

Safety Analysis in Early Concept

Development and Requirements Generation1

Nancy G. Leveson

Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge MA 02139

617-258-0505
http://leveson@sunnyday.mit.edu

leveson@mit.edu

Copyright © 2018 by Nancy G. Leveson. Published and used by INCOSE with permission.

Abstract. This paper shows how a new hazard analysis technique, STPA (System Theoretic Process

Analysis), can be used to generate high-level safety requirements early in the concept development

phase that can then assist in the design of the system architecture. These general, system-level

requirements can be refined using STPA as decisions are made. The process goes hand-in-hand with

design and the rest of the lifecycle as STPA can be used to provide information to assist in decision-

making throughout the development and even operations phases. STPA also fits into a model-based

engineering process as it works on a model of the system (which is also refined as design decisions

are made) although that model is different than the architectural models usually proposed for model-

based system engineering today. The process promotes traceability throughout the development

process so decisions and designs can be changed with minimum requirements for redoing previous

analyses. Finally, while this paper describes the approach with respect to safety, it can be applied to

any emergent system property.

Early Concept Exploration and Development

Early concept development, shown at the top left of the V-model (Figure 1), is the first step in the

usual system engineering process. While the label may differ in variants of the model, this stage

includes such activities as stakeholder and user analysis (needs analysis), customer requirements

generation, regulatory requirements review, feasibility studies, concept and tradespace exploration,

and establishment of criteria for evaluation of the evolving and final design. Toward the end of this

step, there may be development of a Concept of Operations.

Too often, this early stage of system engineering is not given the attention and effort it deserves and

development proceeds immediately with system architecture specification and high-level design.

Inadequate concept development may, however, lead to systems that are not usable by the customer,

only partially satisfy stakeholder needs, or are difficult to assure and maintain. While changes may

be made later in development to make up for omissions in the early concept development stage, these

later changes are increasingly expensive and disruptive as development proceeds.

1 Submitted to INCOSE 2018

mailto:author.one@gmail.com

Figure 1. The V-Model for System Engineering

Safety and security concerns are often inadequately considered in early concept exploration. Figure

2 shows a typical approach to handling these emergent system properties [Young 2017]. Major

emphasis is often placed on responding to a loss only after it occurs in operations. In addition, the

major focus may be on adding “bolt-ons” (e.g., protection systems or intruder detection) after the bulk

of design and system engineering has already been done. Making changes like these late in the

development process is not only more expensive, the fixes are usually much less effective than if

safety and security had been built into the system from the beginning.

Instead, safety and security considerations should be initiated in the concept development stage and

the results used to generate the safety and security requirements for the overall system and

components. Frola and Miller (1984) claim that 70-90% of the design decisions related to safety are

made in the concept development stage and changing these decisions later may be infeasible or

enormously expensive. The same is true for security. To fix this problem, it is necessary to integrate

safety and security into concept analysis and system requirements generation. This paper only covers

safety due to paper length restrictions, but security can be handled in a similar fashion.

Figure 2. Safety and security need to be built into the system

from the beginning of development [Young, 2017]

Concept Requirements Design Build Operate

C
o

s
t

o
f

F
ix

Attack/Accident
Response

System

Requirements

Systems

Engineering

Cyber
Security/Safety

“Bolt-ons”

Concept
Development

Traditional Preliminary Hazard Analysis (PHA)

While some consideration of safety is usually included in early concept analysis, usually in the form

of a Preliminary Hazard Analysis (PHA), the goal is often to limit the effort necessary for later

development and to predict general system risk and not to generate functional safety requirements

and design recommendations.

The safety requirements should precede creation of the system architecture used to satisfy them. Of

course, safety is not the only goal for any system and other requirements will need to be considered

in the development of the architecture. But, in the author’s experience, architectures are often

developed before the system requirements are identified. This inverted sequence raises the likelihood

that the architecture will not be optimized and sometimes not even appropriate for the system goals.

The specific formats for PHA differ, but Table 1 shows a typical PHA table [Vincoli 2005]. While

most of the information in the table is available in the early concept development stage, the probability

or likelihood of the hazardous condition cannot be known before any detailed design has been done

or even after that time when the system is software-intensive. Historical information is not useful

when the system differs significantly from past systems. The result is often incorrectly dismissing

specific hazards early in the system development process as “marginal” or extremely unlikely

[Abrecht 2016, Abrecht et.al. 2016]

Table 1. A typical PHA format

This type of PHA does not provide the information necessary to identify the functional safety and

security requirements for the system, which is the primary goal in early concept analysis. Traditional

hazard analysis techniques, which theoretically might be used for this purpose, require a fairly

detailed design and thus are not appropriate for use this early in development [Leveson 1995].

An alternative often used in the aviation community is to generate probabilistic requirements to be

satisfied by the designed system [SAE 1996]. Examples include “Loss of all wheel braking during

landing or rejected take off shall be less than 5E-7 per flight” and “Undetected inadvertent wheel

braking on one wheel without locking during takeoff shall be less than 5E-9 per flight” [SAE 1996].

While these types of requirements might have been reasonable in the era when braking systems were

composed almost exclusively of hardware parts with known failure probabilities, the extensive use of

software in almost all systems make it impossible to ensure that these requirements are satisfied

[Leveson 2012].

This paper describes a new approach to hazard analysis that can start in the early concept stage of

development and generates the system and component functional safety requirements. It is illustrated

on an aircraft ground braking system.

STAMP and STPA

STPA (System-Theoretic Process Analysis) is a relatively new hazard analysis technique based on an

extended model of accident causation called STAMP (System-Theoretic Accident Model and

Processes) [ESW].

Traditional hazard analysis methods assume a model of causality where accidents are conceived as

being caused by a chain of component failure events, i.e., component A fails, which causes component

B to fail, which leads to the failure of component C, which causes the actual loss event. For example,

the brakes fail after the aircraft lands, the pilot is unable to decelerate in time to avoid an obstacle,

and the aircraft crashes into the obstacle. This simple failure-based model is no longer adequate for

the complex, software-intensive systems being built today where accidents may be caused by system

design errors leading to interactions among components, none of which may have failed [Leveson

2012].

STAMP is based on system theory [see, for example, Checkland 1986], which was created to handle

complex systems. STAMP extends the chain-of-failure causality model to include both component

failure and unsafe interactions of system components. In STAMP, safety is an emergent2 system

property that arises when the components of a complex system interact with each other within a larger

environment. A set of constraints (requirements) related to the behavior of the system components

(physical, software, human, and social) enforces the safety property. For example, typical safety

constraints on system operation are: aircraft and automobiles must never violate minimum separation

standards, medical devices must not provide a harmful level of medicine, toxic chemicals/radiation

must not be released from a plant, batteries must never experience thermal runaway, aircraft must

have sufficient lift to remain airborne unless landing, nuclear materials must never get into the wrong

hands.

Accidents occur when the system component interactions violate these constraints. The goal, then, is

to control the behavior of the components and system as a whole to ensure that the safety constraints

are enforced in the operating system. Rather than focusing only on preventing accidents by increasing

component reliability and treating safety as a component failure problem, safety using STAMP is

treated as a dynamic control problem that enforces the safety constraints where both component

failures and component interactions must be controlled.

STPA (System-Theoretic Process Analysis) is a new hazard analysis technique based on the STAMP

extended model of accident causation [Leveson 2012]. Some of the advantages of STPA over

traditional hazard/risk analysis techniques are that:

• Very complex systems can be analyzed. “Unknown unknowns” that were previously only

found in operations can be identified early in the development process and either eliminated

or mitigated. Both intended and unintended functionality are handled.

• STPA can be started in early concept analysis to assist in identifying safety requirements

and constraints before any design or architecture exists. The STPA generated safety

requirements can then be used to design safety (and security) into the system architecture

and design, eliminating the costly rework involved when design flaws are identified late in

development or during operations. As the design is refined and more detailed design

decisions are made, the STPA analysis is refined to help make more and more detailed

design decisions.

• Complete traceability from requirements to all system artifacts can be easily maintained,

enhancing system maintainability and evolution.

2 Emergence is a basic concept in system theory. Emergent system properties are not in the individual system components

but emerge from the interactions among the components. The familiar phrase “the whole is greater than the sum of the

parts” is derived from the concept of emergence.

• STPA includes software and human operators in the analysis, ensuring that the hazard

analysis includes all potential causal factors in losses.

• The models developed for the STPA analysis provide documentation of system functionality

(vs. physical or logical design) that is often missing or difficult to find in the documentation

for large, complex systems.

• STPA generates both safety and security requirements and, in fact, requirements for any

emergent system property. In this paper, we are concerned with not the usual information

security but functional security (ensuring the functions of the system are not negatively

affected by hostile actions).

• STPA can be easily integrated into any system engineering process and into model-based

system engineering. In this case, however, the models are functional models rather than

simply physical and logical models.

STPA is described and illustrated using an aircraft example in the rest of the paper. The example

comes from a previous STPA aircraft hazard analysis [Leveson et.al. 2014]

Illustrating STPA with an Aircraft Example

Important activities in early concept analysis include identifying the stakeholder needs, system goals,

and high-level system requirements. STPA starts with identifying stakeholder needs and goals with

respect to safety. The next steps in STPA are to (1) build a high-level functional control structure

that will be used for the rest of the STPA analysis (2) identify potential unsafe control actions, (2)

generate high-level functional requirements from the unsafe control actions, and (3) generate causal

scenarios for the unsafe control actions and use these to create more detailed system and component

functional safety requirements. The scenarios include not only component failures but also additional

factors such as direct and indirect interactions among system components (which may not have

“failed”). The identified causal scenarios serve as the basis for developing system and component

safety requirements and constraints. These requirements can be used in the design of the system

architecture, in early design decisions, and in creating a concept of operations as well as in guiding

the rest of the system development.

As later design decisions are made throughout the entire development process, the STPA analysis can

be iterated and refined to support tradeoffs and decision making about the system and component

design. Traceability is provided from any low-level safety related design decision back to the first

steps in the concept analysis process and from the high-level concept analysis down to detailed design

decisions.

Starting the Early Concept Analysis

The goal of the STPA analysis is to identify hazardous behaviors so they can be eliminated or

controlled in the system design. These hazardous behaviors are used to identify the behavioral

(functional but not probabilistic) safety requirements for the various system components, including

the software and human operators.

The process starts with the stakeholders specifying unacceptable losses. While many hazard

analysis and system safety techniques handle only human death or injury and property damage,

STPA can handle any loss including environmental pollution, mission loss, monetary losses, and

even damage to company reputation. In other words, the losses represent any emergent system

property that the stakeholders want to avoid. Formally, an accident (or mishap, which is the term

used by the military) is any undesired or unplanned event or condition that results in what

stakeholders consider to be a loss.

The aircraft example in this paper starts from the following accidents (losses):

 A1. Death or serious injury to aircraft passengers or people in the area of the aircraft

 A2. Unacceptable damage to the aircraft or objects outside the aircraft

Hazards are defined as they are in System Safety, that is, as system states or sets of conditions that,

when combined with some set of environmental worst-case conditions, will lead to an accident or

loss event3 [Leveson, 1995; Leveson, 2012]. Although the term hazard is sometimes used to refer to

things outside the system boundaries, such as inclement weather in aviation, hazards in STPA are

limited to system states that are within the control of the system designer. For example, the hazard

is not the inclement weather but rather it is the aircraft being negatively impacted by inclement

weather. Constraints or controls may include staying clear of the weather or designing the aircraft to

withstand the impact of the weather. Because system engineering is concerned with the design of

the system, it can have an impact only on the behavior of the system itself and cannot change things

outside the system boundary.

In STPA, humans, such as operators, maintainers, and even managers, are included as part of the

system that is analyzed. STPA thus provides a structured method to identify human errors

influenced by the system design, such as mode confusion and loss of situational awareness leading

to hazards as well as the hazards that could arise due to loss of synchronization between the actual

automation state and the operator’s mental model of that state.

For the accidents A1 and A2 above, the hazards include:

 H1: Insufficient thrust to maintain controlled flight

 H2: Loss of airframe integrity

 H3: Controlled flight into terrain

 H4: An aircraft on the ground comes too close to moving or stationary objects or inadvertently

 leaves the taxiway

 H5: etc.

H4 is the most relevant for the example in this paper. The specific accidents related to H4 occur

when the aircraft operates on or near the ground and may involve the aircraft departing the runway

or impacting object(s) on or near the runway. Such accidents may include hitting barriers, other

aircraft, or other objects that lie on or beyond the end of the runway at a speed that causes

unacceptable damage, injury or loss of life. H4 can be refined into the following deceleration-

related hazards:

Deceleration Hazards:

 H4-1: Inadequate aircraft deceleration upon landing, rejected takeoff, or taxiing

 H4-2: Deceleration after the V14 point during takeoff

 H4-3: Aircraft motion when the aircraft is parked

 H4-4: Unintentional aircraft directional control (differential braking)

 H4-5: Aircraft maneuvers out of safe regions (taxiways, runways, terminal gates, ramps, etc.)

 H4-6: Main gear wheel rotation is not stopped when (continues after) the landing gear is retracted

The high-level system safety constraints (SCn) associated with these hazards are a simple

restatement of the hazards in or constraints on the design.

 SC1: Forward motion must be retarded within TBD seconds of a braking command upon landing,

 rejected takeoff, or taxiing (H4-1).

 SC2: The aircraft must not decelerate after V1 (H4-2).

 SC3: Uncommanded movement must not occur when the aircraft is parked (H4-3).

 SC4: Differential braking must not lead to loss of or unintended aircraft directional control

3 Sometimes a hazard is defined as a condition that could lead to an accident. But that definition includes almost

everything, most of which cannot be eliminated or controlled if the system is to operate at all. For example, an aircraft

taking off could lead to an accident later on, but we cannot build a useful system where aircraft never take off.
4 The V1 point is that point in the takeoff sequence where it is more dangerous to stop the takeoff than to continue

 (H4-4)

 SC5: Aircraft must not unintentionally maneuver out of safe regions (taxiways, runways,

 terminal gates and ramps, etc.) (H4-5)

 SC6: Main gear rotation must stop when the gear is retracted (H4-6)

Note that all of these are very high-level. They will be refined through an iterative process into a

more detailed set of functional safety requirements that are associated with specific system

components, including the crew, the software, and the component interactions. System safety

requirements are generated to prevent the causal scenarios identified by STPA. The process

continues until the hazards have all been adequately analyzed and handled in the design.

Building a Model of the Functional Control Structure

After identifying the accidents, the system safety hazards to be considered, and the system-level

safety requirements (constraints), the next step in STPA is to create a model of the aircraft

functional control structure. The STPA analysis is performed on this functional control structure

model, which basically uses standard feedback control loops.

 Figure 3 shows a basic control loop. The controller issues control actions or commands to the

controlled process: for example, in a car the control actions may include brake or accelerate. The

control actions are generated by the controller using a control algorithm (for software) or a

decision-making process for humans. In turn, the process of generating control actions uses

information about what the controller thinks is the current state of the system, called here the

Process Model. In a human, the process model is often called the “mental model.” Feedback from

the controlled process to the process is used to update this process model.

Figure 3. The basic feedback-control loop used in functional control structures.

The process model plays an important role in STPA. In systems theory, every controller contains a

model of the controlled process. This process model or mental model includes assumptions about

how the controlled process operates and the current state of the controlled process. It is used to

determine what control actions are necessary to keep the system operating effectively and safely.

Accidents in complex systems often result from inconsistencies between the model of the process

used by the controller and the actual process state, which results in the controller providing unsafe

control actions. For example, the autopilot software thinks the aircraft is climbing when it really is

descending and applies the wrong control law; a military pilot thinks a friendly aircraft is hostile

and shoots a missile at it; the software thinks the spacecraft has landed and turns off the descent

engines prematurely [JPL 2000]; the air traffic controller does not think two aircraft are on a

collision course and therefore does not provide advisories to the aircraft to change course; or a

human or automated controller thinks that a valve is open when it is actually closed and does not

issue a necessary open valve command [Kemeny 1979].

Part of the challenge in designing an effective safety control structure (and thus a safe system) is

providing the feedback and inputs necessary to keep the controller’s model consistent with the

actual state of the controlled process. Identifying potential paths to accidents and losses involves

determining how and why the controls could be ineffective in enforcing the safety constraints on

system behavior; often this is because the process model used by the controller is incorrect or

inadequate in some way, which in turn results from incorrect (including intentionally compromised

for security-related incidents) or delayed feedback . The causes of such an inconsistency are

identified by STPA.

A large percentage of accidents involving software can be explained by inaccurate process models.

Analyzing what is needed in the software process model is an important part of the safe design for a

system containing software. The same is true for accidents related to human errors. STAMP

provides a way of identifying safety-critical information and potential operator errors and their

causes, so they can be eliminated or mitigated.

There are four types of unsafe control:

• Not providing the control action under specific conditions causes a hazard

• Providing the control action under specific conditions causes a hazard

• Providing the control action too soon, too late, or out of sequence (relative to another control

action) causes a hazard

• Stopping the control action too soon or applying it too long causes a hazard (applicable only to

continuous control actions).

These four types of unsafe control play an important role in STPA in identifying unsafe control

actions, as shown in the next section.

Figure 4 shows a very high-level functional control model of an aircraft, with just three

components: the pilot, the automated control system (which will probably consist of multiple

computers), and the physical aircraft components. For complex systems, such as aircraft, levels of

abstraction can be used to zoom in on the pieces of the control structure currently being considered.

This type of top-down refinement is also helpful in understanding the overall operation of the

aircraft and in identifying interactions among the components.

While a general control structure that includes the entire socio-technical system, including both

development and operations, can be used in the analysis, in this example we consider only the

aircraft itself. Note that there are no design decisions in this model beyond the fact that the system

will be an aircraft and the aircraft will include the general functions and design of any aircraft.

Therefore, it is appropriate for use at the early concept development stage. If any of the parts of the

model are too detailed for a particular application at this point in system engineering, then they can

be removed. Note that the pilot may be a human or automation. No distinction is necessary at this

point of development.

The role of the pilot, as shown in the Figure 4 control structure, is to manage the aircraft automation

and, depending on the design of the aircraft, directly or indirectly control takeoff, flight, landing,

and maneuvering the aircraft on the ground. The pilot and the automated controllers contain a

model of the system or subsystem that they are controlling. The automation is controlling the

aircraft so it must contain a model of the current aircraft state. The pilots also need a model of the

aircraft state, but in addition they need a model of the state of the automation and a model of the

airport environment in which they are operating. Many pilot errors can be traced to flaws in their

understanding of how the automation works or of the current state of the automation.

.

Figure 4. A High-Level Control Structure at the Aircraft Level

Pilots provide flight commands to the automation and receive feedback about the state of the

automation and the aircraft. In some designs, the pilot can provide direct control actions to the

aircraft hardware (i.e., not going through the automated system) and receive direct feedback. The

dotted lines represent this direct feedback. As the design is refined and more detailed design

decisions are made, these dotted line links may be eliminated or instantiated with specific content.

The pilot always has some direct sensory feedback about the state of the aircraft and the

environment (unless the pilot is on the ground, as in UAS).

Figure 5 zooms in on the control structure model for the ground control function, which is the focus

of the example in this paper. There are three basic physical components being controlled: the

reverse thrusters, the spoilers, and the wheel braking system. By including the larger functional

control structure rather than simply one of these, STPA can consider all interactions (both intended

and unintended) among the braking components related to the hazard being analyzed.

The intent of the model in Figure 6 is to show the “functional” structure of the wheel brake system,

like the other control structures presented so far, without any assumptions about the physical

implementation. STPA starts without a specific design solution to potential problems. Instead, it

starts from the basic required functional behavior and identifies the ways that that behavior can be

hazardous. Designers can later decide on particular design solutions, such as redundancy, necessary

to satisfy the safety requirements derived through this analysis.

Figure 6 includes an autobraking function. Pilots can preset an autobrake before they land if they

are going to be busy with other activities after landing. If set, the autobrake will engage the wheel

brakes at the specified time.

Figure 5. Deceleration Control Structure

Figure 6. The Control Structure for the Wheel Braking System

Identifying Unsafe Control Actions

In STAMP, safety is treated as a control problem. In order to generate the scenarios leading to

losses, the first step is to identify unsafe control actions. At this stage in the analysis, it is

immaterial whether control actions are provided manually or automatically. The purpose is to define

the hazardous control actions from any source. Automated tools based on a mathematical

formalization of STPA have been created to assist in this part of the analysis [Thomas, 2013], but

they are beyond the scope of this paper.

A table is a convenient way to document the unsafe control actions. Table 2 shows a few examples

of unsafe control actions that can be provided by the crew, Table 3 shows some examples for actions

that can be given by the BSCU Autobrake controller. The entries in the tables include both the control

action (found in the control structures) and the conditions under which that control action will be

hazardous. The first column lists control actions that can be given by the controller and the four

following columns list how those control actions could be hazardous for the four general types of

unsafe control described in the previous section. References are provided to the associated hazard in

order to maintain traceability. Where design information is needed to provide more detailed

requirements, “TBD” is used to note that the information will need to be determined later in the design

process.

The table only shows unsafe control actions. Hazards that result when a safe control action is provided

but not followed or executed—which is the major focus of most hazard analysis techniques—are

identified later.

Table 2. Unsafe Control Actions for the Flight Crew

Control Action
By Flight Crew:

Not providing
causes hazard

Providing causes
hazard

Too soon, too late,
out of sequence

Stopped too soon,
applied too long

CREW.1
Manual braking via
brake pedals

CREW.1a1
Crew does not
provide manual
braking during
landing, RTO, or
taxiing when
Autobrake is not
providing braking
(or insufficient
braking), leading to
overshoot [H4-1,
H4-5]

CREW.1b1
Manual braking
provided with
insufficient pedal
pressure, resulting
inadequate
deceleration during
landing [H4-1, H4-5

CREW.1c1
Manual braking
applied before
touchdown causes
wheel lockup, loss
of control, tire burst
[H4-1, H4-5]

CREW.1d1 Manual
braking command is
stopped before safe
taxi speed (TBD) is
reached, resulting
in overspeed or
overshoot [H4-1,
H4-5]

 Table 3: Unsafe Control Actions for the Brake System Control Unit Autobrake Controller

Control Action by
BSCU

Not providing
causes hazard

Providing causes
hazard

Too soon, too late,
out of sequence

Stopped too soon,
applied too long

BSCU.1
Brake command

BSCU.1a1
Brake command not
provided during RTO
(to V1), resulting in
inability to stop
within available
runway length [H4-
1, H4-5]

BSCU.1b1
Braking commanded
excessively during
landing roll,
resulting in rapid
deceleration, loss of
control, occupant
injury [H4-1, H4-5]

BSCU.1c1
Braking commanded
before touchdown,
resulting in tire
burst, loss of
control, injury, other
damage [H4-1, H4-5]

BSCU.1d1
Brake command
stops during landing
roll before TBD taxi
speed attained,
causing reduced
deceleration [H4-1,
H4-5]

The unsafe control actions not only are used to create the causal scenarios, but they can also be used

to create requirements and safety constraints on the system and component design and

implementation. For example, a safety constraint on the pilot might be that manual braking

commands must be provided to override Autobrake in the event of insufficient Autobraking. Such

constraints on humans clearly are not enforceable in the same way as constraints on physical

components (i.e., by physical design features), but they can be reflected in the design of required

pilot operational procedures, in training, and in performance audits. Some requirements that are

considered to be error-prone or unachievable by human factors experts might result in changes in

the braking system design.

A few example requirements for the flight crew and the BSCU derived from the unsafe control

actions are shown in Table 4. Note there is traceability to the specific unsafe control actions from

which the requirements are generated as well as documentation of the rationale for each

requirement.

Table 4. Example STPA Generated System-Level Safety Constraints
Unsafe Control
Action

Description Rationale

FC-R1 Crew must not provide manual braking before
touchdown [CREW.1c1]

Could cause wheel lockup, loss of
control, or tire burst

FC-R2 Crew must not stop manual braking more
than TBD seconds before safe taxi speed
reached [CREW.1d1]

Could result in overspeed or
runway overshoot

FC-R3 The crew must not power off the BSCU during
autobraking [CREW.4b1]

Autobraking will be disarmed

BSCU-R1 A brake command must always be provided
during RTO [BSCU.1a1]

Could result in not stopping within
the available runway length

BSCU-R2 Braking must never be commanded before
touchdown [BSCU.1c1]

Could result in tire burst, loss of
control, injury, or other damage

BSCU-R3 Wheels must be locked after takeoff and
before landing gear retraction [BSCU.1a4]

Could result in reduced handling
margins from wheel rotation in
flight

Generating Causal Scenarios

Once the unsafe control actions have been identified, their causal scenarios are generated. The

causes of a hazard when safe control was provided but that control action was improperly executed

or not executed by the controlled process are also generated. The process for generating these

scenarios is beyond the scope of this paper, but some examples are provided in this section. All the

scenarios can involve unsafe control actions and process model flaws across multiple controllers.

Complete scenarios need not be limited to any single component. In fact, an unsafe control action

by one controller might indirectly cause an unsafe control action by another controller.

UNSAFE CONTROL ACTION – CREW.1a1: Crew does not provide manual braking when there

is no Autobraking and braking is necessary to prevent H4-1 and H4-5.

Scenario 1: Crew incorrectly believes that the Autobrake is armed and expect the Autobrake to

engage (process model flaw). Reasons that their process model could be flawed include:

a) The crew previously armed Autobrake and does not know it subsequently became

unavailable, AND/OR

b) The feedback received is adequate when the BSCU Hydraulic Controller detects a fault.

The crew would be notified of a generic BSCU fault but they are not notified that Autobrake

is still armed (even though Autobraking is no longer available), AND/OR

c) The crew is notified that the Autobrake controller is still armed and ready, because the

Autobrake controller does not detect when the BSCU has detected a fault. When the BSCU

detects a fault it closes the green shut-off valve (making Autobrake commands ineffective),

but the Autobrake system itself does not notify the crew.

d) The crew cannot process feedback due to multiple messages, conflicting messages, alarm

fatigue, etc.

Possible new requirements for S1: The BSCU hydraulic controller must provide feedback to the

Autobrake when it is faulted and the Autobrake must disengage (and provide feedback to crew). Other

requirements may be generated from a human factors analysis of the ability of the crew to process the

feedback under various worst-case conditions.

UNSAFE CONTROL ACTION – BSCU.1a2: Brake command not provided during landing roll,

resulting in insufficient deceleration and potential overshoot

Scenario 1: Autobrake believes the desired deceleration rate has already been achieved or exceeded

(incorrect process model). The reasons Autobrake may have this process model flaw include:

a) If wheel speed feedback influences the deceleration rate determined by the Autobrake

controller, inadequate wheel speed feedback may cause this scenario. Rapid pulses in the

feedback (e.g. wet runway, brakes pulsed by anti-skid) could make the actual aircraft speed

difficult to detect and an incorrect aircraft speed might be assumed.

b) Inadequate external speed/deceleration feedback could explain the incorrect Autobrake

process model (e.g. inertial reference drift, calibration issues, sensor failure, etc.).

Possible Requirement for S1: Provide additional feedback to Autobrake to detect aircraft

deceleration rate in the event of wheel slipping (e.g. fusion of multiple sensors)

STPA considers not only inadvertent unsafe control actions as causes of hazards but can also handle

those arising from intentional security-related actions such as intentionally changing the process

model to make the controller provide an unsafe control action. For example, an intruder changes the

feedback to the crew in Scenario 1 above to indicate to the crew that the autobrake is armed when it

is not. Something similar happened in the Stuxnet worm attack on the Iraqi nuclear program.

Refining the System and Component Design Requirements

As design decisions are made, the STPA analysis is iterated and refined to assist the designer in

making tradeoffs and effective design decisions. For the braking example, a more detailed control

structure that shows some design decisions (including the valves used by the hydraulic controller) is

shown in Figure 7. The design decisions, involving the additional of valves and commands related

to the hydraulic controller might be at least partially the result of resolving the hazardous scenarios

already identified.

Continuing the STPA analysis at this more detailed level of design involves the identification of

unsafe control actions related to the BSCU hydraulic controller when controlling the three

individual valves included in the refined design:

 HC-R1: The HC must not open the green hydraulics shutoff valve when there is a fault requiring

 alternate braking [HC.1b1]

 Rationale: Both normal and alternate braking would be disabled.

 HC-R2: The HC must pulse the anti-skid valve in the event of a skid [HC.2a1]

 Rationale: Anti-skid capability is needed to avoid skidding and to achieve full stop in wet or

 icy conditions.

 HC-R3: The HC must not provide a position command that opens the green meter valve when no

 brake command has been received [HC.3b1]

 Rationale: Crew would be unaware that uncommanded braking was being applied.

Once again, traceability is maintained.

Scenarios for how these new unsafe commands can be generated along with more design decisions

about how to eliminate or mitigate the new scenarios. Alternative designs might be analyzed to

provide information about how to resolve tradeoffs between alternative design choices [Horney

2017]. The process continues throughout system development.

Figure 7. A More Detailed Version of the Wheel Brake System Control Structure

Summary and Conclusions

While STPA has been extensively used and evaluated in later stages of development, the use in

early concept analysis has only recently been tried for a complex new military system in the very

early concept development stage [Horney 2017]. This paper has described how this goal might be

accomplished using STPA. Current use of safety analysis in concept development is primarily

limited to assessing risk of system hazards in order to determine the emphasis to be placed on them

during development. While this assessment might help management and government decision

makers, it does not provide useful information for system designers and developers and is very

likely incorrect. In aviation, probabilistic requirements are generated, but these are not very useful

for software, which is a major component of aircraft today. STPA can generate functional safety

requirements for systems as a whole and for the hardware, software, and human components of the

system. These requirements can be used to create an appropriate system architecture for satisfying

the system requirements, including the safety requirements.

 As development proceeds and the design is refined, the STPA analysis can be iterated with

corresponding refinement of the requirements and controls designed to deal with hazards.

Traceability is maintained throughout.

 While safety is the focus of this paper, the same process can be used for any emergent system

property.

References

Abrecht, Blake, 2016, ‘Systems Theoretic Process Analysis Applied to an Offshore Supply Vessel

Dynamic Positioning System’, M.S. thesis, MIT, Cambridge, MA (US).

Abrecht, Blake, Arterburn, Dave, Horney, David, Schneider, Jon, Brandon, Abel, Nancy Leveson,

2016, A New Approach to Hazard Analysis for Rotorcraft, AHS Specialists Meeting,

Huntsville, AL (US).

Checkland, Peter (1986), Systems Thinking, Systems Practice, John Wiley & Sons, New York, NY

(US)

Frola, F.R. and Miller, C.O., 1984, ‘System Safety in Aircraft Acquisition’, Logistics Management

Institute, Washington D.C. (US)

Horney, David, 2017, ‘System-Theoretic Process Analysis and Safety-Guided Design of Military

Systems, M.S. thesis, MIT, Cambridge, MA (US)

JPL Special Review Board, 2000, Report of the Mars Polar Lander and Deep Space 2 Missions, Jet

Propulsion Laboratory, Pasadena, CA (US).

Kemeny, 1979, ‘Report of the President’s Commission on the Accident at Three Mile Island,’ U.S.

Government Printing Office.

Leveson, Nancy, 1995, Safeware: System Safety and Computers, Addison Wesley Publishers, New

York, NY (US).

Leveson, Nancy, 2012, Engineering a Safer World, MIT Press, Cambridge, MA (US).

Leveson, Nancy, Wilkinson, Chris, Fleming, Cody, Thomas, John, 2014, ‘A Comparison of STPA

and the ARP 4761 Safety Assessment Process’, MIT Technical Report, MIT, Cambridge,

MA (US).

SAE, ARP 4761, 1996, ‘Guidelines and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment’, RTCA (US)

Thomas, John, 2013, ‘Extending and Automating a Systems-Theoretic Hazard Analysis for

Requirements Generation and Analysis, Ph.D. thesis, MIT, Cambridge, MA (US)

Vincoli, Jeffrey, 2005, Basic Guide to System Safety, Wiley Inter-Science, New York, NY (US)

Young, William, 2016, Systems Theoretic Security Engineering, Ph.D. thesis, MIT, Cambridge,

MA (US)

Biography

Nancy Leveson is Professor of Aeronautics and Astronautics at MIT. She is

an elected member of the National Academy of Engineering (NAE). Prof.

Leveson works in system and software engineering, system safety, and

human-computer interaction. She has received many awards for her research,

including the ACM Allen Newell Award for outstanding computer science

research and the ACM SIGSOFT Outstanding Research Award. She has

published over 200 research papers and is author of two books, "Safeware:

System Safety and Computers" published in 1995 by Addison-Wesley and

"Engineering a Safer World" published in 2012 by MIT Press. She consults extensively in many

industries on the ways to prevent losses. Prof. Leveson served on the INCOSE Board of Directors

from 1992-1996.

