
COMMUNICATIONS OF THE ACM May 2003/Vol. 46, No. 5 21

I
t is common for software
developers to talk about the
rapid change of pace in our
field. We say things like “It’s

hard to keep up with all the things
that are happening,” and make
apologies for not being up to
date on the latest whatever.
I’ve been guilty of that
myself, on occasion.

But do you know
what? I don’t really believe
it. Almost not a word of
it. Except for various ven-
dor products, such as tools
and processes, the things I
learned in software
kindergarten, way back in
the 1950s, are for the
most part still valid today.

Computer hardware
developers, I would assert,
have made great strides in
moving their field forward
over the years.
Smaller/faster/cheaper is
almost a mantra of their fast-
paced field. We software folk, by
contrast, tend to build software in
the same old ways. Reuse?
Libraries were common in the
1950s. Coupling/cohesion and
information hiding? We knew
about those back then, too,
although we didn’t call them that.
Programming languages and oper-

ating systems? The field didn’t
begin with them, but by the late
1950s (way back in those dark
ages!) they were very common.

I realize you may disagree with
me on this. There are lots of things

that have come along since then to
help software developers, such as
methodologies and tools and
processes of various kinds. But I
would assert that many of them
are pimples on a blister, refine-
ments on a theme, not that signifi-
cant in the overall history of the

software field. Let your letters of
response fly!

The point I want to make in
this column, however, goes even
further than my “we ain’t made no
progress” cry: I believe we’ve actu-
ally lost ground in some areas.
That is, I am suggesting the sacri-

lege that we actually did some
things better back in those early
days than we do today.

Case in point: programming
languages. I want to make the
case that, over the years, the
programming language commu-
nity has taken several steps
backward. That’s not to say, of
course, that it has not made
progress. Today’s programming
languages, for the most part, are
significant improvements over
those of yester-decade and
yester-millennium.

But there is one important
way in which programming lan-

guages have fallen backward—that
way is application domain focus.
Today’s languages seem to ignore,
almost totally, defining the applica-
tion domain for which they are
most appropriate. In fact, the more
you look at today’s languages, the
more you realize they are intended
to serve whatever application
domain you happen to be working
in. It’s that “one-size-fits-all” phe-

One Giant Step Backward

JA
SO

N
 S

C
H

N
EI

D
ER

Robert L. Glass

Old saying: “The more things change, the more they remain the same” …
or do they?

Practical Programmer

22 May 2003/Vol. 46, No. 5 COMMUNICATIONS OF THE ACM

nomenon I’ve discussed frequently
regarding other topic areas, such as
methodologies, all over again, this
time applied to the programming
language field. I’ve seen confer-
ences on “domain-focused pro-
gramming languages,” but I’ve
never seen anything of widespread
significance to the field emerge
from them. In fact, computer sci-
ence, over the years, has frag-
mented into such solution-focused
specialty areas, that I am not con-
vinced that one subdivision of the
field (including the ones looking at
domain-focused languages) com-
municates all that successfully with
all the others. Ah, but that’s a topic
for another column sometime!

Let me get specific here. When
software folks first invented higher-
level programming languages, we
did it with a particular application
domain in mind. Fortran for scien-
tific/engineering applications.
Cobol for business applications.
RPG for Report Generation. A
variety of languages for system pro-
gramming, including one called
SYMPL (systems programming
language). A different variety of
languages for real-time program-
ming, including CORAL and
JOVIAL and, eventually, Ada.

Most of that language progress
dates back to the late 1950s. We
were just beginning to understand
the diversity of applications that
software could be put to and we

focused very carefully on the
domains whose problems needed
solving. It wasn’t just a language
thing, of course. Communications,
for example, had various sections
back then devoted to specific
application domains. The whole
field looked at the problems it had
to solve first, and only after that
looked at approaches for solving
those problems.

What happened to change all of
that? Perhaps the first and most
obvious thing that came along was
the programming language PL/1.
IBM, seeking to find generic
approaches to software problem
solving, decided to produce a pro-
gramming language that combined
all of the facilities of the then-best-
known and application-specific
languages Fortran, Cobol, and
Algol: PL/1 was the result of that
effort. Many applauded PL/1, not-
ing it was part of a broader trend
toward application-independent
computing approaches (computer
hardware, in the early days of the
field, was also problem-domain
focused, and IBM’s 360 architec-
ture, like its PL/1, was an attempt
to produce one product line to
serve all of IBM’s customers).

But not everyone thought the
360 and PL/1 were such good
ideas. Folks made fun of PL/1 as
“the kitchen sink language,” mean-
ing it contained all the imaginable
language features, except, perhaps,

the proverbial kitchen sink. There
was enormous resistance to PL/1
(although not, interestingly
enough, to the 360). Eventually,
PL/1 was largely a failure. Fortran
and Cobol rolled on (as PL/1
began quietly dying), surviving—
of course—to this day.

Perhaps it was an accident of
history, or perhaps it was not. But
about the same time the 360 and
PL/1 appeared on the computing
practitioner scene in the mid-late
1960s, the academic field of Com-
puter Science (CS) also was born.
And CS, for better or for worse,
embraced domain-independence
wholeheartedly. It may not have
liked PL/1 all that well, but the
languages CS did like—the various
flavors of Algol—were consider-
ably more problem independent
than the Fortrans and Cobols of
their time.

One of the favorite topics of
academic CS was, and to some
extent still is, programming lan-
guages. And, language by language,
the CS-invented languages lost all
flavor of domain-dependence, and
became generic in their approach.

To some extent, that has been a
good thing. As the breadth of soft-
ware applications has spread so
dramatically, it would have been
impractical to invent yet another
language for yet another domain.
And yet, I would assert, throwing
out the domain-focused babies like

Practical Programmer

I am suggesting the sacrilege that we actually
did some things better back in those early days
than we do today.

Fortran and Cobol with the
domain-independent bathwater
has not necessarily done the field
any favors. I have lamented the
purported demise of Cobol else-
where, not so much because it is a
good language for business applica-
tions (although it still is!), but
because no one bothered to invent
a better one before deciding that
Cobol needed to be discarded.

There was an interesting reprise
of the domain vs. generic program-
ming language battle in the 1970s,
one that extended for a decade into
the 1980s. The U.S. Department
of Defense, for a variety of good
and not-so-good reasons, decided
it needed a new programming lan-
guage to serve real-time applica-
tions, especially those built for the
Air Force, the Navy, and the Army.
And it proceeded to perform the
most careful domain-specific lan-
guage study of all time. It gathered
requirements for such a language
from the tri-services and from tri-
service vendors, and scrubbed
them over and over again, and held
a language competition, and even-
tually picked and implemented a
language. A real-time language, it
is important to reiterate. Ada, like
PL/1, was not universally liked,
but it was very un-PL/1-like in one
respect—it was domain specific,
just as PL/1 had been domain
independent. At this point in time,
at least, the last of the domain-
focused languages!

And then something odd hap-
pened. The DoD had trouble get-
ting its vendors to use the
language, in spite of a variety of
proclamations requiring that it be

used for most DoD real-time
applications. As time passed, the
DoD—desperate to increase usage
of the language that had cost it so
much to develop—decided to
broaden its domain of applicability.
Originally focused on the real-time
domain, with some support for
systems programming so that its
compilers could also be written in
the language, Ada began to be seen
by the DoD as a business-domain-
focused language! Conferences
were held on revising the language
to include business-focused capa-
bilities. Language modifications
were defined. Articles advocating
Ada for all application domains
began to appear in computing
publications. It was apparent that
Ada, caught in its real-time death
throes, was the subject of an emer-
gency salvage operation, one
designed to make a domain-inde-
pendent sow’s ear out of a domain-
specific silk purse.

Mercifully, all of that domain-
independent repositioning came to
naught, and Ada died the kind of
slow death that PL/1 has. It is
interesting that the life-cycle stories
of the two languages are so similar,
given their domain-related nature
was so different.

Let’s do a reprise at this point.
Domain-specific languages were
once prevalent in the software
realm. They have faded, but not
disappeared, as domain-indepen-
dent languages have taken their
place. The various flavors of C,
including most recently Java and
C#, make no bones about being
applicable to a wide variety of
domains, and offer few if any of

the features that business or scien-
tific programmers, for example,
need. There are, of course, GUI
languages, such as the “Visual” lan-
guages, which are indeed focused
on a particular domain—user
interfaces. Even these languages, it
is interesting to note, are as much
about a particular aspect of the
solution approach (graphical user
interfaces) as they are about the
basic problem domain.

So where does the programming
language field stand today? The
best-known languages are domain
independent. The domain-specific
languages are derided, but still
used. The new languages that
come along—and they appear
much less frequently than they
once did—seem to follow in the
domain-independent footsteps of
their predecessors. Nothing appears
to be happening to change that.

What would I like to see hap-
pening in this same world?
Research devoted to specific
domains, and their specific needs.
Research devoted to languages that
meet those needs. The develop-
ment of newer, domain-focused
replacements, for those tired old
specialty languages Fortran and
Cobol. And an acknowledgment
that, way back in the 1950s, we
knew something we subsequently
lost along the way. That domain
differences matter.

Robert L. Glass (rlglass@acm.org) is the
publisher/editor of the The Software Practitioner
newsletter and editor emeritus of the Journal of
Systems and Software.

© 2003 ACM 0002-0782/03/0500 $5.00

c

COMMUNICATIONS OF THE ACM May 2003/Vol. 46, No. 5 23

