s process model is inconsistent with its own controlled process. However, separate controllers requiring the
same controlled system variables lead to a different class of process model consistencies. One controller’s perception of a component of the
controlled system state might be quite different than the definition of another controller. The flaps-extended state in Fig. 3 illustrates how different
controllers may have very different conceptions of the same state.
Therefore, we introduce the concept of a Global Process Model variable (GPMV). By identifying data coupling at a higher level of abstraction

than at an individual control loop, STPAwill be able to identify the types of hazardous behavior outlined in Sec. II, such as component interaction
due to cascading effects and change impact. These hazards are due to the fact that safety is an emergent system property, and the hazardous
conditions arise when multiple software applications use and manipulate a shared set of variables.

C. Procedure

The new procedure for analyzing hazardous behavior due to component interaction in an IMA system is outlined in Fig. 8. The procedure
involves four types of analysees: 1) hazard analysis, 2) independence analysis, 3) coupling safety assessment, and 4) change impact analysis.

1. Hazard Analysis Using STPA

First, STPA is performed as described in Sec. III.A. The analysts develop a functional control structure and safety-related responsibilities based
on the system architecture and high-level hazards. Then, control actions are identified for each controller and the analysis generates the potential
unsafe control actions using the four general types as a guide (see Sec. III.A). Finally, each control loop is analyzed individually for causes of
unsafe control.
Figure 9 shows the control structure of an IMA system that includes a flaps system controller along with a thrust reverse controller and flight

deck display. The flaps system controller is responsible for controlling the position of the leading- and trailing-edge flaps, and the thrust reverse

Flaps System Controller

Process Model
Flaps 

Position

Extended
Retracted
Unknown

Altitude

Airspeed

Flight
Phase

Above 500 ft
Below 500 ft
Unknown

Above vallowed

Below vallowed

Unknown

Takeoff
Approach
Other
Unknown

Physical 
Flaps

Flaps 
Actuators

Flaps 
Sensors

(Hydraulic, 
Electric)

Commands:
- Extend Flap
- Retract Flap
- Hold Flap

Feedback:
- Flap Position
- Flap Speed
- Actuator 
Status

Other Inputs:
- Aircraft Speed
- Aircraft Altitude
- Phase of Flight
- Pilot Input

Fig. 5 Example process model, flaps control.
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Controller
Inadequate Control
Algorithm
(flaws in creation,
process changes,
incorrect
modification or
adaptation)

Process Model
inconsistent,
incomplete, or
incorrect

Actuator
Inadequate
Operation

Controlled
Process

Component failures
Changes over time

Sensor
Inadequate
Operation

Controller
2

Inappropriate,
ineffective
or missing

control
action

Delayed
operation

Incorrect or no
information
provided
Measurement
inaccuracies
Feedback delays

Inadequate or
missing feedback
Feedback delays

Control input or
external
information wrong
or missing

Unidentified or
out-of-range
disturbance

Conflicting control
actions

Process input
missing or wrong

Process output
contributes to

hazard

Fig. 6 STPA causal analysis.

Controller 1

Model of

Process

State 1.1

State 1.2

...

Controlled
Process 1

Control

Actions
Feedback

Controller 2

Model of

Process

State 2.1

State 2.2

...

Controlled
Process 2 ......

Controller n

Model of

Process

State n.1

State n.2

...

Controlled
Process n

Fig. 7 Global Process Model states.

Hazard Analysis
Perform STPA on
applications in
integrated modular
avionics

Independence
Analysis

Check for consistent
use of Global
Process Model
variables by local
function(s)

Coupling Safety
Assessment

Hazardous
scenarios due to
functional
interactions,
cascading effects

Change Impact
Modify connectivity of
control structure,
controller behavior, or
insert new components
(depending on change)

Fig. 8 Proposed methodology.
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controller is responsible for thrust reverse. The control system diagram includes some of the actuator components used to control these processes
as well as generic sensors. The flight deck display is part of a higher-level control loop involving the flight crew, where the display provides
feedback for many different process states.
The hazards for any aircraft fall into the general list shown in Table 1 [36]:
For this example, the analysis focuses on [H-2] and [H-4] from Table 1, and these hazards can be refined to reflect the two§ control systems

comprising the example IMA system, flaps, and thrust reverse (see Table 1).
Figure 9 lists some of the control actions (or safety-related responsibilities) of each subsystem, including extend/retract flaps for the flaps

system controller and power on/off the thrust reverser for the thrust reverse controller. The flight crew is responsible for providing the “extend
flaps” command and “thrust reverse” command.¶ This analysis does not explicitly consider other vital components of an IMA system such as the
partition scheduler, health monitor, and RTOS.
With the completion of the system-level hazards and control structure, the next step (as noted previously) identifies unsafe control actions for

each controller in the system according to the four types of unsafe actions in Sec. III.A. Figure 10 shows the unsafe control actions for the flight
crew and thrust reverse, where each column represents one of the four types of unsafe control actions. Note that each table highlights a particular
unsafe control action; extend flaps “not provided” leads to insufficient lift on takeoff/landing, and thrust reverse “provided” causes bypass air
impingement on leading-edge flaps.
STPA step 2 identifies potential causes using the guidewords from control theory in Fig. 6. To obtain amore complete set of causes or scenarios,

an analyst should systematically work around the loop, using the guide-words in each box or on each arrow, to identify causes relative to a
particular system. However, the following analysis focuses on just the feedback portion of the loop.
Figure 11a depicts a potential cause of the unsafe control action highlighted in Fig. 10: thrust reverse provided when leading-edge flap is

extended, causing bypass air impingement. In this case, if the flaps control logic sends the flaps-extended variable if, and only if, the leading-edge
flap is in the 1 detent, the thrust reverse control may send an on command when the leading-edge flap is in the path of the thrust reverse exhaust
(Fig. 11b).
As another example, Fig. 12 depicts a potential cause of the unsafe control action highlighted in Table 1 for the flight crew: flaps not extended

during takeoff or landing. The flight crew’s responsibility is only completewhen the flap is fully extended. If the algorithm for generating the flaps
extension variable uses “flaps not in up detent” (again, see Fig. 11b), then the flight crew may believe their responsibility is completed before it
actually has been.
This short example illustrates how the STPA causal analysis can be applied to individual components and controllers for an avionics suite.

Decomposing the analysis into individual control loops (and individual unsafe control actions) allows the analyst to systematically identify causes
related to all relevant hazards of the system. However, this decomposition makes it difficult to account for coupling that might exist between the
behavior of one controlled process and another. The next step accounts for the types of unforeseen coupling that STPA did not explicitly consider
previously.

2. Independence Analysis

The independence analysis procedure first generates a list of Global Process Model states. Any component of the controlled system that is
common tomultiple controllersmust be in theGlobal ProcessModel. Once thisGlobal ProcessModel has been generated, the next step is to check
for (in)consistent use of these states,which is typically due tomisunderstandings in how thevariables are generated, rates atwhich thevariables are
updated, or conflicting controller responsibilities.

Flaps System 
Controller (FSC) 

Hydraulic  
Lines 

Leading &  
Trailing Edge 

Flaps 

Thrust Reverser 
Controller (TRC) 

Throttle 
Lever 

Thrust Reverse 
Cowl, Cascade 

Detent 
Sensors 

Sensors 

Flight Deck 
Display 

Flight Crew 

IMA 
RTOS 

Partition / 
Scheduler 

Health 
Monitor 

FLAPS 
Discrete 

Generator 

Extend Flaps 
Retract Flaps 

Thrust  
Reverse  
On / Off 

Fig. 9 Flaps-extended IMA control structure (TR, thrust reverse; LE, leading edge; TE, trailing edge).

§Note that the flight deck display is not a controller. It is considered as part of the hazard analysis, as will be shown.
¶Only those responsibilities associated with thrust reverse and flap position are included here.
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For the flaps control example, identifying Global Process Model variables can be done manually, but for a more complex example, one might
employ a search tool on all the controller process models to identify common components. There are three steps in the independence analysis:
1) Identify Global Process Model variable(s).
2) Examine each controller’s use of the Global Process Model variables using STPA results.
3) Analyze for potentially inconsistent use of Global Process Model variables (particularly with respect to issues of timing and logic).
Each of these steps will again be illustrated using the flaps controller example.
As shown in Fig. 13a, both the thrust reverse controller and flight crew have the “flaps” position in their respective process models. Thus, the

flaps state is aGlobal ProcessModel variable and is highlighted in the control loops of Fig. 13a. Figure 13b shows how the thrust reverse controller
and flight crew (via the flight deck display) may exhibit hazardous behavior due to inconsistent use of the flaps variable. The comparison in
Fig. 13b draws from the original hazard analysis performed in the previous subsection. Recall the causal analysis for the thrust reverse controller
and flight crew, where the thrust reverse controller and flight crew have hazard causes due to feedback from the flaps system. This section has
described only a small subset of the types of inconsistencies the analysis can find.Morewould be found by considering different types of feedback,
increased coupling, and more unsafe control actions.
The inconsistent use of the flaps process model variable is due to ambiguity in the generation of the flaps-extended variable. Recall from the

Background section (Sec. II) that valid rules for generating flaps extended include 1) flap surfaces detected in the 1 flap detent, 2) flap surfaces not

Table 1 General aircraft hazards

Category Description

[H-1] A pair of controlled aircraft violate minimum separation standards.
[H-2] Controlled flight into terrain.
[H-2.1] Loss of lift.
[H-3] Aircraft enters unsafe atmospheric region.
[H-4] Aircraft enters uncontrolled state.
[H-4.1] Loss of lift.
[H-4.2] Structural damage to flaps.
[H-5] Aircraft enters unsafe attitude

(excessive turbulence or pitch/roll/yaw that causes passenger injury but not necessarily aircraft loss).
[H-6] Aircraft enters a prohibited area.

Controller:
Flight
Crew

NOT PROVIDED

WHEN

REQUIRED FOR

SAFETY

PROVIDING

CAUSES

HAZARD

TOO SOON,
TOO LATE, OUT

OF SEQUENCE

STOPPED TOO

SOON, APPLIED

TOO LONG

Control
Action:

Extend
Flaps

Flaps not
extended
during

takeoff or
landing

(insufficient lift
during terminal

ops, climb)

LE flaps
extended during
thrust reversal

(exhaust
impingement)

Flaps extended
during cruise or

excessive
airspeed &

density (flap
overload)

Flaps extended
too soon during

approach
(increased drag,
loss of speed,
flap overload)

Flaps extended
too late during

approach
(overspeed,

missed runway)

Flaps do not
achieve desired

angle (e.g.
stopped at
incorrect
discrete)

Controller:
Thrust
Rev Ctl

NOT PROVIDED

WHEN

REQUIRED FOR

SAFETY

PROVIDING

CAUSES

HAZARD

TOO SOON,
TOO LATE, OUT

OF SEQUENCE

STOPPED TOO

SOON, APPLIED

TOO LONG

Control
Action:

Thrust
Reverse

ON

No thrust
reverse on short

runway*
(runway

overshoot)

Rollout takes
longer than
expected

(conflict with
other

taxiing/runway
operations)

Reverse thrust
during flight

leads to loss of
velocity, , and
therefore lift,

Bypass
air

impinges
on LE
flaps

Reverse thrust
applied too soon
before landing,
resulting in loss

of airspeed
during approach

Applied too late
during rollout
(Needed when

and high
limit

effectiveness of
friction brakes

located on
landing gear)

Stopped before
aircraft reaches
desired speed

on runway

Fig. 10 Unsafe control actions: flight crew and thrust reverse controller.
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Thrust Reverser
Controller

Process Model Variables
• Flight Mode
• TR Hardware (Cowl,…)
• LE Flaps
• …

Throttle
Lever

TR Cowl,
Cascade

Detent
Sensors

Flaps
Control

Function

Unsafe Control Action:
Thrust reverse control
provides thrust reverser 
on control command 
when LE flap is in path 
of bypass air

Cause: 
Feedback Incorrect
Algorithm for generating 
discrete is different than 
what thrust reverse control
has in process model

a) STPA causal analysis (feedback only)

Up 

Scenario:
Flaps control function only 
sends extended message 
when sensor is in 1 detent

∴Unsafe Control Action:
Thrust reverse control provides 
thrust reverser on  control law 
when LE flaps is between 
retracted and full extension

1 

FULLY EXTENDED

FULLY RETRACTED

b) Flaps extended scenario (flap graphic adapted from [32])

Fig. 11 Thrust reverse causal analysis [37].

Flight Crew
Process Model Variables
• Flight Mode
• Altitude, Airspeed,…
• Flaps
• …

Flap Lever
Handle

Control
Surfaces

Flight
Instruments

…

Flaps
Control

Function

Unsafe Cntl Action: 
Crew does not provide
extend flaps control 
action on approach, 
before flap is fully in 
1 detent)

Cause: 
Feedback Incorrect
If flaps control function 
sends extended 
message if any sensor is 
not in 0 detent .

Flight Deck
Display

Fig. 12 Flight crew causal analysis (feedback only).
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detected in the up flap detent, or 3–4) similar rules measuring the flap lever handle instead of the flap detent. Note here that, even for this trivial
example, there is a subtle result. The thrust reverse controller and flight deck display have no data interface, andwithout further analysis, one could
assume that they behave independently. The behavior of the thrust reverse controller and flight deck display are indeed not directly dependent on
one another. However, what this analysis has shown is that their behavior is not independent, and their potential for hazardous behavior is
indirectly coupled through the use of a Global Process Model component. The indirect coupling between the thrust reverse controller and flight
deck display is an example of emergence that cannot be identified by analyzing the individual software applications and their use of input
variables. STPA, supplemented with the Global Process Model variable, allows the analyst to identify these kinds of emergent properties.

3. Coupling Safety Assessment

The primary objective of the third type of analysis, coupling safety assessment, is to generate additional system constraints based on the results
of the hazard analysis and independence analysis. In particular, the coupling safety assessment identifies strategies that eliminate or mitigate
inconsistent usage of the Global Process Model. The previous two subsections identified potential sources of hazardous behavior of the example
IMA system due to inconsistent use of the flapsGlobal ProcessModel variable. The inconsistent use of the flaps variable is due to the ambiguity in
the definition of how this variable is generated. The flight crewand the thrust reverse controller have different safety-related responsibilities during
takeoff and landing, and therefore have different expectations of what flaps extended should mean physically.
Instead of the four definitions of flaps extended, shown in Sec. II.D and represented inAlgorithm 1, the analyses in the previous two subsections

suggest several alternatives for the flaps-extended generation logic. The simplest solution in this example is to choose one of the four valid
conditions shown in Algorithm 1. Algorithm 2 states simply that the flaps-extended variable should be generated if, and only if, the flap surfaces
are detected in the 1 or greater detents. It might be fairly obvious by inspection that such a trivial solutionwill eliminate one of the causes generated
in the previous subsection but not the other cause. However, the goal of this paper is to illustrate a systematic method for identifying behavioral

Algorithm 1 Original (ambiguous) flaps-extended logic (see Sec. II.D)

if Both left and right trailing-edge flap surfaces detected in the 1 or greater flap detent, then
Flaps Position→EXTENDED

else if Both left and right trailing-edge flap surfaces detected not in the Up flap detent, then
Flaps Position→EXTENDED

else if Flap Lever Handle detected in the 1 or greater flap handle detent, then
Flaps Position→EXTENDED

else if Flap Lever Handle detected not in the Up flap handle detent, then
Flaps Position→EXTENDED

end if

Thrust Reverse
Controller 

Process Model Variables
• Flight Mode
• TR Hardware (Cowl,…)
• Flaps
• …

Throttle
Lever

TR Cowl,
Cascade

Detent
Sensors

Flaps
Control

Function

Flight
Crew

Process Model Variables
• Flight Mode
• Altitude, Airspeed,…
• Flaps
• …

Flap Lever
Handle

Control
Surfaces

Flight
Instruments

…

Flight Deck
Display

Flaps
Control
Function

a) Global process model identification

Thrust Reverse Controller:
Needs flaps extended 
variable whenever flap surface 
is not in 0 detent

Assumptions: 
Thrust reverse control risks 
impingement on flaps any time 
LE flaps are not stowed

Flight Deck Display:
Needs flaps extended 
variable only when flap surface  
is in 1 or greater detent

Assumptions: 
Crew responsibility only 
complete when flaps make it 
fully to detent

b) Inconsistent use of GPMV

Fig. 13 Independence analysis.
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flaws that may lead to hazardous behavior, using these results to generate constraints and modifications to the behavior, and then checking if the
modifications resolve any issues or create new types of hazardous behavior.
Note also that there are many other types of changes that could resolve inconsistent uses of a Global Process Model variable, including

structural modification, component behavior modification, or changes in information exchange between components. The previous paragraph
suggests modifying the algorithm used to generated the flaps-extended variable. In terms of the control structure shown in Fig. 9, this is a
component change. That is, the internal behavior of a component of the control structure has been modified, and in this case, the source of the
Global Process Model variable is modified. Alternatively, other components’ behaviors may be modified. For example, the functions that use the
Global ProcessModel variable could bemodified, in this case, to account for timing differences betweenwhen a flap begins extension and reaches
its detent. Human behavior cannot simply be modified in the same sense as software, but airframe manufacturers or regulators could also add
procedures for the flight crew to account for inconsistent usage of Global ProcessModel variables. Procedures and training are not necessarily the
most elegant solution but certainly could be considered as part of a thorough design study.
Additionally, the designers may decide to add a dedicated flaps variable generator for each user function.** This fundamentally changes the

system’s control structure, and such a change is called a “structural modification.”Finally, the behavior of the connectors (the lineswith arrows) in
the control structure in Fig. 9 might be modified, which does not affect the connectivity of the components nor the components’ behavior. This is
an “information exchange modification,” and available types of changes include update rate, communication protocol, message structure and
sequence, precision, and so on.
To reiterate, the objective of the coupling safety assessment is to use both the hazard analysis and independence analysis to generate

modifications that can resolve conflicts among IMA functions and other actors in the system. The independence analysis identifies which hazard
causes need to be resolved, but the STPA hazard analysis is also instructive in terms of elucidating possible design alternatives. STPA identifies
potential flaws in how the system is controlled, and the previous paragraphs briefly suggested how the control structure may be used to identify
design alternatives or modifications. These modifications include changes in component behavior (including software logic and/or procedural
elements for human operators), changes in connectivity of the control structure itself, and changes in the way that information is exchanged
between components.Once designmodifications have been explored and selected, the next step involves the assessment ofwhether and how these
changes have impacted the existing hazard analysis.

4. Change Impact Hazard Analysis

Change impact hazard analysis involves analyzing modifications of the system that (hopefully) eliminate the identified hazardous scenarios.
One aspect of the change impact analysis is to identify assumptions in the original STPAhazard analysis that are no longer valid. Examples include
modifying control structure connections;modifying controller behavior; or inserting new components such as actuators, feedback, or entirely new
controllers. Any of these changes could result in a new set of unsafe control actions or different types of causes (see Sec. III.A and Fig. 6). For
example, changing the timing requirement of a computed variable might result in feedback delays, as in the upper right arrow of Fig. 6.
Hazard analyses require a significant level of effort and put resource burdens on both system developers and regulators. Section II explored

some of the potential benefits of IMA, including the notion that modular software applications may minimize the impact of change. However,
Sec. II.D described some limitations of this approach and suggested that more and different kinds of analyses are necessary to ensure that modular
applications behave safely upon integration.Despite these limitations, themove tominimize the impact of change is still a valid and desirable goal,
particularly in hazard analysis. This section outlines a few brief ideas about how tominimize the burden of reanalysis whenever systembehavior is
modified. In the context of this paper, system modifications are the result of inconsistencies found in the independence analysis, but system
changes clearly come from other sources. For example, the airframe manufacturer may simply decide to add a new application to provide
additional features for customer satisfaction, or application software may be replaced due to changes in hardware or system design. This paper
explicitly focuses on changes due to the coupling safety assessment, but the ideas provided in the following paragraphs should be applicable to all
types of change.
Safety depends on the accuracy of the assumptions andmodels underlying the design and hazard analysis processes [23]. It is therefore the duty

of the analyst and designer to ensure that environmental and system assumptions are enforced in the design and, conversely, to find invalid
assumptions. The fundamental aspect of change impact hazard analysis is to identify those assumptions in the original hazard analysis that have
changed. (Of course, the preceding statement has its own assumption; that the original analysis is thorough and accurate.)
Figure 14 depicts how an assumption in the existing hazard analysis can change (or not). Because of the ambiguity underlying the flaps-

extended variable, the original analysis assumed that the flaps controller could use any of the criteria to generate the discrete.†† Clearly, the
modification in logic in Algorithm 2 eliminates this assumption, and now the analyst must decipher if this change is positive, negative, or neutral
with respect to hazardous behavior. In Fig. 14, the modified assumption has actually eliminated a particular cause of hazardous behavior for the
flight crew. The crew’s responsibility is only completed when the flap is fully extended, and the modification in logic eliminates the particular
cause of feedback due to the flight display. Themodified logic has not, however, changed the causation for the thrust reverse controller, where the
thrust reverse controller does not shut of the thrust reverse until the flap is all the way in the 1 detent.
Clearly, more modifications are necessary. The flaps-extended example would require the introduction of more variables to represent the state

of the flaps, and perhaps further modification of both the flaps generation logic and the logic of user functions. The flaps-extended example is
trivial, but it is illustrative of the problems associated with assuming that IMA functions with no direct data interface actually behave
independently. The procedure described in this paper provides a systematic way to identify potential modifications, ascertain how amodification
affects the existing hazard analysis, and minimize workload by avoiding rework for aspects of the system for which the assumptions have not
changed.

Algorithm 2 Modified flaps-extended logic

if Both left and right trailing-edge flap surfaces detected in the 1 or greater flap detent, then
Flaps Position→EXTENDED

else
Flaps Position→EXTENDED

end if

**Adding dedicated functions would probably no longer be considered IMA and are more aligned with a federated approach.
††See Sec. II.D andAlgorithm1 for details on this ambiguity, but it is due to that fact that flaps extension can eithermean “not fully stowed” or “fully extended” and

can be measured directly at the flap or at the control lever.
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IV. Conclusions

This paper introduces a systematic method for identifying hazardous behavior due to interaction among software applications on an IMA
platform. Themethod uses STPA,which frames safety as a control problem rather than a reliability problem, to identify hazardous scenarios due to
software behavior. An important aspect of enforcing safe behavior is the maintenance of an accurate model of the controlled process, particularly
for highly coupled, software-intensive systems. Thus, the method introduces the concept of a Global Process Model. The analysis checks for
inconsistent Global Process Model states among software applications that have different safety-related responsibilities.
The paper then suggests a strategy for eliminating or mitigating against inconsistent Global Process Models. Finally, the paper presents a

method for analyzing the impact that the elimination/mitigation strategies have on the original hazard analysis.
The procedures in this paper are illustrated using a simple IMA system with three basic aircraft functions. One important question about the

viability of this method pertains to scalability. It is encouraging that STAMP and STPA, which provide the theoretical and analytical framework
for the methods presented here, have been used to analyze very large, complex systems, both in aerospace and other domains [30–32]. The
demonstration in this paper was performed manually, which could be a significant limitation when analyzing larger, more complex systems.
However, Thomas [33] and Thomas andLeveson [34] have extended STPA to automate certain aspects of the analysis. Thiswork has the potential
to be integrated into the methods described here, and automated tools that identify Global Process Model Variables could also be developed.
STPA identifies certain types of causal factors that are not considered when using failure-based hazard analysis techniques. The flaps control

example in Sec. III shows how the method identifies potential inconsistencies in data usage that can lead to hazardous behavior. These
inconsistencies cannot be found by analyzing application software individually because they only occurwhenmultiple software applications have
access to shared variables. The method proposed in this paper also has the potential to reduce workload because it identifies only those variables
that have the potential to cause hazardous behavior.
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