
White Paper on How to Perform Hazard Analysis on a “System-of-Systems”

Prof. Nancy G. Leveson

Aeronautics and Astronautics Dept.

MIT

Abstract: Many people seem to believe that a different type of hazard analysis is required for a
“system-of-systems” than for just a complex system. The task to do a system-of-systems hazard analysis
has even been added to the official requirements for system safety of military systems in the U.S. (MIL-
STD-882) in additional to a task for traditional system hazard analysis. The definition of a system,
however, as defined in System Theory, already incorporates all the supposedly new properties.

Perhaps the new term has been invented because most of traditional hazard analysis techniques do
not scale up to the complexity of modern defense and other systems (essentially what is being called a
system-of-systems). Much of the confusion arises from the formal definition of a system. This paper
clarifies the definition of a system and shows how STPA can be used for what has been labeled
(erroneously) as a system-of-system, without any changes to STPA. A very complex military system,
created by composing both existing and new systems, is used as the example.

Introduction

For some reason, the term “system-of-systems” has become popular although theoretically there is
no such thing. But the problem creating the impetus for a new term does exist, that is, how to handle
today’s increasingly complex systems using the standard hazard analysis techniques. Unfortunately,
these techniques do not work for today’s complex, software-intensive systems and will not scale up to
handle them. Safety engineers go through the motions, usually not realizing that their results are, at the
least, very incomplete. Lots of paper is produced, lots of numbers posited as reflecting risk, and none of
these have much to do with reality. There is, of course, no way to know that the results are incomplete
unless or until there is a mishap. Surprisingly, people rarely go back and question why the real-world
results do not match the predictions after a mishap or even multiple mishaps.

In this white paper, I will define the term “system” and explain why a system-of-systems” is not a
useful concept. Then I continue to show how to handle so-called systems-of-systems using STPA, that is,
how to solve the problem that the term was invented to describe.

What is a System?

Theoretically, a system is defined as a set of components that act together as a whole to achieve
some common goal, objective, or end. The components are all interrelated and are either directly or
indirectly related to each other. So, a chemical plant, an airplane, an automobile, transportation in
general, county government, and a television set are examples of systems. They all consist of a set of
components working together to achieve a common goal. An example of a non-system is a set consisting
of a shoe, an apple, and a wrench; this is not a system unless you can describe some common goal that
they achieve. A purpose is basic to the concept.

There are two assumptions underlying the concept of a system: (1) the system goals can be defined
and (2) the system is atomistic, that is, capable of being separated into component entities such that
their interactive behavior can be described. Without being able to divide the system into separate

components, we can only talk about the thing as a whole, which limits the usefulness of the concept of a
system. The interactive behavior of the system components plays a critical role in the achievement of
the system objectives.

This brings us to one of the most important aspects of a system that you need to understand: A
system is an abstraction (model) conceived by the observer. For the same man-made system, an
observer may see a different purpose or purposes than the designers or other observers and may also
focus on different relevant properties, even different goals. I view a particular transportation system as
a way to take me to work while someone else may see it as a way to increase business in the area by
transporting customers and employees while someone else may see a system that is polluting the area.
In summary, for the same man-made system, an observers or users may see different purposes and
each may see a different purpose than the designers. They will also, likely, focus on different relevant
properties of the system.

For natural (not man-made) systems, we only have observers (and cannot question the designer) so
different people may conceive of these systems in different ways. In engineering, we are almost always
concerned with man-made systems. Note that social systems are usually man made.

This concept of a system as an abstraction explains the importance of system specifications. They
ensure consistency of mental models among those designing, using, or viewing a system and therefore
are critical for effective communication. The common specification required must define the following
basic aspects of the system:

• System boundary: what is inside and what is outside (not in) the system

• Inputs and outputs: most interesting systems get inputs from the environment and send outputs
to the environment.

• Components

• Structure

• Relevant interactions among components (the behavior of the components and their effect on
the overall system state)

• Purpose or goals of the system that makes it reasonable to consider it to be a coherent entity1

Note that there may be different objectives for different people viewing the same components,
which makes them a different system for each viewer.

Consider an airport. To a traveler, the purpose of an airport may be to provide air transportation to
other locales. To local or state government, an airport may be a means to increase government revenue
and economic activity in the area of the airport. To the airlines, the purpose of an airport may be to take
on and discharge passengers and cargo. To the businesses at the airport, the purpose is to attract
customers to whom they can sell products and services. While the physical aspects of an airport are the
same for everyone, remember that a system is an abstraction imposed on a physical thing. Therefore,
when talking about airports as a system, we need to specify the purpose of the “system” being
considered at that time. Again, the term “system” is an abstraction imposed on some components by
those considering that system. While the components may exist in reality, the system itself only exists in
the minds of the viewers.

 For engineered (man-made) systems, the purpose is usually specified before creating the system
although observers of the system may interpret the purpose differently than originally intended by the
designers. For natural systems, behavior may be interpreted as purposeful by the observers of the
system. System views may be created by varying groups when considering an existing system.

1 Peter Checkland, Systems Thinking, Systems Practice, New York: John Wiley & Sons, 1981.

With this basic understanding of a system as an abstraction, we can now consider more aspects
about this abstraction we call a “system.” In fact, there exists a formal, scientific foundation for dealing
with systems. General Systems Theory was introduced 60-70 years ago. It is surprising that although
engineers and others use the term “system” freely, they seldom have learned the theoretical
underpinnings.

One important theoretical aspect is the concept of a subsystem. Consider our airport “system”
again. Different components of the airport may be included in a particular viewer’s “airport” system.
The airline view of an airport may include passenger check-in counters, ramps to the planes, and
taxiways. A commercial view may include only shops and customers. Notice again that these are models
or abstractions laid upon the actual physical world by human minds. The components that are
considered in any “airport system” or subsystem and the role they play in the system as a whole may be
different for each concept (model) of an airport system or of airport subsystems. The basic idea here is
that the purpose or goals of the system being considered must be specified and agreed upon by those
modeling and analyzing a particular system and that these aspects of systems are abstractions or models
imposed by the viewer on the real-world objects. In the airport example, different abstractions for an
airport may be laid upon the physical components by different users and for different uses.

 A second important understanding about systems is that the definition of a system is recursive, that is,
the definition is made in terms of itself. Systems themselves may be part of a larger system or be
divisible into subsystems (viewed as components of the overall system). Figure 1 shows a typical
abstraction hierarchy for a system labeled A (for example the system “airport”) and for three
subsystems, which in turn can be conceived as systems themselves. Note that this is not a connection
diagram. It is multiple (in this case two) views of the same system at different levels of detail.

 Figure 1: The abstraction System A made be viewed as composed of

three subsystems, where each subsystem is itself a system.

 When viewed as part of System A, then A2, for example, is a subsystem of A. But A2 can be viewed as
a system by itself. Figure 2 shows an abstraction where System A is conceived as part of a larger system
AB. Each of these abstractions may provide alternative views of a system, each useful for its own
purposes.

A

2

A1 A3

3 A2

@

Level 1

Level 2

Level 3

 A

Figure 2: System A can be viewed as a component (subsystem) of a larger system AB

The recursive nature of the definition of a system is important because many people have suggested
that “systems of systems” must be treated differently than systems. In fact, the same general system
engineering and analysis methods and techniques are applicable to all systems. A “system of systems” is
just a “system” (with subsystems, which can be considered to be systems themselves) using the
definition of a system as defined in system theory and as the concept is used in engineering. More about
this in the next section of this paper.

Systems have states. A state is a set of relevant properties describing the system at any point in time.
Some properties of the state of an airport viewed as an air transportation system may be the number of
passengers at a particular gate, where the aircraft are located and what they are doing (loading
passengers, taxiing, taking off, or landing). In the commercial airport system, the state may include the
number and type of stores, whether they are open or not, how many customers each has, etc. Some
variables (and thus states) will change frequently (and thence the state will change frequently), such as
the number of customers in the stores, while other variables may change much less frequently, such as
the number and type of stores or commercial enterprises.

The concept of a system state is important as a hazard (informally) is a particular system state that
can lead to a loss. Examples are an aircraft that is too close to a mountain or a chemical plant where the
pressure in a tank exceeds a threshold value. Events lead to state changes. We often loosely talk about
hazards as events (release of a chemical from a plant, for example), but that can be translated into the
equivalent state: for example, chemicals are in the air within and outside the plant boundaries. We
could be more exact and demanding, but it sometimes is more natural to talk about events rather than
states if there is not a formal mathematical process being described.

The components of the state that are relevant depend on how the boundaries are drawn between
the system and its environment. Because the goal of safety engineering is to eliminate or control
hazards, the engineer needs to define hazards as states within their system design space, i.e., states
they have control over.

The environment is usually defined as the set of components (and their properties) that are not part
of the system but whose behavior can affect the system state. Therefore, the system has a state at a
particular time and the environment has a state. The concept of an environment implies that there is a
boundary between the system and its environment. Again, this concept is an abstraction created by the

 A

A1 A3

A2

Level 1

Level 2

Level 3 B1

1

 B

AB

Level 4

B2

viewer of the system and need not be a physical boundary. What is part of the system or part of the
environment will depend on the particular system and its use at the time and the person creating the
abstraction.

System inputs and outputs cross the system boundary. This model is usually called an open system.
There is also a concept of a closed system (which has no inputs or outputs), but this concept does not
have much relevance for the engineered systems with which we are most concerned in system safety.

One of the most important properties of systems is that they have “emergent” properties.
Historically, scientists and engineers have dealt with complex systems by using decomposition.
Decomposition separates systems into atomistic components, analyzes each component for a property
in isolation from the rest, and then gets a system value by combining the values from the individual
components. This may work for some important properties. Consider, for example, weight. If we weigh
each of the components of a system, combining them will provide a weight for the system as a whole.
Weight is a decomposable (non-emergent) property.

The usefulness of decomposition relies on an assumption that separating the system into parts does
not distort the phenomenon you are interested in. That is, each component or subsystem operates
independently; components act the same when they are examined individually as when they are playing
their part in the whole; and the interactions are all direct and therefore the results of analyzing each can
be examined through only looking at the direct channels between them. If the components have indirect
interactions and complex interactions such as feedback loops, then the simple summation of properties
for the individual components will not provide an accurate accounting of the property for the system as
a whole.

The reason for modern systems theory is that most interesting systems have properties for which
these assumptions are not true and therefore properties for which analytical decomposition does not
provide useful answers. These are called “emergent” properties. Emergent properties are properties
that are not in the individual components but “emerge” when the components operate together. Most
interesting system properties are emergent and, in fact, it was to deal with these emergent properties
that systems theory was created.

Before the middle of the last century, most systems were simple enough that analytic
decomposition worked adequately most of the time. After WW II and with the advent of digital
computers, system complexity increased so much that analytic decomposition was no longer useful.
Systems theory was created to deal with these increasingly complex systems.

Emergent properties are so important, let’s look at them a little more. To deal with emergent
properties, systems theory (and methodologies based on systems theory) focus on a system taken as a
whole, not on the parts separately. Emergent properties can only be treated adequately in their entirety
by taking into account all social and technical aspects. That is, systems theory works on complex
sociotechnical systems.

Inputs Outputs

Environment

 System

(boundary)

Emergent properties arise from the relationships among the parts of the system, that is, how the
parts interact and fit together. You have probably heard the adage “The whole is greater than the sum
of the parts.” This is the basic concept in systems theory and provides a simple explanation of
emergence.

Safety and security are emergent properties. Looking only at a valve, for example, it is not possible
to determine whether an aircraft or an automobile that uses that valve in its design will be safe. Safety,
like other emergent properties, depends on how the components operate and interact as a whole. In
fact, most interesting system properties are emergent, such as quality, efficiency, throughput, etc.

Consider the property “throughput” and the National Airspace System. If each airline optimized the
routes of each of its planes without considering the routes of other airlines, the airspace system would
end up in chaos, with planes from different airlines interfering with each other and all trying to land or
take off at the same time. The attempt to optimize individual component behavior would simply lead to
nobody achieving their goals and the system throughput being diminished. That’s why we have an air
traffic control system. It coordinates the routes of all the planes so that the system throughput is
optimized, if not the throughput of each airline. In the end, the average throughput for all the airlines is
optimized.

It’s surprising that most of the difficult problems today that people lament have no solutions are
actually solved by something that was invented over 60 years ago. Unfortunately, systems theory has
never been taught extensively in most universities nor has much of system engineering actually adopted
it. It has had much more impact on other fields, such as biology. In the early days of system engineering
and system safety2, systems theory was the basis for the development of techniques and tools. But over
time, people went back to what was traditional and familiar, namely, analytic decomposition.

Now that we have established the definition of a system and the basic concepts in system theory,
we can turn to the frequently used term “system-of-systems.”

Why a System-of-Systems is not a Useful Technical Term

People can, of course, introduce and use any terminology they want. But a proliferation of
terminology can be confusing and misleading, as in this case.

As the concept of a “system of systems” does not exist in systems theory, I have tried to figure out
how people are using this term. For the most part, it seems to have replaced the term “system” and not
added anything new. Wikipedia defines it as “A System of systems is a collection of task-oriented or
dedicated systems that pool their resources and capabilities together to create a new, more complex
system which offers more functionality and performance than simply the sum of the constituent
systems.” Elsewhere, it is defined as “System of systems are large-scale concurrent and distributed
systems the components of which are complex systems themselves.” Both of these definitions are
identical to the definition of a system, with “system” replacing the term “system of systems” and
subsystem replacing “system.”

Wikipedia also suggests “While the individual systems constituting a system of systems can be very
different and operate independently, their interactions typically expose and deliver important emergent
properties.” The concept of emergence is basic to the definition of a system in systems theory and is not
new. Again, this is all consistent with the definition of a system as defined in system theory.

2 If you go back to the foundational papers for system engineering and system safety written in the 1950s and
1960s, you will find that system theory is clearly stated as the basis. Understanding why these concepts were lost
over time would require a historical analysis.

Lots of other supposed distinctions have been made between systems and systems-of-systems, all
of which are already included in the definition of a system. For example, some suggest that the
difference is that some of the subsystems already exist in a system of systems and are put together.
There is no implication in the definition of a system that everything must be new. In fact, this is rarely
the case. Nobody ever builds a completely new system without using components (e.g., screws or even
radars) that are all newly designed. Again, the definition is the same. The fact that parts of the system
already exist does not make any difference in creating an abstraction that combines components into
something the user wants to call a system. Almost always such components already exist.

Other supposed distinctions are either true of all real systems or are irrelevant to the basic
definition. From all of this, I surmise that the problem people are trying to handle is “complexity” and
the growing complexity of the systems we are attempting to build, not new concepts. I understand their
frustration with analytic decomposition, but new terms need not be created when a scientific field exists
that already covers their concerns.

Finally, I have occasionally heard people describe a system of systems as one that joins two or more
existing systems. The abstraction concept of a system already includes this as simply a subcase. But I
also suspect that there is a subtle return to thinking in terms of decompositional approaches here and
an implication that the properties of the two systems can be combined, i.e., “summed,” to get a system
of systems analysis. Unfortunately, basic systems theory shows us this is incorrect. The assumption
seems to be that:

But this assumption is untrue. In systems theory, when you put two systems together you get a new and
totally different system with different emergent properties.

In the new abstraction, it is irrelevant whether the components that are combined existed or not before.
The critical concept here is that the emergent properties of the combined new system are different and
cannot simply be handled by combining the evaluation of the emergent properties (such as safety or
risk) identified for the individual systems.

In summary, the definition proposed for a “system of systems” all fit the original and formal
definition of a “system.” Therefore, nothing new is added by introducing a redundant term and, in fact,
confusion is a common result. Suggesting that something new is involved is hindering progress.

So, all this is nice, you’re thinking, but how does it help me with my problems? The final section of
the paper shows how to analyze a complex system or system-of-systems or whatever you want to call it
using STPA. An example is provided of the successful hazard analysis of a real system that is one of the
most complex engineered systems ever created.

A + A + B B =?

+ A B = X

How to Analyze a System or “System-of-Systems” using STPA

This section assumes that the reader is familiar with STPA. If not, first looking at the STPA Handbook
would be helpful. The example used is a real defense system, but details need to be omitted for obvious
reasons. It clearly fits the definition of a system and satisfies every property that supposed systems-of-
systems are defined as having. It was, in fact, one of the first complex industrial systems to be analyzed
using STPA back in 2005.3

The U.S. Ballistic Missile Defense System (BMDS) is a layered defense system to defeat all ranges of
threats in all phases of flight (boost, midcourse, and terminal). The BMDS integrates into a single system
a number of systems that have been developed independently, including sea-based sensors on the Aegis
platform, upgraded early warning radars (UEWR), the Cobra Dane Upgrade (CDU), Ground-based
Midcourse Defense (GMD) Fire Control and Communications (DFC/C), a Command and Control Battle
Management and Communications system (C2BMC), and Ground-Based Interceptors (GBI). Future
upgrades were originally planned to introduce additional systems into the BMDS, including Airborne
Laser (ABL) and Terminal High Altitude Area Defense (THAAD). Some of the components of BMDS
existed previously, some were upgrades of existing systems (such as UEWR and CDU), and some were
new. In BMDS, existing systems were being used in a different environment than that for which they
were originally developed.

All the systems being integrated into BMDS had their own active safety programs, but considerable
complexity, coupling, and risk was introduced by integrating them into a single system. Those who
performed the BMDS hazard analysis and selected STPA stated that the effort required a hazard analysis
methodology that (1) considers hazards and causes due to complex system interactions (more than just
failure events); (2) provides guidance in conducting the analysis, (3) comprehensively addresses the
whole system, including hardware, software, operators, procedures, maintenance, and continuing
development activities; and (4) focuses resources on the areas of the system with the greatest impact
on safety and risk.3

The effort to apply STPA began late in development, prior to deployment and field testing. This
timing limited the flexibility for design changes in response to the findings and made requiired changes
much more expensive. Ideally, STPA should have been started early in the BMDS concept development
stage to provide the most benefit and least additional costs. The late use led to extra difficulties that
required performing hazard analyses where existing analysis work was missing or inadequate; working
with existing engineering artifacts (including documentation) that was erroneous, ambiguous,
incomplete, or outdated; and making recommendations for hazard mitigations late in the system life
cycle with resulting extra costs and limited flexibility for changes.

The BMDS hazard analysis (which was focused on inadvertent launch) involved two people working
for 5 months. Neither was originally familiar with the system (or the subsystems) and much of the time
was spent learning about how the system worked.

For obvious reasons, details about the real BMDS cannot be provided here. Instead, as in the paper
written by the people performing the analysis, a Fictional Missile Intercept System (FMIS) is used as an
example. The FMIS, like the BMDS, uses a hit-to-kill interceptor that destroys incoming ballistic missiles
through force of impact. Examples of the analysis on the FMIS are shown here and the overall results
from the real analysis on the BMDS are summarized at the end.

 Hazard: The FMIS inadvertently launches an interceptor missile.

3 Steven J. Pereira, Grady Lee, and Jeffrey Howard, A System-Theoretic Hazard Analysis Methodology for a Non-
Advocate Safety Assessment of the Ballistic Missile Defense System, Proceedings of the 2006 AIAA Missile Sciences
Conference, Monterey California, 14-16 November, 2006.

This hazard traces to a requirement in the top-level system specification to eliminate inadvertent
launch.

Figure 3 shows the high-level FMIS operational control structure. The development structure is not
shown. This operational control structure must enforce the system safety requirements and constraints
during the life time of the system. The goal of the analysis is to identify any potential inadequate
enforcement of the constraints that might arise from the system design.

Status

Track Data

Fire Control

Radar

Operators

Engage Target

Operational Mode Change

Readiness State Change

Weapons Free / Weapons Hold

Operational Mode

Readiness State

System Status

Track Data

Weapon and System Status

Command

Authority

Doctrine

Engagement Criteria

Training

TTP

Workarounds

Early Warning

System

Status Request

Launch Report

Status Report

Heartbeat

Radar Tasking

Readiness Mode Change

Status Request

Acknowledgements

BIT Results

Health & Status

Abort

Arm

BIT Command

Task Load

Launch

Operating Mode

Power

Safe

Software Updates

Flight

Computer

Interceptor

Simulator
Launch Station

Fire DIsable

Fire Enable

Operational Mode Change

Readiness State Change

Interceptor Tasking

Task Cancellation

Command Responses

System Status

Launch Report

Launcher

Launch Position

Stow Position

Perform BIT

Interceptor

H/W

Arm

Safe

Ignite

BIT Info

Safe & Arm Status

BIT Results

Launcher Position

Abort

Arm

BIT Command

Task Load

Launch

Operating Mode

Power

Safe

Software Updates

Acknowledgements

BIT Results

Health & Status

Breakwires

Safe & Arm Status

Voltages

Exercise Results

Readiness

Status

Wargame Results

Figure 3: The High-Level FMIS control structure

STPA starts with a very high-level view of the entire system. Note that the control structure diagram
is not a data flow diagram and does not represent message names from interface specifications—the
control structure model omits irrelevant detail from messaging protocols and interface conventions to
focus on general control and feedback. This feedback-control modeling approach allows very complex
systems to be handled in contrast to bottom-up techniques such as FMEA (Failure Modes and Effects
Analysis) or HAZOP. In addition, it does not require a detailed design to examine failure modes as does
Fault Tree Analysis. Another limitation with fault tree analysis is that it provides no assistance in
determining what contributing events should be included in the tree. The completeness and relevance
of the fault tree boxes is dependent entirely on the experience and insight of the safety engineer
conducting the analysis. STPA provides analysts with guidance on what factors to consider and, with a
minimum of training; the design engineers can perform STPA without expert safety engineering
guidance. Attempting to use any of the traditional hazard analysis techniques on BMDS would have
been futile.

In contrast, STPA does not require a detailed design nor does it examine all components in detail.
Instead, the analysis is top-down, examining first the very high-level interactions among the primary
components of the system. Many hazards can be completely resolved in this way. In other cases, the
hazards arising from interactions among components and individual component behavior will require
looking in more detail at the individual components in Figure 3. However, the behavior that must be
examined at lower levels is identified and limited by the high-level analysis results.

In figure 3, the command authorities control system operators by issuing guidance, providing
training, and establishing tactics, techniques, and procedures (TTPs). Command authorities receive
feedback in the form of reports and performance during training exercises. Operators control the Fire
Control software (system) by issuing commands and receive feedback from displays and aural alerts. The
Fire Control Software controls other BMDS software and hardware by sending messages and commands
and receives feedback in the form of measured values and status information.

A typical engagement would begin with a warning from the Early Warning System. The fire control
system would then task the radar to track the target. Once the system has adequate data to plan an
intercept, the operators direct the system to engage its target. The fire control software then develops
interceptor tasking and sends it to the launch station. More generally, the operators control the
behavior of the fire control software by directing the software to change operating modes (between
test, exercise, and live operations). The launch station is responsible for the interface with the
interceptor, transforming the interceptor tasking into a task load for the flight computer and controlling
the launch sequence. The flight computer receives the task load, follows the launch sequence under
control of the launch station, and ignites the rocket motor.

At the lowest level of the control structure, the flight computer is responsible for arming and safing
the interceptor hardware. Feedback to the flight computer is provided in the form of Built-in Test (BIT)
results and the status of whether the hardware is safe or armed. The interceptor simulator is used to
perform BIT and test the readiness of the system at any point in time.

STPA analysis applies equally to hardware, software, or human commands. Some examples of
unsafe control actions are:

1. The flight computer could omit the required control action of safing the interceptor hardware if
a design error in the interface allowed the launch station to remove power from the flight
computer before the abort sequence completes.

2. The launch station could issue an unsafe control action if it commands a real interceptor to arm
when it is communicating with an interceptor simulator.

3. The operators might provide a correct control action too late if they transition to weapons hold
too late, that is, after an interceptor has been inadvertently launched.

4. The command authority might contribute an inadvertent launch if a reduction in training to
maintain operator proficiency increases the risk that the operators cannot act to prevent it.

The table below shows a snippet from a UCA table for the Fire Enable command, which is sent by
the fire control software to the launch station. Only the conditions in red are related to the inadvertent
launch command.

If the Fire Enable command is provided to a launch station when there is no active threat (the red
entry in column 3), the launch station will transition to a state where it accepts interceptor tasking and
can progress through a launch sequence. In combination with other incorrect or mistimed control
actions (related to interceptor tasking), this could contribute to an inadvertent launch. A Fire Enable
command sent too early could open a window of opportunity for inadvertently progressing toward an
inadvertent launch, similar to an incorrect fire enable. The degree of risk this UCA contributes depends
both on the likelihood of the inadequate control and how early the control action is carried out. In the
worst case, a Fire Enable command might be out of sequence with the Fire Disable command. If this is
possible in the system as designed and built, the system could be left capable of processing interceptor
tasking and launching when not intended.

Using STPA. unsafe interactions among control actions can be identified. For example, when a Fire
Enable is sent, the fire control software might discover that the track contains an object that is not a
threat and then issue a Fire Disable command: If the two commands arrive in the wrong order,
inadvertent (unsafe) launch can occur.

Table 1 shows some examples of causal scenarios produced for the FMIS example for the unsafe
control action “Fire Enable Provided Incorrectly” shown below:

Table 1: Some example scenarios

UCA: If the Fire Enable command is provided to a launch station incorrectly, the launch station will
transition to a state where it accepts interceptor tasking and can progress through a launch sequence.
In combination with other incorrect or mistimed control actions (see interceptor tasking), this could
contribute to an inadvertent launch.

Scenario 1: The fire control computer is intended to send the Fire Enable command to the launch
station upon receiving a Weapons Free command from an FMIS operator and while the fire control

system has at least one active track. According to the requirements and design specifications, the
handling of the Weapons Free command is straightforward. But what makes a track active? Activity
criteria are specified by the FMIS operators according to their operational procedures. The software
supports declaring tracks inactive after a certain period with no radar input, after the total predicted
impact time for the track, or after a confirmed intercept. It appears one case was not carefully
considered: if an operator deselects all of these options, no tracks will be marked as inactive. Under
these conditions, the inadvertent entry of a Weapons Free command would send the Fire Enable
command to the launch station immediately, even if there were no threats to engage currently
tracked by the system.

Scenario 2: The FMIS system undergoes periodic system operability testing using an interceptor
simulator that mimics the interceptor flight computer. STPA identified the possibility that commands
intended for test activities could be sent to the operational system. As a result, the system status
information provided by the launch station includes whether the launch station is connected only to
missile simulators or to any live interceptors. If the fire control computer detects a change in this
state, it will warn the operator and offer to reset into a matching state. However, there is a small
window of time before the launch station notifies the fire control component of the change during
which the fire control software might send a Fire Enable command intended for test to the live launch
station.

Neither of these causal scenarios involve component or subsystem failures. In both cases, all the
components involved were operating exactly as intended; however, the complexity of their interactions
led to unanticipated system behavior. Of course, component failure can also be a cause of unsafe
control over a system’s behavior, and STPA does identify such failures. But only the failures that are
critical are considered, not all potential failures (as in FMEA).

In the official STPA analysis of BMDS, new and previously unknown scenarios were identified and
recommendations generated to mitigate them. Such recommendations may involve hardware or
software design changes, changes to maintenance and test procedures, and workarounds for the system
operators. The costs (both in terms of dollars and time) to fix the hazardous scenarios (i.e., the scenarios
that could lead to a hazardous system state) identified by STPA were considerable. As stated, if STPA had
been performed early in the process, these costs would have been eliminated.

Summary

The invention of a new term, “systems of systems” is unnecessary as the term “system,” as defined
in system theory, already incorporates all the supposedly new properties. Worse, the new term is
misleading and causing confusion. STPA can be used to perform a hazard analysis on all these
supposedly different types of systems.

In this paper, the U.S. BMDS is used as an example. The hazard analyses performed on the individual
systems combined to create BMDS (which therefore became subsystems of BMDS) cannot be somehow
“combined” to perform a hazard analysis for BMDS. BMDS is a new system where the combined
emergent behavior and hazards are different than the individual systems that have been composed to
create this new system. Thinking of this as a system of systems provides no advantages and is not
necessary to analyze BMDS. It simply confuses matters and makes the solution more obscure. A system
hazard analysis and a system-of-system hazard analysis are the same thing, and thus both are not
needed.

