
PRACTICAL PROGRAMMER

Software Teams
Each quarter, the Practical Programmer
will discuss practical wars tu build better
software, taken from the experience of
working programmers. This month, Marc
Rettig describes a successful development
group organized as a “Structured Open
Team.”

1 have often heard the phrase, “We
see what we know.” As technicians,
we concentrate on technical ways to
manage complexity: abstraction,
design techniques, high-level lan-
guages, and so on. That is what we
know best. But when the tale is told
of a project that failed, the blame is
often laid not on technical difficul-
ties, but on management and inter-
personal problems.

In the last six months, I have
seen firsthand how attention to the
social organization of a software
team can make a big difference in
the success of a development proj-
ect. I work in a “Research and De-
velopment” group. “Research”
means that some aspects of the
project are experimental-we do
not know for sure what is going to
work. “Development” means we are
expected to produce high-quality
software for real users. So while we
want to encourage creative thought,

z we must pay heed to the lessons of
; commercial software developers in
o quality assurance, testing, docu-
J mentation, and project control.
I Our all-wise project leader de-
’ tided we also needed to pay heed to
! the lessons of sociology. In particu-
2 lar, we began to apply the ideas
’ found in Larry Constantine’s work
: on the organization of software
., teams. Our efforts have resulted in
a a team that is productive, flexible,
o and comfortable. I thought these
i- qualities are unusual enough to
a merit a column on the subject.
n!
l-
,,, The Birth oi
3 a Soitware Team
z Before most of our team was as-
- sembled, two of the present mem-

bers (the project leader and the
lead designer) spent nearly a
person-year working closely to-
gether. They accomplished three
things:

l They sold upper management on
the design concept and rallied
user departments to participate
in the development process.

l They agreed on the “guts” of the
design, and wrote a set of design
documents which described the
components and their relation to
one another.

l They laid out a plan for the first
six months of development, in-
cluding personnel requirements,
time estimates, and complexity
estimates.

About the time they completed
this, the rest of the team showed up
for work: two programmer/analysts
with advanced degrees, a seasoned
manager with good technical knowl-
edge, and assorted part-time secre-
tarial support.

Our first project was to organize
ourselves as a team, which we ac- l

complished in a slightly unusual
setting. We went on a two-day re-
treat. The whole team, including
spouses and day-care staff, went to
a hotel. For two days and one night
we participated in team-building
exercises and horseplay. This might
sound a little corny, but it did a lot
to make strangers feel they were
part of the team, and that the team
had a purpose. What did we do for
two days? .

l We all took a “social styles inven-
tory” test, then plotted the team’s
collective profile on a big sheet of
paper. This led to an insight that
otherwise may have gone un-
spoken: almost all of us are intro-
verts, including the team leader.

Contemplating this discovery
helped us understand potential
communication problems. The
leader had a chance to say, “so, if
I don’t come and talk to you, it’s
not because I’m ignoring you. It’s
just the way I am.”
We worked together on a mission
statement for the team, which
includes a clear description of
our purpose and who we serve.
This was helpful in two ways.
Unlike many teams, we have all
agreed on a common purpose.
Further, we have a nice guideline
for deciding between conflicting
demands: “which alternative most
clearly relates to the group’s mis-
sion?”
We learned about Constantine’s
notion of “structured open
teams,” set guidelines for meet-
ings, and planned ways to help
each aspect of the project get the
attention it deserves. Very often
only the project leader thinks
about these issues. Sometimes no
one thinks about them. Working
together on our team organiza-
tion not only made for increased
unity, it gave us an opportunity to

CCYYUIIICITIC~CCFTllEliCYlOctober 199O/Vol.33, No.10 23

PP

practice problem solving as a
team.

l We played and gabbed. We
played cards, rowed boats, and
swapped life stories. Again, this
might sound corny, but it helps
team members feel comfortable
with each other and builds a unity
that is otherwise hard to achieve.
I know of one team leader that
enrolls his staff in bowling league
for the same reason.

The details of our organization
were worked out over the next few
weeks, and are still open to adjust-
ment. But the two days built an
atmosphere of cooperation and
willingness to communicate about
the nontechnical aspects of our
work that has lasted ever since.

A “Structured Dpen
Team”
Most of the software teams I have
been a member of Ior heard about
were organized in a hierarchy-
what Constantine calls the “closed
paradigm.” One person has re-
sponsibility for the project, and
there are supervisors under that
person, each responsible for a
major component or aspect of the
project. Each supervisor tells the
people down the line what to do,
and so on. Someti:mes this works
very well. Since the group’s direc-
tion comes from the leader, deci-
sions can be mad.e quickly and
everyone understands exactly what
needs to be done to cpmplete his or
her part of the task---Ifthe leader is
good at the job. If not, the project
and the team memlbers suffer.

Structured open t.eams flatten
hierarchical organization. One team
member has the permanent role of
“Technical Leader” (or Project
Manager, or whatever you want to
call it). This person is accountable
to the rest of the company for the
success of the project, and holds
final veto power over the group’s
decisions. Other than that, the team
is a group of equals, making deci-
sions by consensus.

Further structure comes from a
recognition that certain roles are

essential to the success of any soft-
ware team. At a minimum, these
include: decision making, coordi-
nation, information management,
critical feedback, application do-
main knowledge, and technical/
analytical functions. While many
teams permanently assign a role to
each team member, this is “opened”
by Constantine so that individuals,
subgroups, or the entire group are
given roles to play, and role assign-
ments can be rotated to suit chang-
ing situations and special abilities.

Declrion by Consensus
Team participation in decision
making has many advantages. It
provides creative diversity, com-
bines abilities, shares the load, and
makes for built-in monitoring of
the development process. But there
are dangers-operational overhead,
communication and personality
problems, and the greater inertia of
a group of people rather than one
person.

Structured open teams attempt
to maximize the advantages and
minimize the dangers, with the
feeling that the benefits of consen-
sus are worth the trouble. As Con-
stantine puts it, “Genuine consen-
sus on technical design is important
because it means full group re-
sources have been used and a crea-
tive integration of diverse contribu-
tions has been achieved. Moreover,
consensus decision making also in-
creases solution ownership.” The
phrase “solution ownership” char-
acterizes what makes a good team
so effective and such a pleasure to
be part of.
We have had little trouble with con-
sensus-building stalemates or hung
juries. In any case, the team leader
has final say, which avoids endless
and pointless discussion. For teams
with strong opposing opinions or
personality conflicts, the role of fa-
cilitator or process leader, describ-
ed below, becomes an important
tool for consensus building.

But, back to our team. We knew
we wanted to apply some of these
ideas, and began to try them out in
meetings. In the early stages of de-

sign, it was necessary to hold a lot of
meetings. And for the first few
weeks, we were deliberately self-
conscious about how our work was
being conducted, what was happen-
ing in our meetings, and how the
idea of a structured open team was
going to affect our daily lives to-
gether. Very often, meetings con-
tained parenthetical discussions
about process and organization. At
the time it was a bit frustrating, but
we are quite happy with the result.

Meetings
As part of the planning for the
project, we broke the work into
“modules,” each supposedly about
two weeks’ work for one person.
Each module has several “phases,”
and there are group reviews for the
design and coding phase. When we
are going full steam, there can be
several reviews a week. On top of
that, we hold a staff meeting every
Friday morning, and there are oc-
casional planning meetings. There
is a real danger that we spend so
much time in meetings or prepar-
ing for meetings that we have little
time left for programming.

Seeing that danger, we laid some
ground rules to make the meetings
as productive as possible. To begin
with: “No more than one meeting a
day.” And: “Keep meetings short.”
“Hah!,” you say. Well, one thing we
do when scheduling is to think,
“we’ve got no business spending
more than an hour on this topic. So
let’s schedule the meeting for 4
p.m.” Works like a charm.

Since design and code reviews
involve preparation for everyone
(to read the documents to be dis-
cussed), we try to relieve the bur-
den a bit. When someone distrib-
utes a document and schedules a
meeting, everyone is invited. But
one person is designated “principle
reviewer.” This person is honor-
bound to study the document care-
fully, prepare an agenda of discus-
sion topics for the meeting, and to
give written comments to the au-
thor. Others on the team are en-
couraged to do these things, but do
not have to live with a guilt complex

October 199O/Vol.33, N~.lO/COMMUNIUTIONSOFTREliCU

PP

if they are too busy to give every
document their complete attention.
The job of principle reviewer ro-
tates among the technical staff.

For the meetings themselves (all
meetings, notjust review meetings),
we have adopted several of Con-
stantine’s ideas about “roles.” He
describes roles that need to be filled
on a successful team: technical
leader, process leader, information
manager, technical and process
critic, and domain expert. Some of
these roles are permanently as-
signed to one person (the role of
technical leader, for example),
while others may change. We ex-
plicitly assign some roles at the be-
ginning of a meeting. Every meet-
ing has a scribe and some meetings
have a facilitator.

The Scribe
The scribe writes down important
decisions, open questions, assign-
ments, anything that is deemed
worthy of incorporation into our
“group memory.” It is important to
designate a scribe at the beginning
of the meeting. That person be-
comes aware of the responsibility
and listens to the discussion with a
different ear, trying to pick out no-
table items. The others can relax
and focus on the problem. Fewer
things slip through the cracks.

Constantine points out that this is
a demanding role, and can hamper
the scribe’s participation in the
meeting. We have found that some
meetings are easier to record than
others. In any case, the scribe is re-
sponsible for producing a written
record of the meeting for archival
purposes, which can vary from a
few lines to several pages. Mostly
for this reason, nobody wants the
job. So we rotate. Of course, the
author of the document being re-
viewed cannot be the scribe, so in
small meetings we wind up tossing
the coin between two other partici-
pants.

The Paellltator Finally, probably the most im-
The facilitator is responsible for portant and most demanding job of
making sure that a meeting is pro- the facilitator is consensus building.
ductive-that we accomplish our “The effective process leader must

purpose, that we do not get side-
tracked, that everyone gets a
chance to participate, and that we
stop when we are supposed to.
After the first few review meetings
we stopped using a facilitator be-
cause we became so used to the pro-
cess that we were self-facilitating.
But for planning and design meet-
ings, it is a wonderful thing to have
a good facilitator.

In our case, we have one person
who is very good at this, so he often
gets called into meetings to facili-
tate even when he has little techni-
cal understanding of the subject
under discussion. He will stand up
by the whiteboard or sit with a note-
pad in his hand, quietly document-
ing the course of the discussion.
Once in a while he will interrupt:
“Let me make sure I understand.
You just decided to do (x), right?
Now, who will be responsible for
that, and when should it get done?”
Or, “Excuse me, but it sounds like
we’ve wandered onto something
that is important, but has nothing
to do with what we’re supposed to
be talking about. Let me write this
down as something to discuss later,
then let’s proceed with the subject
at hand.” Or, “Fred, have you been
trying to say something?”

With a good facilitator in the
room, much is accomplished and
very little slips through the cracks.
It is important that the facilitator be
neutral, and clearly responsible
only for the process, not the out-
come of the meeting. As Constan-
tine says, “the role is based on mak-
ing the best possible use of the
collective resources of the group,
sustaining a process that maximizes
participation, collaboration, and
individual ownership of or ‘buy in’
to the final product . . . The pro-
cess leader involves everyone and
defends everyone . . . When the
facilitator is also a participant, it is
too easy to maneuver the group
and manipulate the outcome, de-
spite all the best intentions . . .”

always be alert to opportunities for
consensus and must guide the
group toward consensus whenever
possible without force or prema-
ture closure.”

You may not have the luxury of
having someone outside the techni-
cal staff who can serve as a facili-
tator. It would work to have the fa-
cilitator role rotate like that of the
scribe. In fact, 1 understand some
teams use tokens to represent rotat-
ing roles. Maybe the scribe has a
giant pencil, the critic has a devil
button, and the facilitator has uh, a
cattle prod? The tokens are used to
make the role changes plain to
everyone. For example, say the dis-
cussion turns to something the
scribe is deeply involved in, which
makes it impossible to give the role
the attention it requires. So the
giant pencil gets passed to someone
else as an explicit signal: “I am no
longer the scribe. You are. (Shut up
and start writing).” This kind of
role changing happens in most
meetings without anyone noticing.
If you do not do something to keep
track of who is playing what role,
misunderstanding and miscommu-
nication can result.

The Crltlc
We are not explicitly assigning all of
the roles that Constantine de-
scribes. One interesting idea is to
assign someone to be “devil’s advo-
cate” in every meeting. “Critical
feedback is so essential to successful
teamwork that the structured open
team institutionalizes and legiti-
mizes the function . . . It is known
that opposition and dissent are ab-
solutely vital for successful func-
tioning of open paradigm systems.
The stigma of this function is less-
ened by creating a formal technical/
process critic role. This position
does not have a default incumbent
but is assumed ad hoc by anyone at
any time.By critiquing deci-
sions, playing devil’s advocate, put-
ting down pointless debate, de-
bunking empty hyperbole, or expos-
ing weak and wishful thinking, the
person in this role provides a valua-
ble and indispensable service to the

CCYY”IIIC.TICWICFT”~:CYlOctober 199O/Vol.33, No.10 25

PP

-
Programming in Biack and Blue

Each quarter, the Pralctical Programmer relates techniques that are bringing
success to working programmers. “Programming in Black and Blue” will re-
cord the experiences of the less fortunate, who have learned the hard way
that it is sometimes difiicult to put into practice what has been “preached.”

TO prepare for the firsit “Programming in Black and BlUe,” I posted a request
for stories on three different networks. Judging by the responses, it seems
there is a pent-up urge for programmers to purge themselves of nightmarish
experiences. Some of the stories I received make for “believe.it-or-not”-style
headlines:

“Project Leader Requires Programmers to Write More Bugs!”
“Designers Forbidden to Meet With Users!”

“Programmer Kills Bug-Client Orders it Revived!”
Some of these stories will be told in future installments. This month we will

focus on problems related to software teams and group communication.
-

Absence OF Group Memo-

R6SUWts In Free Telephone

rnstallatlons

It seems a regional telephone company had established a modern data pro-
cessing facility in one part of their service area, and was prepar’ing to establish
a copy of this facility to service customers in a second area. The basic plan was
to make a copy of all the source code for the billing programs, databases, and
procedures and build an entirely new system. As you can imagine, this is a
large job, rife with small details.

The job was done by a team that involved people from many departments at
many levels-from upper management to operations technicians. With hind-
sight, the project made several big mistakes in group communication:

l No group memory. Planning and coordination was by word of mouth.
l Lack of communication at a high level. The manager coordinating the new

installation never consulted key MIS managers about his plans. Is this symp-
tomatic of a strong hierarchical organization?

l Lack of communication at a low level. A technician found an error while
testing the new installation. There was supposed to be a program to corre-
spond with each transaction in the system. One was found to be missing.
Rather than track down the missing program, the technician patched
around the problem #and did not report it to anyone.

Despite all this, the second facility went into operation, and customers were
happy. Too happy, as it ,turned out. One program was not installed, and no one
noticed its absence for several months. It was the program that computed
installation charges when a customer changed services. The customers did
not complain when they were not billed, so things went on for some time
before a discrepancy w.as noticed. Finally someone compared monthly finan-
cial performance with previous months and the problem was corrected.

It is tempting to blame the technician, who had a clear chance to identify
and fix the problem. But the person who told me this story placed the blame
on the (lack of) group organization and communication. With a written plan
and clear communications, the missing subsystem would probably have been
successfully copied.

- .

team.” This is definitely a role that
should be rotated, to preserve both
the sharp edge and the social he&h
of the critic.

croup Memory
Software development groups are
very good at producing piles of
paper. With planning documents,
specifications, analysis and design
documents, code, and correspon-
dence we keep our printer busily
spewing out warm pieces of paper.
As a collection, these documents
represent the memory of the
group, and are very precious in-
deed. But how do you find any-
thing in that pile of collected
knowledge? Constantine suggests
the group appoint an Information
Manager, whose job is to “keep
group memory a visible and accessi-
ble record.”

We have been careful to listen to
this wisdom, and have taken great
pains to make group memory ac-
cessible to everyone whoPneeds it.
The result is a combination of a fil-
ing system, a HyperCard index, and
a simple procedure, collectively
known as the document archive. It
took some time to implement, but it
now takes relatively little time to
maintain and is worth its weight in
Elvis memorabilia.

The archive is divided into cate-
gories: general descriptions, appli-
cations, project management, meet-
ing minutes, and several categories
specific to our project. All docu-
ments that come out of our devel-
opment process (as well as support-
ing documents such as journal
articles) are given to the archive’s
curator, who assigns them a num-
ber, enters them in the HyperCard
index, and files the paper copy. We
plan to assemble an archive of the
electronic versions of all the docu-
ments as well. When a document is
revised, the revision is archived in
the same way and filed with the
previous version.

This has given the group a very
important resource. Looking up
design notes or the minutes of a
discussion is usually as simple as
looking in the printed version of

October 199O/Vo1.33, N~.101COYYUNl~TIONSOFTRE ACM

PP

the archive index. For harder
searches, the HyperCard index sup-
ports searching, and holds abstracts
and revision notes on all the docu-
ments. As major phases of the proj-
ect draw to a close, we can check
through the documents produced
along the way to make sure that we
covered all the issues raised in
meetings. There is finally a way to
answer to the age-old question, “I
know we talked about that six
months ago, but what did we de-
cide?”

Constantine suggests a few very
useful-sounding sections for the
archive that we have not imple-
mented (which we probably should).
The “process record” is a con-
densed, running log of the discus-
sion and decisions of the group.
The “product record” contains the
requirements specification or sys-
tem design, always describing the
current version. And two lists help
keep track of loose ends: the “de-
ferred decisions list” holds recog-
nized but unresolved issues, and a
“do list” or “bin” contains issues
that came up during discussion but
were set aside temporarily. These
are just the things that are usually
forgotten.

So What?

I have been involved with many
software projects in many settings.
The software this team is building is
by far the most reliable I have had
anything to do with. The project is
still on schedule after six months,
and the team members do not feel
badgered, hassled, or unappreci-
ated.

Of course, this is not all due to
the social structure of the team.
The staff is extremely competent to
begin with, and we established
thorough testing procedures and a
careful development process. Any
number of factors contribute to a
project’s success. But team organi-
zation underlies everything else. It
brings different personalities and
interests together, smooths the way
for communication, anticipates dif-
ficulties, gives us an identity within
the rest of the corporation. I am

convinced that the structure we
have built would withstand diffi-
culty (personality conflicts, for ex-
ample, or incompetent manage-
ment) as well as or better than any
other team organization I know of.

‘cake rime to Make Time

One last interesting point. In the
first few weeks I was worried that
all this was going to take too much
time. One thing about a hierarchy-
the managers manage and the pro-
grammers program. It felt like we
were going to be spread too thin,
with all these roles distributed
among so few people. The burden
is increased by our development
plan, which involves many review
meetings and involvement in one
another’s code.

We based our project plan on the
assumption that on average, pro-
grammers would get four hours a
day to do programming. The rest
of the time would be taken up with
other team responsibilities. This
did not sound good, considering
my previous experience that pro-
grammers who were supposed to
work eight hours a day actually put
in three or four. Given that prece-
dent, would we be working one
productive hour a day?

As it turns out, we were about
right. I cannot support this scientif-
ically, but my observation is that we
actually work more productively
than we would if we had responsi-
bility only to code. After four hours
of designing or coding your mind is
useless, and the diversion of a re-
view or writing meeting minutes is
welcome. And after an afternoon of
distractions nothing feels better
than to concentrate solely on cod-
ing again. We wind up doing five to
seven hours of real work in an
eight-hour day!

For Further Readlnm

Constantine, L. Teamwork para-
digms and the structured open
team. In Proceedings of Software De-
velopment ‘90, Miller Freeman Pub-
lications, San Francisco, 1990. (A
good introduction and summary of
these ideas).

Doyle, M. and Strauss, D. How to
Make Meetings Work. Jove, NY:
1976. (Granddaddies of many of
these ideas, including facilitator,
scribe, group memory.)

Thomsett, R. Effective project
teams: A dilemma, a model, a solu-
tion. Amer. Program. 3, 718 July-
Aug. 1990. (Discusses structured
open ideas in practice, especially
personalities and team roles).

Zahniser, R. A. Building software
in groups. Amer. Program. 3, 718
July-Aug. 1990. (Concerned with
general productive advantage of
group process, e.g., JAD, system
storyboarding.)

The social styles test and instruc-
tions for administering and inter-
preting it came from The Tracom
Corporation, 200 Fillmore St., Den-
ver, CO 80206. The two principals
of Tracom, Roger Reid and David
Merrill, have published a book enti-
tled Personal Styles and Effective Per-
formance (Chilton, 1981). q

The Practical Programmer wants to
hear your stories. What worked for you,
and why? What didn’t work, and what
were the horrible results? Forthcoming
columns will discuss testing, the devel-
opment process (how’s your life cycle?),
and prototyping. Send your braggardly
tales and autopsy reports to:

Marc Rettig
Academic Computing
Summer Institute of Linguistics
7500 West Camp Wisdom Road
Dallas, TX 75236
Internet: marc@txsil.lonestar.org.
CompuServe: 76703,1037
The Well: mrettig

Marc Rettig is a member of the techni-
cal staff at the Summer Institute of Lin-
guistics, and a freelance writer. He is
Technical Editor of Database Pro-
gramming and Design magazine,
and Consulting Technical Editor of AI-
Expert.

COYYUNIWTIONSOCT"EACY/October 199O/Vol.33, No.10 27

