
62 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

T
he worst thing that can happen in re-
quirements engineering is that your set
of requirements, however expressed,
doesn’t accurately represent your
users’ needs and consequently leads
your team down the wrong develop-

ment path. The whole point of requirements
engineering is to steer your development to-
ward producing the right software. If you
don’t get the requirements right, how well
you execute the rest of the project doesn’t
matter because it will fail. So how are we led
astray? The risk is greatest at several points.

Overlooking a crucial requirement
Perhaps the greatest risk in RE is missing

a critical functional or attribute requirement.
If you overlook an important user class,
you’ll probably have to do a big job—usu-
ally larger than stakeholders care to toler-
ate—to add in what that user needs. Missing
a critical quality or performance attribute is
typically even worse. Often, the only way
adapt a software-based system to accommo-
date an important attribute is to re-architect.
An example that many software developers
have encountered recently is scalability in e-
commerce. If designers don’t keep scalability
in mind when choosing their architectures
(and many don’t), they find themselves in a
tough position when the usage load on their
software leaps to a thousand or more times
what they were expecting. System perfor-
mance is inextricably tied to system architec-
ture. In most instances, the only way to im-
prove performance is to choose another
one—that is, to start over from scratch. This
is not popular when your senior managers

promised you’d deliver next week. It’s even
worse if you make the discovery when your
software is already in the field.

Inadequate customer
representation

One of the central activities in RE is nego-
tiating agreement on requirements. To achieve
this agreement, you must find out what your
customers really need. Not much of a negoti-
ation will take place if you never actually in-
teract with them. “Take it or leave it” hap-
pens all too frequently when we assume our
design ideas suit our customers and don’t
bother to check if this assumption is really
true. Customers only discover if we had the
right idea when they attempt to use our soft-
ware. If our confidence was misplaced, that’s
a late time to discover it. For example, a cor-
porate IT development team told Karl that
they recently rolled out a new application for
internal use, but that they developed the sys-
tem with virtually no customer input. The
first time the users saw it was on delivery, and
they immediately rejected the system as com-
pletely unacceptable. On the day you proudly
unveil your new baby to the world, you don’t
want to hear, “Your baby is ugly!”

Modeling only functional
requirements

Both the requirements literature and our
practices have historically focused on func-
tional requirements—the things our software
systems are supposed to do. Functional re-
quirements are the most obvious ones to the
user, so most elicitation discussions focus on
them. Perhaps more important, though, is

requirements

The Top Risks of
Requirements Engineering
Brian Lawrence, Karl Wiegers, and Christof Ebert

E d i t o r : S u z a n n e R o b e r t s o n � T h e A t l a n t i c S y s t e m s G u i l d � s u z a n n e @ s y s t e m s g u i l d . c o m

N o v e m b e r / D e c e m b e r 2 0 0 1 I E E E S O F T W A R E 63

REQUIREMENTS

gaining agreement on quality attribute
requirements—the characteristics you
intend your software to exhibit. Old
standbys include reliability, perfor-
mance, security, robustness, ease of
use; others are scalability, innovation,
coolness, or fun. Functional models,
such as use cases, frequently gloss
over the attribute requirements alto-
gether. The attribute requirements are
the heart and soul of why your cus-
tomers will value your software. They
determine why using your software is
better than whatever they did before
to achieve the same end.

For example, a system that fails to
handle exceptions effectively will not
be robust and will crash when unex-
pected conditions occur. It does you
no good to simply record the require-
ment that “the system shall be ro-
bust.” A skillful requirements analyst
knows to ask the prompting ques-
tions that will elicit the user’s implicit
expectations about various attrib-
utes, explore what the user has in
mind when he or she says “robust,”
and negotiate the inevitable trade-
offs among conflicting attributes.

Not inspecting requirements
The evidence is overwhelming and

long known that the cost to remove
defects in requirements increases geo-
metrically with time. Once your soft-
ware hits the field, removing a re-
quirements defect costs at least a
hundred times as much, assuming
you can fix it at all. Inspecting your
requirements models is the most ef-
fective way to identify ambiguities,
unstated assumptions, conflicting re-
quirements, and other defects at the
earliest possible point. Of course, to
hold an inspection, you must have
something inspectable. And you have
to believe that your set of require-
ments has defects that you need to
identify. Personally, in all the years
I’ve (Brian) seen requirements for
countless software projects, I’ve
never seen a defect-free set. If there’s
an ironclad rule in software develop-
ment, it’s “Always inspect your re-
quirements.” And choose inspection
teams with a broad constituency, in-
cluding testers. One company we

know measured a 10-to-1 return on
investment from performing inspec-
tions on requirements specifications,
sustained over five years. For more
on inspecting requirements, check
out Karl Wiegers’ article “Inspecting
Requirements” at StickyMinds.com.

Attempting to perfect
requirements before
beginning construction

The time when we could know
everything we needed to know before
starting software construction is long
past. Today, we live in an emergent
world—some information simply isn’t
available early in our projects—and
only emerges later. We can’t possibly
know everything we’d like to know
before we start development. It’s safer
to assume that our requirements are
going to change than that they won’t.
Yet for some projects, participants feel
as though they must completely un-
derstand the requirements before any
other work begins. For most projects,
this is a mistake. You need to do some
design and construction before you
can tell how hard the job will be and
how much each part will cost. As this
kind of information becomes evident,
it could well affect your views about
your requirements, further changing
them. Do the best job you can early to
get a good set of requirements, but
don’t be discouraged if everything
isn’t absolutely certain. Identify those
areas of uncertainty and move on, en-
suring that someone is responsible for
closing those gaps in your knowledge
before construction is complete. Track
the uncertain requirements carefully
as your project proceeds.

Representing requirements in
the form of designs

Possibly the subtlest risk in re-
quirements engineering is letting de-
signs creep into, and then remain in,
your requirements specifications.
When you view designs as require-
ments, several things happen. You
run the risk of choosing a particular
solution that might not be the best
one to implement. Also, you under-
mine your ability to validate your
system, because you are specifying

the problem you hope to solve in
terms of how you intend to solve it.
All you can really do is verify that
you built what you said you would.
One surefire indicator that you’re
falling into this trap is highlighted by
references to technology. Any time a
technology is specified, you’re using
a design to represent the underlying
requirement. Using designs as re-
quirements is a subtle risk because al-
though you might have specific infor-
mation about what you want, it
doesn’t represent the underlying need
and is consequently vulnerable to
mistaken assumptions.

W hereas these risks are pretty seri-
ous, the greatest threat to pro-
ject success is not performing

requirements engineering at all. Re-
quirements are your project’s foun-
dation. They define the level of qual-
ity you need, facilitate decision
making, provide a basis for tracking
progress, and serve as the basis for
testing. If you let them remain un-
stated, you have no opportunity to
examine and negotiate them with
your customer and no way to tell
when your project has met its objec-
tives. Without clear requirements,
how will you know when you’re
ready to release your product?

Brian Lawrence is a principal at Coyote Valley Soft-
ware, a software consulting firm in Silicon Valley, California. He
helps software organizations model and manage requirements,
plan projects, and conduct peer reviews. Contact him at brian@
coyotevalley.com.

Karl Wiegers is the principal consultant at Process Im-
pact, a software process education and consulting company in
Portland, Oregon. He has written books about peer review in
software and software requirements. Contact him at kwiegers@
acm.org.

Christof Ebert is director of software coordination and
process improvement at Alcatel in Paris. He is also the IEEE Soft-
ware associate editor for requirements. Contact him at christof.
ebert@alcatel.be.

