
eveloping large industrial software systems with very high reliability
and availability requirements entails enormous costs. Many organiza-
tions have begun to consider implementing such systems using
reusable component repositories, with the expectation that

♦ commercial off-the-shelf (COTS) components or components designed for reuse
can significantly lower development costs and shorten development cycles; and

♦ using them will ultimately lead to software systems that require less time to
specify, design, test, and maintain, yet satisfy the high reliability requirements.

Many organizations see the arrival of languages designed to implement soft-
ware components as the silver bullet they have awaited for decades. They envision
that writing a component once and reusing it in many subsequent software sys-
tems will effectively amortize the development cost among all users. They assume
they can seamlessly integrate repository components into a new environment, and
that COTS components are plug-and-play. In either case they see these components
as building blocks that can be easily incorporated into a software system to provide
specified functionality.

Elaine J. Weyuker, AT&T Labs

Testing Component-
Based Software:

A Cautionary Tale

We need new ways to va l idate so f t ware comp onents, sp ec i f i ca l ly those
deployed in d iverse so f t ware env i ronments. We must a l so cons ider the
l ike l ihood o f rea l i z ing ant ic ipated sav ings and whether comp onent-
based sys tems can meet re l iab i l i t y and ava i lab i l i t y requi rements.

D

5 4 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

.

To realize the potential benefits of such an archi-
tecture, however, we must design systems using re-
liable components that interoperate safely. This in
turn means developing ways to test the compo-
nents that make up a system, both in isolation and
once integrated.

THE ARIANE 5 LESSON

In June 1996, during the maiden voyage of the
Ariane 5 launch vehicle, the launcher veered off
course and exploded less than one minute after take-
off. The Inquiry Board convened by the ESA’s director
general and the CNES’s chairman determined that
the explosion resulted from insufficiently tested soft-
ware reused from the Ariane 4 launcher. Developers
had reused certain Ariane 4 software components in
the Ariane 5 system without substantial retesting,
having assumed there were no significant differences
in these portions of the two systems.1

Jean-Marc Jézéquel and Bertrand Meyer2 argued
that a reuse specification error caused the Ariane 5
failure and that had the design-by-contract approach
been used, with its reliance on Eiffel-like assertions,
the fault almost certainly would have been caught
and the failure prevented. Ken Garlington3 responded
that they had demonstrated neither the necessity
nor the sufficiency of using such assertions to pre-
vent the Ariane 5 explosion or a similar disaster.

Although both sides offered cogent arguments,
one thing is clear: as the reuse of software compo-
nents and the use of COTS components become rou-
tine, we need testing approaches that will effectively
guard against the occurrence of similar disasters. In
addition, these testing techniques must be widely
applicable regardless of the source code’s availabil-
ity, because whether we’re using legacy code, pur-
chasing off-the-shelf components, or accessing in-
house component repositories, typically only the
object code is available. We also must ensure—in a
cost-effective way—that the resulting systems are
sufficiently reliable to meet their specified needs.

TESTING NEWLY DEVELOPED
SOFTWARE

Some commercially developed software systems
go through little or no systematic testing, which can
lead to serious consequences once the software has
been released to the field. The later in the life-cycle

that software faults are identified, the greater the
cost of repair and the more serious the impact on
the end user.4

Software systems should go through at least
three stages of correctness testing:

♦ unit testing, in which individual components
are tested;

♦ integration testing, in which the subsystems
formed by integrating the individually tested com-
ponents are tested as an entity; and

♦ system testing, in which the system formed
from the tested subsystems is tested as an entity.

Many industrial software systems, including
those my company produces, may also go through
feature testing, performance test-
ing, load testing, stability testing,
stress testing, and reliability test-
ing. These are distinguished by
the granularity of the software
entities being tested and the ul-
timate goal of validation.

Unit testing frequently uses
test cases selected using the
component’s actual source code,
in which case we call it program-
based or white-box testing. Unit
testing is generally done by de-
velopers who have access to the
source code and are familiar with its details, and
therefore can constructively use this information.
Also, the relatively small size of the individual mod-
ules or units being tested makes it feasible to con-
sider the code details when determining appropri-
ate unit test cases.

In contrast, system testing typically uses test
cases selected without reference to the code details,
because at this level, there is generally far too much
code to rely on such details. We call a testing strat-
egy that does not rely on code details black-box or
specification-based testing. People other than the
code developers usually do system testing; they
may therefore be unfamiliar with the level of detail
necessary to perform code-based testing and gen-
erally do not have access to the source code. They
are only responsible for testing the fully integrated
system; when they find symptoms of faults (that is,
when failures occur in response to test cases), they
simply transmit the information to the development
organization for fault isolation and repair.

Either the developers themselves or an inde-
pendent test organization may perform integration
testing. The testers therefore may or may not rely on

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 5 5

The Ariane 5
disaster showed
that not testing
components
in their new
context may
have disastrous
consequences.

.

code details to select test cases, depending on the
size of the subsystems tested and who performs the
testing. Integration testing frequently emphasizes
the interface code since the individual modules
being integrated have already been tested.

Load testing occurs after the system’s function-
ality has been thoroughly tested. This phase deter-
mines whether the system’s resource allocation
mechanisms function correctly and how the system
behaves under particular loads. In my organization,
it frequently includes stability, stress, reliability, and
performance testing.

Alberto Avritzer and I5 presented load testing al-
gorithms that rely on the software’s operational pro-
file or operational distribution definition to select a
meaningful and manageable set of test cases. An
operational profile is a probability distribution that
describes how the software will be used when op-
erating in the field. This strategy emphasizes those
software states most likely to be entered once the
software is operational. We designed the test case
generation algorithm to test very large industrial
software systems with enormous state spaces (or
input domains) that make it impossible to test even
a small fraction of possible cases. The cases selected

for testing are those most likely to occur and there-
fore most likely to impact the user if a fault associ-
ated with the state exists.

In some cases, it may prove essential to stress not
only the most common situations but also the most
critical or costly ones. For that reason, recent work6

proposed incorporating the consequence or cost of
failures into the test case selection process.

TESTING COMPONENT-BASED
SOFTWARE

David Garlan, Robert Allen, and John Ockerbloom7

presented a case study detailing the problems that
arose as they built a system from reusable compo-
nents. Performance problems resulted from both the
system’s massive size and its complexity, which was
frequently inappropriate for the tasks performed.
The authors reported that they had trouble fitting

selected components together; in some cases it took
significant reengineering to make them interoper-
ate properly. Maintaining the synthesized systems
also proved difficult in the absence of low-level un-
derstanding.

These problems all impact a component-based
system’s quality and reliability, but this lack of low-
level understanding has particular implications.
Among them is the difficulty of developing test
suites for such systems, both because necessary in-
sights are not available and because lack of access to
needed artifacts prevents certain types of testing.

Reusing components developed for
a different project

When developing a component for a particular
project or application, with no expectation of reuse,
testing proceeds as usual. Information about the
software’s intended or expected usage usually af-
fects the selection of test cases. Even with no ex-
plicitly defined operational distribution, testers usu-
ally have some information or intuition about how
the software will be used and therefore emphasize,
at least informally, testing of what they believe to
be its central or critical portions.

These priorities will likely
change, however, if it is decided
to incorporate the component
into a different software system.
The original system may com-
monly execute portions that the
other never will, which makes

much of the testing irrelevant to the new user in the
new setting. Likewise, the new user may use parts
of the component that correspond to extremely un-
likely scenarios in the original system’s behavior, and
these may have been untested or only lightly tested
when the software was developed.

Changing priorities between applications im-
plies that a software component developed for one
project should not be used for another project with-
out significant additional testing. The Ariane 5 dis-
aster showed that not testing components in their
new context risks significant and potentially cata-
strophic failures. This holds true whether the soft-
ware was custom-designed in-house for a particular
project and is being reused by a different project,
was purchased as a COTS component, or comes from
an in-house repository. While the techniques used to
test components under these different circum-
stances will likely differ, it remains necessary to test
components in their new environments.

5 6 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

Developers reusing a component need to do
considerable testing to ensure the software

behaves properly in its new environment.

.

As an example, let’s examine two projects with
significantly different usage patterns that use the
same software component. I created a test suite
using one of Avritzer and Weyuker’s automatic test
case generation algorithms.5 This approach models
the software as a Markov chain and uses operational
distribution data to select test cases that exercise
the states most likely to be executed in production.

Table 1 shows the first system’s operational dis-
tribution data; Table 2 shows this data for the sec-
ond system. The specification requires that each sys-
tem handle a maximum of 1,000 simultaneous
inputs (telephone calls), and that it handle three dis-
tinct types of calls. This implies 167,668,501 distinct
Markov states for each system, hence that number
of potential test cases—clearly a prohibitive amount
of testing.

For Project 1, we created a test suite consisting
of 88 test cases. This suite exercised only 0.00005
percent or roughly 1 in 2,000,000 of the system’s po-
tential states, but covered more than 98 percent of
the probability mass associated with Project 1’s op-
erational distribution. When applied to Project 2,
however, the same suite covered less than 24 per-
cent of the probability mass associated with the op-
erational distribution. Hence very few of Project 2’s
critical states were tested at all, and we had little ev-
idence that the software would function properly in
its intended environment.

Clearly, then, developers reusing the component
in Project 2 would need to do considerable addi-
tional testing to be sure the software behaves prop-
erly in its new environment. However, Project 2 de-
velopers might not have access to all the original
artifacts—the source code, detailed requirements,
or specification documents—nor would they typi-
cally have the low-level, detailed understanding of
the system architecture that only the component’s
developers would likely have. This could make it dif-
ficult or impossible to adequately test the compo-
nent when integrating it into Project 2, which could
have potentially disastrous results—even if the time,
personnel, and will existed to do the testing.

During traditional system testing, the testers do
not have access to the source code because they
do not need it, not because it is not available—the
development organization normally has the source
code at that stage. When testing a component-
based system, however, the source code and other
artifacts may be entirely unavailable. In the ideal
case, the component was carefully specified, all
documentation was retained, the source code is

available, and test plans and test suites have been
maintained. System testing must be redone for the
new environment but can proceed as for other pro-
jects. Even in this case, however, debugging might
be significantly more difficult because the devel-
opment team may no longer be available or, even
if they are, may no longer be familiar with the com-
ponent’s code. The development team might also
feel that debugging and modifying the compo-
nent is not their responsibility, leaving those tasks
to other developers who are not particularly fa-
miliar with the code.

When the component was written at some other
time for some other purpose, and only the object
code is available in a repository, testers face another
significant problem: if they detect evidence of faults,
how can these be isolated and corrected if the
source code is not available?

Using components developed for
multiple users

Software components developed explicitly to be
used in many different environments fall into two
categories: those created for an in-house compo-
nent repository and COTS components.

Initial testing of repository components cannot
depend on operational distribution or intended
usage patterns, since there are likely to be many end
users, each with different usage patterns. The de-
velopment testers must therefore try to envision
the component’s many possible uses and develop
a comprehensive range of test scenarios. Because

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 5 7

Table 1
Project 1 Call Traffi c Data

Call Average Arrival Average Holding
Type Rate (calls/min) Time (min)

r1 3.0 1.0

r2 1.0 1.0

r3 0.3 1.0

Table 2
Project 2 Call Traffi c Data

Call Average Arrival Average Holding
Type Rate (calls/min) Time (min)

r1 0.3 1.0

r2 1.0 1.0

r3 3.0 1.0

.

the development testers cannot envision all po-
tential scenarios, prudent users will do a significant
amount of testing when integrating the compo-
nent into their system.

Thus, even code written just once will eventually
need more testing, which could offset much of the
savings of component reuse. Without source code
and access to the personnel and expertise used to
create the component, testing and debugging prove
significantly more difficult—and therefore expen-
sive—than in a traditional development environ-
ment. It may also be impossible to perform ade-
quate levels of validation, which could lead to low
system quality. Any code modifications necessary
for the component to operate properly in the new
environment further reduce possible savings. Worse,
modification may be essentially impossible without
the source code unless reverse engineering is done,
typically at great expense.

COTS components present many of the same
challenges. These components have gotten a lot of
press recently, leading many organizations to con-
sider them as an answer to the the lack of experi-

enced developers and the enormous cost of build-
ing large systems. Some see it as the only way to get
a competitive advantage by being first or early to
market. But every quality or reliability problem out-
lined above is magnified when integrating off-the-
shelf components into a system.

The first and most obvious problem is the almost
certain lack of source code, precluding any modifi-
cations for either debugging or extensions. The
second problem is the certain lack of detailed knowl-
edge that Garlan and colleagues7 found so prob-
lematic. Also, users will likely have little or no con-
trol over the component’s maintenance and
support. How frequently will it be updated? A COTS
component may also have considerable function-
ality that your system will never need; this extra
code could cause possible interoperability problems
and negatively impact your system’s performance.

Perhaps the single most important quality
issue concerns what might happen if the vendor
decides to cease supporting the component, or

goes out of business entirely. How will a project
dependent on the component survive? Some
have proposed creating escrow agreements for the
source code in such cases, but even if the vendor
agrees to that, will the potential problems I’ve
cited make it infeasible to maintain the compo-
nent at any reasonable level of cost and reliabil-
ity? The bottom line is this: If the project has very
high reliability and availability requirements, your
reputation is at stake. Telling your customers it was
someone else’s fault that the product is unavail-
able or behaves unreliably will not do them much
good, nor will it relieve your responsibility.

FACILITATING REUSABLE
COMPONENT TESTING

If one purpose of designing component-based
software is to reuse the components, then we must
give significant thought to repository design so that
components will be available for multiple projects.
Obviously, we must decide how to store the com-

ponents and identify them for
ready access when new systems
are being designed. But that will
not suffice—we must also asso-
ciate, with each component, a
person or team primarily re-
sponsible for maintaining and, in
some cases, distributing it. This

person or team should also serve as a resource for
projects using the component to build new soft-
ware systems or enhance an existing system’s func-
tionality by adding new features. In addition, for
the component to be truly reusable, we must en-
sure that interface standards exist to which devel-
opers strictly adhere.

Several requirements and testing activities can
decrease potential problems associated with com-
ponent reuse and thereby improve the resulting
software’s quality. For each software component
built, several related artifacts should be stored and
appropriately updated when the component is
modified. These include the following:

♦ The software specification, including point-
ers between individual requirements and their im-
plementations. When either the specification or the
code is modified, this information makes it easy to
track and complete associated modifications,
thereby helping to guarantee that the specification
remains up-to-date.

5 8 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

Without source code and access to the
personnel and expertise used to create the

component, testing and debugging prove much
more difficult—and therefore expensive.

.

♦ The test suite, including pointers between in-
dividual test cases and those portions of the code
they were designed to test. This makes it easy to
keep track of the appropriate test cases that must
be rerun for regression testing when the code is
modified. When new functionality is added, new test
cases should be added to the test suite. Keeping
these pointers will highlight any functionality that
has not yet been tested.

♦ Pointers between the specification and parts
of the test suite designed to validate a particular
functionality described in a given part of the spec-
ification. This shows which parts of the specification
have been tested lightly, inadequately, or not at all.
When parts of the specification change, it will be
easy to identify those parts of the test suite that re-
quire augmentation or must be rerun.

In all cases, the test suite should include both in-
puts and expected outputs. This will facilitate re-
gression-testing of changes to a component.

If organizations seek to develop truly useful com-
ponent repositories, they must carefully consider

component design, interfaces, associated directo-
ries, storage conventions, and maintenance arrange-
ments. Components will likely need to be tested for
each new environment so that developers and users
can better predict their expected behavior and per-
formance once installed. Only with this investment
of time and resources will components become the
company assets many people envision they can be.
We must also think long and hard about whether
reusing existing components or using COTS com-
ponents can truly be cost-effective and provide the
reliability assurances that many of today’s industrial
environments require. ❖

REFERENCES
1. J.L. Lions, “Ariane 5, Flight 501 Failure, Report by the Inquiry

Board,” http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ari-
ane5rep.html, 19 July 1996.

2. J.-M. Jézéquel and B. Meyer, “Design by Contract: The Lessons
of Ariane,” Computer, Jan. 1997, pp.129-130.

3. K. Garlington, “Critique of ‘Design by Contract: The Lessons of
Ariane,’” http://www.flash.net/~kennieg/ariane.html, Mar. 1998.

4. B. Boehm, Software Engineering Economics, Prentice Hall, Upper
Saddle River, N.J., 1981.

5. A. Avritzer and E.J. Weyuker, “The Automatic Generation of
Load Test Suites and the Assessment of the Resulting
Software,” IEEE Trans. on Software Eng., Sept. 1995, pp. 705-716.

6. E.J. Weyuker, “Using Failure Cost Information for Testing and
Reliability Assessment,” ACM Trans. on Software Eng. and
Methodology, Vol. 5, No. 2, Apr. 1996, pp. 87-98.

7. D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch
or Why it’s Hard to Build Systems out of Existing Parts,” Proc.
17th Int’l Conf. Software Eng., IEEE Computer Soc. Press, Los
Alamitos, Calif., Apr. 1995, pp. 179-185.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 5 9

Elaine Weyuker is currently a technology
leader in the Research Division of AT&T
Labs, Florham Park, New Jersey. From
1977 to 1995, she was a professor of
computer science at New York Univer-
sity’s Courant Institute of Mathematical
Sciences. Her research interests include
software engineering, particularly soft-

ware testing and reliability, and software metrics. She is also
interested in the theory of computation, and coauthored
(with Martin Davis and Ron Sigal) Computability, Complexity,
and Languages (2nd ed.), published by Academic Press.

Weyuker received an MSE from the Moore School of
Electrical Engineering, University of Pennsylvania, and a PhD
in computer science from Rutgers University. She is an ACM
fellow and a senior member of IEEE, is a member of the edi-
torial boards of ACM Transactions on Software Engineering
and Methodology and The Empirical Software Engineering
Journal, and is an advisory editor for Journal of Systems and
Software. She has served as the secretary/treasurer of ACM
SIGSOFT, on the executive board of the IEEE Computer
Society Technical Committee on Software Engineering, and
as an ACM national lecturer.

Address questions about this article to Weyuker at AT&T
Labs–Research, Room E237, 180 Park Ave., Florham Park, NJ
07932; weyuker@research.att.com.

About the Author

In the next issue...

Setting theSetting the
StandardStandard

In honor of Alan Davis, recently re-
tired editor-in-chief of IEEE Software,
the November issue will present arti-
cles that set the standard for quality
content in a variety of formats that Al
helped devise. Under Al’s leadership,
the magazine’s mission has turned to
building the community of leading
software practitioners—through
focus articles, how-to’s, war stories,
and forums for opposing voices. In
this collector’s item, new editor-in-
chief Steve McConnell asks Al about
his past, present, and future. Look for
other surprises in store as well!

.

