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Abstract: Many people seem to believe that a different type of hazard analysis is required for a 
“system-of-systems” than for just a complex system. The task to do a system-of-systems hazard analysis 
has even been added to the official requirements for system safety of military systems in the U.S. (MIL-
STD-882) in additional to a task for traditional system hazard analysis. The definition of a system, 
however, as defined in System Theory, already incorporates all the supposedly new properties.  

Perhaps the new term has been invented because most of traditional hazard analysis techniques do 
not scale up to the complexity of modern defense and other systems (essentially what is being called a 
system-of-systems). Much of the confusion arises from the formal definition of a system. This paper 
clarifies the definition of a system and shows how STPA can be used for what has been labeled 
(erroneously) as a system-of-system, without any changes to STPA. A very complex military system, 
created by composing both existing and new systems, is used as the example. 

 

 

 

Introduction 

For some reason, the term “system-of-systems” has become popular although theoretically there is 
no such thing. But the problem creating the impetus for a new term does exist, that is, how to handle 
today’s increasingly complex systems using the standard hazard analysis techniques. Unfortunately, 
these techniques do not work for today’s complex, software-intensive systems and will not scale up to 
handle them. Safety engineers go through the motions, usually not realizing that their results are, at the 
least, very incomplete. Lots of paper is produced, lots of numbers posited as reflecting risk, and none of 
these have much to do with reality. There is, of course, no way to know that the results are incomplete 
unless or until there is a mishap. Surprisingly, people rarely go back and question why the real-world 
results do not match the predictions after a mishap or even multiple mishaps. 

In this white paper, I will define the term “system” and explain why a system-of-systems” is not a 
useful concept. Then I continue to show how to handle so-called systems-of-systems using STPA, that is, 
how to solve the problem that the term was invented to describe. 

  

What is a System? 

Theoretically, a system is defined as a set of components that act together as a whole to achieve 
some common goal, objective, or end. The components are all interrelated and are either directly or 
indirectly related to each other. So, a chemical plant, an airplane, an automobile, transportation in 
general, county government, and a television set are examples of systems. They all consist of a set of 
components working together to achieve a common goal. An example of a non-system is a set consisting 
of a shoe, an apple, and a wrench; this is not a system unless you can describe some common goal that 
they achieve. A purpose is basic to the concept. 

There are two assumptions underlying the concept of a system: (1) the system goals can be defined 
and (2) the system is atomistic, that is, capable of being separated into component entities such that 
their interactive behavior can be described. Without being able to divide the system into separate 



components, we can only talk about the thing as a whole, which limits the usefulness of the concept of a 
system. The interactive behavior of the system components plays a critical role in the achievement of 
the system objectives. 

This brings us to one of the most important aspects of a system that you need to understand: A 
system is an abstraction (model) conceived by the observer. For the same man-made system, an 
observer may see a different purpose or purposes than the designers or other observers and may also 
focus on different relevant properties, even different goals. I view a particular transportation system as 
a way to take me to work while someone else may see it as a way to increase business in the area by 
transporting customers and employees while someone else may see a system that is polluting the area. 
In summary, for the same man-made system, an observers or users may see different purposes and 
each may see a different purpose than the designers. They will also, likely, focus on different relevant 
properties of the system. 

For natural (not man-made) systems, we only have observers (and cannot question the designer) so 
different people may conceive of these systems in different ways. In engineering, we are almost always 
concerned with man-made systems. Note that social systems are usually man made. 

This concept of a system as an abstraction explains the importance of system specifications. They 
ensure consistency of mental models among those designing, using, or viewing a system and therefore 
are critical for effective communication. The common specification required must define the following 
basic aspects of the system: 

• System boundary: what is inside and what is outside (not in) the system 

• Inputs and outputs: most interesting systems get inputs from the environment and send outputs 
to the environment. 

• Components 

• Structure 

• Relevant interactions among components (the behavior of the components and their effect on 
the overall system state) 

• Purpose or goals of the system that makes it reasonable to consider it to be a coherent entity1  

Note that there may be different objectives for different people viewing the same components, 
which makes them a different system for each viewer.  

Consider an airport. To a traveler, the purpose of an airport may be to provide air transportation to 
other locales. To local or state government, an airport may be a means to increase government revenue 
and economic activity in the area of the airport. To the airlines, the purpose of an airport may be to take 
on and discharge passengers and cargo. To the businesses at the airport, the purpose is to attract 
customers to whom they can sell products and services. While the physical aspects of an airport are the 
same for everyone, remember that a system is an abstraction imposed on a physical thing. Therefore, 
when talking about airports as a system, we need to specify the purpose of the “system” being 
considered at that time. Again, the term “system” is an abstraction imposed on some components by 
those considering that system. While the components may exist in reality, the system itself only exists in 
the minds of the viewers.  

      For engineered (man-made) systems, the purpose is usually specified before creating the system 
although observers of the system may interpret the purpose differently than originally intended by the 
designers. For natural systems, behavior may be interpreted as purposeful by the observers of the 
system. System views may be created by varying groups when considering an existing system. 

                                                           
1 Peter Checkland, Systems Thinking, Systems Practice, New York: John Wiley & Sons, 1981. 



With this basic understanding of a system as an abstraction, we can now consider more aspects 
about this abstraction we call a “system.” In fact, there exists a formal, scientific foundation for dealing 
with systems. General Systems Theory was introduced 60-70 years ago. It is surprising that although 
engineers and others use the term “system” freely, they seldom have learned the theoretical 
underpinnings.  

One important theoretical aspect is the concept of a subsystem. Consider our airport “system” 
again. Different components of the airport may be included in a particular viewer’s “airport” system. 
The airline view of an airport may include passenger check-in counters, ramps to the planes, and 
taxiways. A commercial view may include only shops and customers. Notice again that these are models 
or abstractions laid upon the actual physical world by human minds. The components that are 
considered in any “airport system” or subsystem and the role they play in the system as a whole may be 
different for each concept (model) of an airport system or of airport subsystems. The basic idea here is 
that the purpose or goals of the system being considered must be specified and agreed upon by those 
modeling and analyzing a particular system and that these aspects of systems are abstractions or models 
imposed by the viewer on the real-world objects. In the airport example, different abstractions for an 
airport may be laid upon the physical components by different users and for different uses.  

    A second important understanding about systems is that the definition of a system is recursive, that is, 
the definition is made in terms of itself.  Systems themselves may be part of a larger system or be 
divisible into subsystems (viewed as components of the overall system). Figure 1 shows a typical 
abstraction hierarchy for a system labeled A (for example the system “airport”) and for three 
subsystems, which in turn can be conceived as systems themselves. Note that this is not a connection 
diagram. It is multiple (in this case two) views of the same system at different levels of detail.  

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 1: The abstraction System A made be viewed as composed of  

three subsystems, where each subsystem is itself a system. 

 

 

      When viewed as part of System A, then A2, for example, is a subsystem of A. But A2 can be viewed as 
a system by itself. Figure 2 shows an abstraction where System A is conceived as part of a larger system 
AB. Each of these abstractions may provide alternative views of a system, each useful for its own 
purposes. 
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Figure 2: System A can be viewed as a component (subsystem) of a larger system AB 

 

The recursive nature of the definition of a system is important because many people have suggested 
that “systems of systems” must be treated differently than systems. In fact, the same general system 
engineering and analysis methods and techniques are applicable to all systems. A “system of systems” is 
just a “system” (with subsystems, which can be considered to be systems themselves) using the 
definition of a system as defined in system theory and as the concept is used in engineering. More about 
this in the next section of this paper. 

Systems have states. A state is a set of relevant properties describing the system at any point in time. 
Some properties of the state of an airport viewed as an air transportation system may be the number of 
passengers at a particular gate, where the aircraft are located and what they are doing (loading 
passengers, taxiing, taking off, or landing). In the commercial airport system, the state may include the 
number and type of stores, whether they are open or not, how many customers each has, etc. Some 
variables (and thus states) will change frequently (and thence the state will change frequently), such as 
the number of customers in the stores, while other variables may change much less frequently, such as 
the number and type of stores or commercial enterprises.  

The concept of a system state is important as a hazard (informally) is a particular system state that 
can lead to a loss. Examples are an aircraft that is too close to a mountain or a chemical plant where the 
pressure in a tank exceeds a threshold value. Events lead to state changes. We often loosely talk about 
hazards as events (release of a chemical from a plant, for example), but that can be translated into the 
equivalent state: for example, chemicals are in the air within and outside the plant boundaries. We 
could be more exact and demanding, but it sometimes is more natural to talk about events rather than 
states if there is not a formal mathematical process being described. 

The components of the state that are relevant depend on how the boundaries are drawn between 
the system and its environment. Because the goal of safety engineering is to eliminate or control 
hazards, the engineer needs to define hazards as states within their system design space, i.e., states 
they have control over. 

The environment is usually defined as the set of components (and their properties) that are not part 
of the system but whose behavior can affect the system state. Therefore, the system has a state at a 
particular time and the environment has a state. The concept of an environment implies that there is a 
boundary between the system and its environment. Again, this concept is an abstraction created by the 
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viewer of the system and need not be a physical boundary. What is part of the system or part of the 
environment will depend on the particular system and its use at the time and the person creating the 
abstraction.  

 

 

 

 

 

 

 

 

System inputs and outputs cross the system boundary. This model is usually called an open system. 
There is also a concept of a closed system (which has no inputs or outputs), but this concept does not 
have much relevance for the engineered systems with which we are most concerned in system safety. 

One of the most important properties of systems is that they have “emergent” properties. 
Historically, scientists and engineers have dealt with complex systems by using decomposition. 
Decomposition separates systems into atomistic components, analyzes each component for a property 
in isolation from the rest, and then gets a system value by combining the values from the individual 
components. This may work for some important properties. Consider, for example, weight. If we weigh 
each of the components of a system, combining them will provide a weight for the system as a whole. 
Weight is a decomposable (non-emergent) property.  

The usefulness of decomposition relies on an assumption that separating the system into parts does 
not distort the phenomenon you are interested in. That is, each component or subsystem operates 
independently; components act the same when they are examined individually as when they are playing 
their part in the whole; and the interactions are all direct and therefore the results of analyzing each can 
be examined through only looking at the direct channels between them. If the components have indirect 
interactions and complex interactions such as feedback loops, then the simple summation of properties 
for the individual components will not provide an accurate accounting of the property for the system as 
a whole. 

The reason for modern systems theory is that most interesting systems have properties for which 
these assumptions are not true and therefore properties for which analytical decomposition does not 
provide useful answers. These are called “emergent” properties. Emergent properties are properties 
that are not in the individual components but “emerge” when the components operate together. Most 
interesting system properties are emergent and, in fact, it was to deal with these emergent properties 
that systems theory was created.  

Before the middle of the last century, most systems were simple enough that analytic 
decomposition worked adequately most of the time. After WW II and with the advent of digital 
computers, system complexity increased so much that analytic decomposition was no longer useful. 
Systems theory was created to deal with these increasingly complex systems. 

Emergent properties are so important, let’s look at them a little more. To deal with emergent 
properties, systems theory (and methodologies based on systems theory) focus on a system taken as a 
whole, not on the parts separately. Emergent properties can only be treated adequately in their entirety 
by taking into account all social and technical aspects. That is, systems theory works on complex 
sociotechnical systems.  

Inputs Outputs 

Environment 

 System 
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Emergent properties arise from the relationships among the parts of the system, that is, how the 
parts interact and fit together. You have probably heard the adage “The whole is greater than the sum 
of the parts.” This is the basic concept in systems theory and provides a simple explanation of 
emergence. 

Safety and security are emergent properties. Looking only at a valve, for example, it is not possible 
to determine whether an aircraft or an automobile that uses that valve in its design will be safe. Safety, 
like other emergent properties, depends on how the components operate and interact as a whole. In 
fact, most interesting system properties are emergent, such as quality, efficiency, throughput, etc.  

Consider the property “throughput” and the National Airspace System. If each airline optimized the 
routes of each of its planes without considering the routes of other airlines, the airspace system would 
end up in chaos, with planes from different airlines interfering with each other and all trying to land or 
take off at the same time. The attempt to optimize individual component behavior would simply lead to 
nobody achieving their goals and the system throughput being diminished. That’s why we have an air 
traffic control system. It coordinates the routes of all the planes so that the system throughput is 
optimized, if not the throughput of each airline. In the end, the average throughput for all the airlines is 
optimized. 

It’s surprising that most of the difficult problems today that people lament have no solutions are 
actually solved by something that was invented over 60 years ago. Unfortunately, systems theory has 
never been taught extensively in most universities nor has much of system engineering actually adopted 
it. It has had much more impact on other fields, such as biology. In the early days of system engineering 
and system safety2, systems theory was the basis for the development of techniques and tools. But over 
time, people went back to what was traditional and familiar, namely, analytic decomposition. 

Now that we have established the definition of a system and the basic concepts in system theory, 
we can turn to the frequently used term “system-of-systems.” 

      

Why a System-of-Systems is not a Useful Technical Term 

People can, of course, introduce and use any terminology they want. But a proliferation of 
terminology can be confusing and misleading, as in this case. 

As the concept of a “system of systems” does not exist in systems theory, I have tried to figure out 
how people are using this term. For the most part, it seems to have replaced the term “system” and not 
added anything new. Wikipedia defines it as “A System of systems is a collection of task-oriented or 
dedicated systems that pool their resources and capabilities together to create a new, more complex 
system which offers more functionality and performance than simply the sum of the constituent 
systems.” Elsewhere, it is defined as “System of systems are large-scale concurrent and distributed 
systems the components of which are complex systems themselves.” Both of these definitions are 
identical to the definition of a system, with “system” replacing the term “system of systems” and 
subsystem replacing “system.” 

Wikipedia also suggests “While the individual systems constituting a system of systems can be very 
different and operate independently, their interactions typically expose and deliver important emergent 
properties.” The concept of emergence is basic to the definition of a system in systems theory and is not 
new. Again, this is all consistent with the definition of a system as defined in system theory. 

                                                           
2 If you go back to the foundational papers for system engineering and system safety written in the 1950s and 
1960s, you will find that system theory is clearly stated as the basis. Understanding why these concepts were lost 
over time would require a historical analysis. 



Lots of other supposed distinctions have been made between systems and systems-of-systems, all 
of which are already included in the definition of a system. For example, some suggest that the 
difference is that some of the subsystems already exist in a system of systems and are put together. 
There is no implication in the definition of a system that everything must be new. In fact, this is rarely 
the case. Nobody ever builds a completely new system without using components (e.g., screws or even 
radars) that are all newly designed. Again, the definition is the same. The fact that parts of the system 
already exist does not make any difference in creating an abstraction that combines components into 
something the user wants to call a system. Almost always such components already exist.  

Other supposed distinctions are either true of all real systems or are irrelevant to the basic 
definition. From all of this, I surmise that the problem people are trying to handle is “complexity” and 
the growing complexity of the systems we are attempting to build, not new concepts. I understand their 
frustration with analytic decomposition, but new terms need not be created when a scientific field exists 
that already covers their concerns. 

Finally, I have occasionally heard people describe a system of systems as one that joins two or more 
existing systems. The abstraction concept of a system already includes this as simply a subcase. But I 
also suspect that there is a subtle return to thinking in terms of decompositional approaches here and 
an implication that the properties of the two systems can be combined, i.e., “summed,” to get a system 
of systems analysis. Unfortunately, basic systems theory shows us this is incorrect. The assumption 
seems to be that: 

   

 

 

 

 

 

But this assumption is untrue. In systems theory, when you put two systems together you get a new and 
totally different system with different emergent properties. 

 

 

 

 

 

 

In the new abstraction, it is irrelevant whether the components that are combined existed or not before. 
The critical concept here is that the emergent properties of the combined new system are different and 
cannot simply be handled by combining the evaluation of the emergent properties (such as safety or 
risk) identified for the individual systems. 

In summary, the definition proposed for a “system of systems” all fit the original and formal 
definition of a “system.” Therefore, nothing new is added by introducing a redundant term and, in fact, 
confusion is a common result. Suggesting that something new is involved is hindering progress. 

So, all this is nice, you’re thinking, but how does it help me with my problems? The final section of 
the paper shows how to analyze a complex system or system-of-systems or whatever you want to call it 
using STPA. An example is provided of the successful hazard analysis of a real system that is one of the 
most complex engineered systems ever created. 
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How to Analyze a System or “System-of-Systems” using STPA 

This section assumes that the reader is familiar with STPA. If not, first looking at the STPA Handbook 
would be helpful. The example used is a real defense system, but details need to be omitted for obvious 
reasons. It clearly fits the definition of a system and satisfies every property that supposed systems-of-
systems are defined as having. It was, in fact, one of the first complex industrial systems to be analyzed 
using STPA back in 2005.3 

The U.S. Ballistic Missile Defense System (BMDS) is a layered defense system to defeat all ranges of 
threats in all phases of flight (boost, midcourse, and terminal). The BMDS integrates into a single system 
a number of systems that have been developed independently, including sea-based sensors on the Aegis 
platform, upgraded early warning radars (UEWR), the Cobra Dane Upgrade (CDU), Ground-based 
Midcourse Defense (GMD) Fire Control and Communications (DFC/C), a Command and Control Battle 
Management and Communications system (C2BMC), and Ground-Based Interceptors (GBI). Future 
upgrades were originally planned to introduce additional systems into the BMDS, including Airborne 
Laser (ABL) and Terminal High Altitude Area Defense (THAAD). Some of the components of BMDS 
existed previously, some were upgrades of existing systems (such as UEWR and CDU), and some were 
new. In BMDS, existing systems were being used in a different environment than that for which they 
were originally developed.  

All the systems being integrated into BMDS had their own active safety programs, but considerable 
complexity, coupling, and risk was introduced by integrating them into a single system. Those who 
performed the BMDS hazard analysis and selected STPA stated that the effort required a hazard analysis 
methodology that (1) considers hazards and causes due to complex system interactions (more than just 
failure events); (2) provides guidance in conducting the analysis, (3) comprehensively addresses the 
whole system, including hardware, software, operators, procedures, maintenance, and continuing 
development activities; and (4) focuses resources on the areas of the system with the greatest impact 
on safety and risk.3 

The effort to apply STPA began late in development, prior to deployment and field testing. This 
timing limited the flexibility for design changes in response to the findings and made requiired changes 
much more expensive. Ideally, STPA should have been started early in the BMDS concept development 
stage to provide the most benefit and least additional costs. The late use led to extra difficulties that 
required performing hazard analyses where existing analysis work was missing or inadequate; working 
with existing engineering artifacts (including documentation) that was erroneous, ambiguous, 
incomplete, or outdated; and making recommendations for hazard mitigations late in the system life 
cycle with resulting extra costs and limited flexibility for changes.  

The BMDS hazard analysis (which was focused on inadvertent launch) involved two people working 
for 5 months. Neither was originally familiar with the system (or the subsystems) and much of the time 
was spent learning about how the system worked. 

For obvious reasons, details about the real BMDS cannot be provided here. Instead, as in the paper 
written by the people performing the analysis, a Fictional Missile Intercept System (FMIS) is used as an 
example. The FMIS, like the BMDS, uses a hit-to-kill interceptor that destroys incoming ballistic missiles 
through force of impact. Examples of the analysis on the FMIS are shown here and the overall results 
from the real analysis on the BMDS are summarized at the end. 

     Hazard: The FMIS inadvertently launches an interceptor missile. 

                                                           
3 Steven J. Pereira, Grady Lee, and Jeffrey Howard, A System-Theoretic Hazard Analysis Methodology for a Non-
Advocate Safety Assessment of the Ballistic Missile Defense System, Proceedings of the 2006 AIAA Missile Sciences 
Conference, Monterey California, 14-16 November, 2006.  



This hazard traces to a requirement in the top-level system specification to eliminate inadvertent 
launch.  

Figure 3 shows the high-level FMIS operational control structure. The development structure is not 
shown. This operational control structure must enforce the system safety requirements and constraints 
during the life time of the system. The goal of the analysis is to identify any potential inadequate 
enforcement of the constraints that might arise from the system design. 
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Figure 3: The High-Level FMIS control structure 

  



STPA starts with a very high-level view of the entire system. Note that the control structure diagram 
is not a data flow diagram and does not represent message names from interface specifications—the 
control structure model omits irrelevant detail from messaging protocols and interface conventions to 
focus on general control and feedback. This feedback-control modeling approach allows very complex 
systems to be handled in contrast to bottom-up techniques such as FMEA (Failure Modes and Effects 
Analysis) or HAZOP. In addition, it does not require a detailed design to examine failure modes as does 
Fault Tree Analysis. Another limitation with fault tree analysis is that it provides no assistance in 
determining what contributing events should be included in the tree. The completeness and relevance 
of the fault tree boxes is dependent entirely on the experience and insight of the safety engineer 
conducting the analysis. STPA provides analysts with guidance on what factors to consider and, with a 
minimum of training; the design engineers can perform STPA without expert safety engineering 
guidance.  Attempting to use any of the traditional hazard analysis techniques on BMDS would have 
been futile. 

In contrast, STPA does not require a detailed design nor does it examine all components in detail. 
Instead, the analysis is top-down, examining first the very high-level interactions among the primary 
components of the system. Many hazards can be completely resolved in this way. In other cases, the 
hazards arising from interactions among components and individual component behavior will require 
looking in more detail at the individual components in Figure 3. However, the behavior that must be 
examined at lower levels is identified and limited by the high-level analysis results. 

In figure 3, the command authorities control system operators by issuing guidance, providing 
training, and establishing tactics, techniques, and procedures (TTPs). Command authorities receive 
feedback in the form of reports and performance during training exercises. Operators control the Fire 
Control software (system) by issuing commands and receive feedback from displays and aural alerts. The 
Fire Control Software controls other BMDS software and hardware by sending messages and commands 
and receives feedback in the form of measured values and status information.  

A typical engagement would begin with a warning from the Early Warning System. The fire control 
system would then task the radar to track the target. Once the system has adequate data to plan an 
intercept, the operators direct the system to engage its target. The fire control software then develops 
interceptor tasking and sends it to the launch station. More generally, the operators control the 
behavior of the fire control software by directing the software to change operating modes (between 
test, exercise, and live operations). The launch station is responsible for the interface with the 
interceptor, transforming the interceptor tasking into a task load for the flight computer and controlling 
the launch sequence. The flight computer receives the task load, follows the launch sequence under 
control of the launch station, and ignites the rocket motor. 

At the lowest level of the control structure, the flight computer is responsible for arming and safing 
the interceptor hardware. Feedback to the flight computer is provided in the form of Built-in Test (BIT) 
results and the status of whether the hardware is safe or armed. The interceptor simulator is used to 
perform BIT and test the readiness of the system at any point in time. 

STPA analysis applies equally to hardware, software, or human commands. Some examples of 
unsafe control actions are: 

1. The flight computer could omit the required control action of safing the interceptor hardware if 
a design error in the interface allowed the launch station to remove power from the flight 
computer before the abort sequence completes. 

2. The launch station could issue an unsafe control action if it commands a real interceptor to arm 
when it is communicating with an interceptor simulator. 

3. The operators might provide a correct control action too late if they transition to weapons hold 
too late, that is, after an interceptor has been inadvertently launched. 



4. The command authority might contribute an inadvertent launch if a reduction in training to 
maintain operator proficiency increases the risk that the operators cannot act to prevent it.  

The table below shows a snippet from a UCA table for the Fire Enable command, which is sent by 
the fire control software to the launch station. Only the conditions in red are related to the inadvertent 
launch command.  

 

 
 

If the Fire Enable command is provided to a launch station when there is no active threat (the red 
entry in column 3), the launch station will transition to a state where it accepts interceptor tasking and 
can progress through a launch sequence. In combination with other incorrect or mistimed control 
actions (related to interceptor tasking), this could contribute to an inadvertent launch. A Fire Enable 
command sent too early could open a window of opportunity for inadvertently progressing toward an 
inadvertent launch, similar to an incorrect fire enable. The degree of risk this UCA contributes depends 
both on the likelihood of the inadequate control and how early the control action is carried out. In the 
worst case, a Fire Enable command might be out of sequence with the Fire Disable command. If this is 
possible in the system as designed and built, the system could be left capable of processing interceptor 
tasking and launching when not intended.  

Using STPA. unsafe interactions among control actions can be identified. For example, when a Fire 
Enable is sent, the fire control software might discover that the track contains an object that is not a 
threat and then issue a Fire Disable command: If the two commands arrive in the wrong order, 
inadvertent (unsafe) launch can occur. 

Table 1 shows some examples of causal scenarios produced for the FMIS example for the unsafe 
control action “Fire Enable Provided Incorrectly” shown below: 

 

Table 1: Some example scenarios 

UCA: If the Fire Enable command is provided to a launch station incorrectly, the launch station will 
transition to a state where it accepts interceptor tasking and can progress through a launch sequence. 
In combination with other incorrect or mistimed control actions (see interceptor tasking), this could 
contribute to an inadvertent launch. 

Scenario 1: The fire control computer is intended to send the Fire Enable command to the launch 
station upon receiving a Weapons Free command from an FMIS operator and while the fire control 



system has at least one active track. According to the requirements and design specifications, the 
handling of the Weapons Free command is straightforward. But what makes a track active? Activity 
criteria are specified by the FMIS operators according to their operational procedures. The software 
supports declaring tracks inactive after a certain period with no radar input, after the total predicted 
impact time for the track, or after a confirmed intercept. It appears one case was not carefully 
considered: if an operator deselects all of these options, no tracks will be marked as inactive. Under 
these conditions, the inadvertent entry of a Weapons Free command would send the Fire Enable 
command to the launch station immediately, even if there were no threats to engage currently 
tracked by the system. 

Scenario 2: The FMIS system undergoes periodic system operability testing using an interceptor 
simulator that mimics the interceptor flight computer. STPA identified the possibility that commands 
intended for test activities could be sent to the operational system. As a result, the system status 
information provided by the launch station includes whether the launch station is connected only to 
missile simulators or to any live interceptors. If the fire control computer detects a change in this 
state, it will warn the operator and offer to reset into a matching state. However, there is a small 
window of time before the launch station notifies the fire control component of the change during 
which the fire control software might send a Fire Enable command intended for test to the live launch 
station. 

 

Neither of these causal scenarios involve component or subsystem failures. In both cases, all the 
components involved were operating exactly as intended; however, the complexity of their interactions 
led to unanticipated system behavior. Of course, component failure can also be a cause of unsafe 
control over a system’s behavior, and STPA does identify such failures. But only the failures that are 
critical are considered, not all potential failures (as in FMEA). 

In the official STPA analysis of BMDS, new and previously unknown scenarios were identified and 
recommendations generated to mitigate them. Such recommendations may involve hardware or 
software design changes, changes to maintenance and test procedures, and workarounds for the system 
operators. The costs (both in terms of dollars and time) to fix the hazardous scenarios (i.e., the scenarios 
that could lead to a hazardous system state) identified by STPA were considerable. As stated, if STPA had 
been performed early in the process, these costs would have been eliminated.  

 

Summary 

The invention of a new term, “systems of systems” is unnecessary as the term “system,” as defined 
in system theory, already incorporates all the supposedly new properties. Worse, the new term is 
misleading and causing confusion. STPA can be used to perform a hazard analysis on all these 
supposedly different types of systems.  

In this paper, the U.S. BMDS is used as an example. The hazard analyses performed on the individual 
systems combined to create BMDS (which therefore became subsystems of BMDS) cannot be somehow 
“combined” to perform a hazard analysis for BMDS. BMDS is a new system where the combined 
emergent behavior and hazards are different than the individual systems that have been composed to 
create this new system. Thinking of this as a system of systems provides no advantages and is not 
necessary to analyze BMDS. It simply confuses matters and makes the solution more obscure. A system 
hazard analysis and a system-of-system hazard analysis are the same thing, and thus both are not 
needed. 

 


