
1 0 4 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E

will soon be celebrating my 30th an-
niversary in the software field. One thing
I’ve learned along the way is that soft-
ware people are slaves to fashion. A hot

new technology comes along and we drop everything
(or try to) to get involved with it, forgetting the lessons
of the past. Internet-based software is the latest such
technology.

I think our forgetfulness could get us into trouble,
but maybe I’m wrong. That’s why we’ve convened this
virtual roundtable: to discuss the applicability of
“older” software development ideas to the world of
the Internet.

We conducted the roundtable over the Internet in
June 1998. The participants come from a wide variety
of software backgrounds. Some of us are old-line soft-
ware engineering proponents, others focus solely on
Internet-based software.

—Roger Pressman

Roger Pressman: It seems to me that just about any
important product or system is worth engineering.

Before you start building it, you’d better understand
the problem, design a workable solution, implement
it in a solid way, and test it thoroughly. You should
probably also control changes to it as you work and
have some mechanism for ensuring the end result’s
quality. Many Web developers don’t argue with this;
they just think their world is really different and that
conventional software engineering approaches sim-
ply don’t apply.

My first question, therefore, is a general one: Can
Internet-based systems be engineered in the con-
ventional sense of the term? If not, what makes
them so different?
Ted Lewis: The Web world differs only in its much
shorter development times and product life cycles.
Instead of estimating the cost of a well-specified sys-
tem, developers have been forced to estimate the
quality of a fixed-time product.
Ben Adida: I agree. Web-based systems must be
conceived, planned, and produced in record time.
Also, because Web projects have inherently short
lifetimes, why engineer a system thoroughly if next

I

Roger S. Pressman
Moderator

Can Internet-Based
Applications
Be Engineered?

D o the o ld t r ied and t rue pr inc ip les o f so f t ware engineer ing
make any sense on the complete ly new p lay ing f ie ld o f the
Internet? S ee what n ine so f t ware leaders have to say.

Roundtable

.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 1 0 5

month’s technology makes it completely irrelevant?
A quick hack might do the trick.

The rules do have to change for Web develop-
ment—you need faster tools, and you need to plan
and design only as the specific project’s purpose
dictates. This doesn’t mean that classical methods
don’t apply at all, or that we should build Web sites
completely out of quick Perl hacks. It just means that
applying solid software engineering principles to
the Web often proves quite difficult. We need to
adapt our methods to the speed of the Internet.
Ellen Ullman: Ben, not all parts of a Web applica-
tion are produced in record time. The actual Web
pages themselves are certainly volatile and highly
disposable; speed does count on the user interface
side. But many other aspects of Web applications—
the organization of back-end databases, for exam-
ple—represent long-term investments, which are
fairly stable and slow to change.
Tom Demarco: Each time anything new comes
along, its advocates trot out the line, “this changes
everything, so our old methods no longer apply.”
There is always a germ of truth here, or it wouldn’t
be so seductive; new modes, tools, hardware gen-
erations, and so on do require adaptation of method.
The part requiring adaptation, however, is usually
small compared to what remains applicable—
particularly when applying pre-Web methods to
Web development. There is mostly baby here, very
little bath water.
Tom Gilb: Internet-based applications should be
“engineered.” The top few critical qualitative re-
quirements should be specified and a suitable ar-
chitecture derived from this as well as from cost and
other constraints. The system should be evolved and
regularly measured against the latest update of the
quantified requirements. Not doing so substantially
increases the project’s risk of failure, because of mis-
understanding what the project is really all about.
Brent Gorda: I don’t think conventional engineer-
ing skills are irrelevant to the Web. In fact, I believe
the Web’s accelerated develop/publish capability
increases the importance of tried-and-true software
engineering practices.

I’ve seen this shortened cycle compel program-
mers to bypass the (perceived) time delays of code
management software and QA cycles. While pro-
grammers will claim to understand the importance
of such methodologies, they justify not using them
with comments like, “this software’s better than the
last version and we’ll have new code ready tomor-
row, so any bugs we find, we’ll fix then.”

But just as it doesn’t take any longer to drive with
your seat belt on, solid tools and practices take no
longer to use day-to-day. It’s easy and human to be
lazy, but the seasoned developer appreciates the
value of these time-tested habits. Many such devel-
opers are working on the Web and are producing
some of the better sites and tools
available today.
Watts Humphrey: The engineer-
ing principles of planning before
designing and designing before
building have withstood every
prior technology transition;
they’ll survive this transition as
well. We had these same argu-
ments when we moved to sym-
bolic assemblers, high-level lan-
guages, remote computing,
interactive computing, and per-
sonal computers. The real prob-
lem is that we have not done a
good enough job of teaching
and using sound engineering
practices. Thus, many engineers
have never seen how effective
they can be. While we have much
to learn about both this technol-
ogy and how to manage it, I have
seen nothing so far that threat-
ens the basic principles of sound
engineering.
Ray Johnson: Time-to-market
and many other features of Web
development are not unique to
Web applications. While over-
head is a valid concern, it’s not a good reason to
abandon basic engineering principles. I’ve seen Web
application builders rely on really smart, really hard-
working engineers—the brute force method.
However, for projects that are too boring to attract
the best engineers (most of them), this model
quickly breaks down. It would be better to choose
a software engineering model suited for the dy-
namic, fast-paced world of Web application devel-
opment.
Lewis: I’ll probably sound like the contrarian in this
debate. “Old-fashioned software engineering”
techniques that evolved out of the 1970s struc-
tured programming movement haven’t worked, so
why do we want to impose them on the new gen-
eration of Web designers? Today’s Web program-
mers are trying to escape the old school by blend-

Ben Adida is a
graduate student
at MIT studying
cryptography and
network security.
Since 1995 he has
been involved in
building medium

to large Web and Internet-based sys-
tems ranging from e-commerce prod-
uct catalogs at the Hearst Corp. to a se-
cure voting system at MIT. His interests
include Java, security, and database-
backed Web sites. Contact him at
ben@mit.edu.

Ted Lewis is a
member of the
IEEE Computer
Society Board of
Governors, past
editor-in-chief of
Computer and
IEEE Software, and

current associate editor of IEEE Internet
Computing. He writes for Computer,
IEEE Internet Computing, Scientific
American, and other publications. His
most recent book is The Friction-Free
Economy: Marketing Strategies for a
Wired World (HarperCollins, 1997).
Contact him at lewis@cs.nps.navy.mil.

.

1 0 6 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

ing art with engineering. They know the problem
is fuzzy—that is, unspecified; that their customers
don’t know how to specify their requirements; and

that it doesn’t matter any-
how, because as soon as the
system is completed it will
be obsolete! The waterfall
model is dead, the spiral
model is dying, and the
rapid prototype is becoming
the product. Darwinism has
forced developers to adopt a
free-wheeling approach to
Web-based software devel-
opment that makes tradi-
tional “structured” software

engineers roll over in their cubicles.
Johnson: Ted, name me a “traditional”software pro-
ject that wasn’t a “fuzzy”problem or had a customer
that could totally specify the requirements. How are
Web applications so different? I agree that the wa-
terfall method and anything else designed in the
1970s is poorly suited for current software projects.
But some newer models work well for fast-paced
projects.
Lewis: I violently agree with you, Ray! We still have
the same basic problems in Web-centric design that
we had in mainframe-centric software design. My
point is that we still don’t have a solution. And just
because we’re developing software for the Web
doesn’t mean we’re closer to a solution.
Adida: Ted makes an important point here: the prob-
lem is fuzzy. We need an approach that allows for
more freedom and flexibility as the project changes.
It’s similar to engineering F16s when all you’ve done
before is make propeller
planes. Sure, the main differ-
ence is that F16s are faster,
and the basic principles of
aeronautics still hold, but the
engineering approach is com-
pletely different.
Ullman: Every technical gen-
eration believes its situation
is unique. Web developers
believe it today, and before them developers of dis-
tributed systems, client–servers, interactive systems,
re-entrant code, and so on. Each generation was cor-
rect by definition: whatever they were doing was in-
deed different from the software “conventions”that
came before. The support tools they were asked to
use were always lagging, always based on the pre-

ceding technology.
So to answer your question directly, no, Internet-

based systems cannot be engineered in the “con-
ventional” sense, but then no system based on
emerging technology can use the previous genera-
tion’s conventional engineering tools. In the busi-
ness of making software, an essential tension will al-
ways exist between emergent architectures and
engineering “correctness.”

SPEED RULES

Pressman: So we have two schools of thought here.
One feels that speed of development and new
technology make Web-based development differ-
ent, thereby justifying a unique approach to build-
ing such systems. The other believes the need for
solid engineering overshadows the “differences” in
the technology being developed.

I’d argue that both views are correct, which leads
to a follow-on question: How should we engineer
systems that are often built by non-engineers, are
dynamic, and must go live in days, not months?
Stated another way, how do you advise an organi-
zation that needs to build increasingly complex
Web-based systems that must work the first time
and every time?
Adida: You’re basically asking how to make a system
infinitely scalable in days. I don’t know if anyone has
an all-encompassing answer. A few simple principles
can help, though. First, immediately seek existing so-
lutions. If your site needs to store information that is
dynamically searchable or editable online, get your-
self a relational database. For scalability, connect

to it via some
standard protocol
(such as ODBC), so
that you may sim-
ply exchange your
existing small-
time database for
an Oracle monster
in a few months.
Second, separate

content from functionality as much as possible. This
sounds simple but is all too often ignored. Third, and
most important, use a development environment
that lets you move fast. Forget about writing large C
programs that you have to recompile on every
change. Scripting languages built into existing Web
server software are the way to go.

Tom DeMarco is a principal of the
Atlantic Systems Guild, a consultancy
specializing in project management and
litigation involving software-intensive
endeavors. He has authored six books
on software method and management,
including The Deadline: A Novel about
Project Management (Dorset House,

1997). Contact him at tdemarco@atlsysguild.com.

Ellen Ullman is a prin-
cipal of NeoLogica,

which provides engi-
neering design

services to startup
companies. She is the
author of Close to the

Machine: Technophilia
and its Discontents. Her writings about the
software engineering profession have ap-

peared in Harper’s, Salon, and in the collec-
tions Resisting the Virtual Life and Wired

Women. Contact her at ullman@well.com.

.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 1 0 7

DeMarco: All systems need to be delivered in record
time. Web products are no different, with one ex-
ception: the Web is full of glitzy eye-candy pages that
convey very little real value. And yes, if you’re build-
ing eye-candy, you’d better do it quickly. Such cases
call for nothing more than hacking. But consider a
real Web-based system such as Alta Vista or E-Trade
or the FedEx dispatch center. Who could argue that
such systems don’t have to be engineered?
Ullman: I couldn’t agree more. The front end is fluffy,
and in some sense it doesn’t matter what tool you
use to produce it. Point-and-click baby tools are fine
to generate Web-page ephemera. But everything
the front end talks to is serious engineering. And
since those back-end things are based on older tech-
nologies, there are indeed helpful engineering tools
to support them.
Adida: Sure, these systems need to be engineered;
but you can’t come into a Web project you’ve never
seen and apply all the rules by the book. You’ve got
a new model, with a spectrum of users rarely en-
countered in traditional engineering projects. As for
the timetable, in the Web’s three years of serious ex-
istence, think of all the amazing projects we’ve seen.
My first serious Web project, in 1995, was to build a
complete database-backed, shopping-cart-enabled,
magazine-selling Web site in two months—from
raw machine to fully working system. That’s much
faster than most classical systems I’ve seen.
Lewis: These systems aren’t “engineered” because
no one uses our so-called “software engineering”in
real life. Microsoft’s Windows NT, for example, isn’t
“engineered” because Microsoft only practices one
basic technique: “get a clean compile before you go
home”! NT has evolved over seven or eight years of
500 people making changes that inevitably cause
errors to propagate until they are stomped out by
brute force. We should find out why this is a major
developer’s modus operandi.
Gilb: My advice to builders of Internet-based soft-
ware? One, state your quality requirements quanti-
tatively. Two, get contractual guarantees, with penal-
ties, for delivery and operational maintenance to
those levels. Three, use proven track-record suppli-
ers, with plenty of capital to cover problems. Four,
build and expand the system in evolutionary stages.
Five, consider appropriate systematic redundancy
at many levels, to allow some degree of operation
when failures occur.
Ullman: I know this is the “right” way to do things,
but the start-up companies I work with laugh at me
when I suggest something as “bureaucratic” (their

word) as a simple bug list. The important thing to
remember about the Web right now is that it’s being
created by very young people. And if you remem-
ber your own youthful ignorance and exuberance
(and fearlessness), then you understand why we’re
even having this conversation.
Gorda: Virtually every medium to large software
project I have seen risks implosion due to feature
creep. To avoid this common pitfall we must recog-
nize that software tends to grow like weeds.

My advice—especially to or-
ganizations building “increas-
ingly complex” systems—is to
keep it simple! The simpler you
keep it today, the more easily
your system can evolve to sup-
port tomorrow’s needs. Imposing
fewer needless features on your
system creates fewer obstacles to
supporting future needs.
Lewis: Brent, I would love to keep
it simple, but how? I am an advi-
sor to a $600 million Internet pro-
ject that will take five years. How do you keep such
a megaproject simple? We don’t have the tools.
Humphrey: The dynamics of Web-based develop-
ment allow us to interactively involve users in the
requirements process. This could help us quickly de-
velop products that closely fit customer needs.
When we can instantly distribute products world-
wide, however, we must learn to quickly produce
quality products. The current test-based approach to
software quality takes too long, and will almost cer-
tainly be unacceptable in the Web-based future.
Software testing can take months, and even then
many defects remain.

We should learn from other fields—no other dis-
cipline uses testing as the principal way to find and
fix product defects. By tracking all defects, deter-
mining their costs, and learning how to detect or
prevent them, other technologies have improved
quality, cut costs, and saved time.
Adida: I like that approach! I have also found that
Web development forces quality into the picture
very early on. In a sense, software engineering is still
young compared to other types of engineering. It
seems to me that Web development, with the strin-
gent requirements it places on developers, is forc-
ing the field to mature faster than ever.
Johnson: I disagree with you, Watts. Without test-
ing, how do you ensure that what you’ve fixed is
really fixed? How do you ensure that bugs are not

Thomas Gilb is a
freelance consul-
tant, teacher, and
author serving
clients in Europe
and the US. He
wrote Principles of
Software Engineer-

ing Management and is principal author
of Software Inspection. He specializes in
software quality design and manage-
ment. Contact him at gilb@acm.org.

.

1 0 8 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

reintroduced? Of course, you should also track bugs
to determine their costs and frequency. But how can
you track bugs if you don’t have a test suite that
looks for the most common ones?

When building a highly dynamic Web application,
it’s important to design and build both its infrastruc-

ture and the process for up-
dating its content. Building
the infrastructure is really just
building traditional software
with new tools. Building the
content update process, on
the other hand, is more like
designing the editorial flow-
chart for a newspaper. Your
process must have notions of
data input, data validation,
layout, quality assurance, and

so on. This may involve a lot of human input or be
largely automated. The point is that the methods you
use to solve the infrastructure problem need to dif-
fer from those for solving the process problem.
Neither problem is new even if their combination is
unique. Breaking the problem down to well-known
subproblems is one way to reuse proven engineering
practices in a new domain.
Humphrey: Ray, of course you must test, but you just
can’t rely on testing to get quality. With the Web, it is
still true that if you don’t put
a high-quality product into
test, you won’t get one out.
Lewis: The concepts preached
by software engineering
schools are well-intentioned,
but they haven’t worked
largely because they do not
address the practicalities of
commercial development.
Ray and Ellen touched on
some of the reasons. I don’t dispute the need, I’m sim-
ply pointing out that we lack adequate techniques.
Classical software engineering isn’t up to the task, so
how can we foist it on the new breed of software
artist? I can only suggest, given the sad state of soft-
ware engineering technology, hiring exceptional peo-
ple, emphasizing intrateam communication, and tak-
ing extremely small steps during development. It is
still a test-intensive world.
Ullman: My advice to organizations: Don’t forget
that the software belongs to the user. Web-based
development has completely done away with the
concept of the installed base. The software can vary

endlessly moment to moment, with or without user
input. But just because the code resides on your
server doesn’t mean that you, the developer, can
keep changing it at will. When Web developers de-
cide that old-fogey stuff like software staging and
release schedules and usability testing no longer
apply, they rob users of their proper sense of con-
trol over the workspace.

Young developers talk to me about a “new busi-
ness model”for software, how Web software is more
akin to a service paid for by the hour than a thing
the user buys and owns. Even if we accept this ques-
tionable idea of users as renters, developers must
remember that even landlords can’t just come and
go in a tenant’s apartment.

THE RIGHT STUFF

Pressman: I’d like to discuss one more thing. When
any new software technology or product area goes
through rapid growth, “exceptional people” (as Ted
called them) do the work and, by sheer force of will,
produce high quality quickly. But as time passes, the
workload overwhelms even the best technologists,
and less competent people with (possibly) lower mo-
tivation are recruited to meet the demands of the
growing marketplace. There’s little doubt this will hap-

pen with Web-
based software,
as it has in every
other software do-
main. How should
a company handle
this? How should it
organize teams of
people to build
software for the
Internet when not

all of them are “exceptional”?
Lewis: Well, Roger has hit on the dilemma of most
of the software industry, especially when there are
thousands of job openings for programmers, de-
signers, and technologists.

I think the first steps to salvation are for project
managers to admit that (1) they really don’t know
the requirements, so they have to track requirements
creep as a first line of defense; (2) software devel-
opment teams are made of humans, not machines,
so they have to track social interaction; (3) the prod-
uct will be late, so they have to pad estimates;
(4) there will be more bugs than anticipated, so they

Brent Gorda is
president of Bonsai

Software, which cre-
ates technology for
use on the Web. His

interests include com-
pilers, tools, and sys-

tems. Previously he
worked for Myrias Research, Lawrence

Livermore National Laboratory, and the
National Energy Research Supercomputer
Center. Contact him at brent@bonsai.com.

Watts Humphrey is a fellow at Carnegie
Mellon’s Software Engineering Institute,
where he established the Process Pro-
gram, led initial development of the
Software Capability Maturity Model, and
introduced Software Process Assess-
ment, Software Capability Evaluation,
and, most recently, the Personal Soft-

ware Process. He joined SEI after 27 years at IBM in various
positions, including manager of commercial software devel-
opment. Contact him at watts@sei.cmu.edu.

.

S e p t e m b e r / O c t o b e r 1 9 9 8 I E E E S o f t w a r e 1 0 9

have to elevate testing to the level of a rock concert;
and (5) there will be personnel turnover, so you have
to constantly guard against hacks and inadequate
documentation. I have a friend who doubled pro-
grammer productivity by taking his team to a movie
every Friday afternoon! These principles are all
found in Tom Demarco’s book.
Gilb: We can only hope to control this chaotic envi-
ronment by learning to specify the critical require-
ments, especially the qualitative ones, in a measur-
able and testable manner. Our focus, with whatever
people and methods we have available, will then be
to drive the project towards the testable delivery of
those quality levels, evolutionarily. Inadequate peo-
ple, architectures, or methods will reveal themselves
quickly and will have to be replaced by stronger ones.

We also need to reward developers with progress
payments for real, relevant, measurable achieve-
ments. We tend to pay for failure, and there should
be no payment for failure.
Gorda: Companies faced with tight deadlines and
less than exceptional people need to keep it simple
and keep teams small. If necessary, they should
break the task up into smaller pieces for subteams.
Developers need powerful software tools and won’t
have time (or the capability) to build them. The tools
should be chosen carefully as they will form a core
piece of the solution and thus must come from a
source that will stand behind them and be around
in the future.
DeMarco: I believe “hacking” is at the heart of this
entire debate. All the “Web is different” advocates
seem to be suggesting that only hacking will serve
as a method because only hacking is fast enough.
Even your final question, Roger, implies that super-
stars do it one way (fast hacking), but “reg’ler” folks
might have to do something easier—and presum-
ably slower. This seems wrong-headed; there is
nothing easier or slower than hacking. Hacking
means beginning with a lousy design and flailing
away at it to make it work. This is always a loser.

We need a very light process for rapid develop-
ment work, whether it is Web-based or not. The heart
of a good and light development process is a disci-
pline of design: careful decomposition into cohesive
pieces with thin interfaces between them. This ap-
proach can work for the superstar or the novice—
the novice just needs a little more hand-holding.
Humphrey: We haven’t discussed what I see as the
key concern. The Web is growing and evolving
instead of being designed. While it does have a de-
signed backbone, no system design exists for mul-

ticonnected, dynamic, worldwide Web-based ap-
plications. I fear that poor design practices could in-
troduce latent defects that will make Y2K look like
child’s play. Web-based systems clearly have enor-
mous potential benefits, but what threats do they
pose to a national economy that depends on the
Web? We will need a trusted foundation that con-
siders recovery, security, privacy, and protection from
subversive attack. We will also need systems that fail
gracefully and behave well under stress.

I doubt simple answers exist, but we will almost
certainly need standards and engineering disci-
plines. The future of Web technology is exciting,
but I suspect that profes-
sional practices will be more
rather than less important.
Johnson: Fred Brooks, in The
Mythical Man-Month, points
out that the best program-
mers are almost an order of
magnitude better than poor
programmers. Twenty years
later this still rings true. But if
your “exceptional” people do
not produce a system that is
easy to maintain, you may
find yourself starting from scratch when your star en-
gineer gets a new job. We must remember that soft-
ware tends to hang around much longer than engi-
neers. The cost of having your best engineers follow
basic engineering principles, then, would be dwarfed
by that of having to rebuild your system because the
people who wrote the code are no longer around.
Ullman: I know you’re expressing the received wis-
dom, Roger, but I strongly disagree with your
premise. Every person you hire is (or can be) ex-
ceptional for the situation at hand. After the initial
development phase, you need a very different sort
of exceptional person. When working code exists,
“sheer force of will” is a destructive quality, in my
opinion. The truly exceptional skills I look for in
later-phase work are the ability to communicate
with colleagues (while also being a good pro-
grammer, a rare enough combination), the ability
to read and understand the system developers’
“brilliant” code (ability to read code is so rare that
it’s extra-exceptional, in my experience), and so on.
A whole new complex of exceptional skills comes
into play when a project matures. It’s foolish to
think less of your next cohort of hires. It’s self-de-
feating—if you’re looking for ordinary people,
that’s exactly what you’ll get.

Ray Johnson is engi-
neering manager for
Scriptics, a start-up
company focusing
on tools for the Tcl
scripting language.
His interests include
programming

languages, GUI toolkits, and Internet
agents and mobile code. Prior to joining
Scriptics, Ray was a researcher at Sun
Microsystems Research Laboratories.
Contact him at rjohnson@scriptics.com.

.

1 1 0 I E E E S o f t w a r e S e p t e m b e r / O c t o b e r 1 9 9 8

Adida: You’ve indirectly pointed out one clear dan-
ger of the idea some of us expressed here: while we
need a new engineering model for the Web, com-
pletely sidestepping the engineering process is a
truly bad idea. In fact, some Web projects may be
more susceptible than other systems to the kind of
degeneration you describe.

The solution here consists in going back to the
basics: serious, complete documentation. Modular
design. Planning for future updates. Of course, many
Web projects remain inherently short-lived. For
those, even though it may break a program man-
ager’s heart, it’s okay to plan for few if any updates,
and thus to never consider the consequences of hir-
ing “less qualified” people. The difficulty lies, of
course, in determining which projects will be short-
lived. That you can leave to the “exceptional”people
at the start of the project.

THE FINAL WORD

Pressman: As moderator, I’ve reserved the last word
for myself. In listening to your collective comments,
I get a feeling of déja vu—we’ve had this discussion
before, in another time and focused on other tech-
nologies, but with the same basic arguments.

I submit that engineering discipline is never a bad
idea. The basic principles that lead to high-quality
systems apply whether you’re building the latest
and greatest Web application or the 3,000th version
of a corporate payroll system. The problem isn’t in
applying the principles of solid software engineer-
ing—it’s in the overly dogmatic, bureaucratic ap-
plication of the engineering process.

But that problem contains another one. Stated
simply, what’s dogmatic and bureaucratic to you
might be perfectly acceptable to me. Every organi-
zation has to make decisions about the proper ap-
plication of engineering principles as it builds
Internet-based applications. And that’s okay—in
fact, it’s really a business decision. But if an organi-
zation chooses to ignore software engineering al-
together, I think both managers and technologists
are making a mistake that might come back to haunt
them (or their replacements) long after the excite-
ment of the Web has waned. ❖

About the Moderator

Roger Pressman has worked as a software engineer, manager,
professor, author, and consultant, focusing on software engi-
neering issues. He has authored six books and is editor of IEEE
Software’s Manager column. His book Software Engineering: A
Practitioner’s Approach is a widely used software engineering
textbook. Readers may contact him at pressman@rspa.com,
or via the Web at http://www.rspa.com.

CALL FOR ARTICLES
AND REVIEWERS

Life in an Internet World:Life in an Internet World:
Software SecuritySoftware Security

Major sectors of the global economy like energy,
transportation, and telecommunications are depending
more and more on the Internet. This interconnectedness
increases some security risks and creates a few new ones.
We are looking for articles that address the following
issues:

♦ How secure is online personal information?
♦ How vulnerable are major elements of our infrastruc-

ture (power, telephone, banking, etc.) to electronic
attack?

♦ What is the tradeoff between easy access and
security? What is technically feasible?

♦ How do we recover from short-term security breaches?

To submit an article or to become a reviewer, contact
Angie Su at asu@computer.org. Articles must not exceed
5,400 words including tables and figures, which count for
200 words each.

CALL FOR ARTICLES
AND REVIEWERS

Process DiversityProcess Diversity

The phrase “process diversity”means different things

—all interesting!—to different people. IEEE Software seeks

articles on:

♦ Processes that work

♦ Processes that fail

♦ RAD processes

♦ Processes for high-reliability software

♦ Internet processes

♦ Formal vs. informal processes

♦ Large-project vs. small-project processes

♦ Modifications and customizations of CMM, ISO,...

To submit an article or to become a reviewer, contact

Angie Su at asu@computer.org. Articles must not exceed

5,400 words including tables and figures, which count for

200 words each.

.

