
c
Copyright Nancy Leveson, Sept. 1999

A Testing Exercise:

(From Glenford Myers: The Art of Software Testing)

A program reads three integer values from a card. The three
values are interpreted as representing the lengths of the sides
of a triangle. The program prints a message that states whether
the triangle is scalene, isoceles, or equilateral.

On a sheet of paper, write a set of test cases (i.e., specific sets
of data) that you feel would adequately test this program.

�

c
Copyright Nancy Leveson, Sept. 1999

Basic Testing Guidelines

A test case has two parts:

1. Description of input data
2. Precise description of correct output for that input

A programmer should avoid testing his or her programs.

A programming organization should not test its own programs.

The results of each test should be thoroughly inspected (lots
of errors are missed).

Test cases must be written for invalid and unexpected as
well as valid and expected input conditions.

�

c
Copyright Nancy Leveson, Sept. 1999

Basic Testing Guidelines (2)

Examining a program to see if it does not do what it is
supposed to do is only half the battle. The other half is
seeing whether the program does what it is not supposed
to do (i.e., must examine for unintended function and
side effects.

Avoid throw-away test cases unless the program is a
throw-away program.

Test cases are a valuable investment -- regression
testing.

Do not plan a testing effort under the tacit assumption that
no errors will be found.

�

c
Copyright Nancy Leveson, Sept. 1999

Basic Testing Guidelines (3)

The probability of the existence of more errors in a section
of a program is proportional to the number of errors already
found in it.

prob.
of

errors

errors already found

more

Testing is an extremely creative and challenging task.

Exceeds creativity required in designing program.

Don’t put your worst or newest people here.

�

c
Copyright Nancy Leveson, Sept. 1999

Building Assurance (Confidence)

V&V of non-software lifecycle products (e.g., user manual)

Quality Assurance (conformance to standards)

Static Analysis

Dynamic Analysis

Acceptance (user) testing

�

� ��

� ��

Black Box

White Box

Dynamic Analysis

Testing

Assertions

Coverage analysis

Automated test case generation

Monitoring run-time behavior

	

�

� �

� ��

without knowledge of internal structure of program).
Test data derived solely from specification (i.e.,

Need to test every possible input

if x = 5 then y := 3

x := y * 2

this is to try every input condition)
(since black box, only way to be sure to detect

Valid inputs up to max size of machine (not astronomical)

Also all invalid input (e.g., testing Ada compiler requires all
valid and invalid programs)

If program has ‘‘memory’’, need to test all possible unique
valid and invalid sequences.

So for most programs, exhaustive input testing
is impractical.

Black Box Testing

�

Derive test data by examining program’s logic.

Exhaustic path testing: Two flaws

1) Number of unique paths through program is astronomical.

loop 20x

(control-flow graph)

If could develop/execute/verify one
test case every five minutes = 1 billion years

If had magic test processor that could
develop/execute/evaluate one test per
msec = 3170 years.

5
20

+ 5
19

+ 5
18

+ ... + 5 = 10
14

= 100 trillion

White Box Testing

�

2) Could test every path and program may still have errors!

e.g. program has to compare two numbers for convergence

every path through program.

i.e., wrong program.
Does not guarantee program matches specification,

Missing paths: would not detect absence of necessary paths

Could still have data-sensitivity errors.

if (A - B) < epsilon ...

is wrong because should compare to abs(A - B)

Detection of this error dependent on values used for A
and B and would not necessarily be found by executing

White Box Testing (con’t)

�

Human Reviews

Checklists (inspections)

Walkthroughs (reviews)

Look for error-prone constructions
(enforce standards)

Syntax checks

Program structure checks

Generate graphs and look for structural flaws

Module interface checks

Detect inconsistencies in declarations of data structures
and improper linkages between modules

Static Analysis

���

B := 2 * A

If B>0 then C := |B| - 1
else C := |B| + 1

B = 2 * (X + 5)A := X + 5

if 2 * (X + 5) > 0

then |2 * (X + 5)| - 1

else |2 * (X + 5)| + 1

Static Analysis (con’t)

Event sequence checking

Compare event sequences in program with
specification of legal sequences

Symbolic execution

Formal verification

Use theorem proving methods to show equivalence of
code and a formal specification of required behavior.

���

