
© John Thomas and Nancy Leveson 2013. Published by the Safety-Critical Systems Club. All

Rights Reserved

Generating Formal Model-Based Safety

Requirements for Complex, Software- and

Human-Intensive Systems

John Thomas and Nancy Leveson

Complex Systems Research Laboratory, MIT

Cambridge, MA USA

Abstract Systems Theoretic Process Analysis (STPA) is a powerful new hazard

analysis method designed to go beyond traditional safety techniques – such as

Fault Tree Analysis (FTA) – that overlook important causes of accidents like

flawed requirements, dysfunctional component interactions, and software errors.

While proving to be very effective on real systems, no formal structure has been

defined for STPA and its application has been ad hoc with no rigorous procedures

or model-based design tools. This paper defines a formal mathematical structure

underlying STPA that can be used to rigorously identify potentially hazardous

control actions in a system. A method for using these unsafe control actions to

generate formal safety-critical, model-based system and software requirements is

presented based on the underlying formal structure, as well as a way to detect con-

flicts between safety and other functional requirements during early development

of the system.

1 Introduction

The introduction of new technology, such as computers and software, is changing

the types of accidents we see today. The level of complexity in many of our new

systems is leading to accidents in which no components failed but instead unsafe

interactions among non-failed components lead to the loss. At the same time, tra-

ditional hazard analysis techniques assume accidents are caused by component

failures or faults (Vesely and Roberts 1987) and oversimplify the role of humans

(Dekker 2005, 2006). Attempts have been made to extend these traditional hazard

analysis techniques to include software and cognitively complex human errors, but

the underlying assumptions remain the same and do not match the fundamental

nature of systems we are building today. For example, most software-related acci-

dents can be traced to incomplete or flawed software requirements (Leveson 1995,

Lutz 1992); however, traditional hazard analysis methods like Fault Tree Analysis

(FTA) emphasize component failures and overlook unsafe requirements. More

powerful hazard analysis techniques are needed.

2 John Thomas and Nancy Leveson

Formal verification techniques have been useful in ensuring that given re-

quirements are satisfied by an implementation, but do not assist in generating the

requirements – i.e. they verify that given requirements are implemented correctly

but do not validate that the given requirements are sufficient to enforce safe be-

haviour of the system. Model checking is one such approach used to ensure that

specific software properties or safety requirements are met (Clarke et al. 1999). By

developing a formal model of the software and specifying the desired require-

ments as formal logic statements, automated algorithms can be used to check the

software model and either verify that the stated requirements are upheld in the

assumed environment or provide a counterexample or scenario in which the re-

quirements are violated. However model checking requires a detailed model of the

software implementation to be checked, and it does not validate that the require-

ments to be checked are adequate to enforce safe behaviour from an encompassing

system perspective.

Formal methods have also been developed to refine high-level goals and re-

quirements into more precise specifications of software behaviour (Darimont and

Lamsweerde 1996, Lamsweerde et al. 1998). However, these methods do not in-

terface with the system hazard analysis outputs. Other work has developed criteria

for software requirements completeness (Heimdahl and Leveson 1996, Leveson

2000). This approach provides some basic guidance by identifying common ways

in which a requirements specification can be incomplete or inconsistent. However,

this effort focuses on desirable criteria for all software requirements in general;

additional work is necessary to verify that software requirements are not only

complete and consistent, but safe. It also does not necessarily identify require-

ments that are related to the specific application involved, such as when the throt-

tle on an aircraft needs to be advanced to prevent a stall.

While all of these techniques are useful for their intended goals, they do not

solve the problem of identifying or generating the safety requirements. This paper

presents a method for generating and validating safety-critical requirements using

a new hazard analysis method, STPA (System-Theoretic Process Analysis) that is

based on a new accident causation model called STAMP (System-Theoretic Acci-

dent Model and Processes).

1.1 STAMP and STPA

STAMP is a model of accident causation that treats safety as a control problem

rather than as a failure problem (Leveson 2012). While unsafe control includes

inadequate handling of failures, it also includes system and software design errors

and erroneous human decision making. In STAMP, accidents are viewed as the

result of inadequate enforcement of constraints on system behaviour. The reason

behind the inadequate enforcement may involve classic component failures, but it

may also result from unsafe interactions among components operating as designed

Generating Formal Model-Based Safety Requirements for Complex Systems 3

and consistent with their specified requirements – or from erroneous control ac-

tions by software or humans.

STAMP is based on the observation that there are four types of hazardous con-

trol actions that can lead to accidents:

 A control action required for safety is not provided or is not followed.

 An unsafe control action is provided that leads to a hazard.

 A potentially safe control action is provided too late, too early, or out of se-

quence.

 A safe control action is stopped too soon or applied too long.

One potential cause of a hazardous control action is an inadequate process model

used by human or automated controllers. The process model contains the control-

ler’s understanding of:

1. the current state of the controlled process

2. the desired state of the controlled process

3. the ways the process can change state.

It is used by the controller to determine what control actions are needed. In soft-

ware, this process model is usually implemented in variables and may be embed-

ded in the algorithms used. For humans, the process model is often called the

‘mental model’. Software and human errors frequently result from incorrect proc-

ess models, e.g., the software thinks the spacecraft has landed and shuts off the

descent engines. Accidents can therefore occur when an incorrect or incomplete

process model causes a controller to provide control actions that are hazardous.

While process model flaws are not the only cause of accidents involving software

and human errors, they are a major contributor.

STPA is a hazard analysis technique built on STAMP. Identifying the hazard-

ous control actions for the specific system being considered is the first step in

STPA. These unsafe control actions can be used to identify basic constraints (re-

quirements) on the behaviour of the controller in order to ensure that unsafe be-

haviour does not result. Additional analysis can then be performed to identify the

detailed scenarios leading to the violation of these safety constraints, potentially

identifying the need for even more requirements. As in any hazard analysis, the

detailed scenarios are then used to alter the design to eliminate or control the haz-

ards in the system design. Additional design features to control hazards, in turn,

may generate new hazards or new paths to hazards and lead to additional safety-

critical requirements.

This paper presents a formal technique based on STPA that can be used to

identify hazardous control actions and generate formal, model-based specifica-

tions that enforce safe behaviour in the system.

4 John Thomas and Nancy Leveson

1.2 Overview of the STPA process

Before beginning an STPA hazard analysis, potential accidents and corresponding

system-level hazards are identified. As an illustrative example, consider a simple

automated door control system for a train. The accidents to be considered are:

injury to a person caused by falling out of the train, a person is hit by a closing

door, or people are trapped inside a train during an emergency. The system-level

hazards relevant to this definition of an accident include:

H-1. Doors close on a person in the doorway.

H-2. Doors open when the train is moving or not aligned with a station platform.

H-3. Passengers/staff are unable to exit during an emergency.

STPA is performed on a functional control diagram of the system, shown in Fig-

ure 1 for the train door controller. STPA has two main steps.

Fig. 1. Simplified control diagram for an automated door controller

STPA Step One. The first step of STPA identifies control actions for each com-

ponent that can lead to one or more of the defined system hazards. The four gen-

eral types of hazardous control actions shown above can be used to guide the en-

gineering team as they perform this step. For example, one hazardous control ac-

tion would be a close door command that is issued while a person is in the door-

way.

STPA Step Two. The second step of STPA examines each control loop in the

safety control structure to identify potential causal factors for each hazardous con-

trol action, i.e., the behaviours that can lead to the hazardous control actions iden-

Generating Formal Model-Based Safety Requirements for Complex Systems 5

tified in Step One. 0shows a generic control loop that can be used to guide this

step. While STPA Step One focused on the provided control actions (the upper

left corner of 0), STPA Step Two expands the analysis to consider causal factors

along the rest of the control loop.

Fig. 2. General control loop with causal factors

Consider the example above where the hazardous control action is to command

the doors closed on a person in the doorway. STPA Step Two would identify one

potential cause of that action as an incorrect belief that the doorway is clear (an

incorrect process model). The incorrect process model, in turn, may be the result

of inadequate feedback provided by a failed sensor or the feedback may be de-

layed or corrupted. Alternatively, the designers may have omitted a feedback sig-

nal.

Once the second step of STPA has been applied to determine potential causes

for each hazardous control action identified in STPA Step One, the causes should

be eliminated or controlled in the design.

STPA has been described in other places (Leveson 2012) and is not described

in further detail here due to space limitations. The goal of this paper is to formal-

ize the process and identify tools that can be used to perform it.

6 John Thomas and Nancy Leveson

2 Formal syntax for hazardous control actions

A hazardous control action in the STAMP accident model is a critical output of

STPA Step One and forms the basis for STPA Step Two. In this section a formal

syntax is defined for hazardous control actions. Sections 3 and 4 describe how

STPA hazard analysis can be partially automated based on this syntax and how

model-based safety requirements can be generated.

Hazardous control actions can be expressed formally as a four-tuple (S, T, CA,

C) where:

 S is a controller in the system that can issue control actions. The controller may

be automated or a human.

 T is the type of control action. There are two possible types: Provided describes

a control action that is issued by the controller while Not Provided describes a

control action that is not issued.

 CA is the specific control action or command that is (or is not) output by the

controller.

 C is the context in which the control action is (or is not) provided.

For example, in the case of the automated train door controller from Section 1.2,

consider the following hazardous control action: the train door controller provides

the open door command while the train is moving. This control command can be

expressed as (S, T, CA, C) where:

S = Train door controller.

T = Provided.

CA = Open door command.

C = Train is moving.

Each element of a hazardous control action is a member of a larger set, i.e. the

following properties must hold:

1. S ∈ Ş, where Ş is the set of controllers in the system.

2. T ∈ , where = {Provided, Not Provided}.

3. CA ∈ (S), where (S) is the set of control actions that can be provided by

controller S.

4. C ∈ (S), where (S) is the set of potential contexts for controller S.

To assist in enumerating or aggregating individual contexts, the context C can be

further decomposed into variables, values, and conditions:

 V is a variable or attribute in the system or environment that may take on two

or more values. For example, train motion and train position are two potential

variables for a train.

 VL is a value that can be assumed by a variable. For example, stopped is a

value that can be assumed by the variable train motion.

Generating Formal Model-Based Safety Requirements for Complex Systems 7

 CO is a condition expressed as a single variable/value pair. For example, train

motion is stopped is a condition.

 The context C is the combination of one or more conditions and defines a

unique state of the system or environment in which a control action may be

given.

The following additional properties related to the context of a hazardous control

action can therefore be defined:

5. V ∈ (S), where (S) is the set of variables referenced in the system hazards

 .

6. VL ∈ (V), where (V) is the set of values that can be assumed by variable

V.

7. CO = (V, VL) ∈ (S), where (S) is the set of conditions for controller S.

8. C = (CO1, CO2, ...), where each COi is independent. That is, no two COi refer to

the same variable V.

Finally, each hazardous control action must be linked to a system-level hazard:

9. To qualify as a hazardous control action, the event (S, T, CA, C) must cause a

hazard H ∈ , where is the set of system level hazards.

A hazardous control action expressed as a four-tuple (S, T, CA, C) must satisfy

the above properties 1-9.

3 Identifying hazardous control actions

An informal procedure for identifying hazardous control actions has previously

been described in (Thomas and Leveson 2011). This section defines a formal

method that can be used to automate much of that manual process.

Using the formal definitions in Section 2, a set of potentially hazardous control

actions can be enumerated once certain information about the system is known.

The information needed is:

 : the set of system-level hazards

Ş: the set of controllers in the system

 (S): the set of control actions for each controller S

 : the set of variables referenced in the hazards

 (V): the set of potential values for each variable V.

Most, if not all, of this information can be determined well in advance of the de-

tailed design of a system. The set is typically determined during the Prelimi-

nary Hazard Analysis (PHA) of the system. The sets Ş and (S) can be ex-

tracted from a preliminary control structure of the system. The set is identical to

the process model variables in the control structure, and can be extracted from the

8 John Thomas and Nancy Leveson

set of hazards . The potential values (V) are also found in the process model,

and can be defined once is known.

Given this basic information about the system, properties 1-8 from Section 2

can be applied to automatically generate a list of potential hazardous control ac-

tions in the form of combinations of (S, T, CA, C). First, a controller S is selected

from the set Ş. Then the set of conditions (S) is generated by pairing each vari-

able in with each value in (V). Then the set of contexts is generated by

combining each independent condition from (S). Finally, the list of potentially

hazardous control actions for the selected controller S is generated by combining

each element of , (S), and (S). This process can be repeated for each con-

troller S in the set Ş.

This process generates a set of potential hazardous control actions in which

properties 1-8 from Section 2 are guaranteed to be satisfied. Because a detailed

behavioural model of the system typically does not exist during the earliest phases

of development, it may not be possible to automatically apply property 9. How-

ever, this final step can be performed by the engineering team. Because the algo-

rithm above generates combinations that satisfy all other criteria, the generated list

is a superset of the actual hazardous control actions. Therefore the remaining part

of the task that is not automated is a trimming exercise: the engineering team does

not need to propose any new hazardous control actions, they only need to remove

non-hazardous control actions from the generated list based on their knowledge of

the physics and other engineering properties of the overall system.

For example, in Tables 1 and 2 the engineering team would need to fill in the

columns on the far right:

Table 1. Example hazardous control action table for door open command NOT provided

Control action Train motion Emergency Door obstruction Hazardous?

Door open command

NOT provided while…

(doesn’t

matter)

Yes (doesn’t matter) Yes (see H-3)

Door open command

NOT provided while…

(doesn’t

matter)

(doesn’t

matter)

Closing on

obstruction
Yes (see H-1)1

Door open command

NOT provided while…

(all others) No

For each potential hazardous control action in Table 1 (T = Provided), timing in-

formation such as potentially hazardous delays within a given context should also

be considered. For example, suppose it is not hazardous to provide a door open

command while the train is stopped and there is an emergency. In fact, this behav-

iour may be exactly what is expected of the system. However, providing the door

open command too late in that context could certainly be hazardous even if the

control action is eventually provided. This condition can be addressed by adding

1 Of course, the system should be designed so the doors never close on a person. However, in the

event that the doors do close on a person, the system must be designed to immediately open the

doors (i.e. minimize H-1).

Generating Formal Model-Based Safety Requirements for Complex Systems 9

the columns hazardous if provided too early and hazardous if provided too late as

illustrated in the second row of Table 3.

Table 2. Example hazardous control action table for door open command provided

Control action Train motion Emergency Train position Hazardous?

Door open command

provided while…

Moving (doesn’t

matter)

(doesn’t matter) Yes (see H-2)

Door open command

provided while…

Stopped Yes (doesn’t matter) No

Door open command

provided while…

Stopped No Not at platform Yes (see H-2)

Door open command

provided while…

Stopped No At platform No

Table 3. Example hazardous control action table including timing information

Control

action

Train

motion

Emergency Train

position

Hazardous? Hazardous

if provided

too early?

Hazardous

if provided

too late?

Door open

command

provided

while…

Moving (doesn’t

matter)

(doesn’t

matter)

Yes

(see H-2)

Yes

(see H-2)

Yes

(see H-2)

Door open

command

provided

while…

Stopped Yes (doesn’t

matter)

No No Yes

(see H-3)

Door open

command

provided

while…

Stopped No Not at

platform

Yes

(see H-2)

Yes

(see H-2)

Yes

(see H-2)

Door open

command

provided

while…

Stopped No At

platform

No No No

Once the hazardous control actions have been identified, each action can be exam-

ined to define a safety constraint for the system. For example, consider the haz-

ardous control action from the first row of Table 1:

Hazardous control action. Train door controller provides the open door com-

mand while the train is moving.

Safety constraint. Train door controller must not provide the open door command

while the train is moving.

While this simple example is fairly obvious and would probably not require the

use of a formal method, our experience using STPA on real systems such as

spacecraft (Ishimatsu et al. 2010), the air transportation system (Fleming et al.

10 John Thomas and Nancy Leveson

2011, Laracy 2007), and missile defence systems (Pereira et al. 2006) has led to

the identification of safety-critical requirements that were never considered during

the normal development of these systems.

4 Generating model-based specifications

Because hazardous control actions have been defined with a formal representation,

it is possible to compare these actions against an existing formal model-based

specification (e.g. SpecTRM-RL) to determine whether the hazardous control ac-

tions can occur in an existing design. Furthermore, if no formal specification ex-

ists, it is possible to automatically generate the parts of the specification necessary

to ensure hazardous behaviour is prevented.

The following functions can be defined from the set of hazardous control ac-

tions:

HP(H, S, CA, C). This function is True if and only if hazard H results from con-

troller S providing command CA in context C. This function is defined for all H ∈

 , S ∈ Ş, CA ∈ (S), C ∈ (S).

HNP(H, S, CA, C). This function is True if and only if hazard H results from con-

troller S not providing command CA in context C. This function is defined for all

H ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S).

The formal requirement specification or control algorithm to be generated can be

expressed as the following function:

R(S, CA, C). This function is True if and only if controller S is required to pro-

vide command CA in context C. This function must be defined for all S ∈ Ş, CA ∈
 (S), C ∈ (S).

The goal, then, is to compute the function R such that hazardous behaviour is pre-

vented. Namely, any control action that is hazardous in a given context must not

be provided by the control algorithm in that context:

∀ H ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬R(S, CA, C)

In addition, if a control action that is absent in a given context will produce a haz-

ard, then the control action must be provided by the control algorithm in that con-

text:

∀ H ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S): HNP(H, S, CA, C) ⇒ R(S, CA, C)

The required behaviour R can then be generated to satisfy these two criteria. Any

behaviour appearing in HNP must appear in R, and any behaviour that appears in

HP must be absent from R.

The resulting controller requirements (R) can be converted into a formal

model-based requirements specification language such as SpecTRM-RL (Leveson

Generating Formal Model-Based Safety Requirements for Complex Systems 11

et al. 1999). For example, Figure 3 contains a formal SpecTRM-RL specification

for the train door example. The three columns on the right specify three contexts

in which the open doors command must be provided: when the train is aligned and

stopped, or when the train is stopped and an emergency exists, or when the doors

are closing on a person and the train is stopped. The right two columns specify

behaviour that is required to prevent the system hazards, and were automatically

generated by a software tool that implements the procedure above. The first col-

umn specifies behaviour that is necessary for the intended function of the system,

not to avoid hazards, and therefore is not automatically generated by the procedure

above.

Fig. 3. Generated SpecTRM-RL table for the door open command

4.1 Automated consistency checking

If the same behaviour appears in HNP and HP, then no R can satisfy both criteria.

The following additional criterion can be defined to detect these conflicts and en-

sure that a solution R exists:

∀ H1 ∈ , H2 ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S): HP(H1, S, CA, C) ⇒
¬HNP(H2, S, CA, C)

The third criterion above is a consistency check that can be applied to the hazard-

ous control actions even before the formal specification R is generated. If the third

criterion does not hold, there is a design or requirements flaw in the system. Both

action and inaction by controller S will lead to a hazard and violate a safety con-

straint. Although the conflict cannot be automatically resolved, it can be automati-

cally detected and flagged for review by the engineering team.

For example, suppose the train from Section 3 is moving and there is an on-

board emergency such as a fire. HNP will state that not opening the door in this

situation is hazardous due to H-3. However, HP states that opening the door in this

12 John Thomas and Nancy Leveson

situation is hazardous due to H-1. This is an example of a conflict that can be

automatically detected by the formal criterion above.

In general, the system design may need to be reviewed or revised to ensure that

conflicts are handled appropriately. Ideally, the conflict would be eliminated by a

design change. If elimination is not possible, hazard mitigation or reduction may

be performed by placing constraints on other control actions in the system (con-

straints on HP and HNP for other S and CA). For example, if the train is moving

and there is an emergency then a constraint can be defined for the braking system

controller such that the brakes are always applied in this situation. The Train Mo-

tion variable will soon transition from moving to stopped, thereby resolving the

conflict for the train door controller.

If hazard mitigation or reduction is not possible, the conflict could alternatively

be handled based on hazard severity or priority.

4.2 Extending hazard analysis to non-safety goals

One of the columns in Figure 3 specifies behaviour that is necessary for the in-

tended function of the system, not to avoid safety hazards. However, this column

is clearly important; without it, the whole train system could not achieve its pur-

pose of transporting people.

Although the procedures thus far have focused on safety-related behaviour, the

functional behaviour of the system can be defined in the same way and functional

specifications can be generated along with the safety-related specifications by

following a similar method. More specifically, in addition to HP and HNP – which

capture hazardous control actions – a new function FP can be introduced to cap-

ture control actions that are needed to achieve functional goals:

FP(F, S, CA, C). This function is True if and only if system-level function F must

be achieved by controller S providing command CA in context C to achieve a sys-

tem-level function F.

The function FP can be defined by identifying which control actions in each con-

text are necessary to achieve the system-level functions . The same process used

in Section 3 to identify hazardous control actions can be applied to the system-

level functions as opposed to the system-level hazards . The required behav-

iour R can then be computed as in Section 4, but with an additional criterion to

capture the functional behaviour:

∀ F ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S): FP(F, S, CA, C) ⇒ R(S, CA, C)

Applying this criterion, any behaviour appearing in FP must also appear in R.

Note that if the same behaviour appears in FP and HP, then there is a design or

requirements flaw in the system because the same control action is both necessary

to achieve a system-level function and prohibited because it presents a system-

level hazard. In that case, no R would exist that prevents the hazards while achiev-

Generating Formal Model-Based Safety Requirements for Complex Systems 13

ing the system functions. The following additional criterion can therefore be de-

fined:

∀ H ∈ , F ∈ , S ∈ Ş, CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬FP(F, S,
CA, C)

This final criterion is a consistency check to detect conflicts between hazardous

and functional behaviour. As before, these conflicts cannot be automatically re-

solved, but they can be automatically detected and flagged for review by the engi-

neering team. The full SpecTRM-RL model in Figure 3 was generated automati-

cally by a software tool that implements the five criteria from this section.

5 Conclusions

This paper presents a formal structure underlying STPA hazard analysis and a

corresponding method to systematically identify hazardous control actions in a

system. A set of formal criteria have been defined to automate much of the hazard

analysis process even when a detailed model of the system or software compo-

nents has not yet been developed. A method for using the STPA hazard analysis

results to generate formal safety-critical, model-based system and software re-

quirements is also presented. The generated formal requirements are executable

and can be imported into the SpecTRM toolset (Leveson et al. 1999) for simula-

tion if needed.

The ability to formally translate between the hazard analysis and model-based

requirements also permits the automatic detection of requirements flaws or con-

flicts in which not all hazards are prevented. The criteria necessary to detect such

conflicts are defined in Section 4 and a prototype tool has been developed to

automatically identify such conflicts in a set of formal requirements. The same

approach can be applied to generate functional requirements in parallel with the

safety requirements. As a result, conflicts between safety and functional goals can

also be detected by evaluating the additional criteria defined in Section 4 above.

Acknowledgements This work was partially supported by NASA Contract NNL10AA13C, a

JAXA research grant, and a fellowship provided by Sandia National Laboratory.

References

Clarke EM, Grumberg O, Peled D (1999) Model checking. MIT Press

Darimont R, Lamsweerde Av (1996) Formal refinement patterns for goal-driven requirements

elaboration. Proc 4th ACM SIGSOFT symposium on Foundations of software engineering,

San Francisco, California, United States

Dekker S (2005) Ten questions about human error: a new view of human factors and system

safety. Lawrence Erlbaum Associates, Mahwah NJ

Dekker S (2006) The field guide to understanding human error. Ashgate, Aldershot, UK;

Burlington, VT

14 John Thomas and Nancy Leveson

Fleming C, Spencer M, Leveson N, Wilkinson C (2011) Safety assurance in Nextgen. NASA

Technical Report

Heimdahl MPE, Leveson NG (1996) Completeness and consistency in hierarchical state-based

requirements. IEEE Trans Softw Eng, 22(6):363-377

Ishimatsu T, Leveson N, Thomas J, Katahira M, Miyamoto Y, Nakao H (2010) Modeling and

hazard analysis using STPA. Paper presented at the Conference of the International

Association for the Advancement of Space Safety, Huntsville, Alabama

Lamsweerde Av, Letier E, Darimont R (1998) Managing conflicts in goal-driven requirements

engineering. IEEE Trans Softw Eng 24(11):908-926

Laracy JR (2007) A systems-theoretic security model for large scale, complex systems applied to

the US air transportation system. MIT, Engineering Systems Division

Leveson N (1995) SafeWare: system safety and computers. Addison-Wesley, Reading, Mass..

Leveson N (2000) Completeness in formal specification language design for process-control

systems. Proc 3rd workshop on Formal methods in software practice, Portland, Oregon, USA

Leveson N (2012) Engineering a safer world: systems thinking applied to safety. MIT Press,

Cambridge, Mass.

Leveson NG, Heimdahl MPE, Reese JD (1999) Designing specification languages for process

control systems: lessons learned and steps to the future. Paper presented at the Proceedings of

the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering, Toulouse, France

Lutz RR (1992) Analyzing software requirements errors in safety-critical, embedded systems.

Paper presented at the International Conference on Software Requirements

Pereira S, Lee G, Howard J (2006) A system-theoretic hazard analysis methodology for a non-

advocate safety assessment of the ballistic missile defense system. Paper presented at the

AIAA Missile Sciences Conference, Monterey, CA

Thomas J, Leveson N (2011) Performing hazard analysis on complex, software- and human-

intensive systems. International System Safety Conference, Las Vegas, NV

Vesely WE, Roberts NH (1987) Fault tree handbook. US Independent Agencies and

Commissions

