
12 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

T
o those who are unfamiliar with the
method, eXtreme Programming might
conjure up visions of programmers
madly hacking away without concern
for analysis, architecture, design, or
consequences. Indeed, people have

frequently made such accusations. Yet such
claims are not only baseless, they are dia-

metrically opposed to what XP is
all about.

XP is the brainchild of Kent
Beck, and he describes it in his
landmark book eXtreme Pro-
gramming Explained (Addison-
Wesley, 2000). (A review of this
book appears on page 113 in this
issue.) It is a software develop-
ment method that views people,
rather than paper, as a project’s
most potent element. Its primary

motive is to start a dialog between the peo-
ple involved in a project. It facilitates this by
identifying the parties in the conversation
and arming them with the clear knowledge
of what they are responsible for communi-
cating to others.

The Dialog
The two primary roles in XP are customer

and programmer. The customer is the person
or group who represents the users. The cus-
tomer is responsible for identifying the fea-
tures (known as stories) that the program-
mers must implement, providing detailed ac-
ceptance tests for those stories and assigning
priority to them. Thus, the programmers

should implement the stories the customer
wants, in the order the customer wants, and
pass any tests that the customer specifies.
Programmers may not implement anything
that the customer does not explicitly request.
On the other hand, programmers are re-
sponsible for estimating how long it will take
to implement the stories. Customers may not
question or challenge those estimates or
make commitments to third parties that do
not reflect those estimates.

With this division of responsibility in
place, it is clear that a project plan represents
a dialog between the customer and program-
mers. The protocol of that dialog is also clear.
The customer tells the programmers what
stories he or she wants in the next iteration.
The programmers add up the estimates for
those stories and tell the customer whether
they are possible. The customer can remove
or swap stories but can’t get more in the iter-
ation than the programmers estimate is possi-
ble. The programmers can tell the customer
how long something will take, but they can’t
select the stories to be implemented.

How could this possibly work? After all,
no customer is going to simply accept the pro-
grammers’ estimates; instead, the customer
will push back on those estimates, demand
better performance, and wheedle and cajole
the programmers into making their estimates
more acceptable. And no programmer is sim-
ply going to implement only the features that
the customer wants and in the order he or she
wants. Rather, the programmers are going to
build lots of infrastructure first and work on

soapbox

eXtreme Programming
Development through
Dialog
Robert C. Martin

To m o o M a t s u b a r a � M a t s u b a r a C o n s u l t i n g � t m a t s u @ x a . s o - n e t . n e . j p

XP views
people, rather

than paper,
as a project’s
most potent

element.

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 13

SOAPBOX

only the technologically “cool”
things—or the things that look good
on their resumes. Or so goes the com-
mon assumption.

This is part of the essential distrust
that exists between customers and
programmers. XP breaches this dis-
trust with a single concept: feedback.

The Two-Week Plan
The concept is simple. Maybe you

can’t trust me for a year; but you can
probably trust me for two weeks. If I
prove to be untrustworthy after two
weeks, you’ve lost very little. But if I
prove trustworthy, you will probably
be willing to trust me for another two
weeks.

In XP, the time from when the cus-
tomer directs the programmers to
work on a story until when the story is
actually working in the system is typi-
cally two weeks. For that short time
period, the customers and program-
mers can suspend their distrust of each
other.

Thus, in XP, the planning horizon is
only two weeks. No detailed plans are
created past an iteration’s horizon.
Participants create all detailed plans
when each iteration begins, and the
plans are meaningful only during the
iteration—indeed, very few artifacts of
any kind are created that outlast one.
This includes project plans, analysis
models, design models, and so forth.
Rather than make long plans and com-
plex models, we do two weeks worth
of work, assess where we are, and then
plan the next two weeks.

This rapid succession of planning
cycles is like a protracted conversa-
tion. The participants enter into a
kind of rhythm in which they make
very short-term plans, execute those
plans, and then evaluate the outcome
and make the next set of plans.

How can this work? Don’t we need
to have all the requirements up front?
Don’t we need to build extensive mod-
els of the problem and solution do-
mains? Don’t we need a project plan
that describes how the whole project
will work? Without these things,
won’t the project descend into chaos?

This works simply because the rapid
feedback removes errors. Every two

weeks, the customer looks at the sys-
tem being built and assesses whether
the last two weeks have resulted in an
improvement. If not, the customer di-
rects the next two weeks of work in a
way that he or she thinks will improve
the product. Moreover, after the first
few iterations, the customer gets a feel
for the development team’s velocity
and can determine if it is fast enough
for his or her purposes. Finally, any
time the customer feels that there is
nothing further to be gained by contin-
uing the project, he or she can stop it
and take away a working system.

Quality Control
But won’t constantly reworking

the code reduce it to an unmaintain-
able mess? XP is acutely sensitive to
poor code quality and addresses it in
several ways. First, XP demands sim-
plicity from the programmers—they
must leave the code in the simplest
possible state that passes all the ac-
ceptance tests. Thus, when code is re-
worked from iteration to iteration, it
is also continually reduced to the sim-
plest state the programmers can find.

Second, programmers are not al-
lowed to work on the code alone.
The programmers team up in pairs,
and each pair sits at a workstation
and programs. The result is that
every line of code is the result of a
conversation between at least two
programmers.

Finally, before adding code to the
system, the programmers must write a
failing unit test that the new code
must make successful. This ensures
that as the program grows, a copious
suite of tests grows with it. These tests
keep the quality of the software high
and give the programmers the courage
they need to continually rework the
code into its simplest form—an oper-
ation known as refactoring.

T hus, there are several layers of dia-
log in an XP project. The cus-
tomers have an ongoing dialog

with the programmers, the program-
mers have an ongoing dialog with
each other, and the test cases have an
ongoing dialog with the program. But

are these dialogs sufficient for soft-
ware development? Or do we need
heavier and more formal processes?

The answer is that, for many pro-
jects, development through dialog
works very well. The customers and
programmers learn to trust one an-
other. They have conversations about
new stories the customers want added
to the system, without feeling the need
to commit them to a large require-
ments document. The customers can
see the pace of the project from itera-
tion to iteration, and they eventually
grow comfortable with the program-
mers’ estimates without requiring
huge detailed plans. The code grows
as customers add new stories iteration
after iteration, but the code does not
rot. It is continually refactored into a
clean and simple state, all without
huge analysis and design models.

Over the past few decades, we
have sought to solve the software in-
dustry’s problems by creating ever-
larger processes that produce ever-
more complex and arcane artifacts
prior to software production. Per-
haps all we really needed was to
learn how to talk to each other.

Robert C. Martin is president of Object Mentor, Inc., a firm
of highly accomplished software experts that offers high-level
object-oriented software design consulting, training, and
development services to major corporations around the world.
In 1995 he authored the best-selling book, Designing Object
Oriented C++ Applications Using the Booch Method (Prentice
Hall). From 1996 to 1999 he was the editor-in-chief of C++ Re-
port. Contact him at rmartin@objectmentor.com.

