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Abstract   Systems Theoretic Process Analysis (STPA) is a powerful new hazard 

analysis method designed to go beyond traditional safety techniques – such as 

Fault Tree Analysis (FTA) – that overlook important causes of accidents like 

flawed requirements, dysfunctional component interactions, and software errors. 

While proving to be very effective on real systems, no formal structure has been 

defined for STPA and its application has been ad hoc with no rigorous procedures 

or model-based design tools. This paper defines a formal mathematical structure 

underlying STPA that can be used to rigorously identify potentially hazardous 

control actions in a system. A method for using these unsafe control actions to 

generate formal safety-critical, model-based system and software requirements is 

presented based on the underlying formal structure, as well as a way to detect con-

flicts between safety and other functional requirements during early development 

of the system. 

1 Introduction 

The introduction of new technology, such as computers and software, is changing 

the types of accidents we see today. The level of complexity in many of our new 

systems is leading to accidents in which no components failed but instead unsafe 

interactions among non-failed components lead to the loss. At the same time, tra-

ditional hazard analysis techniques assume accidents are caused by component 

failures or faults (Vesely and Roberts 1987) and oversimplify the role of humans 

(Dekker 2005, 2006). Attempts have been made to extend these traditional hazard 

analysis techniques to include software and cognitively complex human errors, but 

the underlying assumptions remain the same and do not match the fundamental 

nature of systems we are building today. For example, most software-related acci-

dents can be traced to incomplete or flawed software requirements (Leveson 1995, 

Lutz 1992); however, traditional hazard analysis methods like Fault Tree Analysis 

(FTA) emphasize component failures and overlook unsafe requirements. More 

powerful hazard analysis techniques are needed. 
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Formal verification techniques have been useful in ensuring that given re-

quirements are satisfied by an implementation, but do not assist in generating the 

requirements – i.e. they verify that given requirements are implemented correctly 

but do not validate that the given requirements are sufficient to enforce safe be-

haviour of the system. Model checking is one such approach used to ensure that 

specific software properties or safety requirements are met (Clarke et al. 1999). By 

developing a formal model of the software and specifying the desired require-

ments as formal logic statements, automated algorithms can be used to check the 

software model and either verify that the stated requirements are upheld in the 

assumed environment or provide a counterexample or scenario in which the re-

quirements are violated. However model checking requires a detailed model of the 

software implementation to be checked, and it does not validate that the require-

ments to be checked are adequate to enforce safe behaviour from an encompassing 

system perspective. 

Formal methods have also been developed to refine high-level goals and re-

quirements into more precise specifications of software behaviour (Darimont and 

Lamsweerde 1996, Lamsweerde et al. 1998). However, these methods do not in-

terface with the system hazard analysis outputs. Other work has developed criteria 

for software requirements completeness (Heimdahl and Leveson 1996, Leveson 

2000). This approach provides some basic guidance by identifying common ways 

in which a requirements specification can be incomplete or inconsistent. However, 

this effort focuses on desirable criteria for all software requirements in general; 

additional work is necessary to verify that software requirements are not only 

complete and consistent, but safe. It also does not necessarily identify require-

ments that are related to the specific application involved, such as when the throt-

tle on an aircraft needs to be advanced to prevent a stall. 

While all of these techniques are useful for their intended goals, they do not 

solve the problem of identifying or generating the safety requirements. This paper 

presents a method for generating and validating safety-critical requirements using 

a new hazard analysis method, STPA (System-Theoretic Process Analysis) that is 

based on a new accident causation model called STAMP (System-Theoretic Acci-

dent Model and Processes). 

1.1 STAMP and STPA 

STAMP is a model of accident causation that treats safety as a control problem 

rather than as a failure problem (Leveson 2012). While unsafe control includes 

inadequate handling of failures, it also includes system and software design errors 

and erroneous human decision making. In STAMP, accidents are viewed as the 

result of inadequate enforcement of constraints on system behaviour. The reason 

behind the inadequate enforcement may involve classic component failures, but it 

may also result from unsafe interactions among components operating as designed 
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and consistent with their specified requirements – or from erroneous control ac-

tions by software or humans. 

STAMP is based on the observation that there are four types of hazardous con-

trol actions that can lead to accidents:  

 A control action required for safety is not provided or is not followed. 

 An unsafe control action is provided that leads to a hazard. 

 A potentially safe control action is provided too late, too early, or out of se-

quence. 

 A safe control action is stopped too soon or applied too long. 

One potential cause of a hazardous control action is an inadequate process model 

used by human or automated controllers. The process model contains the control-

ler’s understanding of: 

1. the current state of the controlled process 

2. the desired state of the controlled process 

3. the ways the process can change state. 

It is used by the controller to determine what control actions are needed. In soft-

ware, this process model is usually implemented in variables and may be embed-

ded in the algorithms used. For humans, the process model is often called the 

‘mental model’. Software and human errors frequently result from incorrect proc-

ess models, e.g., the software thinks the spacecraft has landed and shuts off the 

descent engines. Accidents can therefore occur when an incorrect or incomplete 

process model causes a controller to provide control actions that are hazardous. 

While process model flaws are not the only cause of accidents involving software 

and human errors, they are a major contributor. 

STPA is a hazard analysis technique built on STAMP. Identifying the hazard-

ous control actions for the specific system being considered is the first step in 

STPA. These unsafe control actions can be used to identify basic constraints (re-

quirements) on the behaviour of the controller in order to ensure that unsafe be-

haviour does not result. Additional analysis can then be performed to identify the 

detailed scenarios leading to the violation of these safety constraints, potentially 

identifying the need for even more requirements. As in any hazard analysis, the 

detailed scenarios are then used to alter the design to eliminate or control the haz-

ards in the system design. Additional design features to control hazards, in turn, 

may generate new hazards or new paths to hazards and lead to additional safety-

critical requirements.  

This paper presents a formal technique based on STPA that can be used to 

identify hazardous control actions and generate formal, model-based specifica-

tions that enforce safe behaviour in the system. 
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1.2 Overview of the STPA process 

Before beginning an STPA hazard analysis, potential accidents and corresponding 

system-level hazards are identified. As an illustrative example, consider a simple 

automated door control system for a train. The accidents to be considered are: 

injury to a person caused by falling out of the train, a person is hit by a closing 

door, or people are trapped inside a train during an emergency. The system-level 

hazards relevant to this definition of an accident include:  

H-1. Doors close on a person in the doorway. 

H-2. Doors open when the train is moving or not aligned with a station platform. 

H-3. Passengers/staff are unable to exit during an emergency. 

STPA is performed on a functional control diagram of the system, shown in Fig-

ure 1 for the train door controller. STPA has two main steps. 

 

Fig. 1. Simplified control diagram for an automated door controller 

STPA Step One. The first step of STPA identifies control actions for each com-

ponent that can lead to one or more of the defined system hazards. The four gen-

eral types of hazardous control actions shown above can be used to guide the en-

gineering team as they perform this step. For example, one hazardous control ac-

tion would be a close door command that is issued while a person is in the door-

way. 

STPA Step Two. The second step of STPA examines each control loop in the 

safety control structure to identify potential causal factors for each hazardous con-

trol action, i.e., the behaviours that can lead to the hazardous control actions iden-
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tified in Step One. 0shows a generic control loop that can be used to guide this 

step. While STPA Step One focused on the provided control actions (the upper 

left corner of 0), STPA Step Two expands the analysis to consider causal factors 

along the rest of the control loop. 

 

Fig. 2. General control loop with causal factors 

Consider the example above where the hazardous control action is to command 

the doors closed on a person in the doorway. STPA Step Two would identify one 

potential cause of that action as an incorrect belief that the doorway is clear (an 

incorrect process model). The incorrect process model, in turn, may be the result 

of inadequate feedback provided by a failed sensor or the feedback may be de-

layed or corrupted. Alternatively, the designers may have omitted a feedback sig-

nal.  

Once the second step of STPA has been applied to determine potential causes 

for each hazardous control action identified in STPA Step One, the causes should 

be eliminated or controlled in the design. 

STPA has been described in other places (Leveson 2012) and is not described 

in further detail here due to space limitations. The goal of this paper is to formal-

ize the process and identify tools that can be used to perform it. 
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2 Formal syntax for hazardous control actions 

A hazardous control action in the STAMP accident model is a critical output of 

STPA Step One and forms the basis for STPA Step Two. In this section a formal 

syntax is defined for hazardous control actions. Sections 3 and 4 describe how 

STPA hazard analysis can be partially automated based on this syntax and how 

model-based safety requirements can be generated. 

Hazardous control actions can be expressed formally as a four-tuple (S, T, CA, 

C) where: 

 S is a controller in the system that can issue control actions. The controller may 

be automated or a human. 

 T is the type of control action. There are two possible types: Provided describes 

a control action that is issued by the controller while Not Provided describes a 

control action that is not issued. 

 CA is the specific control action or command that is (or is not) output by the 

controller. 

 C is the context in which the control action is (or is not) provided. 

For example, in the case of the automated train door controller from Section 1.2, 

consider the following hazardous control action: the train door controller provides 

the open door command while the train is moving. This control command can be 

expressed as (S, T, CA, C) where: 

S = Train door controller. 

T = Provided. 

CA = Open door command. 

C = Train is moving. 

Each element of a hazardous control action is a member of a larger set, i.e. the 

following properties must hold: 

1. S ∈ Ş, where Ş is the set of controllers in the system. 

2. T ∈  , where   = {Provided, Not Provided}. 

3. CA ∈   (S), where   (S) is the set of control actions that can be provided by 

controller S. 

4. C ∈  (S), where  (S) is the set of potential contexts for controller S. 

To assist in enumerating or aggregating individual contexts, the context C can be 

further decomposed into variables, values, and conditions: 

 V is a variable or attribute in the system or environment that may take on two 

or more values. For example, train motion and train position are two potential 

variables for a train. 

 VL is a value that can be assumed by a variable. For example, stopped is a 

value that can be assumed by the variable train motion. 
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 CO is a condition expressed as a single variable/value pair. For example, train 

motion is stopped is a condition. 

 The context C is the combination of one or more conditions and defines a 

unique state of the system or environment in which a control action may be 

given. 

The following additional properties related to the context of a hazardous control 

action can therefore be defined: 

5. V ∈  (S), where  (S) is the set of variables referenced in the system hazards 

 . 

6. VL ∈   (V), where   (V) is the set of values that can be assumed by variable 

V. 

7. CO = (V, VL) ∈   (S), where   (S) is the set of conditions for controller S. 

8. C = (CO1, CO2, ...), where each COi is independent. That is, no two COi refer to 

the same variable V. 

Finally, each hazardous control action must be linked to a system-level hazard: 

9. To qualify as a hazardous control action, the event (S, T, CA, C) must cause a 

hazard H ∈  , where   is the set of system level hazards. 

A hazardous control action expressed as a four-tuple (S, T, CA, C) must satisfy 

the above properties 1-9. 

3 Identifying hazardous control actions 

An informal procedure for identifying hazardous control actions has previously 

been described in (Thomas and Leveson 2011). This section defines a formal 

method that can be used to automate much of that manual process. 

Using the formal definitions in Section 2, a set of potentially hazardous control 

actions can be enumerated once certain information about the system is known. 

The information needed is: 

 : the set of system-level hazards 

Ş: the set of controllers in the system 

  (S): the set of control actions for each controller S 

 : the set of variables referenced in the hazards   

  (V): the set of potential values for each variable V. 

Most, if not all, of this information can be determined well in advance of the de-

tailed design of a system. The set   is typically determined during the Prelimi-

nary Hazard Analysis (PHA) of the system. The sets Ş and   (S) can be ex-

tracted from a preliminary control structure of the system. The set   is identical to 

the process model variables in the control structure, and can be extracted from the 
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set of hazards  . The potential values   (V) are also found in the process model, 

and can be defined once   is known. 

Given this basic information about the system, properties 1-8 from Section 2 

can be applied to automatically generate a list of potential hazardous control ac-

tions in the form of combinations of (S, T, CA, C). First, a controller S is selected 

from the set Ş. Then the set of conditions   (S) is generated by pairing each vari-

able in   with each value in   (V). Then the set of contexts   is generated by 

combining each independent condition from   (S). Finally, the list of potentially 

hazardous control actions for the selected controller S is generated by combining 

each element of  ,   (S), and  (S). This process can be repeated for each con-

troller S in the set Ş. 

This process generates a set of potential hazardous control actions in which 

properties 1-8 from Section 2 are guaranteed to be satisfied. Because a detailed 

behavioural model of the system typically does not exist during the earliest phases 

of development, it may not be possible to automatically apply property 9. How-

ever, this final step can be performed by the engineering team. Because the algo-

rithm above generates combinations that satisfy all other criteria, the generated list 

is a superset of the actual hazardous control actions. Therefore the remaining part 

of the task that is not automated is a trimming exercise: the engineering team does 

not need to propose any new hazardous control actions, they only need to remove 

non-hazardous control actions from the generated list based on their knowledge of 

the physics and other engineering properties of the overall system. 

For example, in Tables 1 and 2 the engineering team would need to fill in the 

columns on the far right: 

Table 1. Example hazardous control action table for door open command NOT provided 

Control action Train motion Emergency Door obstruction Hazardous? 

Door open command 

NOT provided while… 

(doesn’t 

matter) 

Yes (doesn’t matter) Yes (see H-3) 

Door open command 

NOT provided while… 

(doesn’t 

matter) 

(doesn’t 

matter) 

Closing on 

obstruction 
Yes (see H-1)1 

Door open command 

NOT provided while… 

(all others) No 

For each potential hazardous control action in Table 1 (T = Provided), timing in-

formation such as potentially hazardous delays within a given context should also 

be considered. For example, suppose it is not hazardous to provide a door open 

command while the train is stopped and there is an emergency. In fact, this behav-

iour may be exactly what is expected of the system. However, providing the door 

open command too late in that context could certainly be hazardous even if the 

control action is eventually provided. This condition can be addressed by adding 

                                                           
1 Of course, the system should be designed so the doors never close on a person. However, in the 

event that the doors do close on a person, the system must be designed to immediately open the 

doors (i.e. minimize H-1). 



Generating Formal Model-Based Safety Requirements for Complex Systems      9 

  

the columns hazardous if provided too early and hazardous if provided too late as 

illustrated in the second row of Table 3. 

Table 2. Example hazardous control action table for door open command provided 

Control action Train motion Emergency Train position Hazardous? 

Door open command 

provided while… 

Moving (doesn’t 

matter) 

(doesn’t matter) Yes (see H-2) 

Door open command 

provided while… 

Stopped Yes (doesn’t matter) No 

Door open command 

provided while… 

Stopped No Not at platform Yes (see H-2) 

Door open command 

provided while… 

Stopped No At platform No 

Table 3. Example hazardous control action table including timing information 

Control 

action 

Train 

motion 

Emergency Train 

position 

Hazardous? Hazardous 

if provided 

too early? 

Hazardous 

if provided 

too late? 

Door open 

command 

provided 

while… 

Moving (doesn’t 

matter) 

(doesn’t 

matter) 

Yes 

(see H-2) 

Yes 

(see H-2) 

Yes 

(see H-2) 

Door open 

command 

provided 

while… 

Stopped Yes (doesn’t 

matter) 

No No Yes 

(see H-3) 

Door open 

command 

provided 

while… 

Stopped No Not at 

platform 

Yes 

(see H-2) 

Yes 

(see H-2) 

Yes 

(see H-2) 

Door open 

command 

provided 

while… 

Stopped No At 

platform 

No No No 

Once the hazardous control actions have been identified, each action can be exam-

ined to define a safety constraint for the system. For example, consider the haz-

ardous control action from the first row of Table 1: 

Hazardous control action. Train door controller provides the open door com-

mand while the train is moving. 

Safety constraint. Train door controller must not provide the open door command 

while the train is moving. 

While this simple example is fairly obvious and would probably not require the 

use of a formal method, our experience using STPA on real systems such as 

spacecraft (Ishimatsu et al. 2010), the air transportation system (Fleming et al. 
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2011, Laracy 2007), and missile defence systems (Pereira et al. 2006) has led to 

the identification of safety-critical requirements that were never considered during 

the normal development of these systems. 

4 Generating model-based specifications 

Because hazardous control actions have been defined with a formal representation, 

it is possible to compare these actions against an existing formal model-based 

specification (e.g. SpecTRM-RL) to determine whether the hazardous control ac-

tions can occur in an existing design. Furthermore, if no formal specification ex-

ists, it is possible to automatically generate the parts of the specification necessary 

to ensure hazardous behaviour is prevented. 

The following functions can be defined from the set of hazardous control ac-

tions: 

HP(H, S, CA, C). This function is True if and only if hazard H results from con-

troller S providing command CA in context C. This function is defined for all H ∈ 

 , S ∈ Ş, CA ∈   (S), C ∈  (S). 

HNP(H, S, CA, C). This function is True if and only if hazard H results from con-

troller S not providing command CA in context C. This function is defined for all 

H ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S). 

The formal requirement specification or control algorithm to be generated can be 

expressed as the following function: 

R(S, CA, C). This function is True if and only if controller S is required to pro-

vide command CA in context C. This function must be defined for all S ∈ Ş, CA ∈ 
  (S), C ∈  (S). 

The goal, then, is to compute the function R such that hazardous behaviour is pre-

vented. Namely, any control action that is hazardous in a given context must not 

be provided by the control algorithm in that context: 

∀ H ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S): HP(H, S, CA, C) ⇒ ¬R(S, CA, C) 

In addition, if a control action that is absent in a given context will produce a haz-

ard, then the control action must be provided by the control algorithm in that con-

text: 

∀ H ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S): HNP(H, S, CA, C) ⇒ R(S, CA, C) 

The required behaviour R can then be generated to satisfy these two criteria. Any 

behaviour appearing in HNP must appear in R, and any behaviour that appears in 

HP must be absent from R. 

The resulting controller requirements (R) can be converted into a formal 

model-based requirements specification language such as SpecTRM-RL (Leveson 
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et al. 1999). For example, Figure 3 contains a formal SpecTRM-RL specification 

for the train door example. The three columns on the right specify three contexts 

in which the open doors command must be provided: when the train is aligned and 

stopped, or when the train is stopped and an emergency exists, or when the doors 

are closing on a person and the train is stopped. The right two columns specify 

behaviour that is required to prevent the system hazards, and were automatically 

generated by a software tool that implements the procedure above. The first col-

umn specifies behaviour that is necessary for the intended function of the system, 

not to avoid hazards, and therefore is not automatically generated by the procedure 

above. 

 

Fig. 3. Generated SpecTRM-RL table for the door open command 

4.1 Automated consistency checking 

If the same behaviour appears in HNP and HP, then no R can satisfy both criteria. 

The following additional criterion can be defined to detect these conflicts and en-

sure that a solution R exists: 

∀ H1 ∈  , H2 ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S): HP(H1, S, CA, C) ⇒ 
¬HNP(H2, S, CA, C) 

The third criterion above is a consistency check that can be applied to the hazard-

ous control actions even before the formal specification R is generated. If the third 

criterion does not hold, there is a design or requirements flaw in the system. Both 

action and inaction by controller S will lead to a hazard and violate a safety con-

straint. Although the conflict cannot be automatically resolved, it can be automati-

cally detected and flagged for review by the engineering team. 

For example, suppose the train from Section 3 is moving and there is an on-

board emergency such as a fire. HNP will state that not opening the door in this 

situation is hazardous due to H-3. However, HP states that opening the door in this 
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situation is hazardous due to H-1. This is an example of a conflict that can be 

automatically detected by the formal criterion above. 

In general, the system design may need to be reviewed or revised to ensure that 

conflicts are handled appropriately. Ideally, the conflict would be eliminated by a 

design change. If elimination is not possible, hazard mitigation or reduction may 

be performed by placing constraints on other control actions in the system (con-

straints on HP and HNP for other S and CA). For example, if the train is moving 

and there is an emergency then a constraint can be defined for the braking system 

controller such that the brakes are always applied in this situation. The Train Mo-

tion variable will soon transition from moving to stopped, thereby resolving the 

conflict for the train door controller. 

If hazard mitigation or reduction is not possible, the conflict could alternatively 

be handled based on hazard severity or priority. 

4.2 Extending hazard analysis to non-safety goals 

One of the columns in Figure 3 specifies behaviour that is necessary for the in-

tended function of the system, not to avoid safety hazards. However, this column 

is clearly important; without it, the whole train system could not achieve its pur-

pose of transporting people. 

Although the procedures thus far have focused on safety-related behaviour, the 

functional behaviour of the system can be defined in the same way and functional 

specifications can be generated along with the safety-related specifications by 

following a similar method. More specifically, in addition to HP and HNP – which 

capture hazardous control actions – a new function FP can be introduced to cap-

ture control actions that are needed to achieve functional goals: 

FP(F, S, CA, C). This function is True if and only if system-level function F must 

be achieved by controller S providing command CA in context C to achieve a sys-

tem-level function F. 

The function FP can be defined by identifying which control actions in each con-

text are necessary to achieve the system-level functions  . The same process used 

in Section 3 to identify hazardous control actions can be applied to the system-

level functions   as opposed to the system-level hazards  . The required behav-

iour R can then be computed as in Section 4, but with an additional criterion to 

capture the functional behaviour: 

∀ F ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S): FP(F, S, CA, C) ⇒ R(S, CA, C) 

Applying this criterion, any behaviour appearing in FP must also appear in R. 

Note that if the same behaviour appears in FP and HP, then there is a design or 

requirements flaw in the system because the same control action is both necessary 

to achieve a system-level function and prohibited because it presents a system-

level hazard. In that case, no R would exist that prevents the hazards while achiev-
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ing the system functions. The following additional criterion can therefore be de-

fined: 

∀ H ∈  , F ∈  , S ∈ Ş, CA ∈   (S), C ∈  (S): HP(H, S, CA, C) ⇒ ¬FP(F, S, 
CA, C) 

This final criterion is a consistency check to detect conflicts between hazardous 

and functional behaviour. As before, these conflicts cannot be automatically re-

solved, but they can be automatically detected and flagged for review by the engi-

neering team. The full SpecTRM-RL model in Figure 3 was generated automati-

cally by a software tool that implements the five criteria from this section. 

5 Conclusions 

This paper presents a formal structure underlying STPA hazard analysis and a 

corresponding method to systematically identify hazardous control actions in a 

system. A set of formal criteria have been defined to automate much of the hazard 

analysis process even when a detailed model of the system or software compo-

nents has not yet been developed. A method for using the STPA hazard analysis 

results to generate formal safety-critical, model-based system and software re-

quirements is also presented. The generated formal requirements are executable 

and can be imported into the SpecTRM toolset (Leveson et al. 1999) for simula-

tion if needed. 

The ability to formally translate between the hazard analysis and model-based 

requirements also permits the automatic detection of requirements flaws or con-

flicts in which not all hazards are prevented. The criteria necessary to detect such 

conflicts are defined in Section 4 and a prototype tool has been developed to 

automatically identify such conflicts in a set of formal requirements. The same 

approach can be applied to generate functional requirements in parallel with the 

safety requirements. As a result, conflicts between safety and functional goals can 

also be detected by evaluating the additional criteria defined in Section 4 above. 
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