
Software Reuse

CHARLES W. KRUEGER

School of Computer Science, G’arnegie Mellon University, Pittsburgh, Pennsylvania 15213

Software reuse is the process ofcreating software systems from existing software
rather than building software systems from scratch. ‘l’his simple yet powerful vision

was introduced in 1968. Software reuse has, however, failed to become a standard

software engineering practice. In an attempt to understand why, researchers have
renewed their interest in software reuse and in the obstacles to implementing it.

This paper surveys the different approaches to software reuse found in the research
literature. It uses a taxonomy to describe and compare the different approaches and
make generalizations about the field of software reuse. The taxonomy characterizes

each reuse approach interms of its reusable artifacts and the way these artifacts are
abstracted, selected, speciahzed, and integrated.

Abstraction plays a central role in software reuse. Concise and expressive
abstractions are essential if software artifacts are to be effectively reused. The

effectiveness of a reuse technique can be evaluatedin terms of cognztzue dwtance-an
intuitive gauge of the intellectual effort required to use the technique. Cognitive

distance isreduced in two ways: (l) Higher level abstractions ina reuse technique

reduce the effort required to go from the initial concept of a software system to

representations inthe reuse technique, and(2) automation reduces the effort required

togo from abstractions inareuse technique to an executable implementation.
This survey will help answer the following questions: What is software reuse? Why

reuse software? What are the different approaches to reusing software? How effective

are the different approaches? What is required to implement a software reuse

technology? Why is software reuse difficult? What are the open areas for research in
software reuse?

Categories and Subject Descriptors: D.1.O [Programming Techniques]: General;
D.2. 1 [Software Engineering]: Requirements\ Specifications-la rzguages,
methodologies, tools; D.2.2 [Software Engineering]: Tools and Techniques—modules
and interfaces, programmer workbench, software libraries; D .2.m [Software

Engineering]: Miscellaneous-–reusable software; D.3.2 [Programming Languages]:

Language Classifications-specialized application languages, very high-level languages;

D.3.4 [Programming Languages]: Processors; F.3. 1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Programs; H.3. 1
[Information Storage and Retrieval]: Content Analysis and Indexing—abstracting
methods, indexing methods; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, retrieual models, search process, select~on

process; 1.2.2 [Artificial Intelligence]: Automatic Programming--program synthesis,

program transformation.

This work was supported in part by the Hillman Fellowship for Software Engineering, in part by ZTI-SOF
of Siemens Corporation, Munich, Germany, and in part by the Avionics Lab, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH
45433-6543 under contract F33615-90-C-1465, ARPA Order 7597.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
CQACM 0360-0300/92/0600-0131 $01.50

132 “ Charles W. Krueger

General Terms: Design, Economics, Languages

Additional Key Words and Phrases: AbstractIon, cognitive distance, software reuse

CONTENTS

INTRODUCTION

1. ABSTRACTION

1 1 Abstraction]n Software Development

12 Abstraction m Software Reuse

13 Cognitive D]stance

2, ORGANIZATION OF THE SURVEY

3. HIGH-LEVEL LANGUAGES

3.1 AbstractIon m High-Level Languages

3.2 SelectIon

3.3 Speclahzatlon

3.4 Integration

35 ADcraisal of Reuse Techmques m Hlgh-. .
Level Languages

4. DESIGN AND CODE SCAVENGING

41 Abstraction m Design and Code

Scavenging

4.2 SelectIon

4.3 Speclalizatlon

4.4 Integration

4.5 Appramal of Reuse Techmques m Desgn

and Code Scavenging

5. SOURCE CODE COMPONENTS

51 Abstraction]n Source Code Components

52 SelectIon

5.3 Specialization

5.4 Integration

5.5 Object-Oriented Van ants to Component

Reuse

5.6 Appraisal of Reuse Techniques m Source

Code Components

6 SOFTWARE SCHEMAS

61 Abstraction in Software Schemas

62 Selection

63 Specialization

6.4 Integration

6.5 Appramal of Reuse Techniques in

Software Schemas

7. APPLICATION GENERATORS

71 Abstraction m Apphcatlon Generators

7,)- &lectiOn

7.3 Specialization

7.4 Integration

7.5 Software Life Cycle with Application

Generators

76 Appraisal of Reuse Techniques in

Apphcation Generators

8. VERY HIGH-LEVEL LANGUAGES

8.1 Abstraction m Very High-Level

Languages

8.2 Selectlon

8.3 Speclalizatlon

8.4 Integration

8.5 Appraisal of Reuse Techmques in Very

High-level Languages

9.

10

11

TRANSFORMATIONAL SYSTEMS

9.1 AbstractIon m Transformational Systems

9.2 SelectIon

9.3 Speciahzatlon

9.4 Integratmn

9.5 Appraisal of Reuse Techmques m Transfor-

mational Systems

SOFTWARE ARCHITECTURES

10.1 AbstractIon m Software Architectures

10.2 Selection

10.3 Speclahzatlon

10.4 Integration

10.5 Appraisal of Reuse Techniques in Software

Architectures

SUMMARY

11,1 Categories and Taxonomy

11.2 Cogmtlve Distance

113 General Conclusions

ACKNOWLEDGMENTS

REFERENCES

INTRODUCTION

The 1968 NATO Software Engineering
Conference is generally considered the
birthplace of the software engineering
field [Naur and Randell 1968]. The con-

ference focused on the software
crisis—the problem of building large, re-

liable software systems in a controled,
cost-effective way (it was at this confer-
ence that the term soft ware crisis origi-

nated). From the beginning, software

reuse has been touted as a means for
overcoming the software crisis. The semi-
nal paper on software reuse was an in-
vited paper at the conference: Mass Pro-
duced Software Components by Mclh-oy
[1968]. McIlroy proposed a library of
reusable components and automated
techniques for customizing components
to different degrees of precision and ro-
bustness. McIlroy felt that component li-
braries could be effectively used for nu-

merical computation, 1/0 conversion,
text processing, and dynamic storage al-
location.

Twenty-three years later, many com-
puter scientists still see software reuse
as potentially a powerful means of im-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 133

proving the practice of software engi-
neering [Boehm 1987; Brooks 1987;
Standish 1984]. The advantage of amor-
tizing software development efforts
through reuse continues to be widely ac-
knowledged, even though the tools,
methods, languages, and overall under-
standing of software engineering have
changed significantly since 1968 [Bi-
ggerstaff and Richter 1989].

In spite of its promise, software reuse
has failed to become standard practice
for software construction. In light of this
failure, the computer science community
has renewed its interest in understand-
ing how and where reuse can be effective
and why it has proven so difficult to
bring the seemingly simple idea of soft-
ware reuse to the forefront of software
development technologies [Biggerstaff
and Perlis 1989a, 1989b; Freeman 1987b;
Tracz 1988].

Simply stated, software reuse is using
existing software artifacts during the
construction of a new software system.
The types of artifacts that can be reused
are not limited to source code fragments
but rather may include design struc-
tures, module-level implementation
structures, specifications, documenta-
tion, transformations, and so on [Free-
man 1983].

There is great diversity in the software
engineering technologies that involve
some form of software reuse. However,
there is a commonality among the tech-
niques used. For example, software com-
ponent libraries, application generators,
source code compilers, and generic soft-
ware templates all involve abstracting,
selecting, specializing, and integrating
software artifacts [Biggerstaff and
Richter 1989]. In this survey, software
engineering technologies are analyzed
and contrasted in terms of their id-
iomatic reuse techniques, particularly
along the four mentioned dimensions:

Abstraction. All approachm to ~oftware
reuse use some form of abstraction for
software artifacts. Abstraction is the
essential feature in any reuse tech-
nique. Without abstractions, software

developers would be forced to sift
through a collection of reusable arti-
facts trying to figure out what each

artifact did, when it could be reused,
and lhow to reuse it,

Selection. Most reuse approaches help
software developers locate, compare,
and select reusable software artifacts.
For example, classification and cata-
loging schemes can be used to organize
a library of reusable artifacts and to
guide software developers as they
search for artifacts in the library
[Horowitz and Munson 1989].

Specialization. With many reuse tech-
nologies, similar artifacts are merged
into a single generalized (or generic)
artifact. After selecting a generalized
artifact for reuse, the software devel-
oper specializes it through parame-
ters. transformations. constraints. or
some other form of refinement. For
example, a reusable stack implemen-
tation might be parameterized for the
maximum stack depth. A programmer
using this generalized stack would
specialize it by providing a value for
this parameter.

Integration. Reuse technologies typi-
cally have an integration framework.
A software develo~er uses this frame-
work. to combine a collection of se-
lected and specialized artifacts into a
complete software system. A module
interconnection language is an exam-
ple of an integration framework [De-
Remer and Krcm 1976; Prieto-Diaz and
Neighbors 1986]. With a module inter-
connection language, functions are ex-
ported from modules that implement
them and imported into modules that
use them. Modules are assembled into
a system by interconnecting modules
with the appropriate exports and im-
ports.

From the software engineering per-
spective, software reuse pertains solely
to the proceim of constructing ~oftware

systems. Using existing sine routine

source code during the construction of a
program is considered an example of
software reuse, but repeatedly invoking

ACM Computing Surveys, Vol. 24, No. 2, June 1992

134 “ Charles W. Krueger

that sine routine during the execution of
the program is not. Also excluded are
repeated program executions and verba-
tim duplication of programs for the pur-
pose of distribution.

The goal of this paper is to introduce
research efforts in software reuse; it is
primarily a survey of the software reuse
literature. To provide a coherent perspec-
tive of the diverse literature, a uniform
taxonomy is developed. Different reuse
approaches are then characterized using
this taxonomy. Some simple comparative
analysis identifies the relative merits and
drawbacks of the different reuse tech-
niques and forms the basis for general-
izations about the field of software reuse.

As a survey of research literature, this
paper is not intended to be a guide for
selecting or implementing a reuse tech-
nology in practice. Many of the systems
described are research prototypes that
have not been scaled up or validated in
practical use.

1. ABSTRACTION

Because abstraction is such an important
part of software reuse, it is used as the
unifying theme in this survey. This choice
also reflects the view that successful ap-
plication of a reuse technique to a soft-
ware engineering technology is inex-
orably tied to raising the level of abstrac-
tion for that technology. Since raising
abstraction levels for software engineer-
ing technologies has proven to be quite
difficult, the relation between abstrac-
tion and reuse provides us with the first
clue to why there are so few successful

reuse systems.
Others have noted the relationship be-

tween software reuse and abstraction
[Booth 1987; Neighbors 1984; Parnas et
al. 1989; Standish 1984; Wegner 1983].
According to Wegner [1983, p. 30], for
example, “abstraction and reusability are

two sides of the same coin.” He states
that every abstraction describes a related
collection of reusable entities and that
every related collection of reusable enti-
ties determines an abstraction.

1.1 Abstraction in Software Development

Computer scientists often use abstrac-
tion to help manage the intellectual
complexity of software [Shaw 1984].
An abstraction for a software artifact is
a succinct description that suppresses
the details that are unimportant to a
software developer and emphasizes the
information that is important. For exam-
ple, the abstraction provided by a high-
level programming language allows a
programmer to construct algorithms
without having to worry about the de-
tails of hardware register allocation.

Software typically consists of several
layers of abstraction built on top of raw
hardware. The lowest-level software ab-
straction is object code, or machine code.
Assembly language is a layer of abstrac-
tion above object code. A programming
language (e.g., Adal) is a layer of ab-
straction above the assembly language.
In modular languages such as Ada, the
module specification can serve as a layer
of abstraction above the imdementation
details in the module body. ‘

These examples demonstrate that ev-

ery software abstraction has two levels.

The higher of the two levels is referred to

as the abstraction specification. The
lower, more detailed level is called the

abstraction realization. 2 When abstrac-
tions are layered, the abstraction specifi-
cation at one layer is the abstraction re-
alization at the next higher layer. Figure
1 shows a hierarchy with two abstrac-
tions, L and M. Rep 1, Rep 2, and Rep 3
are three representations of the same
software artifact, where Rep 1 is the most
detailed (lowest level) representation. For
abstraction L, Rep 2 is the abstraction
specification, and Rep 1 is the abstrac-
tion realization. From the point of view

1Ada is a registered trademark of the U.S. Govern-
ment, Ada Joint Program Office.
z Implementation is also common terminology for

the lowest level of detail in an abstraction. How-

ever, implementation is often associated with exe-

cutable source code, which is not necessarily the

case for all abstractions. For this reason, realiza-

tion is used in this survey.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

/0Rep ~ / Specification M

I

Realization M

,tj/Realization L

Rep 1

L

Figure 1. Two-level abstraction hierarchy.

of abstraction M, Rep 3 is the abstrac-
tion specification, and Rep 2 is the ab-
straction realization.

An abstraction has a hidden part, a
variable part, and a fixed part. The hid-
den part consists of the details in the
abstraction realization that are not visi-
ble in the abstraction specification. The
variable and fixed parts are visible in
the specification. The variable part rep-
resents the variant characteristics in the
abstraction realization, whereas the fixed
part represents invariant characteristics
in the abstraction realization. Therefore,
as illustrated in Figure 2, an abstraction
specification with a variable part corre-
sponds to a collection of alternate real-
izations. The variable part of an abstrac-
tion specification maps into the collection
of possible realizations.

For example, in an abstraction for
stacks, the fixed part of the abstraction
expresses the invariant characteristics
for all stack realizations, such as the
last-in-first-out (LIFO) semantics. The
invariant stack behavior does not, depend
on the type of elements stored in the
stack, so the element type can be in the
variable part of the abstraction. Then
each different element type corresponds
to a different stack realization.

The partitioning of an abstraction into
variable, fixed, and hidden parts is not
an innate property of the abstraction but

Software Reuse ● 135

Abstraction Specification

Figure 2. Mappimz from a variable abstraction. .
specification.

rather an arbitrary decision made by the
creator of the abstraction. The creator
decides what information will be useful
to users of the abstraction and puts it in
the abstraction specification. The creator
also decides which properties of the ab-
straction the user might want to vary
and places them i.n the variable part of
the abstraction specification. Continuing
with the stack example, the value for the
maximum stack depth can be placed in
either the variable, fixed, or hidden part
of the stack abstraction. If it is placed in
the variable part, the user has the ability
to choose the maximum stack depth (e.g.,
10, 1000, unbounded). If the maximum
stack depth is placed in the fixed part,
the user knows the predefine value of
maximum stack depth but cannot change
it. If placed in the hidden part, the stack
depth is totally removed from the con-
cerns of the user.

Abstraction specifications and realiza-
tions can take on many forms. They can
be formal or informal, explicit or implicit.
Consider the stack example written as a
generic Ada package. The abstraction re-
alization corresponds to an instantiation
of the generic package with a particular
stack element type. The abstraction spec-

ification, on the other hand, must be
a combination of different descriptions

ACM Computing Surveys, Vol. 24, No. 2, June 1992

136 “ Charles W. Krueger

because of Ada’s limited expressiveness.
The generic package can provide the syn-
tactic specification for operations of the

stack abstraction, but the semantic spec-
ification must be expressed outside of the
Ada language. One possibility is to use a
formal notation such as Hoare axioms.
Another is to use an informal description
such as English text.

Semantic specifications are rarely de-
rived from first principles. Abstraction
creators implicitly assume that a certain
amount of the abstraction specification is
common knowledge among the users. As
an extreme example, it might be suffi-
cient simply to give “stack” as a semantic
specification and assume that all users
understand the stack abstraction with-
out an explicit formal description.

In summary, an abstraction expresses
a high-level, succinct, natural, and useful
specification that corresponds to a less
perspicuous realization level of represen-
tation. The abstraction specification typi-
cally describes “what” the abstraction
does, whereas the abstraction realization
describes “how” it is done. For an ab-
straction to be effective, its specification
must express all of the information that
is needed by the person who uses it [Shaw
1984]. This may include space/ time
characteristics, precision statistics, scala-
bility limits, and other information not
normally associated with specification
techniques [McIlroy 1968].

1.2 Abstraction in Software Reuse

Abstraction plays a central and often-
times limiting role in each of the other
facets of software reuse:

Selection. Reusable artifacts must have
concise abstractions so users can effl-

ciently locate, understand, compare,
and select the appropriate artifacts
from a collection.

Specialization. A generalized reusable
artifact is in fact an abstraction with a
variable part. Specialization of a gen-
eralized artifact corresponds to choos-
ing an abstraction realization from the
variable part of an abstraction specifi-
cation.

Integration. To integrate a reusable ar-
tiGct into a software system effec-
tively, the user must clearly under-
stand the artifact’s interface (i.e., those
properties of the artifact that interact
with other artifacts or the integration
framework). An artifact interface is an
abstraction in which the internal de-
tails of the artifact are suppressed.

3 Cognitive Distance1.

The effectiveness of abstractions in a
software reuse technique can be evalu-
ated in terms of the intellectual effort
required to use them. Better abstractions
mean that less effort is required from the
user. To aid in evaluation, cognitive dis-
tance is introduced as an intuitive gauge
for comparing abstractions.

Cognitive distance is defined as the
amount of intellectual effort that must be
expended by software developers in order
to take a software system from one stage
of development to another. From this def-
inition, it should be clear that cognitive
distance is not a formal measurement
that can be expressed with numbers and
units. Rather, it is an informal notion
that relies on intuition about the relative
effort required to accomplish various
software development tasks.

For the creator of a software reuse
technique, the goal is to minimize cogni-
tive distance by (1) using fixed and vari-
able abstractions that are both succinct
and expressive, (2) maximizing the hid-
den part of the abstractions, and (3)
using automated mappings from abstrac-
tion specification to abstraction realiza-
tion (e.g., compilers). This can be sum-
marized in an important truism about
software reuse:

For a software reuse technique to be effectwe, It
must reduce the cogmtwe distance between the
mitlal concept of a system and Its final executable
Implementation,

This truism, along with others that arise
later in the survey, are obvious and
seemingly simple requirements on soft-
ware reuse techniques that have proven
difficult to satisfy in practice.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 137

2. ORGANIZATION OF THE SURVEY

We partition the different approaches to
software reuse into eight categories:
high-level languages, design and code
scavenging, source code components,
software schemas, application genera-
tors, very high-level languages, transfor-
mational systems, and software architec-
tures. They are presented in Sections 3
through 10, respectively, beginning with
reuse techniques that rely on low-level
abstractions such as assembly language
patterns and progressing through higher
level abstractions.

Each of the eight software reuse cate-
gories are discussed according to the fol-
lowing taxonomy:

Abstraction. What type of software arti-
facts are reused and what abstractions
are used to describe the artifacts?

Selection. How are reusable artifacts
selected for reuse?

Specialization. How are generalized ar-
tifacts specialized for reuse?

Integration. How are reusable artifacts
integrated to create a complete soft-
ware system?

Each section ends with a summary of the
key taxonomic features for the category
and a statement about its pros and cons.
These summaries provide a convenient
point of reference for comparing the dif-
ferent approaches to software reuse.

Although the categories and the taxon-
omy illustrate different approaches and
issues in software reuse, they are not
precise. The real software engineering
technologies we will examine often have
features that fit into several categories.
For example, different features of the Ada
language have relevance in four cate-
gories: High-Level Languages, Design
and Code Scavenging, Source Code Com-
ponents, and Program Schemas. Like-
wise, the relative importance of the four
facets in the taxonomy differs among the
different reuse categories. For example,
application generators emphasize the
specialization of a single highly ab-
stracted artifact but typically do not re-
quire selecting or integrating artifacts.

These imprecision, however, should not
detract from our goal, which is to explore
the interesting issues in software reuse.

3. HIGH-LEVEL LANGUAGES

High-level languages such as C, Ada,
Lisp, Smalltalk, and ML have not been
treated in the literature as examples of
software reuse. From the perspective of
software developers prior to the existence
of these languages, however, the goals
and achievements for high-level lan-
guages have strong parallels to the cur-
rent-day aspirations of software reuse re-
searchers. Given their marked level of
acceptance and success (e.g., a factor of 5
speedup in writing code [Brooks 197.51),
it is interesting to examine high-level
language technology in terms of software
reuse.

3.1 Abstraction in High-Level Languages

Before high-level languages were devel-
oped, software development was done
mainly with assembly languages. As de-
velopers discovered the inherent com-
plexity of building large systems in this
model, they began to search for more
effective ways to express computation.
The common implementation patterns
used in assembly language programming
became the primitive constructs in the
next generation, high-level languages.
Examples include iteration, branching,
arithmetic expressions, relational expres-
sions, data declarations, and assignment.

The reusable artifacts in a high-level
language are assembly language pat-
terns. A high-level language is at a level
of abstraction above the assembly lan-
guage artifacts. That is, high-level lan-
guage constructs are abstraction speci-
fications, whereas the corresponding
assembly language artifacts are abstrac-
tion realizations.

For example, consider a conditional

statement in a high-level language:

If ((expression)) men
(statements,)

else
{statements,)

endif

ACM Computmg Surveys, Vol. 24, No. 2, June 1992

138 ● Charles W. Krueger

This reusable template is an abstraction
specification that directly maps to an ab-
straction realization—the reusable as-
sembly language pattern. Referring back
to Figure 2, the variable parts in the
abstraction specification are the (expres-
sion) and two (statements) slots. The
fixed part of the abstraction specification
corresponds to the semantic description
of the conditional statement, given in the
language reference manual:

The expression IS evaluated. If true, execute
statements,, otherwise statements.

The hidden part of the abstraction in-
cludes all of the assembly language de-
tails such as temporary data in the eval-
uation of the expression.

Programmers use only the fixed and
variable parts of the abstraction specifi-
cation. They never see the actual assem-
bly language artifacts that are reused
because the mapping from specification
to realization is fully automated by the
compiler.

3.2 Selection

Since there is a relatively small number
of reusable artifacts (i.e., language con-
structs) in a high-level language, it is
relatively simple for a programmer to
select among them. The language refer-
ence manual and tutorial examples help
a novice make the appropriate selections
in a particular language. A programmer
can typically master a high-level lan-
guage in a matter of days or weeks.

3.3 Specialization

Most high-level 1anguage constructs are
generalized constructs with parametri-
zed dots. For example, conditional state-
ments typically have parameterized slots
for Boolean expressions and statements.
Programmers specialize the generalized
language constructs by recursively filling
the parameterized slots with other lan-
guage constructs of the appropriate type.

3.4 Integration

Programmers integrate statement-level

constructs by recursive specialization as

described in the previous paragraph. The
larger, encapsulating constructs such as
procedures, packages, or modules are in-
tegrated with a module interconnection
language or with scope rules. At both the
statement and module levels, the inte-
gration framework of a high-level lan-
guage defines how individual constructs
are composed to form a complete soft-
ware system. That is, every language
construct in a fully integrated program
has a well-defined operational semantics
that describes its effect on the run-time
data and the run-time control flow
[Loeckx and Sieber 1984]. (Module inter-
connection languages are addressed in
more detail in Section 5.4.)

3.5 Appraisal of Reuse Techniques in
High-Level Languages

From the perspective of today’s software
development technology, an analysis of
high-level languages is almost trite.
These languages are often the lowest
level of abstraction used by software
developers. The accomplishments,
strengths, and weaknesses of high-level
languages are well known. However, it is
not widely recognized that high-level lan-
guages are examples of software reuse.
Nor is it recognized that, in many ways,
high-level language technology is a
paragon of software reuse that re-
searchers currently can only hope to em-
ulate. For example, discovery of a new
reuse technology that routinely offered a
factor of 5 speedup in software develop-
ment would be among the most signifi-
cant software engineering achievements
of the decade.

High-level language technology pro-
vides a good example of how abstraction
impacts the effectiveness of software
reuse techniques. Compared to using as-
sembly languages, high-level languages
are considerably more succinct and have
a more natural form for expressing and
reasoning about programs. In addition,

programmers are largely unaware of the
reuse that takes place. They use only the
fixed and variable parts of the abstrac-

tion specification, while the mapping

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 139

Table 1. Reuse in High-Level Languages

Abstraction The reusable artifacts in a high-level language are assembly language patterns.

High-level language constructs serve as abstraction specifications for low-level

assembly language patterns.
Selection The semantics for each of a small number of constructs is described in a

language manual. Experienced programmers easily commit the collection of

constructs to memory, which facilitates selection.

Specialization Language constructs are typically generalized with parameterized slots. Con-

structs are specialized by recursively filling the parameterized slots with
constructs of the appropriate type.

Integration Language constructs are integrated by recursive specialization, module intercon-
nection rules, or scope rules. The operational semantics of the language defines

the effect of integrating constructs on the run-time data and control flow.
Pros Reusable assembly language patterns provide a factor of 5 speedup in develop-

ment time compared to programming direct] y in assembly language because (1)

high-level language constructs are succinct and natural, (2) compilers fully
automate the mapping from abstraction specification to abstraction realization,

and (3) programmers are completely isolated from compiler and assembly
language details.

Cons Due to the need for s,ystem design prior to coding, there is still a large cognitive

distance between the informal requirements for a software system and its

implementation. High-level languages are at a relatively 1ow level of abstraction.

from specification to realization is fully
automated by the compiler. Program-
mers do not have to examine or under-
stand the internals of the compiler or the
assembly language output, which com-
pletely isolates them from the details of
the hidden and realization parts of the
reuse abstraction.

The primary limitation of high-level
languages as a reuse technology is the
large amount of system design effort re-
quired prior to coding—high-level lan-
guage programming comes late in the
software development life cycle. Thus,
there is a large cognitive distance be-
tween the informal requirements for a
software system and its implementation
in a high-level language. Table 1 summa-
rizes the high-level language approach to
software reuse.

4. DESIGN AND CODE SCAVENGING

Many programmers adopt an ad hoc, al-
though effective, approach to reusing
software system designs and source code.
They scavenge fragments from existing
software systems and use them as part of
new software development. Experienced
software developers are known to gain
great leverage from reusing previous de-
signs [Biggerstaff and Richter 1989].

The goal of design and code scavenging
is to reduce the cognitive effort, the num-
ber of keystrokes, and therefore the
amount of time required to design, imple-
ment, and debug a new software system.
Scavengers copy as much as possible from
analogous systems that have already
been designed, implemented, and de-
bugged.

4.1 Abstraction in Design and Code
Scavenging

In design and code scavenging, the ab-
stractions used by a software developer
are mostly informal, and they often exist
only in the mind of the developer. The
abstractions are concepts about design
and programming that a software devel-
oper has learned from experience. For-
mal education, where students are taught
practical design concepts, provides an-
other source of abstraction for scav-
engers.

The reusable artifacts in scavenging
are source code fragments. In code scav-
enging, a contiguous block of source code
is copied from an existing system. In de-
sign scavenging, a large block of code is
copied, but many of the internal details
are deleted while the global template of
the design is retained. There is, of course,

ACM Computing Surveys, Vol. 24, No. 2, June 1992

140 “ Charles W. Krueger

a continuum between code scavenging
with dense code blocks and design scav-
enging with sparse design templates.

A software developer creates an ab-
straction for an existing design or code
fragment by remembering an abbrevi-
ated description. For example, the devel-
oper might remember the semantics of a
stack and the location of some software
that implements a stack. Then, if the
developer needs a stack in a new soft-
ware system, the existing implementa-
tion can be scavenged. In this case, the
abstraction realization is the existing
stack source code. The abstraction speci-
fication is the abbreviated description in
the memory of the software developer.3

In code scavenging, the software devel-
oper is ultimately involved with all parts
of the abstraction—the abstraction speci-
fication, the abstraction realization, and
the mapping from specification to real-
ization. Therefore, there is no hidden part
of the abstraction. Initially the developer
recalls an existing artifact from a mental
abstraction specification. The mapping
from specification to realization corre-
sponds to the developer manually locat-
ing the existing artifact and modifying it
for reuse. Modification and integration
are performed at the realization level of
the abstraction, which forces the devel-
oper to become intimately involved with
details in the realization.

4.2 Selection

The abstractions a software developer has
in his or her head can be thought of as a
library of reusable designs and source
code. While designing a new software
system, the developer may notice simi-
larities between the new system and ab-
stractions in the library. The developer
can directly reuse these abstractions in
the new design, or the abstractions can
be used as an index to locate existing
source code for scavenging.

3 I am being informal and taking great liberties
with the notion of abstraction in this section.

4.3 Specialization

A programmer specializes a scavenged
code fragment by manually editing it.
The fragment is edited to resolve differ-
ences between the original context from
where it was scavenged and the new con-
text where it will be reused. For exam-
ple, a scavenged stack implementation
might push and pop integer elements,
but a new implementation might need
string elements. The programmer must
thoroughly understand the lowest-level
details in the code fragment to adapt it to
its new context correctly.

4.4 Integration

Integrating a scavenged code fragment
into a new context means that the pro-
grammer has to modify the fragment, the
context, or both. For example, variable
names in a scavenged code fragment may
collide with existing variable names in
the new system. This conflict can be re-
solved by either modifying the context or
the fragment. Modifying the fragment
corresponds to specialization, as de-
scribed in the previous paragraph. The
issues for modif~ng the context are es-
sentially the same.

4.5 Appraisal of Reuse Techniques in Design
and Code Scavenging

In ideal cases of scavenging, the software
developer is able to find large fragments
of high-quality source code quickly that
can be reused without significant modifi-
cation. In these cases, the payoff is high.
The developer goes directly from an in-
formal abstraction of a design to a fully
implemented source code fragment. That
is, the cognitive distance between the ini-
tial concept of a design and its final exe-
cutable implementation is small.

In practice, the overall effectiveness of
code scavenging is severely restricted by
its informality. A programmer can only
scavenge those code fragments he or she
remembers or knows how to find. There
is no systematic way to share fragments
among many different programmers.
Specialization and integration are ineffi-

ACM Computmg Surveys, Vol. 24, No, 2, June 1992

Software Reuse w 141

Table2. Reuse in Design and Code Scavenging

Abstraction The reusable artifacts in scavenging are source code fragments. The abstractions

for these artifacts areinformal concepts that asoftware developer has learned

from design and programming experience.

Selection When apro~ammer recognizes that part ofanew application is similar to one
previously written, a search for existing code may lead to code fragments that

can be scavenged.
Specialization A programmer specializes a scavenged code fragment by manually editing it.

The programmer must thoroughly understand the lowest level details of the code
fragment in order to adapt it correctly to its new context.

Integration Integrating a scavenged code fragment into a new context means that the
programmer has to modify the fragment, the context, or both.

Pros In ideal cases of scavenging, a software developer is able to adapt large
fragments of source code without significant modification. In these cases,

cognitive distance is small.
Cons In the worst cases, a software developer spends more time locating, understand-

ing, modifying, and debugging a scavenged code fragment than the time required

to develop the equivalent software from scratch.

cient because they require a thorough
understanding and direct editing at the
realization level (source code). The pro-
grammer may introduce errors while
modifying the fragment, so the valida-
tion, testing, and debugging must be re-
peated each time a code fragment is scav-
enged for a new context.

These limitations lead to the second
truism of software reuse:

For a software reuse technique to be effectwe, It

must be easier to reuse the arhfacts than It is to

develop the software from scratch.

Efforts to extend the scope of code scav-
enging, especially across multiple pro-
grammers, often violate this simple con-
straint. For example, trying to scavenge
unfamiliar code from a friend may result
in spending more time locating, under-
standing, modifying, and debugging a
code fragment than the time required to
develop the equivalent software from
scratch. Scavenging is inherently limited
by the fact that developers are not iso-
lated from the details in the abstraction
realization level. They frequently work at
the same level of abstraction while scav-
enging as they do when building soft-
ware from scratch. Table 2 summarizes
the design- and code-scavenging ap-
proach to software reuse.

5. SOURCE CODE COMPONENTS

McIlroy’s [1968] Mass Produced Software
Components introduced the notion of

software reuse by proposing an industry
of off-the-shelf source code components.
These components were to serve as build-
ing blocks in the construction of larger
systems. Given a large enough collection
of these components, software developers
could ask the question “What mechanism
shall we use?” rather than “What mecha-
nism shall we build?”

The nature of a reusable component
technology strongly depends on the lan-
guage in which it is implemented. The
components proposed by McIlroy in 1968
were assembly language or Fortran sub-
routines and therefore emphasized
reusable functions. Examples of collec-
tions of reusable functions include statis-
tics libraries such as SPSS and numeri-
cal analysis libraries such as IMSL.
Modern languages have a richer collec-
tion of program units, such as modules,
packages, subsystems, and classes. The
type of reusable components that can be
written in these languages is not limited
to functions but can also include data-
centered artifacts such as abstract data
types [Deutsch 1989; EVB Software 1985;
Ichbiah 1983; Parnas et al. 1989]. That
is, these languages make a clear distinc-
tion between control abstraction and data
abstraction [Goguen 1986, 1989]. As an
example of reusable data-centered com-
ponents, Booth [198’7] defines reusable
Ada packages for 11 abstract data types:
stacks, lists, strings, queues, deques,
rings, maps, sets, bags, trees, and graphs.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

142 ● Charles W. Krueger

He also gives reusable function-centered
components for control abstractions such
as sorting and searching.

The goal of off-the-shelf components is
to reduce the cognitive effort, the number
of keystrokes, and therefore the amount
of time required to design, implement,
and debug a new software system. The
one-time cost of creating a reusable com-
ponent is further amortized each time it
is reused. Reusable com~onents have.
proven fruitful in a few narrow areas.
such as numerical analysis, but there has
been less success with collections of gen-
eral-purpose components.

5.1 Abstraction in Source Code Components

Component reuse is analogous to code
scavenging in that programmers copy ex-
isting source code artifacts into new soft-
ware systems. However, reusable com-
ponent technologies typically use more
systematic techniques such as catalogs
and libraries of components. In addition,
reusable components are created and
stored specifically for the purpose of
reuse, whereas with scavenging the

reused artifacts are extracted from soft-
ware that was not written with reuse in
mind.

A major challenge for researchers try-
ing to implement large libraries of
reusable components is to find concise
abstractions for the components. Without
abstractions, the user of a component li-
brary must examine the source code to
determine what each component does.
Although the source code is appropriate
for the abstraction realization level, it is
unreasonable to expect a user to search
through a large library of source code to
find an appropriate component. The li-
brary implementor must provide abstrac-
tion specifications that succinctly de-
scribe component behavior. The library
implementor must also provide classifi-
cation and retrieval schemes so users can
efficiently search for specific components.

It is interesting to note that the best-
known successes with component reuse
have been in application domains with
application-specific, “one-worp abstrac-

tions to describe components. These ab-
stractions are universally understood by
all programmers in the application do-
main. For example, in numerical analy-
sis libraries, reusable components for sine
and matrix multiply do not require de-
tailed abstraction specifications. The
names alone serve as complete abstrac-
tions for the users based on their count-
less hours studying high school and col-
lege mathematics. Another example is

Booth’s abstract data types (stacks, lists,
strings, queues, deques, rings, maps,
sets, bags, trees, and graphs), where the
names serve as well-defined abstractions
for most computer scientists. In both of
these examples, the source code compo-
nents are often accompanied by informal
natural language descriptions, which
provide more detailed abstraction specifi-
cations for the components.

As with code scavenging, the software
developer reusing source code compo-
nents is often involved with all parts of
abstraction. Initially the developer uses
the abstraction specification to locate an
appropriate component. The mapping
from specification to realization corre-
sponds to the developer locating the com-
ponent in the library and (if necessary)
modifying it for reuse. Modification, if
needed, and integration are performed at
the realization level of the abstraction,
which might force the developer to be-
come involved with details in the compo-
nent implementation.

5.2 Selection

The third truism of software reuse em-
phasizes a characteristic problem with
reusable components:

To select an artifact for reuse. you must know what

It does.

When faced with a library of source
code components, the user needs a level
of abstraction that emphasizes what the
components do as opposed to the source
code that describes how it is done. Anna
is an example of an Ada language exten-
sion for annotating components (i.e., Ada
packages) with semantic descriptions

ACM Computmg Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 143

[Luckham and von Henke 1984]. Al-
though Ada maintains a clear separation
between the package declaration and the
package implementation, the package
declaration provides only syntactic infor-
mation, which is not sufficient for de-
scribing its behavior and intended use.
With Anna, it is possible to “understand
how to use a package without inspecting
its implementation in the private part
and body” [Luckham and von Henke
1984, p. 123].

Anna, which stands for Annotated Ada,
is a language for formal annotations. An-
notations are predicates (i.e., Boolean-

valued expressions) that express con-
straints on Ada language constructs such
as data objects, types, subtypes, subpro-
grams, and exceptions. For example, the
following is an Ada subtype declaration
for the even integers. The first line is the
Ada declaration, and the second is an
Anna annotation; it is impossible to ex-
press this subtype semantics in pure Ada
[Luckham and von Henke 1984]:

subtype EVEN is INTEGER;

--lwhere X : EVEN =) X mod 2 = O;

The next example is a simple Anna
specification for the behavior of a counter
package (also from [Luckham and von
Henke 1984]). The two Anna annota-
tions, which begin with --1, formally state
that the value of a counter just after
initialization will be O and that the value
of the counter just after an increment
will always be 1 more than its value just
before the increment:

package COUNTERS is
type COUNTER is limited private
function VALUE (C : COUNTER) return NAT-
URAL;
procedure INITIALIZE (C: in out COUNTER);
--l where out (vALLIE (C)= 0);
procedure INCREMENT (C : in out
COUNTER);
--l where out (VALUE(C) = VALUE(in C) + 1);

private

end COUNTERS;

In addition to component descriptions,
a component library must provide soft-

ware developers with techniques to lo-
cate components efficiently. Without such
techniques, a developer must search
through a large, monolithic collection of
reusable components. This is analogous
to searching for a book on a particular
subject “in a public library that has no
card catallog but has all books arranged
alphabetically” [Embley and Woodfield
1987, p. 360]. This leads to the fourth
and final truism of software reuse (which
is a special case of the second):

To reuse a software arhfact effectwely, you must be

able to find it faster than you could build It

To address this problem, implementors

of a component library can organize com-
ponents with a classification scheme and
then provide manual or automated re-
trieval techniques. ‘l’he scheme for classi-
fication and r~trieval is another level of
abstraction over all of the components in
the library. For example, the IMSL [1987]
math library has a three-volume manual
with components hierarchically classified
by abstract computational or analytical
capabilities. In addition, three different
indexes serve as inde~endent abstract in-
terfaces to the libra~y: a keyword index

(KWIC), an ACM math software classifi-
cation index, and an alphabetical index.
The keyword and ACM classification in-
dexes are both mappings from abstract
descriptions (i.e., abstraction specifica-
tions) to reusable com~onents in the li-
brary (i.e., abstraction realizations).
About 1200 pages are used to describe
and classify approximately 900 routines.

Automated tools for component selec-
tion may be necessary for component col-
lections significantly larger than IMSL.
An interesting small-scale example is the
netlib system for automatically distribut-
ing mathematical software components
via electronic mail [lDongarra and Grosse
1987]. Users’ queries and requests are
drafted according to a simple syntax and
sent to an Internet address. A server at
that address parses incoming messages
and returns responses to queries or re-
quested software components.

The net,lib components are all public
domain, and the netlib service is pro-

ACM Compd,mg Surveys, Vol. 24, No. 2, June 1992

144 “ Charles W. Krueger

vialed free of charge. In December, 1988,
the netlib source code collection consisted
of51 different software packages (includ-
ing Linpack, published ACM algorithms,
Minpack, fft packages, and eigenvalue
packages) and occupied about 75MB of
storage. Although this system is limited
to mathematical software and is rela-
tively unsophisticated in terms of soft-
ware classification and retrieval, it elicits
images of an international distribution
system for a wide range of reusable soft-
ware artifacts.

5.3 Specialization

As with code scavenging, programmers
can specialize reusable components by
directly editing the source code. This ap-
proach, however, has the same draw-
backs that were noted with code scaveng-
ing:

●

☛

Editing source code forces the software
developer to work at a low level of
abstraction. The effort required to un-
derstand and modify the low-level de-
tails of a component offsets a signifi-
cant amount of the effort saved in
reusing the component.

Editing source code may invalidate the
correctness of the original component.
This eliminates the ability to amortize
validation and verification costs over
the life of a reusable component.

Implementors of reusable components
can offer a more efficient approach to
specialization with generalized compo-
nents and construction-time parameters.
Software developers specialize these
components by setting parameters rather
than directly editing source code. Well-
known examples of this approach include
parameterized macro expansions and Ada
generics [Ichbiah 1983]. Parameterized
components are a form of abstraction.
For example, the Ada generic package
specification represents a set of possible
package realizations, or instantiations.
The generic parameters correspond to the
variable part of the abstraction specifica-
tion. Mendal [1986] gives an in-depth
example of a generic Ada package for

sorting in which parameterization deter-
mines the type of elements that are
sorted, the indexing scheme into a collec-
tion of elements, the partial ordering
among elements, and so on.

5.4 Integration

Module interconnection languages pro-
vide a framework for integrating reusable

components [DeRemer and Kron 1976].
Integrating reusable components into a
software system is essentially the same
as integrating components built from
scratch. Module interconnection lan-
guages are an integral part of many pro-
gramming languages such as Modula-3,
Standard ML, and Ada, which makes
these languages particularly good candi-
dates for implementing reusable compo-
nents. Readers not familiar with module
interconnection languages might be in-
terested in a survey by Prieto-Diaz and
Neighbors [1986].

Naming and binding conflicts can pre-
sent problems for the software developer
integrating a reusable component into the
context of a new system, Names im-
ported into and exported from the compo-
nent may clash or be incorrectly bound in
the new system.

Ada provides mechanisms to overcome
some of these naming problems [Ichbiah
1983]. The dot notation can be used to
disambiguate name clashes. For exam-
ple, if package P and Q both define func-
tions named F, they can be uniquely
identified as P.F. and Q. F. Overloading
allows name clashes to be automatically
disambiguated by the compiler on the
basis of differences in the type signa-
tures. And synonyms can be used in
situations in which dot notation is too
cumbersome or overloading becomes con-
fusing.

The UNIX4 pipe is another example of
an integration framework for compo-
nents [Kernighan 1984]. The reusable
components in this paradigm are com-
plete programs. Programs are integrated

4 UNIX is a trademark of AT & T.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse “ 145

by sequentially “piping” the output from
one program into the input of another
program. For example, the UNIX com-
mand who is a program that outputs the
list of persons logged onto a UNIX sys-
tem, one per line. The UNIX command lC
counts the number of linefeeds in an in-
put string. Piping the output of who into
lC produces a new program that counts
the number of persons logged into a UNIX
system:

who I IC

where the I designates a pipe,

5.5 Object-Oriented Variants to
Component Reuse

Most of the abstraction, selection, spe-
cialization, and integration issues out-
lined earlier in this section also apply to
object-oriented languages. The notion of
inheritance from the object-oriented
paradigm, however, offers a unique con-
tribution to component reuse [Meyer
1989].

5.5.1 Inheritance and Subclasses

Class definitions in an object-oriented
language such as Smalltalk are primar-
ily a data abstraction mechanism. Inheri-
tance and subclassing enhance the data
abstraction mechanism by establishing a
hierarchical relationship among classes
and by allowing reuse to occur within the
class hierarchy [Deutsch 1989; Liskov
1987]. For example, an indexed collection
of items might be defined as a class (ab-
stract data type) with a hidden storage
representation and visible operations to
store and fetch the zth item in the collec-
tion and to get the size of the collection.
Subclasses of the index collection can
reuse the storage representation and the
fetch operation, while extending the type
with new data and operations. For exam-
ple, a programmer can define a sequence
as a subclass of the indexed collection
superclass, with an additional operator
for concatenation. The programmer only
has to write the concatenation operator
for the sequence class definition since the

data representation and fetch operation
defined in indexed collection are reused.

Subclassing, therefore, corresponds to
specialization of a superclass. That is,
the superclass is a template that can be
extended by a programmer to create a
subclass. Everything in the superclass
template is reused in the subclass
[Lieberherr and Riel 1988]. The effort
required to produce a subclass is propor-
tional to the dissimilarity between the
subclass and the superclass [Deutsch
1983].

Liskov [1987] discusses different forms
of inheritance and the effect that each
form has on the encapsulation of classes.
In cases in which encapsulation is com-
promised for a class, reusability is
likewise compromised. When the imple-
mentation of a class depends on imple-
mentation details in a superclass, the
external dependency makes it difficult to
understand and reuse the class.

Organizing classes into a subtype hier-
archy he] ps the software developer locate
and select reusable classes. Similar
classes in a hierarchy are grouped close
together. The path from the root of a
class hierarchy down to a particular class
is a path from a very general abstraction
for the class down to more specific ab-
stractions for the class. A developer look-
ing for a reusable class navigates through
the hierarchy until the closest match is
located [Liskov 1987].

5.5.2 Multiple Inheritance

Some languages offer multiple inheri-
tance as an extension to the inheritance
mechanism just described. Multiple in-
heritance allows a class to have two su-
perclasses, inheriting the data represen-
tations and operations from both [Stefik
and Bobrow 1986]. Multiple inheritance
is therefore a mechanism for merging
multiple abstract data types into a single
type.

There are several possible forms of
multiple inheritance. The simplest is a
disjoint union of two or more super-
classes, where the data representations
and the operations from the superclasses

ACM Computing Surveys, Vol. 24, No. 2, June 1992

146 ● Charles W, Krueger

do not interact in any way. In this case
the new subclass reuses the properties of
all of its parents without modifying their
semantics. For example, the Smalltalk
read-write-stream subclass is composed
of multi~le inheritance from the read-.
stream superclass and the write-stream
superclass.

Another form of multiple inheritance is
an intersecting union. In this case some
of the data or operations from super-
classes interact. For example, a stack _set
class can be defined bv multi~le inheri-
tance from a set supe~class aid a stack
superclass. The stack _set maintains a
stack and a set as (conceptually) a single
data type. The semantics are defined so
that the set always contains all objects in
the stack, and as usual the set is an
unordered collection containing no durdi-
cates. Adding and removing it~ms on ~he
stack _set is allowed only through the
push and pop operations. The insert and
delete operations for set are disabled. The
push and pop operations must be modi-
fied to update the set portion of the
stack _set in addition to the original op-
erations on the stack [Habermann et al.
19881.

In ‘this example, modifying the push
and pop operations in the stack _set de-
tracts from the reusability of those oper-
ations since the software develo~er must.
manuallv modifv them, There has been.
some research &ing declarative specifi-
cations that allow the software develo~er
to merge operations from multiple super-
classes almost as easily as merging the
data [Kaiser and Garlan 1987, 1989].

5.6 Appraisal of Reuse Techniques in Source
Code Components

Compared to code scavenging, reusable
component libraries can be considerably
more effective since components are writ-
ten, collected, and organized specifically
for the purpose of reuse. The most suc-
cessful reusable component systems, such
as the IMSL math library, rely on concise
abstractions from a particular applica-
tion domain. One-word abstraction speci-
fications such as sine often allow a soft-

ware developer to go directly from an
informal requirement to a fully imple-
mented and tested source code compo-
nent. Thus, the cognitive distance be-
tween the informal concept and its final
executable implementation is very small.

For components that do not have sim-
ple abstractions, more general specifica-
tion techniques are required. Unfortu-
nately most programming languages do
not come with good abstraction mecha-
nisms for describing component behavior
and for doing classification and retrieval.
And although some progress has been
made using programming language ex-
tensions such as Anna, these formal
specification languages are not without
problems. The primary drawback is that
nontrivial specifications are difficult to
create and understand—specifications
can often be as opaque as source code
[Horowitz and Munson 19891. This off-
~ets the benefits of using them as ab-
straction specifications for reusable com-
ponents; that is, it makes the cognitive
distance relatively high.

Reusable components can be special-
ized either by editing the source code
directly or with mechanisms such as the
Ada generic. Generics provide a level of
abstraction that isolates the software de-
veloper from many implementation de-
tails. Generics can also reduce the risk of
inadvertently introducing errors when
the component is reused. Using a formal
specification language such as Anna, an
Ada generic package can be verified to be
correct for all legal instantiations of that
package. Thus t~e user does not have to
reverify the reused component.

Ada generics can only be parametri-
zed with language constructs such as

data types, data objects, and functions.
In Section 6 we will see how m-eater
degrees of specialization are poss~ble by
parameterizing components with higher
level abstractions, such as space/time
performance tradeoffs.

Creating a relatively complete and
practical library of reusable components
is a formidable challenge. Library imple-
mentors must have the theory, foresight,
and means to produce a collection of com-

ACM Comput]ng Surveys, Vol. 24, No. 2,, June 1992

Software Reuse w 147

ponents from which software developers
can select, specialize, and integrate to
satisfy all possible software development
requirements. This is currently possible
to a limited degree for specific applica-
tion domains that have a rich and thor-
ough theoretical foundation, such as
statistical analysis. General-purpose li-
braries, however, remain elusive for at
least two reasons:

e

0

The implementation characteristics
and tradeoffs for data structures and
computations are widely variable.

Library size grows rapidly with respect
to general-purpose component srize.-

Computer science provides general-
purpose building blocks such as stacks
and lists, but these do not always repre-
sent the dominant portion of the compu-
tation needed in large software systems
[Booth 1987]. Yet even to construct an
admittedly modest library of variations
on 11 abstract data types (stacks, lists,

strings, queues, deques, rings, maps,
sets, bags, trees, and graphs) Booth
[1987] had to create 501 parameterized
components. In order to capture to a rea-
sonable degree of tradeoffs in precision,
granularity, range, and robustness, McIl-
roy [1968] envisioned a library with 300
different variations of the “lowly sine
routine.” Projecting from these examples,
it appears that a library providing a ver-
satile foundation for building software
systems must be populated with a very
large number of components.

With general-purpose components, big-
ger is better. A software developer who
constructs a software system by select-
ing, specializing, and integrating 5
1000-line components is typically going
be more effective than a developer using
1000 5-line components. Larger compo-
nents are, however, more specific, and
therefore, more of them are needed
to populate a general-purpose library

[Biggerstaff and Richter 19891.
For example, consider a programming

language with 10 different types of state-
ments. Ten different l-line components
can be built in this language, but using

these l-line components is equivalent to
and as equally cost-effective as program-
ming directly in the source language. A
library of components of length 6 might
be six times more cost effective to use,
but there are 1,000,000 (lOG) possible
components of length 6. In general there
are 10N candidate components for popu-
lating a library of iV-line components in
this model. It is therefore necessary for a
library implementor to identify a small
subset of large granularity components
that can serve as building blocks for soft-
ware systems. Table 3 summarizes the
source code component approach to soft-
ware reuse.

6. SOFTWARE SCI-IEMAS

Software schemas are a formal extension
to reusable software components.
Reusable components often rely on ad
hoc extensions to programming lan-
guages to implement reuse techniques
such as specification, parameterization,
classification, and verification. With soft-
ware schemas, however, these mecha-
nisms are an integral part of the technol-
ogy.

Although the intent of software
schemas is similar to that of reusable
components, the emphasis is on reusing
abstract algorithms and data structures
rather than reusing source code. To the
software developer using reusable
schemas, the source code representation
will be much less prominent than the
abstract notation for describing what the
schema is intended to do, under what
conditions it can be reused, and how to
go about reusing it.

The PARIS system is a representative
schema technology [Katz et al. 1989]. The
reusable schema, or program templates,
in the PARIS libralcy are instantiated to
produce source code. Each schema has a
specification that includes the following:

●

●

A formal semantics description of the
schema (e.g., what the schema does),

Assertions for correctly instantiating
the schema (e.g., constraints on the
variable parts of the schema), and

ACM Computing Surveys, Vol. 24, No. 2, June 1992

148 ● Charles W. Krueger

Table 3. Reuse m Source Code Components

Abstraction

Selection

Specialization

Integration

Pros

Cons

Currently, the best abstractions for reusable components are domain-specific
concepts, such as those found in the numerical analysis and statistical analysis
packages. Specification languages such as Anna are general-purpose mecha-
nisms for writing abstraction specifications for components.

Selection is easier in domain-specific libraries because components can be
classified, organized, and retrieved using well defined properties of the domain.
In a general-purpose component library, ease of component selection is depen-

dent on the quality of the abstraction, classification, and retrieval schemes.

Describing component behavior with a specification language can help software
developers select among a small number of alternatives, but this approach is not

suitable for a manual search in a large library.

Generalized components with construction-time parameters represent the most
effective approach to component specialization, Directly editing component
source code is a less-controlled and less-efficient means of specialization. In some
object-oriented languages, inheritance offers another means of reuse with

superclass specialization.
Module interconnection languages typically provide the framework for integrat-
ing components. Naming and name binding are Important module interconnec-

tion issues in component reuse since reusable components are constructed

independently of any particular context.

Components are written, tested, and stored specifically for the purpose of reuse.
Some application domains, such as numerical analysls, are particularly well

suited to reusable component techniques since they have well-defined component
abstractions. In these cases, cognitive distance is small.
Components without well-defined abstractions must be described with natural
language or specification language descriptions. These descriptions can often be

as difficult to understand as source code, thereby increasing the cognitive
distance. Also, general-purpose component libraries will have to be very large,
making them difficult to build and use.

. Assertions for the valid use of instanti-
ated schema (e.g., preconditions and
postconditions for the source code).

A software developer begins an inter-
action with PARIS by giving a problem
statement—a formal set of computational
requirements. PARIS then assists in
finding a schema that can be instanti-
ated to satisfy the problem statement
provably.

6.1 Abstraction in Software Schemas

Knuth’s [1973] book, The Art of Com-
puter Programming, provides a library of
abstract descriptions for many basic com-
puter science algorithms and data struc-
tures. Programmers can informally use
these abstractions when writing source
code. The goal of schema researchers is
to capture abstractions formally at this
level for their schema libraries [Standish
1984].

In the software schema approach, the
algorithms and data structures captured
by the schemas are the reusable arti-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

facts. The abstraction specification for a
schema is a formal exposition of the algo-
rithm or data structure, whereas the ab-
straction realization corresponds to the
source code produced when the schema is
instantiated. The fixed part of the ab-
straction specification formally describes
the invariant computation or data struc-
ture of the schema, for example, sorting
with respect to a particular partial order-
ing or a queue of an unspecified element
type. The variable part of the abstraction
specification describes the range of op-
tions over which a schema can be instan-
tiated, such as the overflow length for a
queue.

With schemas, the variable parts of
the abstractions can be more general, or
higher level, than is possible with pa-
rametrized components such as the Ada
generic. Parameters in generics are lim-
ited to a subset of programming lan-
guage constructs, whereas in schemas
they can range over other software prop-
erties such as space/time efficiency
tradeoffs. An even more complex type of
parameterization is possible with nested

Software Reuse ● 149

schemas, where parameters in a schema
can be instantiated with other schemas.

With software schemas, software de-
velopers select, specialize, and integrate
schemas at the abstraction specification
level. In addition, the mapping from the
specification to the source code realiza-
tion (i.e., schema instantiation) can be
automated, in which case developers are
isolated from the details in the abstrac-
tion realization level. This is analogous
to high-level languages and in contrast to
code scavenging and reusable compo-
nents.

As with reusable components, a major
challenge to implementors of software
schemas is to find suitable abstractions
and abstraction representations for the
schemas. Rich and Waters [1989, p. 3131
suggest that the limited success in com-
ponent and schema reuse “stems not from
any resistance to the idea, nor from any
lack of trying, but rather from the diffi-
culty of choosing an appropriate formal-
ism for representing components.” Differ-
ent algorithms and data structures have
diverse properties, and this diversity
must be expressible in schema represen-
tations. For example, matrix add is best
defined by a step-by-step operational se-
mantics description of how the computa-
tion is accomplished, whereas a dead-
lock-free scheduler is best described by a
declarative set of constraints on what
the computation must accomplish [Rich
and Waters 1989].

In an attempt to provide a diverse base
for describing reusable artifacts, the Plan
Calculus5 in the Programmer’s Appren-
tice combines ideas from flowcharts, data
abstraction, logical formalisms, and pro-
gram transformations [Waters 1985]. A
flowchart representation is used to de-
scribe algorithmic aspects of a schema
such as control flow and data flow.
Flowcharts can be annotated with logical
preconditions and postconditions to cap-
ture the declarative aspects of the
schemas. Empty boxes within a flowchart

5 Using the terminology of Rich and Waters [1989],
plan corresponds to the notion of software schema
in this paper.

represent the variable part of the schema
abstraction. A software developer instan-
tiates such a schema by filling in the
empty boxes with nested schemas.

PARIS uses temporal logic assertions
and quantified logic predicates in schema
preconditions, postconditions, and invari-
ant [Katz et al. 1989]. The following
example is a PARIS description for an
insertion module that inserts an item into
an ordered list. The APPLICABILITY CON-
DITIONS, or preconditions, state that the
list is ordered before the insert. The RE-
SULT ASSERTIONS, or postconditions,
state that the list is ordered after the
insertion and that the new item exists in
the list.

APPLICABllLiw corwmor~s (ww)
Ieq: D1 x DI + boolean --less than or

--equal to
forall n I n element_of node :

n+neXt!= NULL=)
Ieq(n + data, n + next + data)

RESULT ASSERTIONS (POST)
Ieq: D1 x 1]1 + boolean --less than or

--equal to
equal: D1 x D1 + boolean
forall n I n element_of node :

n+ next!= NULL=)

Ieq(n + data, n + next + data)

exists n I n element node :
equal(n + data, newdata)

In Goguen’s [1986] Library Intercon-
nection L,anguage (LIL), axiomatic theo-
ries with varying degrees of formality are
attached to schema parameters, and
views describe how schema instantiation
satisfies the theories. The following ex-
ample is a theory for partially ordered
sets (POSET):

theory POSET is
types ELT --elements m the set
functions Ieq --less ihan or equal to
vars El E2 E3 : ELT

axioms
(El Ieq El)
(El leq E3 if El Ieq E2 and E2 leq E3)
(El = E2 if El Ieq E2 and E2 Ieq El)

end POSET

ACM Computing Surveys, Vol. 24, No. 2, June 1992

150 “ Charles W. Krueger

A schema implementor can attach this
theory to any schema that is a partially
ordered set. The implementor uses a view
to bind the type ELT and the function
LEQ in the theory to the corresponding
constructs in the schema.

Other examples of schema formalisms
include Volpano and Kieburtz’s [1985,
1989] Software Templates with an ML-
like functional notation and Embley and
Woodfield’s [1987] abstract data type
schemas with a regular expression nota-
tion.

6.2 Selection

Reusable hardware components, such as
TTL integrated circuits, are widely used
in hardware design. When lamenting
about the limited successes of software
reuse, software engineering often draw
the analogy between software artifacts
and hardware components. The analogy
is particularly relevant when comparing
the techniques for selecting TTL compo-
nents to the techniques for selecting soft-
ware components and schemas.

In Texas Instruments [1985] The TTL
Data Book, approximately 1000 MSI/
LSI TTL components are classified in a
four-level hierarchy. The selection
branching at each level in the hierarchy
varies between 2 and 12 (the average
being 5.6). Following is an example clas-
sification path for a frequency divider
component (S N74LS57), with the hierar-
chy level preceding the selection made at
that level; moving to deeper levels in the
hierarchy reduces the number of candi-
date components until only one remains:

(1) Counters

(2) Frequency dividers/multipIiers

(3) 60-to-l frequency divider

(4) Low-power Schottky technology

If the user finds the simple abstrac-
tions presented at the branches insuffi-
cient for making a choice, more detailed
abstractions are available for the current
candidates. For every component in the
data book, there is a detailed exposition
presenting different properties of the de-
vice at different levels of abstraction.

Techniques for describing components in-
clude natural language descriptions, in-
put/output tables to describe the device
function, logic-level schematics (gates,
inverters, flip-flops, etc.), transistor-level
schematics, timing diagrams to describe
temporal relationships, plots of linear
characteristics such as delay time versus
device temperature, and the range of
normal operating conditions. The more
detailed abstractions are typically rele-
vant as the selection process proceeds to
deeper levels in the hierarchy.

Analogous to The TTL Data Book,
practical techniques for selecting reus-
able software components or schemas can
use hierarchical classification and multi-
ple forms of exposition. For example, the
IMSL mathematical library is a small-
scale software library that has success-
fully used these techniques. It is interest-
ing to note that the IMSL library and
The TTL Data Book both contain approx-
imately 1000 components.

General-purpose software libraries
might contain several orders of magni-
tude more candidates than the special-
purpose IMSL library. In addition, soft-
ware libraries will probably evolve
rapidly, and therefore it may not be prac-
tical to maintain them with books or
manuals [Biggerstaff and Richter 1989].
Clearly, reuse technologies with a large
number of reusable artifacts must pro-
vide users with powerful techniques for
selecting artifacts. These selection tech-
niques must address three important
subproblems (analogous to The TTL Data
Book):

● Classification of the artifacts in the
library

. Retrieval of artifacts from the library

* E.~position of information necessary to
understand, compare, choose, and use
the artifacts

The following sections address these is-
sues in detail.

6.2.1 Classification

Prieto-Diaz describes a classification
scheme for software artifacts [Prieto-Diaz

ACM Computing Surveys, Vol. 24, No. 2, June 1992

1989; Prieto-Diaz and Freeman 1987]. In
this scheme, artifacts are classified by
two top-level descriptors and three
lower-level facets within each descriptor:

Functionality. Describes the function
the component is intended to perform.
The three lower-level facets of func-
tionality, ordered by decreasing rele-
vance to reusability, are

(1) Function. Operation performed.

(2) Object. Type of data object on
which the operation is performed

(3) Medium. Larger data structure in
which the data object is located.

Environment. Describes the context for
which the component was designed.
The three lower-level facets of envi-
ronment, ordered by decreasing rele-
vance to reusability, are

(1) System type. Type of subsystem
for which the component was de-
signed.

(2) Functional area. Application de-
pendent activities.

(3) Setting. Application domain.

The following is an example of a classi-
fication for a file compression routine that
was designed for a database manage-
ment system:

Function: compress

Object: flies
Medium: disk

System Type: file handler

Functional Area: DB management

Setting: catalog sales

The classification scheme allows only
predefine values in the facets. The pre-
define values for a particular facet are
related by a conceptual closeness graph.
An automated evaluation system can
show the user a collection of conceptually
similar artifacts.

There are practical limitations to this
particular classification scheme. For ex-
ample, it uses function as the primary
classification facet, which emphasizes the
reuse of functional components and ig-
nores reuse of abstract data types. With
this approach, the insert operation for a
queue would be classified close to the

Software Reuse 9 151

insert operation for a set and not encap-
sulated in the queue data type. This clas-
sification scheme does, however, demon-
strate how classification techniques can
be applied to software components, or
schemas, analogous to hardware compo-
nents.

6.2.2 Retrieval

PARIS is notable for its sophisticated as-
sistance in locating software schemas
[Katz et al. 1989]. When presented with
a problem statement, PARIS attempts to
find a schema that satisfies the problem
statement. So that PARIS can match
schemas to problem statements, each
schema in the library includes the follow-
ing information:

Parameterization for the schema which
is a list of abstract entities that must
be supplied in order to use the schema.

A schema specification consisting of

Assertions about the substitutions for
the abstract entities,

Preconditions for execution of an in-
stantiation of the schema,

Invariants for execution of an instan-
tiation of the schema,

Postconditions for execution of an in-
stantiation of the schema,

Temporal relations for the execution
of a: instantiation of the schema.

Proof of correcimess for the generic
schema specification.

This information is a detailed abstrac-
tion specification for a schema. Com-
pared to the syntactic specification of an
Ada generic, the semantic assertions that
accompany a PARIS schema provide a
more precise definition of how to reuse
an artifact correctly. That is, a PARIS
schema has a more narrow interface.

A problem statement is a set of compu-
tational requirements. Its form is similar
to a schema specification in that there
are preconditions and postcon ditions, but
it contains no parameterized sections as
do schemas. When presented with a
problem statement, PARIS first con-
structs a list of preliminary candidate

ACM Computing Surveys, Vol. 24, No. 2, June 1992

152 ● Charles W. Krueger

schemas by finding all schemas in the
library such that

* The preconditions of the problem state-
ment are a superset of the schema pre-
conditions

“ The postconditions of the problem
statement are a subset of the schema
postconditions

The user then selects schemas from the
candidates and attempts to find instanti-
ation that will satisfy the schema asser-
tions. Optionally, PARIS can attempt to
instantiate a candidate schema automat-
ically. A theorem prover is used to verify
that a particular instantiation satisfies
the problem statement and the asser-
tions given for the schema.

With PARIS, users perform schema
searches at the abstraction specification
level and are therefore isolated from the
implementation details at the abstrac-
tion realization level. PARIS does not,
however, take advantage of the higher
level abstractions understood by software
developers. For example, a user cannot
simply specify that a queue implementa-
tion is needed but rather must give an
elaborate logic specification of the queue
semantics. This monolithic, low-level ab-
straction representation is necessary for
the theorem prover but is not ideal for
human users.

Also, the state of the art for theorem
provers is not sufficiently advanced for
practical use. Finding a schema that sat-
isfies a problem statement requires proof
that the schema is logically consistent
with the problem statement, which in
general is well beyond the scope of cur-
rent-day theorem-proving technology
[Rich and Waters 1988].

6.2.3 Exposition

In The TTL Data Book, a diverse collec-
tion of device abstractions are presented
to help users understand and select can-
didate components. Biggerstaff believes
that finding an analogous, diverse collec-
tion of expositions for reusable software
artifacts is the “fundamental operational
problem that must be solved in the devel-

opment of any reuse system” [Biggerstaff
and Richter 1989, p. 6]. These abstrac-
tions must be useful to both the user and
the tools for automated retrieval.

Following is a list of exposition tech-
niques from The TTL Data Book (in bold-
face) and some suggestions for analogous
software counterparts:

Natural language descriptions. This
is certainly useful for informal schema
descriptions and search techniques
such as keyword lookup. But machine
understanding of natural language is
beyond current capabilities, which lim-
its automated searching techniques
[Rich and Waters 1988].

Input / output tables to describe the
device function. Logic assertions can
be used to express the semantic func-
tion of a schema (e.g., preconditions
and postconditions). They are not par-
ticularly useful for large, complex
schemas due to the complexity of the
corresponding logic expressions.

Logic-level schematics. Data flow and
control flow diagrams such as those
used in Plan Calculus resemble the
graphical abstractions found in hard-
ware logic-level schematics. These dia-
grams have isomorphisms to logic
formalisms that are appropriate for
machine manipulation.

Transistor-level schematics. This cor-
responds to the source code level of a
software schema. Although this is at
too low a level for most of the reuse
process, it is occasionally useful in the
final stages of selection, specialization,
and integration. For example, with
TTL chips, transistor-level schematics
can be consulted to determine whether
or not unused pins require external
connections. Knuth’s WEB, a system
for making source code more compre-
hensible, is one possible approach for
presenting the schema implementa-
tion level [Bentley 1986].

Timing diagrams to describe tempo-
ral relationships. Temporal logic is
suitable for expressing some of the
time-dependent characteristics of soft-
ware.

ACM Computmg Surveys, Vol. 24, No. 2, June 1992

Plots of characteristics such as delay
time versus device temperature.
The characteristics of computations
within a schema can be expressed in
terms of the upper and lower bounds
on time/space requirements as a func-
tion of input size.

Biggerstaff argues that hypertext sys-
tems can be used to manage a large col-
lection of interrelated component or
schema abstractions [Biggerstaff 1987;
Biggerstaff and Richter 1989]. So-called
“webs of information” allow the user to
move easily between different abstract
views of reusable artifacts.

Seer is an example of the hypertext
approach [Latour and Johnson 1988]. It
uses a graphical representation of the
Booth [1987] taxonomy for reusable com-
ponents. Each component in the library
has a graphical information web that
provides access to all of the available
information on the component. This in-
formation includes formal, informal, syn-
tactic, semantic, graphical, and textual
descriptions in three different categories:

Specification information. What the
component does.

Usage information. How to use the
component correctly.

Implementation information. How the
component is implemented.

All three types of information are useful
in selecting schema. In addition, usage
information applies to schema specializa-
tion and integration, and implementa-
tion information is occasionally useful for
detailed integration decisions.

6.3 Specialization

Schemas are typically specialized either
by substituting language constructs, code
fragments, specifications, or nested
schemas into parameterized parts of a
schema or by choosing from a predefine
enumeration of options.

It can be argued that in either case,
specialization is a continuation of the se-
lection process. Both selection and spe-
cialization are convergent steps toward a

Software Reuse ● 153

single, complete instantiation. In both
cases, the software developer may use
a formal specification to make the con-
vergent step. In the case in which the
software developer specializes by substi-
tuting a .nested schema for a schema pa-
rameter, then specialization is exactly the
same as selection since the nested schema
must be selected from the library before
it can be inserted.

PARIS uses both parameter substitu-
tion and enumerated choices for special-
izing the variable parts in the schema
abstractions. The variable part of the ab-
straction is separated into two sections:

●

●

Nonprogram entities, such as abstract
data types, subtypes, ranges, func-
tions, and variables.

Program sections, which can be hand-
wri~ten source code fragments or
nested schema instantiations.

The values substituted for abstract
nonprogram entities must come from the
concrete nonprogram entities listed in the
user’s problem statement. The possible
values may be constrained by the appli-
cability conditions of the schema. There-
fore, specialization of nonprogram enti-
ties in a schema corresponds to matching
actual entities in the problem statement
to abstract nonprogram entity parame-
ters in the schema. It is truly a continua-
tion of the selection process.

The instantiation of the program sec-
tions in a PARIS schema is best de-
scribed as a substitution. Arbitrarily

complex source code fragments are sub-
stituted into the program sections, re-
stricted only by the assertions in the sec-
tion conditions for the schema. If the
source code fragment is derived by nested
selection of another schema, however, it
is a continuation of the selection process.

In LIL [Goguen 1986] and in Embley
and Woodfield’s [1987] reusable abstract
data types, a schema can have multiple
implementations. A schema implementor
can create radically different implemen-
tations that satisfy the same semantic
interface but that exhibit different per-
formance characteristics. The perfor-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

154 “ Charles W. Krueger

mance profile for the schema then be-
comes a parameter in the variable part of
the schema abstraction. A software de-
veloper specializes such a schema by
selecting from the enumerated perfor-
mance options.

For example, consider a schema for an
indexed sequential list. This schema
maintains an ordered list of elements, so

that (1) all elements of the list can be
accessed in sequential order, and (2) ele-
ments can also be accessed individually
with an index key. Sequential access is
implemented with a linked list. The
schema has two different implementa-
tions of the indexed access so a software
developer reusing the schema can choose
between two different space/time perfor-
mance profiles. The first implementation
provides faster access at the expense of
storage space by maintaining an explicit
index structure with pointers into the
linked list. The second implementation
exhibits slower access time and requires
less space by omitting the index struc-
ture and doing indexed access with a
linear search through the list. With this
implementation, insertion and deletion
are faster since there is no index to up-
date when items are added to or removed
from the list.

This example illustrates how schemas
with multiple implementations address
an important problem in software reuse:
the tradeoff between generality and per-
formance. The implementor of a reusable
artifact typically tries to generalize the
artifact, to make it suitable for a broad
range of applications. Increased general-
ity often translates into increased func-
tionality, and increased functionality
often translates into performance com-
promises in the implementation. A
schema can, however, offer multiple
implementations with a range of func-
tionality and performance options. A
software developer can choose the imple-
mentation that most closely matches the
required functionality and performance.
The schema is conceptually one large,
generalized artifact, but in reality there
can be many specialized implementa-
tions that do not pay a performance
penalty for unnecessary functionality.

ACM Computmg Surveys, Vol. 24, No 2, June 1992

In some cases, schema implementa-
tions may perform significantly worse
than very specialized code. If necessary,
performance “hot spots” can be identified
with conventional monitoring techniques
during the execution of the final system,
and then the hot spots can be tuned,
replaced, or hand coded [Booth 1987].

6.4 Integration

The simplest approach to schema inte-

gration is to use the module interconnec-
tion language of the schema implementa-
tion language. For example, if schema
instantiation produces Ada package code,
an instantiated schema can be treated as
a conventional Ada package. Integration
would be based on the syntactic integra-
tion rules of Ada.

More sophisticated schema integration
techniques rely on semantic specifica-
tions. In addition to the syntactic con-
straints on composition provided by
conventional module interconnection lan-
guages, formal or informal semantic
specifications serve to narrow the compo-
nent interfaces to include only correct
syntactic and semantic composition. For
schemas with complex interfaces, it is
particularly important to have a clear
description of both the syntactic and the
semantic interface [Latour and Johnson
1988].

LIL (introduced in Section 6.1) is an
example of a schema technology that uses
semantic specifications to compose
schemas [Goguen 1986]. Parameters in
Ada generics are extended with semantic
constraints that guarantee an instantia-
tion to be semantically correct. For exam-
ple, consider a generic Sort package, pa-
rametrized by the type of elements it
sorts. In LIL, the implementor of this
package could put a semantic constraint
on the parameter so the element type
satisfies the Partial Ordered Set theory.
This would gaarantee that an instanti-
ated Sort package would always be able
to make a semantically meaningful
“greater than or equal to” comparison on
the elements.

In LIL, a distinction is made between
horizontal and vertical schema composi-

software Reuse “ 155

tion. In vertical composition, higher-level
abstractions are created. For example, a
package implementing a low-level List
abstraction might be used to implement
a higher-level abstraction such as a Sort
algorithm. In horizontal composition,
schemas are instantiated by specializa-
tion. For example, a generic Sort schema
instantiated with a partially ordered set
of Labels results in a package that is
still at the Sort level of abstraction. Thus,
horizontal composition corresponds to
schema composition using nested
schemas.

6.5 Appraisal of Reuse Techniques in
Software Schemas

Compared to reusable source code com-
ponents, reusable schemas place a

greater emphasis on the abstract specifi-
cation of algorithms and data structures
and place less emphasis on the source
code implementation. This shift in em-
phasis helps reduce the cognitive dis-
tance between the informal requirements
of a system and its executable implemen-
tation by isolating the software developer
from the source-code-level detail. In cases
in which the mapping from the schema
abstraction specification to the source
code realization is fully automated, the
cognitive distance is reduced by one level
in the software development life
cycle—up from the level that describes
how an algorithm or data structure is
implemented to the level that specifies
the semantics of what is implemented.

With TTL components, low abstrac-
tion-level workhorses such as the AND
gates and INVERTERS offer leverage to
hardware developers. By analogy,
reusable software schemas for stacks,
lists, trees, and so on offer leverage to
software developers. It is the higher level
TTL device abstractions, such as coun-
ters, multiplexer, and even CPUS, how-
ever, that give hardware designers the
greatest leverage. These devices typically

have a large ratio of internal gate counts
to external pin count (i.e., large function-
to-interface ratio). Similarly, software
schemas with high-level abstractions and
narrow interfaces allow system designers

to select, specialize, and integrate power-
ful, high functionality artifacts with rela-
tive ease,

Unfortunately, with software systems
we do not have many universal abstrac-
tions above the stack, list, tree, and so on
level. Therefore, the semantics of higher
level schema abstractions are often ex-
pressed with logic formalisms and speci-
fication languages,, In a sense these for-
malisms become the programming lan-
guage for software developers using the
schemas. Thus, the challenge for imple-
mentors of a schema technology is to find
abstraction formalisms that are natural,
succinct, and expressive. Members of the
PARIS project describe this challenge:

Our experience in building the PARIS prototype

indicates that transforming abstract logic expres-

sions into precise implementation definitions is

quite difficult. It is a nontrivial task to construct

a system that is able to provide a friendly inter-

face to the user and at the same time produce

correct and efficient input to the theorem-proving

mechanism [Katz et al. 1989].

Table 4 summarizes the software
schema approach to software reuse.

7. APPLICATION GENERATORS

Application generi~tors operate like pro-
gramming language compilers—input
specifications are automatically trans-
lated into executable programs [Clevel-
and 1988]. Application generators differ
from traditional compilers in that the
input specifications are typically very
high-level, special-purpose abstractions
from a very narrow application domain.

By focusing on a narrow domain, the

code expansion (ratio of input size to out-
put size) in application generators can be
one or more orders of magnitude greater
than code expansion in programming
language compilers. Levy [1986] reports
that application generators have been
used to create production quality com-
mercial software at the equivalent rate of
2000 lines of source code per day.

Whereas software schemas reuse algo-
rithm and data structure designs, appli-
cation generators go one step further and
reuse complete software system designs.
In application generators, algorithms and

ACM Computing Surveys, Vol. 24, No. 2, June 1992

156 * Charles W. Krueger

Integration

Pros

Cons

Table 4. Reuse in Software Schemas

Abstraction The schema approach emphasizes the reuse of algorithms, abstract data types,

and higher level abstractions. Formal semantic specifications are typically used
to express schema abstractions. Examples include data flow, control flow, pre,

post, and invariant logic expressions, regular expressions, temporal logic
assertions, and axiomatic theories.

Selection Classification and search schemes and multiple abstraction exposition forms,
analogous to The TZ’L Data Book., offer promise as practical selection techniques
for reusable software schemas. The issue of scale will make large schema

libraries more difficult to use than the hardware analog. Automated assistance

such as hypertext databases and theorem provers can help for schema selection.

Specialization Schemas are typically specialized by filling in parameterized slots. Examples
include insertion ofarbitrary language constructs, choosing from an enumerated

set of abstractions, or instantiating parameters with nested schemas. Schema
specialization may involve characteristics not typically associated with parame-

trized software, such as explicit choices among run time performance alterna-

tives.

Schema composition often involves both the semantic and syntactic schema
interface. This results in a narrower interface when compared to syntactically

typed languages such as Ada, somoresemantic errors can bedetected at design
time,
When schemas are based on formal specifications, automated tools can be used
for selection, specialization, and integration. This, in combination with the fact
that software developers work at a higher level of abstraction, can reduce the

cognitive distance between the requmements and the implementations of
algorithms and data structures.
Formal specifications for schema abstractions can be large and complex. Even

with automated tools it can be difficult for software developers to locate,

understand, and use schemas. This complexity serves to increase the cognitive

distance, thereby offsetting some of the advantages of using higher level

abstractions.

data structures are automatically se-
lected so the software developer can con-
centrate on what the system should do
rather than how it is done. That is, ap-
plication generators clearly separate the

system specification from its implemen-
tation [Cleveland 1988]. At this level of
abstraction, it is possible for even non-
programmers familiar with concepts in
an application domain to create software
systems [Horowitz et al. 1985].

Application generators are appropriate
in application domains where

- Many similar software systems are
written,

● One software system is modified or
rewritten many times during its life-
time, or

Q Many prototypes of a system are neces-
sary to converge on a usable product.

In all of these cases, significant duplica-
tion and overlap results if the software
systems are built from scratch. Applica-

tion generators generalize and embody
the commonalities, so they are imple-
mented once when the application gener-
ator is built and then reused each time a
software system is built using the gener-
ator.

7.1 Abstraction in Application Generators

The abstractions presented to the user of
an application generator typically come
directly from the corresponding applica-
tion domain. The way these abstractions
are presented is dependent on the appli-
cation domain [Cleveland 1988]. Differ-
ent applications need different models of
data and computation in the generated
programs, and these different models are
amenable to different exposition tech-
niques [Levy 1986]. Examples include

● Textual specification languages (appli-
cation-oriented languages, fourth-
generation languages, etc.)

* Templates

ACM Computmg Surveys, Vol 24, No. 2, June 1992

Software Reuse “ 157

● Graphical diagrams

o Interactive menu-driven dialogs

* Structure-oriented interfaces

The reusable artifacts in an applica-
tion generator are the global system ar-
chitecture, major subsystems within this
global architecture, and very specific data
structures and algorithms. The abstrac-
tion specification for an application gen-
erator describes all parts of the applica-
tion domain that can be modeled in a
generated system. The abstraction real-
ization level corresponds to the exe-
cutable systems produced by the genera-
tor. The fixed part of the abstraction
specification corresponds to those parts
of the application the user cannot modify
during the generation process; the uari-
able part corresponds to those parts of
the application the user can customize.

For example, with a parser generator
the user specifies (in the variable part of
the abstraction specification) the gram-
mar of the language to be parsed. The
generator might, however, have LR(l) as
a fixed part of the abstraction specifica-
tion. in which case the user cannot
change the parsing algorithm. The com-
bination of the fixed part and the range
of the variable part for an application
generator determines the range of sys-
tems that can be generated; it is referred
to as the domain width or domain cover-
age of the generator [Cleveland 1988].

Abstraction is used effectively in ap-
plication generators. The software de-
veloper works exclusively at a high-
abstraction level. Typically the hidden

Dart of the abstraction covers all of the
Implementation details in the generator,
and the user does not view. understand.
or modify the generator output. This is
analogous to conventional high-level lan-
guage compilers where the user treats
the inmt s~ecification as the lowest level
of abs~ract~on for software development.
The workings of the compiler and the
object code produced are black boxes.

It is interesting to compare application
generators to software schemas. Both ap-
proaches use diversely and highly pa-
rametrized reusable artifacts. With ap-

plication generators, the product is a
complete, executable system; with soft-
ware schemas a smaller unit, such as a
module or a subsystem, is produced. The
primary distinction is that schemas are
abstractions for software implementation
artifacts such as algorithms and data
structures, whereas application genera-
tors are abstractions for the semantics of
a particular application domain. In com-
paring the effectiveness of the two ap-
proaches, an important question to ask is
whether or not it is easier for the user to
deal with application domain abstrac-
tions rather than computational abstrac-
tions. Successful reuse applications, such
as the IMSL mathematical library, pro-
vide some evidence that users are com-
fortable dealing with domain abstrac-
tions.

7.2 Selection

Selecting an application generator to
solve a particular problem means choos-
ing an application generator whose do-
main couerage includes the requirements
of the tmoblem statement. For situations.
in which one or more application genera-
tors are known to exist, the selection
process may be easy. Currently, however,
there are only a small number of applica-
tion generators in a few limited domains,
and their availability is not always well
known [Cleveland 1988]. Also, applica-
tion generators are often highly special-
ized, limiting their domain coverage [Bi-
ggerstaff and Richter 1989]. As a result,
application generators currently provide
a very small coverage for software devel-
opment in general.

As more and mm-e application genera-
tors are built, we might expect to see
libraries of application generators. Such
a librarv would be similar to. but at a.
much higher levell of abstraction than,
the libraries of reusable components or
schemas described in Section 6.2. Ideallv.
an application generator library wou~d
cover a broad enough range of applica-
tions to be considered a source of general
computation for common applications.
Classification, search, and exposition in

ACM Computing Surveys, Vol. 24, No. 2, June 1992

158 “ Charles W. Krueger

this library could be done in terms of
domain characteristics rather than algo-
rithmic or data requirements. Initial
steps in the direction of an application
generator library are described in Sec-
tion 10.

7.3 Specialization

Specialization is the primary task of a
software developer using an application
generator. A software developer special-
izes an application generator by provid-
ing an input specification. Implementors
of application generators have used a
wide variety of techniques for specializa-
tion. To demonstrate this diversity, the
following sections describe several appli-
cation generators and the abstractions
used for specialization.

7.3.1 “Conventional” Application Generators

Application generators are sometimes as-
sociated with only a narrow collection of
business applications. For example,
Horowitz et al. [1985] in “A Survey of
Application Generators” discuss only
generators for business-oriented, data-
intensive applications. Application gen-
erators from this domain often cover
high-level report generation, data pro-
cessing, and data display techniques. The
abstractions presented in these systems
include

Database management based on a par-
ticular data model, such as hierarchi-
cal or relational. Specialization con-
sists of specifying the database schema
(types, fields, relations, etc.) for an ap-
plication.

Textual report generation, which is
often described by a nonprocedural

(declarative) language and is based on
associative data retrieval.

Graphical report generation, which
uses a similar input specification as
textual report generation but produces
graphs, histograms, bar charts, scatter
plots, pie charts, and so on.

Database manipulation for batch or
interactive modification, processing,

and restructuring of the database con-
tents. Specifications can include con-
straints on particular data items, con-
straints between data items, access
control constraints, and the way of
viewing the contents of the database.

The following example is a simple in-
put specification to a report generator
and a sample output from the generated
system [Horowitz et al. 1985]:

report
file SALES

titl:StUNITS SOLD PER CUSTOMER’

by CUSTOMER
across YEAR
sum (UNITS)
rowtotal
col umntotal

where YEAR in 1980...1982
end report

UNITS SOLD
PER CUSTOMER

1980 1981 1982
CUSTOMER UNITS UNITS UNITS TOTAL

A 2344 3455 1234 7033
B 234 1111 3221 4566
c 412 555 1212 2179

TOTAL 2990 5121 5667 13778

7.3.2 Expert System Generators

Expert systems are software systems that
embody and apply expert knowledge to
solve problems in a particular domain.
Whereas conventional software system
development codifies algorithmic prob-
lem-solving-knowledge, expert system
development codifies the subjective prob-
lem-solving knowledge of experts
[Hayes-Roth 1983]. By analogy, if appli-
cation generators for conventional soft-
ware systems reuse common algorithms
and data structures, then application
generators for expert systems can reuse
common expert problem-solving methods
[Krueger 1987]. This idea of generating
expert systems is advocated by expert
system development tools such as MOLE,

ACM Computing Surveys, Vol. 24, No. 2, June 1992

SALT, and SEAR [Marcus 1988; McDer-
mott 1986].

Experts in different areas may use
similar problem-solving techniques even
though their actual knowledge is quite
different. For example, an auto mechanic
and a medical doctor may use a similar
diagnostic method. Expert system gener-
ators reuse implementations of these
generic problem-solving methods. The
fixed part of an expert system generator’s
abstraction has a particular problem-
solving method, whereas the variable
part (by which it is specialized) consists
of the expert knowledge from a particu-
lar area of expertise. The input specifica-
tion is typically derived through an
interactive dialog between the expert
system generator and a domain expert.
This process is referred to as knowledge
acquisition.

For example, MOLE is an expert sys-
tem generator that can be used for a
wide variety of diagnostic tasks, includ-
ing medical diagnosis, car repair, and
production line troubleshooting [Eshel-
man 1988], The fixed problem-solving
method reused in MOLE consists of the
following steps:

(1) Determine all hypotheses that ex-
plain the symptoms.

(2) If there is more than one hypothesis
that explains a symptom, then iden-
tify what data are necessary to dif-
ferentiate the hypotheses. Data for
differentiation can serve the follow-
ing roles:

● Rule out causality between a hy-
pothesis and a symptom (i.e., hy-
pothesis implies the symptom in
some cases, but not this case).

. Rule out validity of the hypothesis
(i.e., hypothesis implies the symp-
tom, but hypothesis is not true in
this case).

* Rate the relative likelihood of the
hypotheses causing the symptom
(i.e., certain hypotheses are more
likely to cause symptoms).

. Rate the relative likelihood of the
hypotheses (i.e., certain hypotheses
are more likely to be true).

(3)

(4)

Software Reuse ● 159

Collect the dati~ identified in step 2
and differentiate the hypotheses.

If step 3 uncovers new symptoms go
to step 1.

The input specification given to MOLE

by a diagnostic expert is expressed in
terms of domain-specific symptoms, hy-
potheses, and data. Each piece of knowl-
edge in the input specification fits into
one of the first two steps listed above.
From the input specification, MOLE pro-
duces an executable expert system to di-
agnose problems in the expert’s domain.

SEAR provides a more general frame-
work for creating and reusing problem-
solving methods [McDermott 1988]. The
eventual goal is to have a library of com-
monly used problem-solving methods that
can be selected and integrated to produce
a wide range of different expert system
generators.

7.3.3 Parser and Compiler Generators

Parser generators and compiler–com-
pilers are probably the best-known exam-
ples of application generators. These
systems have grown out of the well-
developed compiler theory and the ubiq-
uitous need for compilers in computer
science.

The primary abstractions used in
parser generators are regular expres-
sions for generating lexical analyzers and
context-fi-ee grammars for generating
parsers. For example, Lex [Lesk and
Schmidt 1979] and Yacc [Johnson 1979]
are a pair of generators for producing
parsers. Lex deals with lexical analysis;
Yacc addresses parsing.

Parser generators and compiler–com-
pilers reuse the knowledge gained
through years of research and design ex-
perience in the compiler domain, includ-
ing the general theories behind lexical
analysis, parsing, syntactic and semantic
error analysis, and code generation. This
knowledge is embedded in the design and
implementation of a generic compiler
framework that is reused each time a
compiler is generated. The framework in-
cludes such things as the generic parsing

ACM Computing Surveys, Vol. 24, No. 2, June 1992

160 ● Charles W. Krueger

algorithm and the parse tree data struc-
tures.

The specification language used as in-
put to Lex is a regular expression lan-
guage. An input specification describes
the legal tokens (identifiers, keywords,
constants, etc.) in the language to be
compiled. For example, the following reg-
ular expression describes all tokens that
have a letter for the first character, fol-
lowed by zero or more letters, digits, or
underscores:

[a–zA– Z][a–zA– Z’C)–g_]k

The specification language used as in-
put to Yacc is a context-free grammar.
The input specification to Yacc defines
the legal syntactic structure of the lan-
guage to be compiled. Actions can be
associated with productions in the gram-
mar. Actions can do static semantic
checking, code generation, and so on.
Whenever a construct in the grammar is
recognized by the Yacc-generated parser,
the associated actions are executed. Ac-
tions are expressed in C and are incorpo-
rated into the generated parser.

The following is an example Yacc
grammar rule for a conditional state-
ment in an imperative language:

stint : IF ‘(’ cond ‘)’ stint
I IF ‘(’ cond ‘)’ stint ELSE stint

7.3.4 Structure-Oriented Editor Generators

Structure-oriented editors are a cross be-
tween text editors and compilers. A
structure-oriented editor has knowledge
of the syntax and semantics of a pro-
gramming language and interactively as-
sists users to construct programs in that
language. Typically, structure-
oriented editors store and manipulate
programs in the form of abstract syntax
trees (which are similar to parse trees)
rather than text strings. This allows the
editor to detect syntactic and semantics
errors incrementally while a user is edit-
ing a program.

Structure-oriented editors for different
languages have many similarities, in-
cluding the abstract syntax tree man-

agement and the user interface. The
primary differences between different
structure-oriented editors are the syntax
and semantics of languages. Structure
editor generators capitalize on this by
capturing the commonalities in the fixed
part of an abstraction specification while
allowing the language syntax and se-
mantics to be expressed in a variable
part of the abstraction specification.
Gandalf [Staudt et al. 1986], Synthesizer
Generator [Reps and Teitelbaum 1984],
and Mentor [Donzeau-Gouge et al. 1984]
are examples of structure editor genera-
tors.

Typically, four things are specified to
generate an editor:

(1) Tokens in the language. Regular
expressions are typically used to de-
fine tokens in the language, analo-
gous to those shown for compiler–
compilers.

(2) Abstract syntax of the language.
Context-free grammars are typically
used to describe the constructs in a
language. The grammars specify con-
straints on the abstract syntax trees.
The following is an example of two
rules in an abstract syntax specifica-
tion:

IF expression statements statements

statements :: STATEMENT BLOCK I WHILE I

(3)

(4)

CASE IIFI .=

Concrete syntax of the language.
The concrete syntax of a language
describes how to map an abstract
syntax tree into a textual representa-
tion for the user interface. This is
referred to as prettyprinting or un-
parsing.

Semantics of the language. The
techniques for specifying language
semantics vary among the different
editor generator systems. The Cor-
nell Synthesizer Generator uses at-
tribute grammars to declare con-
straints among different constructs in
the abstract syntax tree [Reps and
Teitelbaum 1984]. Gandalf uses dae-
mons, written in an imperative

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 161

database manipulation language.
Daemons are associated with items
in the abstract syntax and are trig-
gered by different editing activities
[Staudt et al. 1986]. ACL is a seman-
tics specification language that com-
bines the strengths of attribute
grammars and daemons [Kaiser
1989].

7.3.5 Others

Cleveland reports on application gener-
ators for user interfaces, switching soft-
ware in telephone systems, test drivers,
hardware interprocess communication,
CAD design process descriptions, and
printed circuit board layouts [Cleveland
1988]. Levy describes application genera-
tors for designing telephone company
“loop plants” and for allocating and man-
aging construction and engineering work
[Levy 1986]. Horowitz notes that spread-
sheet generators like Visicalc are suc-
cessful because they model a common
type of application with a high-level, do-
main-specific abstraction [Horowitz and
Munson 1989].

7.4 Integration

In cases in which an application genera-
tor can produce a complete executable
system from one specification, integra-
tion is not an issue. Some application
generators, however, produce subsystems
that in turn require composition. For ex-
ample, Lex and Yacc are used in combi-
nation to produce parsers.

Software developers using an applica-
tion generator typically think in terms of
the abstractions at the input specifica-
tion level not in terms of the software
produced as output. Therefore, it may be
inconvenient or impractical for the soft-
ware developer to use a conventional
module interconnection language to inte-
grate the output from an application gen-
erator. It is better if composition is
expressed in terms of the higher-level
abstractions visible at the input specifi-
cation level. For example, with Lex and
Yacc the integration done is through the
abstract concept of tokens, which are

emitted lby the Lex lexer and consumed
by the Yacc parser.

7.5 Software Life Cycle with Application
Generators

The software development paradigm with
application generators is significantly
different from the conventional software

development life cycle. This section
examines the software life cycle for ap-
plication generators and its impact on
cognitive distance.

7.5.1 Using Applicaticm Generators

The leverage offered by application gen-
erators can be shown by comparing
conventional software development to
software development with application
generators [Horowitz et al. 1985]. A sim-
ple version of the conventional software
development life cycle might consist of
the following steps:

System (or requirements) specifica-
tion. The desired system functionality
is expressed in terms of concepts (ob-
jects and operations) in the application
domain. This phase is focused on what
the system should do and avoids the
issues of how the functionality is im-
plemented.

Architectural design. The high-level
system organization is expressed in
terms of the implementation technol-
ogy. This includes subsystem decom-
position into modules, module inter-
connection structure (such as control
and data flow), and correspondence to
the system specification. This phase
identifies what the modules should do,
not how they are implemented.

Detailed design. Details are specified
for the implementation of modules and
their interconnection based on the ar-
chitectural design. This phase begins
to address how modules are imple-
mented.

Coding. Source code is written according
to the detailed design. This phase ex-
pands in full detail how each module
operates.

Testing. The system is tested to verify

ACM Computing Surveys, Vol. 24, No. 2, June 1992

162 “ Charles W. Krueger

that the “right system is built” and
that the “system is built right” [Zave
1984]. That is, testing serves two pur-
poses: (1’) validate the correspondence
between the system specifications and
the intent of the design, and (2) verify
that the code satisfies the system spec-
ifications.

Modifications made in any phase are
propagated down through the other
phases. This is true both of changes made
during the initial system development
and of changes made during the evolu-
tion (i.e., maintenance) of the system.

With application generators, much of
the conventional life cycle is automated.
Software developers construct or modify
only the system specifications. The archi-
tectural design and detailed design are
embodied as reusable artifacts in the ap-
plication generator. Coding is auto-
mated. An application generator takes
the system specifications as input and
produces executable code as output. Soft-
ware developers using an application
generator do not have to test that the
generated code satisfies the system speci-
fication, because (theoretically) the im-
plementors of the application generator
verify that the generator always pro-
duces code that is consistent with the
input specifications. The software devel-
opers need only validate the match be-
tween the input specifications and the
intentions of their design. With applica-
tion generators, evolution of a system is
carried out by modifying the system spec-
ifications. The application generator au-
tomatically propagates new specifica-
tions through the conventional life cycle
phases in exactly the same way the orig-i-
nal system is generated.

Thus, the powerful leverage afforded
by application generators comes from
specifying systems directly in terms of
domain concepts, thereby avoiding the
low-level details of implementing source
code. The cognitive distance is very small

between the informal requirements of a
system and the specification of that sys-
tem in terms of application-specific ab-
stractions. Compared to conventional
software development, application gener-

ators reduce the cognitive distance for
the software developer by moving much
of the development effort into the hidden
and automated parts of the generator.

7.5.2 Building Application Generators

Even in situations in which an applica-
tion generator is not available, it may be
advantageous to build an application
generator to produce one software sys-
tem [Cleveland 1988; Levy 1986]. It is
not intuitively obvious how building an
application generator to generate one
software system can be economically ad-
vantageous. As described earlier, how-
ever, constructing an application genera-
tor is appropriate when many similar
software systems are written, when one
software system is modified or rewritten
many times during its lifetime, or when
many prototypes of a system are neces-
sary to converge on a usable product. The
last two cases suggest situations in which
application generators could be created
as part of the development of a single
software product.

The primary economic justifications for
the “up-front” expense of building an ap-
plication generator are (1) the relative
ease of using domain-specific specifica-
tions and (2) ability to do rapid iterative
prototyping. Taking these two factors into
account, the cost of building an applica-
tion generator is rapidly amortized dur-
ing its life.

Levy [1986] presents economic models
for determining the optimal distribution
of effort in building a software system
with an application generator. He shows
that it is often most effective to spend
most of the effort up-front constructing a
powerful, highly productive application
generator, thus requiring less time proto-
typing with the generator.

Levy [1986] refers to the process of
building an application generator as

metaprogramming. Metaprogramming
requires expertise in both the application
domain and in software system construc-
tion. Cleveland [1988] describes the pro-
cess as follows:

Recognizing an appropriate domain.
Recognizing when the domain of inter-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

est is suitable for application genera-
tor technology. Domains that are
amenable to generator technology will
have implementations with recogniz-
able patterns at the source code level,
have natural control and data ab-
stractions, contain automatable
transformations, and have dispersed
information that can be consoli-
dated. Domains with a well-understood
theory, such as compilers, are easiest
for application generator construction.

Defining domain boundaries. Decid-
ing what aspects of the domain should
be included in the generator (i.e., set-
ting the domain coverage). Increasing
the domain coverage allows the gener-
ator to handle more problems but typi-
cally makes the generator less effi-
cient and harder to use.

Defining underlying abstraction.
Identifying the abstraction presented
to the user of the application genera-
tor. Comrhon abstractions include sets,
directed graphs, trees, formal logic
systems, and computational models
such as finite-state machines and
spreadsheets. The 80/20 rule, where
not everything in a domain falls into a
clean computational model, sometimes
applies [Levy 1986]. In this case, es-
capes must be provided so that the
20% can be programmed directly into
the implementation technology.

Defining variant and invariant parts.
Deciding what aspects of the abstrac-
tion are under control of the user and
which parts are fixed.

Defining specification input. Defining
the W=Y ‘in which the &er specifies
each instance of a generated program.
As mentioned earlier, options include
textual specification languages (appli-
cation-oriented languages, fourth-
generation languages, etc.), templates,
graphical diagrams, interactive
menu-driven dialog, and structure-
oriented editing.

Defining products. Implementing the
generator (“the easy part” [Cleveland
~988]). Creating the- set of programs
that will generate the final code from
a concise input specification.

Software Reuse ● 163

Stage [Cleveland 1988], SSAGS [Pay-
ton et a-l. 1982], and Draco [Neighbors
1989] are examples of systems that assist
in building application generators. They
rely on generator technology to build
generators and are therefore application
generator generators. Details of this ap-
proach are presented in Section 10, which
deals with the reuse of system-level ar-
chitectures.

7.6 Appraisal of Reuse Techniques in
Application Generators

Application generators are practical and
attractive when high-level abstractions
from an application domain can be auto-
matically mapped into executable soft-
ware systems. This capitalizes on the

users’ understanding of semantics from
the application domain rather than re-
quiring users to de-rive domain semantics
repeatedly from first principles in con-
ventional software development technol-
ogy. By eliminating many of the design
and implementation steps found in the
conventional software life cycle, applica-
tion generators significantly reduce cog-
nitive distance.

Standards can be captured in the fixed
part of the abstraction for an application
generator. For example, users may prefer
a standard user interface for all gener-
ated systems rather than having to learn
a new interface for each system built.
Also, in application domains where there
are established standards, it is easier to
implement the standard in a single ap-
plication generator than to have to inter-
pret and implement the standard repeat-
edly [Cleveland 1988].

A difficult challenge for implementors
of application generators is defining the
optimal domain coverage and the optimal
distribution of domain concepts into the
fixed and variable parts of the abstrac-
tion. Implementors must attempt to pre-
dict in advance the functionality and
variability that software developers us-
ing the application generator will want.

A limited number of application gener-
ators are available, many of which have
narrow domain coverage. As a result, ap-
plication generators do not exist for most
software development problems.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

164 * Charles W. Krueger

Abstraction

Selection

Specialization

Integration

Pros

Cons

Table 5. Reuse m Appllcatron Generators

Abstractions come directly from the application domain. These high-level

abstractions are mapped directly into executable source code by the generator.
Application generator libraries have not received much attention in the litera-

ture. The parallel between software schemas and application generators sug-
gests, however, that library techniques could be used to select among a collection

of application generators.
Application generators are specialized by writing an input specification for the

generator. Due to the diversity in application domain abstractions, the tech-
niques used for specialization are also widely varied. Examples include gram-

mars, regular expressions, finite-state machines, graphical languages, tem-
plates, interactive dialog, problem-solving methods, and constraints.
Application generators do not require integration techniques when a single

executable system is generated. In cases in which a collection of generators
produce a collection of subsystems, composition is best done in terms of domain

abstractions.
Since high-level abstractions from an application domain are automatically

mapped mto executable software systems, most of the conventional software

development life cycle is automated. This significantly reduces cognitive dis-

tance.
Because of the limited availabdity of application generators, many of which have
narrow domain coverage, it is often difficult or impossible to find an application
generator for a particular software development problem. It is difficult to build
an application generator with appropriate functionality and performance for a
broad range of applications.

Application generators offer both ad-
vantages and disadvantages with respect

to the efficient execution of generated
systems. One advantage is that complex
optimizations can be designed and built
once in the generator and incorporated
into all generated systems. For major ef-
ficiency problems in an application do-
main, a significant optimization effort in
the application generator can be amor-
tized over all generated programs. Also,
application generators can offer a range
of functionality and performance options,
similar to schemas with multiple imple-
mentations. On the negative side, in-
creasing the generality of an application
generator often requires compromises in
time or space efficiency. Table 5 summa-
rizes the application generator approach
to software reuse.

8. VERY HIGH-LEVEL LANGUAGES

As the name suggests, very high-level
languages (VHLLS) are an attempt at
improving on the successes of conven-
tional high-level languages (HLLs).
High-level languages have constructs
such as iteration and relational expres-
sions for their abstraction specifications,

and these specifications are compiled into
assembly language realizations. Simi-
larly, very high-level languages allow
software developers to create executable
systems using constructs that are consid-
ered high-level specifications relative to
HLL languages. Because of this, VHLLS
are also known as executable specifica-
tion languages.

Developing software with VHLLS is
very much like developing software with
HLLs. Both VHLLS and HLLs provide a
syntax and a semantics for expressing
general-purpose computation. Both ap-
proaches use compilers that accept source
code programs as input, make tests for
syntactic and static semantic correct-
ness, and create executable programs if a
certain threshold of correctness is met.
HLL source code may be an order of
magnitude more succinct than the corre-
sponding assembly language implemen-
tation, and likewise VHLL source code
may be an order of magnitude more suc-
cinct than corresponding HLL implemen-
tations.

Very high-level languages resemble
application generators in that high-level
abstraction specifications are automati-
cally translated into executable systems.

ACM Computmg Surveys, Vol. 24, No. 2, ,June 1992

Software Reuse ● 165

Application generators, however, use ap-
plication-specific abstractions, whereas
VHLLS use application-independent,
general-purpose abstractions. With ap-
plication generators, generality is sacri-
ficed in order to capture much higher

level abstractions in the specification
language. Therefore, VHLLS have the ad-
vantage of being generally applicable to
software development, whereas applica-
tion generators have the advantage of
being more succinct and powerful in the
relatively small number of cases in which
they are applicable.

This distinction between VHLLS and
application generators exemplifies the
tradeoff between generality and leverage
in software reuse technologies [Bigger-
staff and Richter 1989]. Typically, the
more general a reuse technology is, the
more effort is required to implement sys-
tems with it. For example, the following
technologies are listed by increasing
leverage and decreasing generality: as-
sembly language, HLLs, software
schemas, VHLLS, and application gener-
ators. The goal of VHLL research is to
maximize the leverage offered by higher
levels of specification without sacrificing
computational generality.

The primary concern in VHLLS is not
efficiency in program execution but
rather efficiency in implementing and
modifying programs. The SETL language
designers use the slogan “slow is beauti-
ful” to emphasize this point [Kruchten et
al. 1984]. Similarly, in the early days of
their development, HLLs were often con-
sidered too slow to be of practical value

[Naur and Randell 19681. But the in-
creased software development productiv-
ityy offered by HLLs, in addition to com-
piler optimizations and faster hardware,
quickly made HLLs the norm for soft-
ware development. It is possible that
VHLLS, which are considered too ineffi-
cient by today’s standards, will follow a
similar course of evolution.

Looking ahead to Section 9, trcmsfor-

mational systems use VHLLS as the ba-
sis for rapid prototyping and validation
of software systems, then a series of hu-
man-guided transformations is applied to

produce an efficiently executable system.
This approach can be seen as an interim
measure until it is possible to automate
the transformation fully (i.e., compila-
tion) into efficiently executable code.

8,1 Abstraction in Very High-Level
Languages

VHLLS diverge from a trend we have
seen thus far in the survey. The reuse
approaches described in earlier sections
al~i used abstractions that lie in the con-
ventional software development life cy-
cle. Higher level abstractions allow lower
level artifacts to be reused. For example,
HLL constructs are abstractions for as-
sembly language code fragments; code
scavenging and reusable components use
abstractions for HLL system designs and
code fragments; schemas are abstrac-
tions for algorithms and data structures,
and application generators use abstrac-
tions from the application domain being
modeled. Contrary to this trend, VHLLS
typically have mathematical abstractions
that are not widely used in the conven-
tional software development life cycle.
Implementors of a VHLL try to find a
mathematical model that is both exe-
cutable and effective for doing software

development.
The reusable artifacts in VHLLS are

analogous to those in HLLs. In HLLs,
the reusable artifacts are embodied in
the compiler mappings from language
constructs to assembly language pat-
terns. Similarly, VHLLS capture reusable
HLL implementation patterns in their
compilers [Cheng et al. 1984]. The VHLL
constructs serve as abstraction specifica-
tions for reusable artifacts, whereas the
output from the compiler corresponds to
the abstraction realization level.

VHLL constructs have fixed and vari-
able parts, similar to HLL constructs.
For example, in the functional expression
F(X), both F and X are variable parts of
the function abstraction specification.
Different functions can be substituted for
F, and different expressions can be sub-
stituted for X. The fixed part of the func-
tion abstraction is given by the language

ACM Computing Surveys, Vol. 24, No. 2, June 1992

166 “ Charles W. Krueger

semantics for functional evaluation: Ap-
ply function F to expression X. Although

the programmer must understand the se-
mantics, they are fixed and cannot be
modified.

As with HLL compilers and application
generators, VHLLS effectively use ab-
straction for software reuse. Software de-
velopers use only the fixed and variable
parts of the abstraction specification. The
mapping from specification to realization
is completely automated by the compiler,
which isolates software developers from

the hidden and realization parts of
the reuse abstraction. The following
three examples demonstrate the type
of abstractions that have been used
in VHLLS.

8.1.1 SETL

SETL is a VHLL based on set theory
[Doberkat et al. 1983; Dubinsky et al.
1989; Kruchten et al. 19841. Therefore,
sets are the most important abstraction,
defining the character and semantics of
the language. With a small number of
primitives, all mathematical operations
can be succinctly expressed in set-theo-
retic terms. The data types in the lan-
guage are either atomic types (such as
integers, reals, and Boolean values) or
composite types from set theory. The two
composite data types are sets and tuples:

Sets. An unordered finite collection of
distinct SETL objects (atoms, tuples,
and sets).

Tuples. An ordered finite sequence of
SETL objects.

Sets and tuples can be nested heteroge-
neously and to any depth.

Sets and tuples are formed either by
enumeration of their members, as in

{1,2,3},

or with set-formers, which have the gen-
eral form

{(exp) : xl,... ,xn I (cond)}.

The (exp) designates the values in the
set, as x ~ through x. vary over all values

satisfying the condition (cond). For ex-
ample,

{2*x: xIO<X <50}

is the set of even numbers between O and
100. The set-former is an example of the
power of reuse in SETL. Through
reusable code stubs, the SETL compiler
or interpreter can generate arbitrarily
complex data objects from a succinct set-
former specification.

The usual set operations are defined in
SETL: union, intersection, difference, and
power set. Higher level operations such
as set iterators are also provided in the
language. For example, the following de-
notes the subset of S whose members
satisfy the predicate C(X):

{x in S I C(x)}

Maps in SETL correspond to functions
in set theory. A map is a set of length-2
tuples, where the first element in each
tuple is in the domain of the function and
the second element is in the range. There
are several high-level retrieval opera-
tions that can be applied to maps. For
example, if F is a map, then F(X) yields
the second component of the unique pair
in F whose first component is X. Like-
wise, if F contains more than one tuple
whose first component is X (this is legal),
then F(X) is undefined, but F{X} yields
the set of all second components whose
first component is X. The notation F[S],
where S is a set, returns the set of all
elements in the combined ranges of every
element in S.

Many common abstract data types can
be implemented trivially in SETL. For
example, SETL operations for insertion
and deletion from the ends of tuples al-
low direct implementations of stacks and
queues. The concatenation operation al-
lows tuples to be used as lists.

8.1.2 PAISLey

In PAISLey, abstractions from set-based
functional programming and communi-
cating asynchronous processes are com-
bined in a single VHLL [Zave and Schell
1986]. The set-based aspects of the lan-

ACM Computing Surveys, Vol 24. No. 2, June 1992

gaage are similar to SETL and will not
be discussed here.

With PAISLey, software developers can
define a collection of asynchronous paral-
lel processes. The processes communicate
via exchange functions. An exchange

function consists of a pair of function
calls, one in each of two different pro-
cesses. During execution, when the two
processes both reach the evaluation of
their half of the exchange function, the
argument of one function is passed as the
return value to the other and vise versa

(i.e., they exchange their arguments).
This simple extension to the functional
semantics allows parallelism to be di-
rectly modeled in the language.

Real-time constraints are another
high-level abstraction in PAISLey. Tim-
ing constraints allow the static and dy-
namic execution of a system to be evalu-
ated. Software developers can attach tim-
ing constraints to functions, expressed as
lower bounds, upper bounds, distribu-

tions, or random values. Static inconsis-
tencies and dynamic failures are detected
and reported.

A powerful feature of the PAISLey exe-
cution environment allows incomplete
programs to be executed. If an unde-
clared function is called during execu-
tion, the user is prompted for a value to
use in place of the evaluation. Declared
but undefined functions can be handled
in several ways:

● In default mode, a distinguished value
will always be returned, depending on
the type of the return value declared.
For example, O is returned by default
for integers.

● In random mode, a pseudorandom
value is returned.

“ In interactive mode, the user is
prompted for the return value.

8.1.3 MODEL

MODEL is a declarative constraint lan-
gaage, whose abstract model of compu-
tation is based on the simultaneous
solution to a collection of constraint
equations [Cheng et al. 1984; Prywes and

Software Reuse ● 167 “

Lock 1989]. Data flow and control flow
are automatically determined by the
compiler, not explicitly specified as in
imperative HLLs.

A MODEL program contains data dec-
larations and consistency equations. The
MODEL compiler does data flow analysis
to determine if the consistency equations
can be uniquely satisfied, and to find the
order of computations that will assign
consistent values to all of the data ob-
jects.

For example, the first of the following
equations specifies that the final value of
an account balance must be equal to the
initial value of balance minus the debit
total plus the credit total for that ac-
count. The equation for credits specifies
equality with the old value for A, and
debits is equal to the old value of B mi-
nus 10’% of credits:

new. bal = old. bal – debits + credits;
credits = old.A
debits = old.B – (.1 “ci’edits)

The compiler detects that values for the
debit total and the credit total must be
computedl before the new balance can be
calculated and that credits must be com-
puted before debits. The appropriate code
is generated.

The MODEL compiler checks for com-
pleteness and consistency. Completeness
requires that all variables used are also
defined. Consistency requires that no cir-
cularities exist in the constraints and
that there are no type mismatches.

8.2 Selection

With VHILLS, selection can take place on
two different levels:

e

●

A software developer selects a VHLL
that is appropriate for a particular ap-
plication. This is analogous to selecting
an application generator.

A software developer selects among the
VHLL constructs during application
programming. This is analogous to se-
lecting constructs while programming
with a high-level language.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

168 “ Charles W. Krueger

The former is guided by the latter. That
is, a software developer selecting a WILL
for a particular application makes the
decision by comparing how easy it is to
program the application with the differ-
ent VHLLS, The language will have a
very strong influence on how a problem
is solved. For example, SETL and PAIS-
Ley encourage software developers to
think about problems in terms of sets of
objects and functions on those sets,
whereas MODEL encourages thinking in
terms of data objects with static interob-
ject constraints. The best language for a

particular application provides the small-
est cognitive distance from initial concept
to executable implementation.

8.3 Specialization

VHLLS have parameterized language
constructs, or templates, that are special-
ized by recursively substituting other
language constructs. For example, the
functional template F((x)) can be special-
ized by substituting another functional
expression for (x):

F(G(2))

A less conventional type of specializa-
tion is found in a class of VHLLS known
as wide-spectrum languages. Wide-
spectrum languages contain both VHLL
constructs and HLL constructs. The low-
level constructs are present to accommo-
date efficiency concerns. Since low-level
specifications are more difficult to read
and modify, software developers should
program at this level only as a refine-
ment, or specialization, of stable high-
level designs [Kruchten et al. 1984; Liu
and Paige 1979].

SETL is an example of a wide-
spectrum language. The following high-
level SETL code can be specialized into a
more efficient low-level form. This exam-
ple creates the subset of positive integers
and the subset of negative integers from
a set S [Liu and Paige 1979]:

POS := {X element S I X > O},
NEG ,= {X element S I X < O},

Executing this code, however, requires

two scans over set S, The following low-
Ievel SETL code is more difficult to read,

but it requires only a single scan over set
S during execution:

POS = nl;
NEG ,= nl;

(forall X element S)
If X > 0 then

POS with X,
elseif X <0 then

NEG with X;
end forall X;

SETL also allows software developers
to specialize the way language constructs
are implemented at run time (for the
sake of efficiency). For example, the de-
fault run-time implementation of SETL
sets is a hash table. For sets that are
only subject to union and intersection
operations, however, a bit string imple-
mentation is more efficient. Ideally, the
compiler or interpreter would automati-
cally make the optimal implementation
choice, but in general this is beyond the

scope of current technology. These types
of specializations must be guided by soft-
ware developers. Human-guided trans-
formations will be discussed in more de-
tail in Section 9.

8.4 Integration

PAISLey and other side-effect-free func-
tional languages simplify function inte-
gration because of encapsulated compu-

tation: Computation within a function is
only influenced by its input parameters
and return values from the functions it
calls, and the only influence a function
has is through its return value. Control
flow and data flow are unified, which
makes it easier for a software developer
to reason about function integration.

MODEL and other declarative lan-
guages simplify integration even more by
completely eliminating the. issue of con-
trol and data flow at the programming
level. In MODEL, the order in which the
constraint equations are written is irrele-
vant since the compiler performs data
flow analysis to determine a correct (and
close to optimal) sequencing of opera-
tions [Tseng et al. 1986].

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 169

Just as source code components writ-
ten with HLLs can be reused, software
developers can also reuse VHLL compo-
nents. Declarative languages like
MODEL simplify the integration of
reusable VHLL components. Two or more
components can be merged without con-
cern for the run-time ordering of compu-
tations since this is done automatically
by the compiler. To merge components, a
software developer only needs to specify
the relationships (constraints) between
data objects in the different components
[Kaiser and Garlan 1987; Tseng et al.
1986].

8.5 Appraisal of Reuse Techniques in Very
High-Level Languages

VHLLS use high-level mathematical ab-
stractions suitable for general-purpose
software development. The goal of VHLL
implementors is to find abstractions that
are more natural and expressive than
the abstractions in HLLs. As a result,
VHLL programs can be an order of mag-
nitude more succinct than corresponding
HLL programs. VHLLS are not, however,
as powerful as application generators
since application generators use domain-
specific abstractions, which can be at a
much higher level of abstraction.

Like HLLs and application generators,
VHLLS have compilers to map abstrac-
tion specifications directly into exe-
cutable realizations. This isolates the
software developer from the hidden and
realization parts of the abstraction, so
the software developer is largely un-
aware of the reuse that takes place. The
lowest level of detail that software devel-
opers work with are the high-level ab-
stractions in the VHLL, so the cognitive
distance between the initial concept of a
system and the executable implementa-
tion is relatively small.

The first validated Ada compiler was
built using the VHLL SETL [Kruchten
et al. 1984]. The experiences of that pro-
ject demonstrate the strengths and limi-
tations of current-day VHLL technology.
Although it was possible to prototype the
compiler rapidly, it was far too inefficient

for production use. Also, the SETL Ada
compiler was built by the SETL language

design group, which does not answer the
question of whether or not the set theo-
retic foundation of SETL is a suitable

abstraction for the general population of
software developers, building a wide
range of applications.

Zave notes that our notions of specifi-
cation and implementation are floating
rather than fixed [Zave and Schell 1986].
Although these two levels of program ab-
straction will always exist (with the spec-
ification level always at a higher level of
abstraction than the implementation
level), both levels have been gradually
and simultaneously moving higher. For
example, the implementation level of to-
day resembles the specification level of
25 years ago. The goal of VHLL research
is to continue this trend by making exe-
cutable specification languages a viable
alternative for implementing software
systems. Table 6 summarizes the very
high-level language approach to software
reuse.

9. TRANSFORMATIONAL SYSTEMS

With transformational systems, software
is developed in two phases:

(1) Software developers describe the se-
manti c behavior of a software system
using a high-level specification lan-
guage.

(2) Software developers then apply
transformations to the high-level
specifications. The transformations
are meant to enhance the efficiency
of execution without changing the se-
mantic behavior.

The two phases make a clear distinction
between specifying what a software sys-
tem does and the implementation issues
of how it will be done [Zave 1984].

The first phase is equivalent to using a
VHLL. Software developers create an ex-
ecutable system in a language that has a
relatively small cognitive distance from
the developer’s informal requirements for
the system [Balzer 1989]. The second
phase, however, is not present in the

ACM Computing Surveys, Vol. 24, No. 2, June 1992

170 “ Charles W. Krueger

Table 6. Reuse jr! Very High-Level Languages

Abstraction The abstractions used in WILLS can be viewed as specifications when compared

to HLLs. For this reason WILLS are sometimes referred to as executable
specification languages. VHLLS typically have mathematical abstractions, such

as set theory or constraint equations.

Selection Selection can take place at two levels: (1) selecting a VHLL that is most

appropriate for a particular application and (2) selecting the language constructs
that best represent the application.

Specialization VHLLS have parameterized language constructs that are specialized by recur-

sively substituting other language constructs. Another form of specialization is
found in wide-spectrum VHLLS, where the run-time representation of language
constructs can be speciahzed to provide better performance,

Integration Function integration in languages such as PAISLey is sirnphfied by slde-effect-

free encapsulated computation. Control flow and data flow are unified and

localized to function composition, function arguments, and return values.

Declarative languages such as MODEL simphfy integration further with

order-independent specifications and compiler-generated control flow and data

flow.
High-level mathematical abstractions are automatically mapped into executable

systems. VHLLS are suitable for general-purpose software development. The

VHLL abstractions can be more natural and expressive than HLL abstractions,
and VHLL programs can be an order of magnitude more succinct than HLL

programs. Thus the cognitive distance for application development can be
significantly less using WILLS rather than HLLs.

Cons The run-time performance of systems written with VHLLS is typically poor. In
wide-spectrum languages, performance can be Improved by using low-level

constructs, but this increases cognitive distance. It is also not clear whether

high-level mathematical abstractions are suitable for software development by

the average programmer.

Pros

pure VHLL paradigm. The goal in this
phase is to produce an executable system
that satisfies the high-level specification
and that also exhibits performance com-
parable to an implementation in a con-
ventional HLL. The transformation phase
can be thought of as an interactive, hu-
man-guided compilation. Human inter-
vention is necessary because issues such
as automatic algorithm and data struc-
ture selection are beyond current com-
piler technology.

A transformation is a mapping from
m-omams to m-om-ams IPartsch and
Ste~nbruggen i98~].
transformation T to a
expressed as

PxT+ P’.,

where P‘ is the result

Application of a
program P can be

of the transforma-
tion and is semantically equivalent to
but more efficient than P [Cheatham
1989]. A transformational development

history is the sequence of transforma-
tions applied during the creation of a
software system. A development history

can be expressed as:

PO XTO+P1
P1x T1+P2

PNx TN + P~+l
or
((... (pOXTO) XTXTJ+p~+l,~+l,

where each PI+, is a more efficient but
semantically equivalent implementation
of Pi.

9.1 Abstraction in Transformational Systems

Transformational system programming
languages often have higher level ab-
stractions than VHLLS. The execution ef-
ficiency of these higher level abstractions
is often too poor to be directly executed in
VHLLS. Transformational systems can,
however, afford to use them because soft-
ware developers apply transformations
that enhance their efficiency.

Since the first phase of programming
with transformational systems is similar
to programming with VHLLS, this sec-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 171

tion concentrates primarily on the second
phase—the transformations. The follow-
ing three sections describe three differ-

ent kinds of reusable artifacts in the
transformation phase: prototypes, devel-
opment histories, and transformations.

9.1.1 Prototypes

Prototyping and its associated benefits
are not unique to transformational sys-
tems. Transformational systems are,
however, unique in the way prototypes
are reused. In conventional software de-
velopment, a prototype serves to validate
the requirements of a system and to
identify the critical implementation is-
sues, but typically the prototype is a
throwaway system. In this case software
developers reuse the informal experience
gained in designing and implementing
the prototype. With transformational
systems, however, rather than throwing
the prototype away it can be reused for
two other purposes: (1) a formal specifi-
cation of the system and (2) as the basis
for applying a sequence of transforma-
tions that transform the formal specifica-
tion directly into an efficiently exe-
cutable implementation [Cheatham
1989].

9.1.2 Development Histories

One of the key benefits of the transfor-
mational approach is that software de-
velopers perform maintenance and evolu-
tion on the specification of the system,
not on the implementation. This is
advantageous since information in a
specification is often localized and inde-
pendent, whereas information at the im-
plementation level is often widely dis-
persed and tightly interdependent for the
sake of efficiency. It is much easier to
understand and modify the information
before it has been dispersed throughout
an implementation [Balzer 1989].

When a software developer makes
modifications at the specification level,
transformations have to be applied again
to produce a new efficient implementa-
tion. When modifications to the specifica-

tion are small, significant portions of the
previous development history can often
be reused. PADDLE is a transforma-

tional system that stores the develop-
ment history as a sequence of applied
transformations [Balzer 1989; Fickas
1985]. All. or part of a previous develop-
ment history can be replayed after a
specification is modified.

A problem with PADDLE is that it
does not encode the rationale behind the
sequence of transformations. A PADDLE
development history is essentially a pro-
gram that defines a sequence of transfor-
mations, but the design decisions that
went into writing the program are not
saved. As a result, PADDLE develop-
ment histories are difficult to understand
and modify.

Glitter is a transformational system
that addresses this problem. The design
decisions that a software developer
makes while applying a sequence of
transformations are explicitly encoded in
rules [Fickas 1985]. These rules provide
a level of abstraction for the development
history. The rules are the abstraction
specification, and the sequence of
transfor-mations correspond to the
abstractionrealization. Rules make devel-
opment histories easier to read, under-
stand, reuse, and modify. Glitter can au-
tomatically map design decisions into an
appropriate sequence of transformations.
Thus, a software developer can specify
what needs to be accomplished by the
transformations, and Glitter will figure
out how to do it. Therefore, Glitter rules
isolate the software developer from the
hidden and realization parts of the de-
sign history abstraction. Glitter rules are
described in more detail later.

9.1.3 Transformations

A transformation is a mapping from syn-
tactic patterns of code into functionally
equivalent, more efficient patterns of
code. A transformation has a match pat-
tern, applicability conditions, and a sub-
stitution pattern. The match pattern is a
template of code that defines what to
search for in the initial program, and the

ACM Computing Surveys, Vol. 24, No. 2, June 1992

172 “ Charles W. Krueger

substitution pattern defines a pattern of
code that replaces the constructs in the
transformed program. The applicability
conditions define semantic constraints on
when the transformation should be ap-
plied. For example, the following tem-
plate provides an implementation for in-
serting an element in a queue [Cheatham
1989]; the first line is the match pattern,
and the remainder of the template is the
substitution pattern (there are no appli-
cability conditions in this example):

Insert $element Into $queue ==)

begin

$queue.count := $queue.count + 1;

$queue.llst[$queue count] := $element;
end

$element and $queue are pattern uari-
a bles that represent arbitrary syntactic
code fragments. At transformation time,
these code fragments from the initial
program are inserted verbatim in the
corresponding pattern variables in the
substitution pattern.

Many transformations are reusable.
For example, the following are common
identity transformations on predicate
specifications:

NOT NOT $predicate = =) $predicate

$predlcate AND $predlcate ==)$predlcate

9.2 Selection

Glitter uses expert system technology to
help software developers select from a
collection of reusable transformations. As
described earlier, Glitter rules are ab-
stractions that explicitly describe what a
transformation or sequence of transfor-
mations will accomplish. More specifi-
cally, rules embody expert knowledge
about how to accomplish goals during
program transformation. Goals can be
accomplished by either applying other
rules or directly applying transforma-
tions.

Glitter rules have three parts:

Goal. The transformation issue that is
addressed by the rule.

Strategies. A list of alternative ways to
accomplish the goal. Each strategy

may involve nested subgoals or the
application of transformations.

Selection rationale, Guidelines on how
to select among the different strate-
gies.

For example, one goal in transforming
a specification into an efficient imple-
mentation is to replace all references to
past execution states with references to
information in the current state. The
strategies for doing this include

= Caching historical information until it
is needed (eager evaluation)

Q Computing the historical information
from information in the current state

(lazy evaluation)

The selection rationale for choosing
among these alternatives include

● Space/time tradeoffs for caching ver-
sus derivation

● Whether or not it is possible to re-
derive historical references from the
current context

Glitter automates as much of the
transformation process as possible. In
situations in which strategies are incom-
plete or selection rationale fails, how-
ever, the system must ask the software
developer for guidance. Fickas [1985] re-
ports that Glitter can automate any-
where from 6570 to 90 Yo of the transfor-
mation selections and applications. Note
that if Glitter could automate 100%, it
would be a compiler for the specification
language.

9.3 Specialization

After being selected, transformations are
typically applied without the software
developer having to modify or specialize
them. Pattern variables in a transforma-
tion are a generalization, but the pattern
variables are automatically specialized
with existing code fragments in the pro-
gram when a transformation is applied.
Therefore, from the software developer’s
point of view, specialization is in the hid-
den part of the transformation abstrac-
tion.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 173

9.4 Integration

The integration of transformations is
analogous to functional composition. For
example, the application of two transfor-
mations to a program can be expressed
as either the sequence of two mappings
or the application of a composed map-
ping; that is,

POXTO+P1
PI x T, - Pflnal

or

PO x (Tl O TO) + pf,n,l

The only time software developers need
to be concerned about the composition of
transformations is when the the order of
application is significant. For example,
when PA is not identical to P~ in

F’. X (Tl O TO) - pp,
PO x (TO O T,) + pB.

PA and P~ will be semantically equiva-
lent since transformations always pre-
serve semantics, but they may differ in
terms of implementation characteristics.

9.5 Appraisal of Reuse Techniques in
Transformational Systems

The VHLL used in the first phase of a
transformational system can have higher
level abstractions than pure VHLLS such
as SETL, PAISLey, and MODEL. The
run-time performance of these higher
level abstractions is very poor with the
current VHLL compiler technology, but
the human-guided transformations of the
transformational approach produce more
efficient implementations. Since trans-
formational systems can use higher level
abstractions than pure VHLLS, they ex-
hibit a smaller cognitive distance be-
tween informal requirements of a soft-
ware system and its written specification
[Balzer 1989; Feather 1989].

The second phase in the transforma-
tional approach is essentially a human-
guided compilation. Compared to VHLLS
that use fully automated compilation,
software developers expend additional ef-
fort to produce an efficiently executable
system. By involving the software devel-

oper in the compilation process, transfor-
mational systems increase the cognitive
distance in order to achieve better run-
time performance.

Expert system technology has proven
effective for reusing transformations. The
rules in Glitter represent expert knowl-
edge about applying transformations to
achieve particular goals during the
transformation phase. Glitter can be
viewed as an interface to a library of
reusable transformations. Software de-
velopers present high-level goals to Glit-
ter, and Glitter helps locate the reusable
transformations that satisfy those goals.
The primary challenge for the transfor-
mational approach is to identify the types
of optimizations that software developers
use to implement efficient systems and to
codify these optimizations into transfor-
mations and rules. T,able 7 summarizes
the transformational system approach to
software reuse.

10. SOFTWARE ARCHITECTURES

Reusable software architectures are
large-grain software frameworks and
subsystems that capture the global struc-
ture of a software system design. This
large-scale global structure represents a
significant design and implementation
effort that is reused as a whole. Reuse at
this scale offers significant leverage in
the development of software.

Examples of reusable software archi-
tectures include database subsystems
that are specialized and reused in differ-
ent applications; the framework for a
compiler into which different lexical ana-
lyzers, parsers, and code generators can
be inserted; rule-based and blackboard
architectures for expert systems; adapt-
able user interface architectures; and
even design. frameworks for oscilloscopes

[Garlan 1990; Kruegelr 1992; Lane 1990;
Shaw 1991].

Software architectures are analogous
to very large-scale software schemas.
Software architectures, however, focus on

subsystems and their interaction rather
than data structures and algorithms
[Shaw 1989]. Software architectures are

ACM Computing Surveys, Vol. 24, No. 2, June 1992

174 * Charles W. Krueger

Table 7. Reuse a- Transformahonal Systems

Abstraction Transformations are reusable artifacts that describe how to map source code
fragments into semantically equivalent, but more efficient, source code frag-

ments. Rules are abstractions for expert knowledge about how to apply
transformations to achieve higher level goals.

Selection Reusable transformations can be stored in a library, Selection of transformations

from this library can be enhanced by rule-based analysis that identifies

sequences of transformations that satisfy high-level transformation goals.

Specialization Transformations are typically apphed without modification. Therefore, special-

ization is typically not an issue for transformation reuse,

Integration The integration of transformations M Implicit m the order in which they are

applied. The issues are similar to functional composition.
Pros Transformational systems use general-purpose, high-level programming abstrac-

tions. These abstractions can be at a higher level than with VHLLS because the
human-gmded transformations produce more efficient implementations than m

possible with VHLL compilers. The higher level abstractions reduce cognitive
distance.

Cons Applying transformations requires time and effort from the software developer,
thereby increasing the cognitive distance. As transformation systems improve,
however, more of this effort is automated.

also analogous to application generators
in that large-scale system designs are
reused. Application generators, however,
are typically standalone systems with
implicit architectures, whereas software
architectures can often be explicitly spe-
cialized and integrated with other archi-
tectures to create many different compos-

ite architectures.

It is interesting to note that some of
the more powerful reuse techniques dis-

cussed earlier implicitly capitalize on
reuse at the software architecture level.
For example, experienced software engi-
neers scavenge previous designs with
great leverage. Application generators
reuse significant portions of system de-
signs and implementations within each
generated system. Transformational sys-
tems reuse the design of efficient imple-
mentations for high-level specifications.
Prototyping and experience provide soft-
ware developers with positive and nega-
tive forms of design reuse (i.e., designs
that work versus those that do not).

10.1 Abstraction in Software Architectures

Draco is an example software architec-
ture technology [Freeman 1987a; Neigh-
bors 1984, 1989]. With Draco, each soft-
ware architecture is encapsulated in its
own application generator. The output
from these “architecture generators” can

be used as building blocks for higher level
architecture generators. Therefore, Draco
is an architecture generator generator.

In Draco, each software architecture
has a domain language and a set of com -
ponents that implement the domain lan-
guage. The domain language corresponds
to the abstraction specification for an ar-
chitecture. It captures the relevant ab-
stractions (i.e., objects and operations)
for a software architecture in a particu-
lar domain. The design of domain lan-
guages is identical to the design of the
abstraction specifications for conven-
tional application generators, as de-
scribed in Section 7.5.2:

Recognizing an appropriate domain

Defining domain boundaries (domain
coverage)

Defining the underlying abstractions

Defining the variant and invariant
parts of the abstraction

Defining the form of the language

The art of domain analysis and do-
main language design has become an in-
dependent area of research [Prieto-Diaz
and Arango 1991]. Example domains
range from relatively small areas, such
as sets and stacks, to arbitrarily large
application domains, such as navigation,
process control, compilation, and data
processing.

ACM Computing Surveys, Vol. 24, No 2, June 1992

Softwai-e Reuse ● 175

Draco components are written to im-
plement each object and operation in a
domain language. Components therefore
correspond to the abstraction realization
level for a software architecture. These
components define the execution seman-
tics of a domain language, making it exe-
cutable.

Draco provides software developers
with a recursive model of reuse. The
components that implement a new do-
main language are written using other
domain languages (possibly including the
base language Lisp). For example, the
implementation of a parser architecture
might use an existing domain language
for tree-structured data. A reusable do-
main language built on several recursive
layers of domain languages represents a
significant amount of reuse.

The software developer only deals with
the top layer domain language in such a
recursive reuse structure. The nested do-
main languages used to implement the
top layer language are in the hidden part
of the top layer abstraction.

10.2 Selection

Once the domain language for a Draco
software architecture is written and the
components implemented, it is available
for use (reuse) in building applications or
new software architectures. As with li-
braries of other types of software arti-
facts, a large collection of software archi-
tectures must be accompanied by tools
and techniques for selection (classifica-
tion, searching, and exposition). In par-
ticular, a library system must help
software developers find software archi-
tectures with the smallest cognitive dis-
tance between the architecture and the
application requirements.

Analogous to application generators,
when an appropriate software architec-
ture does not exist for an application, it
may still be advantageous to create a
new reusable architecture. This up-front
cost is justified in cases in which applica-
tion will be modified many times in its
life or when many prototypes are needed
to converge on a usable system. In addi-

tion, the new software architecture be-
comes available for reuse in subsequent
application and architecture designs.

10.3 Specialization

Once a system is built using a Draco
software architecture, it can be special-
ized for more efficient execution in two
ways: source-to-source transformations
and component refinement.

Source-to-source transformations, like
those described in Section 9, are opti-
mization applied to programs written in
a domain language. These transforma-
tions produce semantically equivalent but
more efficient specifications in the same
domain language. For example, in an al-
gebraic domain, the following simple
transformation converts exponentiation
to multiplication for the special case of
squares [Neighbors 1984]:

$X2 ==)$X*$X

Component refinements are alternative
implementations of the same domain
language construct that have different
performance characteristics. This is ex-
actly like the multiple schema implemen-
tations in Section 6.3. For example, in an
algebraic domain, the exponential opera-
tor in the domain language could be im-
plemented. by both the binary shift
method and the Taylor expansion
method. The software developer using
this domain language would choose the
component refinement with the best exe-
cution profile for a particular application.

10.4 Integration

The primary difference between Draco
and conventional application generators
is that Draco allows an arbitrary collec-
tion of software architectures to be inte-
grated into a single application, whereas
conventional application generators are
typically standalone. This flexibility adds
considerable power to the Draco model. A
reusable architecture can be used as a
subsystem in many larger architectures
rather than being limited to a single ap-
plication generator.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

176 ● Charles W. Krueger

Abstraction

Selection

Specialization

Integration

Pros

Table 8. Reuse m Software Architectures

Architectural abstractions come dmectly from application domains. High-level

domain abstractions are captured in the “domain language” for an architecture
and are automatically mapped mto executable implementations

The analogy between software schemas and software architectures suggests that

hbrary techniques for doing classification, search, and exposition could he used
to select among a collection of reusable software architectures.

Software developers can specialize software architectures to produce implemen-
tations that match the performance reqmrernents of an application. Specializa-

tion may be horuontut with source-to-source transformations or zertical with

component refinements.
Integrating different domain languages into a single apphcation requires a
special-purpose module interconnection language. For example, the Draco
module interconnection language checks for type representation consistency and
for domain-specific semantic consistency in the architecture interfaces.
Application developers use high-level abstractions from an application domain to
instantiate and compose software architectures. Therefore, like application

generators, the cogmtive distance is small. In addition, reusable architectures
can be used either stand-alone to create end-user applications or as building

blocks to create higher level software architectures.
Creating reusable software architectures is difficult, and many such architec-

tures wdl be needed to populate a general-purpose library of architectures.

Special care must be taken in the Draco
module interconnection language since
multiple software architectures with a
variety of domain languages may be inte-
grated into a single application. For ex-
ample, the interconnection language
must accommodate different domain lan-
guages and even different component re-
finements with different representations
of the same data object. When objects
are passed in and out of functions, type
representation consistency must be
maintained. In addition to syntactic con-
sistency, semantic consistency can be
maintained by attaching preconditions
and postconditions to the interface of a
component refinement.

10.5 Appraisal of Reuse Techniques in
Software Architectures

As with application generators, the lever-
age offered by software architectures
comes from the small cognitive distance
between informal concepts in an applica-
tion domain and executable implementa-
tions. The software developer using a
software architecture typically works at
the abstraction specification level. The
mapping from abstraction specification to
abstraction realization is mostly auto-
mated (although in systems like Draco

the software developer can apply trans-
formations and choose among different
component refinements to increase effi-
ciency). This automation isolates the
software developer from the hidden and
realization parts of the abstraction.

Software architectures can be used as
either standalone application generators
to create end-user applications or as
building blocks for creating higher level
architectures. Therefore, in cases in
which a reusable software architecture
does not exist for a particular applica-
tion, lower level software architectures
can be composed to create the new archi-
tecture.

Similar to other reuse techniques, it
will be difficult to build a large, general-
purpose library of high-quality reusable
software architectures [Neighbors 1989].
This is due to both the challenge of iden-
tifying and building appropriate software
architectures and the difficulty of identi-
fying and building effective library tools.
Table 8 summarizes the software archi-
tecture approach to software reuse.

11. SUMMARY

In this survey, a broad range of software
reuse techniques from the research liter-
ature was described and compared. The

ACM Computing Surveys, Vol. 24, No 2, June 1992

different approaches to software reuse
were partitioned into categories then
compared using a uniform taxonomy.

11.1 Categories and Taxonomy

For this survey, the field of software
reuse was partitioned into eight cate-
gories, each of which illustrates a charac-
teristic set of issues and techniques in
software reuse:

● High-level languages

● Design and code scavenging

● Source code components

● Software schemas

o Application generators

* Very high-level languages

e Transformational systems

● Software architectures

The following taxonomy for the cate-
gories allowed us to compare and con-
trast different reuse techniques as well
as illustrate some of the fundamental
issues in software reuse:

= Abstraction

● Selection

~ Classification

= Retrieval

9 Exposition

0 Specialization

. Integration

11.2 Cognitive Distance

The notion of cognitive distance was in-
troduced as an intuitive gauge to com-
pare the effectiveness of reuse tech-
niques. Cognitive distance is informally
defined as the amount of intellectual ef-
fort that must be expended by software
developers in order to take a software
system from one stage of development to
another.

Software reuse techniques can reduce
cognitive distance in two ways:

(1) Reduce the amount of intellectual ef-
fort required to go from the initial
conceptualization of a system to a
specification of the system in abstrac-
tions of the reuse technique.

(2)

Software Reuse ● 177

Reduce the amount of intellectual ef-
fort required to produce an exe-

cutable system once the software de-
veloper has produced a specification
in terms of abstractions of the reuse
technique.

To reduce cognitive distance with the
first method, implementors of a reuse
technique must move the abstraction
specifications in the technique closer to
the abstractions used to reason about ap-
plications informally. For example, appli-
cation generators use domain-specific ab-
stractions for their programming model.

Following is an approximate ranking
of the eight reuse categories, rated on
how well they minimize cognitive dis-
tance by the first method (where one is
best):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Application generators

Software architectures

Transformational systems

Very high-level languages

Software schemas

Source code components

Code scavenging

High-level languages

To reduce cognitive distance with the
second method, imp] ementors of a reuse
technique must partially or fully auto-
mate the mapping from abstraction spec-
ifications to executable abstraction real-
izations. Cognitive distance is reduced or
eliminated by minimizing the need for
software developers to see and under-
stand the hidden and realization parts of
the abstractions. For example, very
high-level languages use compilers or in-

terpreters to map abstract specifications
in the language directly into an exe-
cutable form.

Following is an approximate ranking
of the eight reuse categories, rated on
how well they minimize cognitive dis-
tance by the second method (where one is
best):

(1) High-level languages

(2) Very high-level languages

ACM Comnutin~ Survevs. Vol. 24, No. 2, June 1992

178 ● Charles W. Krueger

(3) Application generators

(4) Software architectures

(5) Transformational systems

(6) Software schemas

(7) Source code components

(8) Code scavenging

An ideal software reuse technology
would use both approaches to reduce cog-
nitive distance. That is. a software devel-
oper using this technology would quickly
be able to select, specialize, and integrate
abstraction specifications that satisfied a.
particular set of informal requirements,
and the abstraction specifications would
be automatically translated into an exe-
cutable svstem. In addition. this ideal
technolo& could be used in ‘all applica-
tion domains.

Of the eight reuse technologies exam-
ined in this report, the reusable software
architectures probably come closest to
this ideal description. A “~erfected form. .
of this technology would have a complete
library of useful software architectures,
ranging from small-grained domains such
as sets and stacks to large-grained appli-
cation domains such as airline naviga-
tion control systems. The library system
would allow software developers to locate
the most appropriate reusable artifacts
for their application easily. The software
architectures would be specialized and
integrated in terms of concise high-level
abstraction specifications from the appli-
cation domain. Executable svstems would
be automatically produce~ from these
high-level specifications.

11.3 General Conclusions

* What is software reuse? Software reuse
is the process of using existing soft-
ware artifacts rather than building
them from scratch. Typically, reuse in-
volves the selection, specialization, and
integration of artifacts, although differ-
ent reuse techniques may emphasize or
reemphasize certain of these.

● Why reuse software artifacts? The pri-
mary motivation to reuse software arti-
facts is to reduce the time and effort

required to build software systems, The
quality of software systems is en-
hanced by reusing quality software ar-
tifacts, which also reduces the time and
effort required to maintain software
systems.

What is required to implement a soft-
ware reuse technology? Creating a
complex executable system with fewer
key strokes and less cognitive burden
on software developers clearly implies
a higher level of abstraction. For a soft-
ware developer to select, specialize, and
integrate reusable artifacts success-
fully, the reuse technology must pro-
vide natural, succinct, high-level ab-
stractions that describe artifacts in
terms of “what” they do rather than
“how” they do it. The ability of a soft-
ware developer to practice software
reuse is limited primarily by the ability
to reason in terms of these abstrac-
tions. In other words, there must be a
small cognitive distance between infor-
mal reasoning and the abstract con-
cepts defined by the reuse technology.

In areas of research that strive to
raise the level of abstraction in soft-
ware development, much of the lever-
age has come from software reuse. In
fact, much of the software reuse litera-
ture is not about new techniques devel-
oped from first principles of reuse but
rather about ongoing research projects
that have discovered that reuse is re-
sponsible for the advantages offered by
high-level abstractions in their sys-
tems.

Why is software reuse difficult? Useful
abstractions for large, complex,

reusable software artifacts will typi-
cally be complex. In order to use these
artifacts, software developers must ei-
ther be familiar with the abstractions a
priori or must take time to study and
understand the abstractions. The latter
case can defeat some or all of the gains
in reusing an artifact. The former case
is where we have seen significant suc-
cesses in reuse. Examples
include (1) math libraries used by de-
velopers who are familiar with the
mathematical concepts, (2) abstract

ACM Computmg Surveys, Vol. 24, No 2, June 1992

Software Reuse . 179

data type schemas such as stacks and
queues used by developers who are fa-

miliar with the semantics, and (3)
domain-specific application generators
and domain languages used by devel-
opers who are familiar with concepts in
a particular application domain.

The following truisms were included ear-
lier in the survey. They are simple state-
ments on reuse that have been difficult
to satisfy in practice.

For a software reuse technique to be effectwe, it
must reduce the cogntive distance between the

mtial concept of a system and Its final executable
Implementation.

For a software reuse technique to be effective, it
must be easier to reuse the artifacts than it IS to

develop the software from scratch.

To select an artifact for reuse, you must know what

It does.

To reuse a software artifact effectively, you must be
able to “find it” faster than you could “build it, ”

What are the open areas of research in software
reuse? There IS clearly much work that remams to

be done. In general, the search for high-level ab-
stractions for software artifacts is probably the most
crucial, but thw type of research IS not new or

unique to software reuse.

Library issues are also critical to many
reuse technologies. These issues, how-
ever, lead right back to abstraction since
classification, search, and exposition are
heavily dependent on high-level abstrac-
tions for software artifacts in a library.

ACKNOWLEDGMENTS

Nico Habermann contributed greatly to this survey

through his patient reading, insightful comments,

and thoughtful discussion. John McDermott, Bar-

bara Staudt Lerner, Peter Feiler, John Ockerbloom,

and the anonymous reviewers all provided valuable

feedback and detailed comments. Ellen Douglas

gave many suggestions on improving the technical

writing style (although I admittedly have not done

justice to her efforts). My initial interest in the

subject of software reuse was sparked in a discus-

sion group headed by Mary Shaw at the Software

Engineering Institute.

REFERENCES

BALZER, R. 1985. A 15 year perspective on auto-
matic programming. IEEE Trans. Softw. Eng.
SE-II, 11 (Nov.), 1257-1268.

BALZER, R. 1989. A 15 year perspective on auto-

matic programming. In Frontier Series: Soft-

ware ReusabdLty: Volume 11—Applications and
Experience. Biggerstaff, T. J., and Perlis, A. J.,

Eds. ACM Press, New York, pp. 289-311, Chap.
14. Originally Balzer [1985].

BENTLEY, J. 1986. Programming pearls. Comm un.

ACM 29, 5 (May), 364-369.

BIGGERSTMW, T. 1987. Hypermedia as a tool to aid
large scale reuse. In F’roceedmgs of the Work-

shop on Software Reuse (Oct.). Rocky Mountain
Institute of Software Engineering, Boulder,

CO1O.

BIGGERSTAFF, T. J,, AND PERLIS, A. J., EDS. 1989a.

Frontier Series: So filoare Reusability: Volume I

—Concepts and Models, ACM press, New York.

BIGGERSTAFF, T. J., AND PERLIS, A. J., EDS. 1989b.

Frontier Series: Software Reusability: Volume
II—Applications and Experience. ACM Press,

New York.

BIGGERSTAFF, T., AND RICHTER, C. 1987. Reusabil-

ity framework, assessment, and directions.
IEEE Softw. 4, 2 (Mar.), 41–49. Also in Tracz

[19881 and Biggerstaff and Richter [1989].

BIGGERSTAFF, T., AND RICHTER, C. 1989. Reusabil-

ity framework, assessment, and directions. In
Frontier Series: Software Reusability: Volume

I-Concepts and Models. Biggerstaff, T. J., and
Perlis A. J., Eds. ACM Press, New York, pp.
1–17, Chap. 1. Originally Biggerstaff and

Richter [1987].

BOEHM, B. W. 1987. Improving software produc-

tivity. IEEE Comput. 20, 9 (Sept.), 43-57.

Booc~, G. 1987. Software Components with Ada:

Structures, Tools, and Subsystems. Benjamin/
Cummings Publishing Company, Inc., Menlo
Park, Calif.

BROOKS, F. P. JR. 1975. The Mythical Man-Month.

Addison-Wesley, Reading, Mass.

BROOKS, F. P. 1987. No silver bullet: Essence and

accidents of software engineering. IEEE Com-

put. 20, 4 (Apr.), 10-19.

CHEATHAM, T. E. JR. 1983. Reusability through

program transformations. In Workshop on
Reusability in Programming (Newport, RI,

Sept.). ITT Programming, Stratford, Corm., pp.
122-128. Also in Cheatham [1984, 1989].

CHEATHAM, T. E. JR. 1984. Reusability through
program transformat~ons. IEEE Trans. Softw.
Eng. SE-10, 5 (Sept.), 589–594. Originally
Cheathalm [1983].

CHEATHAM, T. E. JR. 1989. Reusability through
program transformations. In Frontier Series:

Software Reusability: Volume I—Concepts and
Models. Biggerstaff, T. J., and Perlis, A. J.,
Eds., ACM Press, New York, pp. 321-335,

Chap. 13. Originally Cheatham [1983].

CHENG, T. T., LOCK, E. D., AND PRYWES, N. S. 1984,
Use of very high level languages and program
generation by management professionals.
IEEE Trans. Softw. Eng. SE-10, 5 (Sept.),
552-563.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

180 ● Charles W. Krueger

CLEAVELAND, J. C. 1988. Building application gen-

erators. IEEE Softw. 5, 4 (July), 25–33. Also in
Prieto-Diaz and Arango [1991].

DEREMER, F., AND RRON, H. H, 1976. Program-

ming-in-the-large versus programming-in-the-
small. IEEE Trans. Softw. Erg. SE-2, 2 (June),

80-86.

DEUTSCH, P. L. 1983. Reusability in the Small-

talk-80 programming system. In Workshop on
Reusabdlty m Programming (Newport, R. I.

Sept.). ITT Programming, Stratford, Corm., pp.
72-76. Also in Freeman [1987 b].

DEUTSCH, L, P. 1989. Design reuse and frame-

works in the Smalltalk-80 system. In Frontier

Sertes: Software Reusability: Volume II—Ap -
plwations and E:<per~ence. 131ggerstaff, T. J.,
and Perlis, A. J., Eds. ACM Press, New York,
pp. 57-7’1, Chap. 3.

DOBERRAT E., DUBINSKY, E., AND SCIRVARTZ, J. T.

1983. Reusability of design for complex pro-

grams: An experiment with the SETL opti-
mizer. In Workshop on Reusability in Program-
ming (Newport, R. I., Sept.) ITT Program-
ming, Stratford, Corm., pp. 106–108.

DONGARRA, J. J., AND GROSSE, E. 1987. Distribu-

tion of mathematical software via electronic
mad. Commun. ACM 30, 5 (May), 403–407.

DONZEAU-GOUGE, V., KAHN, G., L~G, B., AND
MELESE, B. 1984. Document structure and
modularity in Mentor. In Proceedings of the
ACM Szgsof+/Sigplan Software Engineering

Symposium on Practtcal Software Development
Environments (Pittsburgh, Penn. Apr.). ACM

SIGSOFT/SIGPLAN, New York, pp. 141-148.

DUBINSKY, E., FREUDENBERGER, S., SCHONBER~, E.,

AND SCHWARTZ, J. T. 1989. Reusability of de-

sign for large software systems: An experiment

with the SETL optimizer, In Frontier Series:
Software Reusability: Volume I—Concepts and
Models. Biggerstaff, T. J., and Perlis, A. J.,
Eds. ACM Press, New York, pp. 275-293, Chap.
11.

EMBLEY, D. W., AND WOODFIELD, S. N. 1987. A
knowledge structure for reusing abstract data
types. In 9th Znternatzonal Conference on Soft-

ware Engineering, (Monterey, Calif., Mar.).
IEEE Computer Society Press, Los Alamitos,
Calif., pp. 360-365. Also in Tracz [1988].

ESHELMAN, L. 1988. MOLE: A knowledge-acquisi-
tion tool for cover-and-differentiate systems. In

Kluwer International Series in Engineering and
Computer Science. Automatw Knowledge Ac -
quzsztion for Expert Systems. Kluwer Academic
Publishers, Boston, Mass , pp. 37-80, Chap. 3.

EVB SOFTWARE 1985, An Object Oriented Des~gn
Handbook for Ada Software. EVB Software En-
gineering, Inc., Fredrick, Maryland.

FEATHER, M. S. 1983. Reuse in the context of a

transformation based methodology. In Work-
shop on Reusability in Programming (Newport,
R. I., Sept.). ITT Programming, Stratford,
Corm., pp. 50-58. Also in Freeman [1987b] and
Feather [1989].

FEATHER, M, S, 1989. Reuse in the context of a

transformation based methodology. In Frontier
Series: Software Reusability: Volume I—Con-

cepts and Models. Biggerstaff, T. J., and Perlis,
A, J., Eds. ACM Press, New York, pp. 337-359,

Chap. 14. Originally Feather [1983].

FICKAS, S. F 1985. Automating the transforma-

tional development of software. IEEE Trans.
Softw. Eng. SE-11, 11 (Nov.), 1268-1277.

FREE MAN, P. 1983. Reusable software engineer-

ing: Concepts and research directions. In Work-
shop on Reusabdtty zn Programmmg (Newport,

R. I., Sept.). ITT Programming, Stratford,
Corm., pp. 2-16. Also in Freeman [1987b]

FREEW, P. 1987a. A conceptual analysis of the

Draco approach to constructing software sys-
tems. IEEE Trans. Soff w. Eng. SE-13, 7 (July),

830-844. Also in Freeman [1987 b].

FREEMAN, P., ED. 1987b. Tutor~al: Software
Reusability. IEEE Computer Society Press,
Washington, D,C.

GARLAN, D. 1990. The role of formal reusable
frameworks, In Proceedings of the ACM SIG-
SOFT International Workshop on Formal

Methods in Software Development (Napa, Calif,

May). ACM Press, New York, pp. 42-44.

GOGUEN, J. A. 1986. Reusing and interconnecting
software components. IEEE Comput. 19, 2

(Feb.), 16-28. Also in Freeman [1987b] and
Prieto-D,az and Arango [1991].

GOGUEN, J. A, 1989. Principles of parameterized
programming. In Frontier Series: Software

Reusabdity: Volume I—Concepts and Models.
Biggerstaff, T, J., and Perlis, A. J., Eds. ACM

Press, New York, pp. 159-225, Chap. 7.

HABERMANN, A. N., KRUEGER, C., PIERCE, B., STAUDT,

B., AND WENN, J. 1988. Programming with
views. Tech. Rep. CMU-CS-87-177, Carnegie-

Mellon University, Pittsburgh, Penn.

HAYES-ROTH, F., WATERMAN, D,, AND LENENT, D,,
EDS. 1983. Tehnowledge Sertes m Knowledge
Engineering. Vol. 1, Butlding Expert S.vstems.
Addison-Wesley, Reading, Mass.

HOROWITZ, E., AND MUNSON, J. B. 1983. An expan-
sive view of reusable software. In Workshop on
Reusability in Programming (Newport, R. I.,

Sept.). ITT Programming, Stratford, Corm., pp.
250-262. Also in Horowitz and Munson [1984],

Freeman [1987b], and Horowitz and Munson
[1989].

HOROWITZ, E., AND MUNSON, J. B. 1984. An expan-
sive view of reusable software. IEEE Trans.
Softw. Eng. SE-10, 5 (Sept.), 477–487. Origi-
nally Horowitz and Munson [1983].

HOROWITZ, E., AND MUNSON, J. B. 1989. An expan-
sive view of reusable software. In Front~er Se-
ries: Software ReusabtlLty: Volume I—

Concepts and Models. Biggerstaff, T. J., and
Perlis, A. J., Eds. ACM Press, New York, pp.
19-41, Chap. 2.

HOROWITZ, E., KEMPER, A., AND NARASIMHAN, B.
1985. A survey of application generators.
IEEE Softw. 2, 1 (Jan.), 40-54.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse ● 181

ICHBIAH, J. D. 1983. On the design of Ada. In

Information Processing 83. Mason, R. E.A., Ed.
IFIP, Elsevier Science Pub., New York, pp.
1-1o.

IMSL 1987. IMSL Math/Library User’s Manual.
1.0 Edition, Houston, Tex.

JOHNSON, S. C. 1979. Yacc: Yet Another Compder-

Compiler in the UNIX Programmer’s Manual
—Supplementary Documents. 7th ed. AT&T
Bell Laboratories, Indianapolis, Ind.

KAISER, G. E. 1985. Semantics for structure edit-
ing environments. Ph.D. dissertation,
Carnegie-Mellon Univ.

KAISER, G. E. 1989. Incremental dynamic seman-

tics for language-based programming environ-
ments. ACM Trans. Program. Lang. Syst. 11,
2 (Apr.), 169-193. See also Kaiser [1985].

KAISER, G. E., AND GARLAN, D. 1987. Melding soft-
ware systems from reusable building blocks.
IEEE Softw. 4, 4 (July), 17–24. Also in Tracz

[1988].

KAISER, G. E., AND GARLAN, D. 1989. Synthesizing

programming environments from reusable fea-
tures. In Frontier Series: Software Reusability:

Volume 11—Apphcations and Experience. Elig-
gerstaff, T. J., and Perlis, A. J., Eds. ACM
Press, New York, pp. 35-55, Chap. 2.

KATZ, S., RICHTER, C. A., AND THE, K. 1987. PARIS:
A system for reusing partially interpreted

schemas. In 9th International Conference on
Software Engineering (Monterey, Calif., Mar.).
IEEE Computer Society Press, Los Alamitos,

Calif., pp. 377-385. Also in Tracz [1988] and
Katz et al. [1989].

KATZ, S., RICHTER, C. A., AND THE, K. 1989. PARIS:

A system for reusing partially interpreted

schemas. In Frontier Series: Software

Reusability: Volume I—Concepts and Models.
Biggerstaff, T. J., and Perlis, A. J., Eds. ACM

Press, New York, pp. 257-273, Chap. 10. Origi-
nally Katz et al. [1987].

KERNIGHAN, B. W. 1983. The Unix system and
software reusability. In Workshop on Reusabil-

ity m Programming (Newport, R. I., Sept.). ITT
Programming, Stratford, Corm., pp. 235-239.
Also in Kernighan [1984] and Freeman [1987b].

KERNIGHAN, B. W. 1984. The Unix system and

software reusability. IEEE Trans. Softw. Eng.
SE-10, 5 (Sept.), 513–518. Originally Kernig-
han [1983].

KNOTH, D., E. 1973. The Art of Computer Pro-

gramming. Addison-Wesley, Reading, Mass.

KRUCHTEN, P., SCHONB~RG, E., AND SCHWARTZ, J.
1984. Software prototyping using, the SETL

programming language. IEEE Softw. 1, 4

(Oct.), 66-75.

KRUEGER, C. W. 1987. Expert system engineering

and its relation to conventional software engi-
neering. Ph.D. area qualifier paper. Carnegie-
Mellon Univ., Pittsburgh, Penn. Available from
author on request.

KRUEGER, C. W. 1992. Application-specific object

management architectures. Ph.D. dissertation,
Carnegie-Mellon Univ.

LANE, T. G. 1990. User interface software struc-

tures. Ph.D. dissertation, Carnegie-Mellon
Univ.

LATOUR, L., AND JOHNSON, E. 1988. Seer: A graphi-

cal retrieval system for reusable Ada software
modules. In The 3rd International IEEE Con-

ference on Ada Applications and Environments
(Manchester, N. H., May). IEEE Computer So-

ciety Press, Los Alamitos, Calif., pp. 105–113.

LESK, M. E., AND SCHMIDT, E. 1979. Lex: A Lexical
Analyzer Generator in the UNIX Programmer’s

Manual—Supplementary Documents, 7th ed.

AT& T Bell Laboratories, Indianapolis, Ind.

LEVY, L. S. 1986. A metaprogramming method

and its economic justification. IEEE Trans.
Softw. Eng. SE-12, 2 (Feb.), 272-277.

LIEBERHERR, K. J., AND lRI~L, A. J. 1988. Demeter:
A CASE study of software growth through pa-

rametrized classes. In The 10th International
Conference on Software Engineering (Singa-
pore, Apr.). IEEE Compu+er Society Press, Los
Alamitos, Calif., pp. 254-264.

LISKOV, B. 1987. Data abstraction and hierarchy.

In 00PSLA ’87, Addendum to the Proceedings

(Orlando, Fla., Oct.). ACM Sigplan, New York,
pp. 17--34.

LnJ, S., AND PAIGE, R. 1979. Data structure

choice/formal differentiation. Tech. Rep. NSO-
15, Courant Institute of Mathematical Sci-
ences, New York.

LOECKX, J., AND SIEBER, K. 1984. Wiley and Teub-

ner Series in Computer Science: The Founda-
tions of Program Verzfzcation. John Wiley, New
York.

LUCKHAM, D. C., AND VON HENKE, F. W. 1984. An

overview of Anna, a specification language for
Ada. In 1984 Conference on Ada Applications

and Envu-onments (St. Paul, Minn., Oct.). IEEE
Computer Society Press, Los Alamitos, Calif.,
pp. 116-127.

MARCUS, S., ED. 1988. Kluwer International Series
in Engineering and Computer Science: Auto-

matic Knowledge Acquisition for Expert Sys-
tems. Kluwer Academic Publishers, Boston.
Mass.

MCDERMOTT, J. 1986. Making expert systems ex-
plicit. In Information Processing 86. IFIP, El-
sevier Science Pub., New York, pp. 539–544.

MCDERMO’I”r, J. 1988. Preliminary steps toward a

taxonomy of problem-solving methods. In
Kluwer International Series in Engineering and

Computer Science. Automatic Knowledge Ac-
quisition for Expert Systems. Marcus, S., Ed.,

Kluwer Academic Publishers, Boston, Mass.,

pp. 225–256, Chap. 8.

MCILROY, M. D., 1968. Mass produced software
components. In Sofiware Engineering; Report
on a conference by the NATO Science Commit-
tee (Garmisch, Germany, Oct.). Naur, P., and
Randell, B., Eds. NATO Scientific Affairs Divi-
sion, Brussels, Belgium, pp. 138–150.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

182 * Charles W. Krueger

MENDAL, G. O., 1986. Designing for Ada reuse: A

case study. In 2nd Znternatzonal Conference on
Ada Applications and Environments (Miami
Beach, Fla., Apr.). IEEE Computer Society
Press, Los Alamitos, Calif., pp. 33-42.

MEYER, B, 1987. Reusability: The case for object-

oriented design. IEEE Softw. 4, 2 (Mar.),

50-63. Also m Tracz [1988] and Meyer [1989].

MEYER, B. 1989. Reusability: The case for obJect-

oriented design. In Front~er Series: Softu,are
Reusability: Volume 11—Applmat~ons and E.Y-
per~ence. Biggerstaff, T. J., and Perlis. A. J,,
Eds. ACM Press, New York, pp. 1-33, Chap. 1.

Originally Meyer [1987].

NAUER, P., AND RANDELL, B., EDS. 1968. Software
Engineering; Report on a Conference by the

NATO Science Committee. NATO Scientific Af-
fairs Division, Brussels, Belgium.

NEIGHBORS, J. M. 1983. The Draco approach to

constructing software from reusable compo-
nents. In Workshop on Reusability in Program-
ming (Newport, R. I., Sept.). ITT Programming,

Stratford, Corm., pp. 167-178. Also in Neigh-

bors [1984] and Freeman [1987b].

NEIGHBORS, J. M. 1984. The Draco approach to
constructing software from reusable compo-

nents. IEEE Trans. Softw. Eng. SE-10, 5

(Sept.), 564-574. Originally Neighbors [1983].

NIZIGHBORS, J. M. 1989. Draco: A method for en~-

neering reusable software systems. In Frontier

Series: Software Reusability: Volume I—Con-

cepfs and Models. Biggerstaff, T. J., and Perlis,
A. J., Eds. ACM Press, New York, pp. 295-319,
Chap. 12, Also in Prieto-Diaz and Arango
[1991].

PARNAS, D. L., CLEMENTS, P. C., AND WEISS, D. M.
1983. Enhancing reusability with information

hiding. In Workshop on Reusability in Pro-
gramming (Newport, R. I., Sept.). ITT Program-

ming, Stratford, Corm., pp. 240–247, Also in
Freeman [1987b] and Parnas et al. [1989],

PARNAS, D, L., CLEMENTS, P. C,, MVD WEISS, D. M.
1989. Enhancing reusability with information

hiding. In Frontier Ser~es: Software Reusabll-

lty: Volume I—Concepts and Models. 131gger-
staff, T. J., and Perlis, A, J., Eds. ACM Press,

New York, pp. 141-157, Chap. 6. Originally
Parnas and Clements [1983].

PARTSCH, H., AND STEINBRUGGEN, R. 1983. Pro-
gram transformation systems. ACM C“omput.
Surv. 15, 3 (Sept.), 199-236.

PAYTON, T,, KELLER, S., PERKINS, J., ROWLAN, S.,
AND MARDINLY, S. 1982. SSAGS: A syntax and
semantics analysis and generation system. In
6th International Computer Software and Ap-
plications Conference (COMPSAC82) (Chicago,
Ill., Nov.). IEEE Computer Society Press, Los
Alamitos, Cahf., pp. 424-432.

PRIETO-DLAZ, R. 1989. Classification of reusable
modules. In Frontier Series: Soffware Reus-
ability: Volume I—Concepts and Models. Big-
gerstaff, T. J., and Perlis, A. J., Eds. ACM
Press, New York, pp. 99–123, Chap. 4.

PRIETO-DIAZ, R., AND ARANGO, G., EDS. 1991. Do-

main Analysis and Software System Modeling.
IEEE Computer Society Press, Los Alamitos,

Calif.

PRIETO-DIAZ, R., AND FREEMAN, P. 1987. Classify-
ing software for reusability IEEE Soff w. 4, 1
(Jan.), 6-16. Also in Freeman [1987b].

PRIETO-DIAZ, R., AND NEIGHBORS, J. M. 1986. Mod-

ule interconnection languages. J. Syst. SoftZL1,

6, 4 (Nov.), 307-334. Also in Freeman [1987b].

PRYWES, N. S., AND LOCK, E. D. 1989. Use of the

model equational language and program gener-
ator by management professionals. In Frontier

Series: Software Reusabdify: Volume II—Ap -
plicatzons and Experience. Blggerstaff, T. J.,
and Perlis, A, J., Eds. ACM Press, New York,
pp. 103–129, Chap. 5,

REPS, T., AND TEITELBAUM, T, 1984. The synthe-

sizer generator. In Proceedings of the ACM
Slgsoft/Slgplan Software Engzneenng Sympo-

sum on Pructlcal Software De L~elopmen t Envi-
ronments (Pittsburgh, Penn., Apr.). ACM SIG-

SOFT/SIGPLAN, New York, pp. 42-48,

RICH, C., AND WATERS, R. 1983. Formalizing
reusable software components. In Workshop on

Reusability m Programmmg (Newport, R. I,,
Sept.). ITT Programming, ITT, Stratford,
Corm., pp. 152-159.

RICH, C., AND WATERS, R. C. 1988. Automatic pro-

gramming: Myths and prospects. IEEE Com -

put 21, 8 (Aug.), 40-51,

RICH, C., AND WATERS, R, C. 1989. Formalizing

reusable software components in the program-
mer’s apprentice. In Frontier Series: Software

Reusabdify: Volume 11—Applications and Ex-
perience. Biggerstaff, T. J., and Perlis, A. J.,
Eds. ACM Press, New York, pp. 313-343, Chap,
15. Expanded version of Rich and Waters

[1983].

SHAW, M. 1984. Abstraction techniques in modern
programming languages. IEEE Softw. 1, 4
(Oct.), 10-26.

SHAW, M, 1989. Larger scale systems require

higher-level abstractions. In Proceeding.s of’ the

5th Internat~onal Workshop on Software Speci-

fication and Deszgn (May). IEEE Computer So-
ciety Press, Los Alamitos, Cahf,, pp. 143–146.

SHAW, M. 1991, Heterogeneous design idioms for

software architectures. In Proceedl ngs of the
6th Internat~onal Workshop on Software Specl-
fzcafion and Design (Como, Italy, Oct.), IEEE
Computer Society Press, Los Alamitos, Calif.,
pp. 1–8.

STANDISH, T. A. 1984, An essay on software reuse.
IEEE Trans. Softw. Eng. SE-10, 5 (Sept.),
494-497.

STAUDT, B. J., KRUEGER, C. W., HABERMANN, A, N.,
AND AMBRIOLA, V. 1986. The GANDALF sys-
tem reference manuals. Tech, Rep. CMU-CS-
86130, Carnegie-Mellon Univ., Pittsburgh,
Penn.

STEFIK, M., AND BOBROW, D. G. 1986. Object-ori-

ACM Computing Surveys, Vol. 24, No. 2, June 1992

Software Reuse * 183

ented programming: Themes and variations.
The AI Msg. 16, 4, 40-62.

TEXAS INSTRUMENTS 1985. The TTL Dattz Book.

Vol. 2. Texas Instruments, Dallas, Tex.

TRACZ, W., ED. 1988. Tutorial: Software Reuse:

Emerging Technology. IEEE Computer Society

Press, Los Alamitos, Calif.

TSENG, J. S., SZYMANSN, B., SHI, Y., AND PRYWES, N.

S. 1986. Real-time software life cycle with the
model system. IEEE Trans. Softw, En,g. SE-12,
2 (Feb.), 358-373.

VOLPANO, D. M., AND KIEBURTZ, R. B. 1985. Soft-
ware templates. In 8th International Confer-
en ce on Software Engineering (London, UK,
Aug.). IEEE Computer Society Press, Los
Alamitos, Calif., pp. 55-60.

VALPANO, D. M., AND KIEBURTZ, R. B. 1989. The
templates approach to software reuse. In Fron-

tier Series: Software Reusability: Volume
I—Concepts and Models. Biggerstaff, T. J., and

Perlis, A. J., Eds. ACM Press, New York, pp.
247-255, Chap. 9.

WATERS, R. C. 1985. ‘The programmer’s appren-
tice: A session with KBEmacs. IEEE Trans.

Softzu. Eng. SE-11, 11(Nov.), 1296-1320.

WEGNER, P. 1983. Varieties of reusability. In

Workshop on Reusability in Programming

(Newport, R. I., Sept.). ITT Programming,
Stratford, Corm., pp. 30–44, Also in Freeman

[1987b].

ZAVE, P. 1984. The operational versus tbe conven-

tional approach to software development. Corn-

rnun. ACM 27, 2 (Feb.), 104–118.

ZAVE, P., AND SCHELL, W, 1986. Salient features of

an executable specification language and its

environment. IEEE Tra~ts. Softw. Eng. SE-12,

2 (Feb.), 312-325.

Recewed February 1990; final revmlon accepted October 1991.

ACM Computing Surveys, Vol. 24, No. 2, June 1992

