
focus

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0  ©  2 0 0 0  I E E E J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 19

design, algorithm, code, or test—does in-
deed improve software quality and reduce
time to market. Additionally, student and
professional programmers consistently find
pair programming more enjoyable than
working alone.

Yet most who have not tried and tested
pair programming reject the idea as a re-
dundant, wasteful use of programming re-
sources: “Why would I put two people on a
job that just one can do? I can’t afford to do
that!” But we have found, as Larry Con-
stantine wrote, that “Two programmers in
tandem is not redundancy; it’s a direct route
to greater efficiency and better quality.”1

Our supportive evidence comes from
professional programmers and from ad-
vanced undergraduate students who partic-
ipated in a structured experiment. The ex-
perimental results show that programming
pairs develop better code faster with only a
minimal increase in prerelease programmer
hours. These results apply to all levels of

programming skill from novice to expert.

Earlier Observations
In 1998, Temple University professor

John Nosek reported on his study of 15
full-time, experienced programmers work-
ing for a maximum of 45 minutes on a chal-
lenging problem important to their organi-
zation. In their own environments and with
their own equipment, five worked individu-
ally and 10 worked collaboratively in five
pairs. The conditions and materials were
the same for both the experimental (team)
and control (individual) groups. A two-
sided t-test showed that the study provided
statistically significant results. Combining
their time, the pairs spent 60% more min-
utes on the task. Because they worked in
tandem, however, they completed the task
40% faster than the control groups, and
produced better algorithms and code.2

Most of the programmers were initially
skeptical of the value of collaborating and

Strengthening the Case
for Pair Programming

Laurie Williams, North Carolina State University

Robert R. Kessler, University of Utah

Ward Cunningham, Cunningham & Cunningham

Ron Jeffries

The software 
industry has 

practiced pair 
programming—two

programmers
working side by

side at one 
computer on the
same problem—

with great success
for years. But 

people who haven’t
tried it often reject
the idea as a waste 

of resources. 
The authors

demonstrate that
using pair 

programming in
the software 
development

process yields 
better products in

less time—and 
happier, 

more confident 
programmers.

process diversity

F
or years, programmers in industry have claimed that by working
collaboratively, they have produced higher-quality software prod-
ucts in shorter amounts of time. But their evidence was anecdotal
and subjective: “It works” or “It feels right.” To validate these

claims, we have gathered quantitative evidence showing that pair program-
ming—two programmers working side by side at one computer on the same 



20 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

thought it would not be an enjoyable
process. But, according to Nosek, “To the
surprise of the managers and participants,
all the teams outperformed the individual
programmers, enjoyed the problem-solving
process more, and had greater confidence in
their solutions.”2

Pair programming is not new. In 1995,
Larry Constantine reported observing pairs of
programmers producing code faster and freer
of bugs than ever before.2 The same year, Jim
Coplien published what he called the devel-
oping-in-pairs organizational pattern.3

In 1996, Smalltalk code developer and
consultant Kent Beck, with authors Ward
Cunningham and Ron Jeffries, began devel-
oping the Extreme Programming software
development methodology (see the sidebar).
XP is now practiced by programmers
worldwide. A significant part of XP is pair
programming, and people who practice XP
are the largest known group of pair pro-
grammers. The XP methodology’s success
rate is so impressive that it has aroused the
curiosity of many software engineering re-
searchers and consultants. The XP founders
credit much of this success to the use of pair
programming by all XP programmers, ex-
perts and novices alike.

The Development Cycle
In pair programming, two programmers

jointly produce one artifact (design, algo-
rithm, code). The two programmers are like
a unified, intelligent organism working with
one mind, responsible for every aspect of
this artifact. One partner, the driver, con-
trols the pencil, mouse, or keyboard and
writes the code. The other partner continu-
ously and actively observes the driver’s
work, watching for defects, thinking of al-
ternatives, looking up resources, and con-
sidering strategic implications. The partners
deliberately switch roles periodically. Both
are equal, active participants in the process

at all times and wholly share the ownership
of the work product, whether it is a morn-
ing’s effort or an entire project.

Ideally, pair programmers will always
work together. But reality—illness, time
conflicts, or even efficiency—dictates that at
times the pair must split. Experienced pair
programmers prioritize the parts of the de-
velopment cycle, deciding which are most
important to work on together and which
can be done separately. They must also de-
cide what to do with the independently de-
veloped work when they reunite. When a
larger group adopts pair programming as
the normal way of working, the long-term
continuity of a particular pair becomes less
important. By pairing regularly with all
members of the group, an individual pro-
grammer maintains sufficient general aware-
ness to substitute for a missing partner at a
moment’s notice.

Unanimously, the pair programmers we
have observed agree that pair analysis and
pair design are critical to success. That is,
two brains are better than one when per-
forming analysis and design. Pairs consider
many more possible solutions to a problem
and converge more quickly on which solu-
tion to implement. According to researchers
Nick Flor and Edwin Hutchins, the feed-
back, debate, and idea exchange between
partners significantly decrease the probabil-
ity of proceeding with a bad design.4 Col-
laborators often can perform tasks that are
too challenging for one to do alone. In an
anonymous online survey (http://limes.cs.
utah.edu/questionnaire/questionnaire.htm),
one professional programmer reflected, “It
is a powerful technique as there are two
brains concentrating on the same problem
all the time. It forces one to concentrate
fully on the problem at hand.”

While one partner is busy typing or writ-
ing down the design, the other partner can
continuously review the design and think

You know what I like about pair programming? First, it’s something that has been shown to
help produce quality products. But, it’s also something that you can easily add to your pro-
cess that people actually want to do. It’s a conceptually small thing to add, as opposed to
having an overblown methodology shoved down your throat. And, when times get tough,
you wouldn’t likely forget to do pair programming or decide to drop it “just to get done.” I
just think the idea of working together is a winner.

—Chuck Allison, Consulting Editor, C/C++ Users Journal 
(in a conversation with Laurie Williams)



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 21

more strategically about its implications.
Will it run into a dead end? Is there is a bet-
ter strategy? Thus, pair programming pre-
vents design defects or removes them almost
as soon as they hit the paper. A further ben-
efit is the elimination of design tunnel vi-
sion—making a design decision and sticking
with it no matter what. With partners re-
viewing and questioning decisions, the ex-
ploration of design alternatives increases. To
prepare for an effective joint analysis and de-
sign session, programmers should individu-
ally research the problem they need to solve
and perhaps do experimental prototyping.

After developing a quality design, the
pair must implement it. Again, one pro-
grammer is the driver, who types code into
the computer, while the other observes, con-
tinuously reviews the code, and considers
the implementation’s strategic implications.
This side-by-side form of code review is an
effective and efficient form of defect re-
moval. As Gerald Weinberg observes, 

“The human eye has an almost infinite

capacity for not seeing what it does not

want to see.... Programmers, if left to

their own devices, will ignore the most

glaring errors in their output—errors

that anyone else can see in an instant.”5

With pair programming, four eyeballs
are better than two, and a huge number of
defects are prevented right from the start.

Programmers view pair analysis and de-
sign as more critical than pair implementa-
tion. Pairs report that they sometimes work
on implementation individually, usually the
rote, routine, or simple coding phases of a
project. They find that doing this type of pro-
gramming individually is more effective. De-
velopers report that having a partner for de-
tail-oriented tasks such as drawing a graphi-
cal user interface doesn’t help much. Some
programmers code average-complexity mod-
ules individually if a situation such as a time
conflict dictates, but most immediately feel
uncomfortable and more error prone. Some
even say that any work done individually
should be scrapped and redone by the pair.
Most programmers perform a thorough re-
view of the individual work before incorpo-
rating it in the project. A small minority inte-
grate individual work without review.

The least critical part of the development
cycle is pair testing, as long as the pair de-
velops the test cases together. Pairs some-
times split up to run test cases, often side by
side at two computers. When they discover
defects, the partners usually rejoin to find
the best solution.

University Experiment
In 1999 at the University of Utah, senior

software engineering students participated
in a structured experiment. Its purpose was
to validate quantitatively the anecdotal and
qualitative pair-programming results ob-

eXtreme Programming is a software development method
that favors informal and immediate communication over the de-
tailed and specific work products required by many traditional
design methods. Pair programming fits well within XP for rea-
sons ranging from quality and productivity to vocabulary devel-
opment and cross training. XP relies on pair programming so
heavily that it insists all production code be written by pairs.

XP consists of a dozen practices appropriate for small to
midsize teams developing software with vague or changing re-
quirements. The methodology copes with change by delivering
software early and often and by absorbing feedback into the
development culture and ultimately into the code.

Several XP practices involve pair programming:

� Developers work on only one requirement at a time, usually
the one with the greatest business value as established by
the customer. Pairs form to interpret requirements or to place
their implementation within the code base.

� Developers create unit tests for the code’s expected behavior
and then write the simplest, most straightforward implemen-
tations that pass their tests. Pairs help each other maintain

the discipline of writing tests first and the complementary,
though quite distinct, discipline of writing simple solutions.

� Developers expect their intentions to show clearly in the
code they write and refactor their code and other’s if neces-
sary to achieve this result. A partner who has been tracking
the programmer’s intention is well equipped to judge the
program’s expressiveness.

� Developers continuously integrate their work into a single
development thread, testing its health by running compre-
hensive unit tests. With each integration, the pair releases
ownership of their work to the whole team. At this point, dif-
ferent pairings can form if another combination of talent is
more appropriate for the next piece of work.

To learn more, see Kent Beck’s book,1 or consult the eXtreme
Programming Roadmap at xp.c2.com, where a lively commu-
nity debates each XP practice.

Reference
1.  K. Beck, eXtreme Programming Explained: Embrace Change, 

Addison Wesley Longman, Reading, Mass., 2000.

What Is eXtreme Programming?



22 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

served in industry. All students attended the
same classes, received the same instruction,
and participated in class discussions on the
pros and cons of pair programming. On the
first day of class, 35 of the 41 students
(85%) indicated a preference for pair pro-
gramming. Later, many of the 35 admitted
that they were initially reluctant, but curi-
ous, about pair programming.

We divided the students into two groups,
both composed of the same mix of high, av-
erage, and low performers, as determined by
their grade point averages. Thirteen students
formed the control group, in which all
worked individually on all assignments.
Twenty-eight students formed the experimen-
tal group, in which all worked in two-person,
collaborative teams on the same assignments
as the individuals. The collaborative pairs
also had additional assignments to keep the
workload equal between the two groups.

All 28 students in the experimental group
had expressed an interest in pair program-
ming. Some students in the control group
had wanted to try pair programming. Prior
to enrolling in this class, the students had
significant coding practice. Most had indus-
try internship experience, and most had
written small compilers, operating system
kernels, and interpreters in other classes.

The experiment compared cycle time, pro-
ductivity, and quality between the two groups.
The students recorded the time they spent on
the project in a Web-based tool. An impartial
teaching assistant executed automated testing
to analyze programming quality.

Pair Jelling
Long conditioned to working alone,

many programmers venture into their first
pair-programming experience skeptical of
benefiting from collaborative work. They
wonder how much additional communica-
tion will be required; how they will adjust
to the other’s work habits, programming
style, and ego; and whether they will dis-
agree on aspects of the implementation. In-
deed, programmers go through an initial ad-
justment period in the transition from soli-
tary to collaborative programming. (A
recent article provides guidelines on making
this transition.6) Our anecdotal evidence
and observations show that in industry this
adjustment period varies from a few hours
to several days, depending on the individu-

als. In the university experiment, the stu-
dents generally adjusted after the first as-
signment, although some reported an even
shorter adjustment period.

For the first assignment, the pairs finished
in a shorter elapsed time and produced a bet-
ter product than the individuals. On aver-
age, however, they took 60% more pro-
grammer hours to complete the assignment.
These results are similar to Nosek’s results
described earlier. After the adjustment pe-
riod, this 60% decreased dramatically to a
minimum of 15%. The end of the second as-
signment marked an important milestone:
all students reported they had overcome the
constant urge to grab the mouse or keyboard
from their partner’s hands.

It doesn’t take many clean compiles or
declarations of “We just got through our
test with no defects!” for the partners to feel
as one. Tom DeMarco and Timothy Lister
describe this type of union as

a jelled team.... a group of people so
strongly knit that the whole is greater
than the sum of the parts. The production
of such a team is greater than that of the
same people working in unjelled form.
Just as important, the enjoyment that peo-
ple derive from their work is greater than
what you’d expect given the nature of the
work itself. In some cases, jelled teams
working on assignments that others would
declare downright dull have a simply mar-
velous time.... Once a team begins to jell,
the probability of success goes up dramat-
ically. The team can become almost un-
stoppable, a juggernaut for success.7

Jon Katzenbach and Douglas Smith ex-
plain what happens when a team jells: The
members of such a team learn the strengths
and weaknesses of each member.8 With this
knowledge, they can adjust their activities
to exploit strengths and avoid weaknesses.
As a result, the team’s productivity exceeds
the sum of its individuals’ productivity.

Pair-Programming Results
Some may question the value [of pair pro-
gramming] if the collaborators do not
perform “twice” as well as individuals, at
least in the amount of time spent. For in-
stance, if the collaborators did not per-
form the task in half the time it takes an
individual, it would still be more expen-

Some
organizations
that use pair
programming
heavily have

achieved
superior
results.



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 23

sive to employ two programmers. How-
ever, there are at least two scenarios
where some improved performance over
what is expected or possible by a single
programmer may be the goal: (1) speed-
ing up development and (2) improving
software quality.2

Some organizations that use pair pro-
gramming heavily have achieved superior re-
sults. The largest example is the Chrysler
Comprehensive Compensation System (the
C3 project discussed in Ron Jeffries’ side-
bar). After finding significant initial develop-
ment problems, Beck and Jeffries restarted
the development using XP principles, includ-
ing the use of pair programming. In the last
five months of development, almost the only
defects that made it through unit and func-
tional testing were written by solo program-
mers. The payroll-system software, which
handles roughly 10,000 employees, and con-
sists of 2,000 classes and 30,000 methods,
went into operation in May 1997, almost on
schedule.9

In the online survey of professional pair
programmers, we found similar experiences.
For example, one respondent wrote:

I strongly feel pair programming is the
primary reason our team has been suc-
cessful. It has given us a very high level of
code quality (almost to the point of zero
defects). The only code we have ever had
errors in was code that wasn’t pair pro-
grammed.… we should really question a
situation where it isn’t utilized.

Our university experiment produced
quantitative results similar to industry re-
sults. The students completed four assign-
ments over a period of six weeks. The pairs
always passed more of the automated post-
development test cases (see Table 1). Their
results were also more consistent, while the
individuals varied more about the mean.
Some individuals didn’t hand in a program
or handed it in late; pairs handed in their
assignments on time. We attribute the pairs’
punctuality to positive pressure the part-
ners exert on each other. They admit to
working “harder and smarter” because
they don’t want to let their partner down.
Without this pressure, individuals don’t
perform as consistently.

In addition to the development-quality

benefits found in our study, we can think of
three reasons why pair programming might
be more valuable to industry than our re-
sults indicate. First, the longer defects re-
main in the product, the more costly it is to
find and fix them. The rework necessary to
bring individual programmers’ quality lev-
els up to that of collaborative programmers
could be very time consuming and expen-
sive. Some of these defects could escape to
the customer. Second, unclear designs are
difficult to change in later releases, resulting
in the long-term cost of poor quality. Third,
a side effect of pair programming is a high
order of staff cross training, which removes
additional long-term costs from develop-
ment. As Beck writes, “Even if you weren’t
more productive, you would still want to
pair, because the resulting code quality is so
much higher.”10

Many people reject the idea of pair pro-
gramming because they assume that putting
two programmers on a job that one can do
will increase programmer hours 100%. In
our experiment, however, after the initial
adjustment period, the total
programmer hours the pairs
spent on each assignment de-
creased dramatically (see Fig-
ure 1). If we had required the
individuals to spend addi-
tional time improving their
code to the level of the pairs’
code, the individuals would
have taken even more time
than the pairs. By working in
tandem, the pairs completed
their assignments 40% to
50% faster.

In today’s market, getting a
quality product out as quickly
as possible is a competitive ad-
vantage that might even mean
survival. Fixing defects after
release to customers can cost
far more than finding and fix-
ing them during development.

Program 1

100%

80%

60%

40%

20%

0%
Program 2 Program 3

Individuals

Pairs

Figure 1. Comparison
of pair programmers’
and individuals’ 
project completion
times. (Data entry
problems prevented
accurate recording of
the completion times
for Program 4.)

Table 1
Percentage of Test Cases Passed*

Individuals Pairs
Program 1 73.4 86.4
Program 2 78.1 88.6
Program 3 70.4 87.1
Program 4 78.1 94.4

*The difference in quality levels is statistically significant to p < 0.01; p is the probability that these results could occur by chance.



24 I E E E  S O F T W A R E J u l y / A u g u s t  2 0 0 0

The benefits of getting a product out faster,
reducing maintenance expenses, and im-
proving customer satisfaction outweigh any
programmer-hour increase that pair pro-
grammers might incur.

For several reasons, programmer-hours
do not double with pair programming as
one might expect. First, collaboration im-
proves the problem-solving process. As a re-
sult, far less time is spent in the chaotic,
time-consuming compile and test phases.
Said one of the students in the experiment:

When I worked on the machine as the
driver, I concentrated highly on my work.
I wanted to show my talent and quality
work to my partner. When I was doing it,
I felt more confident. In addition, when I
had a person observing my work, I felt
that I could depend on him, since this
person cared about my work and I could
trust him. If I made any mistakes, he
would notice them, and we could have a
high-quality product. When I was the
nondriver, I proofread everything my
partner typed. I felt I had a strong re-
sponsibility to prevent any errors in our
work. I examined each line of code very
carefully, thinking that if there were any
defects in our work, it would be my fault.
Preventing defects is the most important
contribution to the team, and it put a bit
of pressure on me.

Additionally, pairs find that by pooling
their joint knowledge, they can conquer al-
most any technical task immediately. In
teaching the university class that partici-
pated in the experiment, the instructor no-
ticed that individual workers asked two or
three times more technical questions than
did collaborative workers. While waiting
for the answers to these questions, these stu-
dents were generally unproductive. We
would expect this situation to translate to a
professional environment.

As mentioned earlier, pair programmers
put pressure on each other to perform,
keeping their partner focused and on task.
Programmers have told us that even if they
come to work after a bad night or are pre-
occupied with other thoughts, their partner
draws their attention to the task at hand.
They are less likely to spend time talking
on the telephone, reading and answering e-
mail, or surfing the Web if their partner is

waiting. Because of this peer pressure,
pairs usually have a stronger motivation to
complete the task during the session; there-
fore, they work with much greater focus
and intensity than individuals.

Pair Satisfaction
Unlike many techniques put forth to im-

prove software quality and productivity,
pair programming is one that programmers
actually enjoy. Pair programming improves
their job satisfaction and overall confidence
in their work. In the online survey of pro-
fessional pair programmers, 96% stated
that they enjoyed their job more than when
they programmed alone. We surveyed the
41 collaborative programmers in the uni-
versity experiment six times. Consistently,
more than 90% stated that they enjoyed
collaborative programming more than solo
programming. Additionally, virtually all the
surveyed professional programmers stated
that they were more confident in their solu-
tions when they pair programmed. Almost
95% of the students echoed this statement.

A natural correlation exists between these
two measures of satisfaction. That is, the
pairs enjoy their work more because they are
more confident in their work. Someone is
there to help them if they are confused or un-
knowledgeable. They can bounce ideas off a
friend. They spend more time doing chal-
lenging design and less time doing annoying
debugging. They leave each session with an
exhilarated, we-nailed-that-one feeling. In-
deed, having engaged in pair programming
ourselves, we agree completely that it is far
more enjoyable than individual program-
ming. We too have experienced the shared
euphoria that follows the successful comple-
tion of a collaborative task.

Although most programmers enjoy pair
programming, sometimes they have trouble
working with a particular partner. The diffi-
culty often arises from being paired with
someone with excess ego—the my-way-or-
the-highway attitude. Or the problem might
be too little ego—partners who have trouble
asserting themselves and thus contribute lit-
tle. The majority of participants in our
study and in our survey were self-selected
pair programmers. Further study is needed
to examine the eventual satisfaction of pro-
grammers forced to pair program despite
their resistance.

Unlike many
techniques 
put forth to

improve
software

quality and
productivity,

pair
programming 

is one that
programmers
actually enjoy.



J u l y / A u g u s t  2 0 0 0 I E E E  S O F T W A R E 25

L arge-group software projects are
prone to peculiar difficulties. As the
well-known Brooks’s law states,

“Adding manpower to a late software proj-
ect makes it later.”11 The logic behind this
law focuses on intercommunication effort:

In tasks requiring communication among
the subtasks, the effort of communication
must be added to the amount of work to
be done.... The added burden of communi-
cation is made up of two parts, training
and intercommunication.... If each part of
the [n] task[s] must be separately coordi-
nated with each other part, the [intercom-
munication] effort increases as n(n + 1)/2.11

Integrating the partitioned tasks of pro-
grammers requires this extra intercommuni-
cation effort. Pair programming can halve
the number of separate tasks to be integrated,
and thus we anticipate that large groups con-
sisting of pair-programming teams should
fair much better. We would like to run an-
other university study to analyze the effect of
pair programming on larger groups.

Finally, we would like to see the same ex-
periments applied in an industrial setting—
perhaps with part of a larger development
team. Anyone interested in running such an
experiment should contact Laurie Williams
(william@csc.ncsu.edu). 

References
1. L.L. Constantine, Constantine on Peopleware, Yourdon

Press, Englewood Cliffs, N.J., 1995.
2. J.T. Nosek, “The Case for Collaborative Programming,”

Comm. ACM, Vol. 41, No. 3, 1998, pp. 105–108.
3. J.O. Coplien, “A Development Process Generative Pat-

tern Language,” Pattern Languages of Program Design,
J.O. Coplien and D.C. Schmidt, eds., Addison-Wesley,
Reading, Mass., 1995, pp. 183–237.

4. N.V. Flor and E.L. Hutchins, “Analyzing Distributed
Cognition in Software Teams: A Case Study of Team
Programming during Perfective Software Maintenance,”
Proc. Empirical Studies of Programmers: Fourth Work-

shop, Ablex Publishing, New York, 1991, pp. 36–64.
5. G.M. Weinberg, The Psychology of Computer Pro-

gramming Silver Anniversary Edition, Dorset House,
New York, 1998.

6. L.A. Williams and R.R. Kessler, “All I Ever Needed to
Know about Pair Programming I Learned in Kinder-
garten,” Comm. ACM, Vol. 43, No. 5, 2000, pp.
108–114.

7. T. DeMarco and T. Lister, Peopleware, Dorset House,
New York, 1977.

8. J.R. Katzenbach and D.K. Smith, The Wisdom of
Teams: Creating the High-Performance Organization,
Harper Business, New York, 1994.

9. A. Anderson et al., “Chrysler Goes to ‘Extremes’,” Dis-
tributed Computing, Oct. 1998, pp. 24–28.

10. K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley Longman, Reading, Mass.,
2000.

11. F.P.J. Brooks, The Mythical Man-Month, Addison-
Wesley, Reading, Mass., 1975.

by Ron Jeffries

Like most programmers, I had done some pair program-
ming, usually when working on something particularly tricky or
during some difficult debugging sessions. Although Ward Cun-
ningham had recommended full-time pair programming a few
times, my first experience with “real” pair programming came
on the C3 [Chrysler Comprehensive Compensation] project,
where I was coach.

I was sitting with one of the least-experienced developers,
working on some fairly straightforward task. Frankly, I was
thinking to myself that with my great skill in Smalltalk, I would
soon be teaching this young programmer how it’s really done.

We hadn’t been programming more than a few minutes
when the youngster asked me why I was doing what I was do-
ing. Sure enough, I was off on a bad track. I went another
way. Then the whippersnapper reminded me of the correct
method name for whatever I was mistyping at the time. Pretty
soon, he was suggesting what I should do next, meanwhile
calling out my every formatting error and syntax mistake.

I’m not entirely stupid. I noticed very quickly that this most
junior of programmers was actually helping me! Me! Can you
believe it? Me! Since then, that’s been my experience every
time in pair programming. Having a partner makes me a better
programmer. Ward was right—as usual.

My First Pair-Programming Experience

About the Authors

Laurie Williams is a faculty member at North Carolina State University. Her research 
interests are software engineering, software process, collaborative programming, and 
e-commerce. She received a BS in industrial engineering from Lehigh University, an MBA from
Duke University, and a PhD in computer science from the University of Utah. Contact her at
williams@csc.ncsu.edu.

Ward Cunningham is a founder and owner of Cunningham & Cunningham, a consulting
firm. Among his contributions to the developing practice of object-oriented programming, he cre-
ated the CRC design method, which helps teams find core objects for their programs. He is active
in the Hillside Group and has served as program chair of its Pattern Languages of Programs Con-
ference. Contact him at ward@c2.com.

Robert R. Kessler is a professor and chairman of the Department of Computer Science
of the University of Utah. In the early 1990s, he founded the Center for Software Science, a Utah
Center of Excellence. He recently completed seven years as coeditor in chief of the International
Journal of Lisp and Symbolic Computation. His research interests include agents, software engi-
neering, distributed systems, and visual programming. Contact him at kessler@cs.utah.edu.

Ron Jeffries is an independent consultant. He has been developing software since 1961, when he accidentally got a
summer job at the Strategic Air Command headquarters, where they accidentally gave him a Fortran manual. He and his
teams have built operating systems, language compilers, relational and set-theoretic database systems, and manufacturing
control and applications software, producing about a half-billion dollars in revenue—and he wonders why he didn’t get
any of it. For the past few years, he has been learning, applying, and teaching the eXtreme Programming discipline. Con-
tact him at ronjeffries@acm.org.


