
ARTICLES 

SOFTWARE COMPLEXITY MEASUREMENT 

Inappropriate use of software complexity measures can have large, damaging 
effects by rewarding poor programming practices and demoralizing good 
programmers. Software complexity measures must be critically evaluated to 
determine the ways in which they can best be used. 

JOSEPH K. KEARNEY, ROBERT L. SEDLMEYER, WILLIAM B. THOMPSON, 
MICHAEL A. GRAY, and MICHAEL A. ADLER 

In recent years much attention has been directed 
toward reducing software cost. To this end, 
researchers have attempted to find relationships 
between the cha.racteristics of programs and the 
difficulty of performing programming tasks. The 
objective has been to develop measures of software 
complexity that can be used for cost projection, 
manpower allocation, and program and pro- 
grammer evaluation. 

Despite the growing body of literature devoted to 
their development, analysis, and testing, software 
complexity measures have yet to gain wide accep- 
tance. Early claims for the validity of the metrics 
have not been supported, and considerable criticism 
has been directed at the methodology of the experi- 
ments that support the measures. Nonetheless, new 
complexity measures continue to appear, and new 
support for old measures is earnestly sought. 

Complexity measures offer great potential for con- 
taining the galloping cost of software development 
and maintenance. Successful software-complexity- 
measure development must be motivated by a the- 
ory of programming behavior. An integrated ap- 
proach to metric development, testing, and use is 
essential as development should anticipate the de- 
mands of the measure’s usage. Testing should be 
performed with specific applications in mind, and 
where possible the test environment should simulate 
the actual use. 

Complexity measures have been developed with- 
out any particular use in mind. Lacking a theory of 

O11186 ACM OOOl-0782,/R6/1100-1044 75~ 

programming behavior, researchers have sought 
meaningful applications through experimentation. 
The results of these explorations are difficult to in- 
terpret and provide only weak support for the use of 
complexity measures. Until more comprehensive 
evidence is available, software complexity measures 
should be used very cautiously. 

WHAT IS COMPLEXITY? 
The first problem encountered when attempting to 
understand program complexity is to define what it 
means for a program to be complex. Basili defines 
complexity as a measure of the resources expended 
by a system while interacting with a piece of soft- 
ware to perform a given task [3]. If the interacting 
system is a computer, then complexity is defined by 
the execution time and storage required to perform 
the computation. If the interacting system is a pro- 
grammer, then complexity is defined by the diffi- 
culty of performing tasks such as coding, debugging, 
testing, or modifying the software. The term software 
complexity is often applied to the interaction between 
a program and a programmer working on some pro- 
gramming task. 

Usually these measures are based on program 
code disregarding comments and stylistic attributes 
such as indentation and naming conventions. Mea- 
sures typically depend on program size, control 
structure, or the nature of module interfaces. The 
most widely known measures are those devised by 
Halstead and his colleagues that are collectively 
known as software science [ll]. The Halstead mea- 
sures are functions of the number of operators and 

1044 Communications of the ACM November 1986 Volume 29 Number 11 



Articles 

operands in the program. The major components of 
software science are 

q1 the number of unique operators, 
q2 the number of unique operands, 
N, the total number of operators, 
N2 the total number of operands. 

Halstead defined the volume, V, of a program to be 

v = (N* + N2)log2(71 + 72) 

and program difficulty, D, to be 

71 x N2 D=-. 

Halstead derived a number of other measures. The 
most extensively studied of these is an estimate of 
the effort, E, required to implement a program: 

E=DxV 

The cyclomatic number, developed by McCabe [l4] 
has also received a great deal of attention. McCabe 
considers the program as a directed graph in which 
the edges are lines of control flow and the nodes are 
straight line segments of code. The cyclomatic num- 
ber represents the number of linearly independent 
execution paths through the program. For a well- 
structured module, the cyclomatic number is simply 
one plus the number of branching statements in the 
module. The cyclomatic number is strongly related 
to the Halstead metrics [5, 121. Both are computed 
by counting lexical entities, and it has been shown 
that the measures are highly correlated. These 
token-based methods are strongly related to the most 
simplistic complexity measure, a count of the num- 
ber of lines in the program. 

The Halstead and McCabe measures treat a pro- 
gram or procedure as a single body of code. Henry 
and Kafura present a measure that is sensitive to the 
structural decomposition of the program into proce- 
dures and functions [13]. Their measure depends on 
procedure size and the flow of information into pro- 
cedures (the fan-in) and out of procedures (the fan- 
out). Henry and Kafura define the complexity of a 
procedure as 

length X (fan-in X fan-out)2. 

Many other complexity measures have been de- 
veloped. Those presented here are only representa- 
tive examples of the work in the field. 

METRIC DEVELOPMENT: THE NEED FOR 
A THEORY OF PROGRAMMING 
Software complexity measures attempt to relate the 
contribution of the program to the difficulty of per- 
forming programming tasks. One of the reasons that 

the development of software complexity measures is 
so difficult is that programming behaviors are poorly 
understood. A behavior must be understood before 
what makes it difficult can be determined. To 
clearly state what is to be measured, we need a the- 
ory of programming that includes a model of the 
program, the programmer, the programming envi- 
ronment, and the programming task. 

Programming behaviors are very complex and can 
be influenced by the experience and ability of the 
programmer, the specific task, the underlying prob- 
lem domain, and the programming environment, as 
well as by the properties of the program. Although 
the experimental results are incomplete, there is 
ample evidence to suggest that all of these factors 
can affect the difficulty of performing programming 
tasks. Most complexity measures have been de- 
signed without regard to the programmer, task, prob- 
lem domain, or environment and ignore the stylistic 
characteristics of the program. This approach im- 
plicitly assumes that the properties of the program 
determine the ease of performing programming tasks 
independent of these other factors. This assumption 
is unsupported. The available results indicate that 
the contribution of the program, that is, program 
complexity, is highly dependent on nonprogram 
factors. 

Programmers are required to perform a variety of 
programming tasks including design, coding, debug- 
ging, testing, modification, and documentation. It 
should not be expected that all tasks are equally 
difficult. Further, it is unlikely that the factors that 
facilitate or hinder coding will influence debugging 
or maintenance activities in similar ways. A study 
performed by Dunsmore and Gannon, for example, 
found that the use of global variables for data com- 
munication among modules decreased error occur- 
rence during program construction [8]. However, 
formal parameters proved less error prone for modi- 
fication tasks. Before it can be determined which 
communication strategy leads to less complex 
programs, the task under consideration must be 
specified. 

Experience surely influences the difficulty of the 
task. Experiential factors include general knowledge 
of programming languages, techniques, and algo- 
rithms, and specific knowledge of one or more appli- 
cation areas. Programming skills developed through 
practice, such as interpreting system diagnostics, are 
also important. The factors that contribute to the 
difficulty of performing programming tasks may be 
very different for novices and experts. Soloway and 
Ehrlich present evidence that experienced program- 
mers develop schemata for stereotypical action se- 
quences in programs [li’]. For example, the pro- 

November 1986 Volume 29 Number II Communications of the ACM 1045 



Arficles 

grammer may have schemata for a RUNNING 
TOTAL LOOP or for an ITEM SEARCH LOOP. 
These schemata provide the expert programmer a 
framework for understanding the program and set 
up expectations, for the detailed structure and func- 
tion of program fragments. Soloway and Ehrlich also 
suggest that expert programmers follow a set of rules 
for programming discourse-conventions such as 
choosing variable names to reflect their function. Al- 
though schema and discourse rules assist the expert 
in understanding typical programs, violations of dis- 
course rules and abnormal program structures can 
be a source of confusion. A pair of experiments per- 
formed by Soloway and Ehrlich suggests that novices 
are less disturbed by unusual structures and usages 
than experts. They argue that novices have not de- 
veloped a repertoire of programming rules and 
hence have fewer expectations about the program. 
Thus, novices are less confused by unconventional 
programming practices. 

The large majority of software complexity mea- 
sures have been developed with little regard for the 
programmer, the programming task, or the program- 
ming environment. It is unlikely that the advances 
in software complexity measurements will be made 
until programmers and the programming process are 
better understood. This must be achieved by study- 
ing programmers and the means they use to con- 
struct, understand, and modify programs. 

METRIC DEVELOPMENT: 
ANTICIPATING THE USE 
Advocates of software complexity metrics have sug- 
gested that these tools can be used to predict pro- 
gram length, program development time, number of 
bugs, the difficulty of understanding a program, and 
the future cost of program maintenance. Measures, 
thus far, have been designed without any particular 
use in mind. A developer attempts to quantify what 
he or she considers to be an important characteristic 
of a program and then studies programs with the 
hope of discovering a relationship between the 
measure and some independent measure of program 
quality. 

Software metrics must be designed to meet the 
needs of the end user. The properties of a metric 
critically determine the ways in which it can 
be used. This dependency must be kept in mind 
by those who are developing metrics and those 
who use metrics. 

For example, let us say that we are interested in 
program debugging. Suppose that we have studied 
programmers and formed a model of the debugging 
process. Our model of the task proposes that effec- 
tive debugging must be preceded by an understand- 

ing of the program. So we would like to develop a 
measure of program comprehensibility. Our study of 
the understanding process suggests that the diffi- 
culty of understanding depends, in part, on certain 
structural properties of the program. Now, we have 
specified what we want to measure, but why do we 
want to measure it? Just exactly how do we intend 
to use this index? If our measure is to be used as a 
tool to judge the quality of the programs, we must 
operate under a very different set of constraints than 
if the measure is to be used to allocate manpower for 
maintenance. When a measure is used to evaluafe a 
programmer’s work, it had better be the case that 
reductions in the measure lead to improvements in 
the programs; otherwise the use of the measure can 
be counterproductive. Whether or not the users plan 
to use the measure to direct the programming pro- 
cess, one can be sure that, if contracts or salaries are 
at stake, programmers will soon be writing programs 
that will minimize the measure. 

Some important applications of complexity met- 
rics, such as manpower allocation, do not evaluate 
the quality of the program. For these applications, 
software metrics are used only as descriptive tools. 
The demands of the measure are much less stringent 
here. For the example, it is adequate to know that a 
measure is strongly associated with the difficulty of 
understanding. The metric may be useful whether 
or not techniques that cause variations in measure 
improve the program. 

There is an important distinction to be made here 
between program properties that cause the program 
to be complex and program characteristics that are 
associated with complexity. Consider, for example, 
the number of program changes made during pro- 
gram development. It has been shown that the num- 
ber of changes correlates well (r = 0.8) with errors 
[8]. It would be difficult to argue that the changes 
themselves cause the errors. More likely, the 
changes are indicative of the trouble that the pro- 
grammer had constructing the program. Although 
program changes are associated with the occurrence 
of errors, we would not want to uniformly advocate 
that programmers should minimize the number of 
changes made during development. (Although it 
might be found that some practices, such as extend- 
ing the design phase, lead to both fewer changes and 
better programs.) And, though using the number of 
program changes to predict future difficulties or di- 
rect debugging efforts might be considered, program 
changes should not be used for salary review. 

THE PROPERTIES OF MEASURES 
Several properties of measures determine the way in 
which the measure can be used. 

1046 Communications of the ACM November 1986 Volume 29 Number II 



Articles 

Robustness 
If software complexity measures are to be used to 
evaluate programs, then it is important to consider 
the measure’s responsiveness to program modifica- 
tions. Not only should the measure be shown to reli- 
ably predict the complexity of the software, but pro- 
gramming techniques that minimize the measure 
should be examined to assure that reductions in the 
measure consistently produce improvements in the 
program. In particular, it should not be possible to 
reduce the measure through incidental modifica- 
tions of the program. Also, programming techniques 
that modify the program in a desirable way with 
respect to one property must not produce an unde- 
sirable change in another property as a side effect. A 
robust measure of software complexity is sensitive to 
the underlying complexity of the program and can- 
not be misdirected by incidental modifications to the 
program. 

Several authors have examined the relationship 
between complexity measures and commonly ac- 
cepted axioms for good programming [l, 2, 9, lo]. 
Their strategy has been to study how complexity 
measures are affected by following maxims of good 
programming style. Halstead’s E, the cyclomatic 
number, and the number of lines have been exam- 
ined for their responsiveness to modularization, the 
use of temporary variables, initialization procedures, 
and such. The results of these analyses do not pro- 
vide strong support for these measures. For some 
classes of programs, some measures are reduced by 
some good programming practices. 

Even if it could be shown that some favored pro- 
gramming technique consistently leads to reductions 
in a measure, this is not strong evidence for the 
measure’s robustness. One problem with this ap- 
proach is that there is only weak evidence that these 
rules actually lead to better programs [15]. More im- 
portantly, this approach is limited because there 
may also be techniques that reduce the measure and 
worsen the quality of the program. Likewise, just 
because a measure is not responsive to some im- 
provements does not mean that the measure is 
not valid and robust-it is unreasonable to expect a 
metric to be responsive to all possible improvements. 
What must be demonstrated is that reductions in the 
measure, however they are achieved, will lead to an 
improvement in the program. 

Normativeness 
The interpretation of complexity measurements is 
facilitated if the metric provides a norm against 
which measurements can be compared. Without 
such a standard, it is meaningless to apply the met- 
ric to programs in isolation. To judge whether or 

not a program is overly complex, a norm that identi- 
fies some acceptable level of complexity must be 
specified. 

Specificity 
Software complexity analysis may provide an assess- 
ment tool that can be used during program develop- 
ment and testing. Designers and programmers could 
use the measure to find deficiencies in program con- 
struction. A complexity measure might also be used 
as a guide to testing and maintenance efforts. The 
degree to which a measure is able to perform these 
functions will depend on how well it specifies what 
is contributing to the complexity of a program. 

Henry and Kafura, for example, argue that com- 
plexity usually arises from a small number of dis- 
proportionately complex procedures [13]. Their 
measure of information flow assigns a value of com- 
plexity to each procedure. The major contributors to 
complexity can be identified by comparing complex- 
ity measurements from the set of procedures. Often 
large software systems are layered into levels of ab- 
straction. Henry and Kafura argue that such systems 
should distribute complexity evenly across levels. 
They suggest that, if the total complexity within a 
level is large compared to surrounding levels, then 
there is evidence that a level of abstraction is miss- 
ing from the system design. As a demonstration of 
the usefulness of their measure, Henry and Kafura 
applied their measure to a portion of the UNIX@ 
operating system. They discovered that their mea- 
sure produced inordinately high values for one level 
of the system, due largely to the density of inter- 
connections between procedures at this and adjacent 
levels. They plausibly argue that the system could 
be simplified by the introduction of another layer of 
abstraction. 

Prescriptiveness 
If software complexity measures are to prove useful 
in the containment of program complexity, then 
they must not only index the level of a program’s 
complexity, but also should suggest methods to re- 
duce the amount of complexity. A measure could 
prescribe techniques to avoid excess complexity as 
well as direct modification of overly complex pro- 
grams already written. 

Henry and Kafura’s work illustrates how a mea- 
sure can influence program design. Their measure 
heavily penalizes single procedures with a large 
number of interconnections. They show how this 
can encourage modularization and simple patterns 

UNIX is a trademark of AT&T Bell Laboratories 

November 1986 Volume 29 Number 11 Communications of the ACM 1047 



Articles 

of module communication. Note, however, that this 
is not the only way to minim.ize their measure. The 
smallest value can be achieved by writing a program 
as a single module with no procedures and, hence, 
no flow of information between procedures. 

Property Definition 
The properties identified above are not rigorously 
defined, and it is sometimes difficult to tell whether 
or not a metric possesses one or another of these 
properties. Although the preceding list of properties 
may be flawed, it is essential that the designers and 
users of software complexity measures recognize 
that the properties of measures constrain their use- 
fulness and applicability. 

TESTING 
Once a measure has been developed, it must be 
tested to be sure it actually measures what it 
purports to measure. 

Experimental Design 
Researchers attempting to validate measures of soft- 
ware complexity face a methodological morass. An 
enormous number of parameters may influence the 
outcome of an experiment. Subject selection, pro- 
gramming language, programming task, and the algo- 
rithms implemented can all profoundly affect both 
the nature of the results and the extent to which 
experimental observations will generalize to a larger 
set of programming environments. The problem is 
compounded by the uncertainty of how these param- 
eters interact to determine programmer behavior. 
Worse yet, there are not even good methods to quan- 
tify parameters such as programmer ability and 
problem difficulty. 

Once the programming environment is specified, 
the experimenter must devise a method to manipu- 
late the independent variable-typically some pro- 
gram property. If research is conducted as a natural 
experiment (observing actual programs produced in 
a real work setting), then the problem is to find pro- 
grams that differ only in the variables of interest. 
The difficulty of obtaining uncontrived programs 
that vary only in one or two dimensions should not 
be underestimated. 

Next, a measurement technique for the dependent 
variable-programmer performance in some task or 
program quality-must be selected. A large number 
of human performance variables have been sug- 
gested including time to implement or modify a pro- 
gram, number of debugging runs, number of bugs 
detected, and level of understanding as measured by 
ability to recall, reconstruct, and answer questions 

about a program’s function. Program quality has 
been assessed by run-time efficiency and number of 
errors. Detailed analysis of the problems associated 
with subject selection criteria, manipulation of pro- 
gram properties, and choice of performance mea- 
sures can be found in [1.5]. 

The uncertainty of how complexity measures re- 
late to one another and to performance measures has 
led to a style of experimentation that is exploratory. 
Faced with an enormous number of variables, many 
researchers have chosen to examine multiple combi- 
nations of program properties, environmental param- 
eters, and performance measures. Such experiments 
tend to become probes for viable hypotheses rather 
than tests of specific predictions. Dunsmore and 
Gannon, for example, examined the importance of 
five program properties in construction and mainte- 
nance tasks [8]. They studied construction in two 
programming languages and separated subjects in 
two groups based on the experimenter’s judgments 
about the quality of their performance. Their experi- 
ment includes a total of 20 different statistical tests. 
When large numbers of experimental conditions are 
examined, the likelihood of finding accidental rela- 
tionships is high. The unfortunate consequence of 
this practice is a substantial inflation of the probabil- 
ity of making a type I error-inferring the existence 
of a nonexistent relationship. Therefore, the experi- 
mentwide confidence in these results is sharply 
reduced. 

Consider a series of three experiments, performed 
by a research group at General Electric, testing the 
Halstead and McCabe measures against a simple 
count of program lines [6, 7, 161. Across the three 
experiments, a total of 170 statistical tests are re- 
ported (correlations between pairs of complexity 
measures and between complexity measures and 
performance measures). More recently, Basili and 
Hutchens examined a family of related complexity 
measures [4]. They report 120 correlation coeffi- 
cients and mention another set of tests that were 
performed but not given because the correlations 
were not significant. The likelihood of obtaining a 
statistically significant result due to sampling error 
or measurement error for any one or any small set 
of tests is quite high when the number of tests 
is as large as in these experiments. 

Exploration as an Experimental Paradigm 
Disregarding the statistical significance of the find- 
ings, how good a strategy is this approach? There are 
several reasons why these explorations are unlikely 
to be productive. It is possible to devise an enormous 
number of measures based on intuitions and intro- 

1048 Communications of the ACM November 1986 Volume 29 Number 11 



Articles 

spection about programming. The likelihood that 
any one of these will reveal insights into a behavior 
as complex and intricate as programming is small. If 
an index of comprehension is wanted, the processes 
by which programmers come to understand pro- 
grams should be studied first. If an index of errors is 
wanted, the causes of errors must be determined. 
Robust, prescriptive measures of complexity will 
probably not be found by groping for relationships 
between the surface features of programs and pro- 
gram or programmer behavior. 

Even when a large correlation is discovered, the 
finding often has little practical value. Without an 
understanding of the underlying processes that lead 
to the association, it is difficult to know how to use 
this result to advantage. The existence of a linear 
relationship between a measure of program size and 
the number of bugs in the program does not mean 
that program size is a good predictor of errors. Nor 
does it suggest that program size should be mini- 
mized to minimize the number of errors. It is also 
true that the weight of basketball players is highly 
correlated with scoring ability. This does not mean 
that we should choose players by weight or force- 
feed players to raise their scoring averages. 

It would be surprising if the number of bugs in a 
program were not related to the size of the program. 
If it turned out that a specific linear relationship 
held over a population of programs, implementing a 
variety of problems, written by many programmers, 
then this measure could be considered as the mea- 
sure to predict bugs. 

The danger of these experiments is that the results 
are easily misinterpreted. The potential for misinter- 
preting is illustrated by Basili and Hutchens’ [a] re- 
cent study. Motivated by an analysis of several syn- 
tactic complexity measures, Basili and Hutchens 
proposed a measure, Syntactic Complexity (Sync), 
which is a hybrid of volume and control organiza- 
tion measures. They.attempted to validate the mea- 
sure by looking for a relationship between program 
changes made during development, which are corre- 
lated with errors (r = 0.8) and Sync. The study was 
based on 18 compilers written by student program- 
mers. No significant correlations were found over 
grouped data, so the authors examined each individ- 
ual’s programs separately. They found that for a 
collection of program segments written by a single 
programmer Sync and program changes were well 
correlated (r = 0.8). Lines were fitted to each pro- 
grammer’s data. A graph of the results is presented 
in Figure 1. Basili and Hutchens noted the variation 
in the slope of the best-fit lines and proposed that 
“the slope of the line may be viewed as a measure 

of a programmer’s ability to cope with complexity 
since it estimates the number of program changes he 
makes in developing a program for each unit of com- 
plexity.” They conclude that “slope . . . measures the 
relative skills of programmers at handling a given 
level of complexity” and suggest that the measure 
may eventually be used in managerial decisions. 

This inference is unwarranted from the data. An 
equally plausible explanation is that those program- 
mers with steep slopes worked harder, made more 
changes, and consequently found a better solution, 
with a lower value of Sync. Under this interpreta- 
tion a high slope indicates a greater ability to deal 
with complexity. Neither interpretation is justified 
by the results. The confusion can be attributed to a 
misunderstanding of the meaning of the correlations. 
For individual programmers, Sync is only correlated 
with changes that are correlated with errors. Changes 
are not errors and Sync is not complexity. The slope 
of the line that relates program changes to errors 
(unmeasured in this experiment) may vary between 
programmers. On the basis of the evidence, the 
changes of one programmer cannot be equated to 
those of another. 

The relationship between program changes and 
Sync is serving double duty. Let us assume, for the 
sake of the argument, that errors are in constant 
proportion to changes for all programmers. The cor- 
relation between changes and Sync is first used to 
establish Sync as a measure of complexity-more 
specifically as a predictor of errors. The slope argu- 

90 - Ad hoc individual 
80 - regression lines 

70 - 

60 - 

0 20 40 60 80 100 120 140 160 180 

Sync 

FIGURE 1. Each Line Is a Regression Line Relating Sync to 
Program Changes for Program Modules Written by a Single 

Programmer (reprinted with permission 0 1983 IEEE) 

November 1986 Volume 29 Number 11 Communications of the ACM 1049 



Articles 

ment then treats Sync as an independent measure 
of complexity. Two programs of equal length, gen- 
erated by different programmers, are considered to 
be of equal complexity; if one programmer made 
more changes than another to implement his or her 
piece of software, then he or she is judged to be less 
competent. But remember, in this experiment stu- 
dents implemented the same problem. By the slope 
criteria, a programmer can implement the same 
problem with lower Sync and make fewer changes 
and cause fewer errors, but will be judged less com- 
petent than another programmer because the ratio of 
changes to SynC is greater. 

It can be argued that, with limited understanding 
of programs and programming, exploratory work is 
necessary to provide direction for further study. Ex- 
periments that examine the relationship between 
program properties and programmer behavior, such 
as the Dunsmore and Gannon study, can serve to 
focus attention on particular aspects of the program- 
ming process. However, it should be realized that 
these experiments are not sufficient to justify the 
use of complexity metrics. Another phase of testing 
is needed that is directed toward a particular appli- 
cation. The properties of the metric must be exam- 
ined to be sure that the metric is appropriate for the 
suggested use; specific, testable hypotheses must be 
generated. The experiment should mimic the antici- 
pated application as closely as possible. 

CONCLUSION 

Software complexity measures have not realized 
their potential for the reduction and management of 
software cost. This failure derives from the lack of a 
unified approach to the development, testing, and 
use of these measures. 

A suggested approach for the creation of complex- 
ity measures: Before a measure can be developed, a 
clear specification of what is being measured and 
why it is to be measured must be formulated. This 
description should be supported by a theory of pro- 
gramming behavior. The developer must anticipate 
the potential uses of the measure, which should be 
tested in the intended arena of usage. 

Complexity measures currently available provide 
only a crude index of software complexity. Ad- 
vancements are likely to come slowly as program- 
ming behavior becomes better understood. Users of 
complexity measures must be aware of the limita- 
tions of these measures and approach their applica- 
tions cautiously. Before a measure is incorporated 
into a programming environment, the user should be 
sure that the measure is appropriate for the task at 

hand. The measure must possess the properties de- 
manded by the use. Finally, users should always 
view complexity measurements with a critical eye. 

REFERENCES 
1. Baker, A.L. The use of software science in evaluating modularity 

concepts. IEEE Trans. Sojfw. Eng. SE-S, 2 (Mar. 1979), 110-120. 
2. Baker, A.L., and Zweben, S.H. A comparison of measures of control 

flow complexity. IEEE Trans. Softw. Eng. SE-6,6 (Nov. 1980). 
506-512. 

3. Basili, V.R. Qualitative software complexity models: A summary. In 
Tutorial on Models and Methods for Software Management and Engi- 
neering. IEEE Computer Society Press, Los Alamitos, Calif., 1980. 

4. Basili, V.R., and Hutchens, D.H. An empirical study of a syntactic 
complexity family. IEEE Trans. Softw. Eng. SE-g, 6 (Nov. 1963), 
664-672. 

5. Basili, V.R., Selby, R.W., Jr., and Phillips, T. Metric analysis and data 
validation across Fortran projects. IEEE Trans. Softm. Eng. SE-g. 6 
[Nov. 1983), 652-663. 

6. Curtis, B., Milliman. P., and Sheppard, S.B. Third time charm: 
Stronger prediction of programmer performance by software com- 
plexity metrics. In Proceedings of the 4th IEEE Conference on Software 
Engineering. IEEE Computer Society Press, Los Alamitos. Calif., 1979, 
356-360. 

7. Curtis, B., Sheppard, S.B., Milliman, P.. Borst, M.A.. and Love, T. 
Measuring the psychological complexity of software maintenance 
tasks with the Halstead and McCabe metrics. IEEE Trans. Softw. Eng. 
SE-5, I (Jan. 1979), 45-50. 

8. Dunsmore, H.E., and Gannon, J.D. Analysis of the effects of program- 
ming factors on programming effort. I. Syst. Softw. I, 2 (Feb. 1980), 
141-153. 

9. Evangelist, W.M. Software complexity metric sensitivity to program 
structuring rules. I. Syst. Softw. 3, 3 (Sept. 1983), 231-243. 

10. Gordon, R.D. Measuring improvements in program clarity. IEEE 
Trans. Softm. Eng. SE-5, 2 (Mar. 1979), 79-90. 

11. Halstead, M.H. Elements of Software Science. Elsevier North-Holland, 
New York, 1977. 

12. Henry, S., and Kafura. D. On the relationship among three software 
metrics. Perform. Eval. Rev. IO, 1 (Spring 1981). 81-88. 

13. Henry, S., and Kafura, D. The evaluation of software systems’ struc- 
ture using quantitative software metrics. Sofk Pmt. Exper. 14, 
6 Uune 1984). 561-573. 

14. McCabe, T.H. A complexity measure. ZEEE Trans. Soffw. Eng. SE-Z, 6 
(Dec.1976). 308-320. 

15. Sheil, B.A. The psychological study of programming. ACM Comput. 
Sum 13,l (Mar. 1981), 101-120. 

16. Sheppard, S.B., Milliman, P., and Curtis. B. Experimental evaluatjon 
of on-line program construction. GE Tech. Rep. TR-79-388100-6, 
General Electric, Dec. 1979. 

17. Soloway, E., and Ehrlich, K. Empirical studies of programming 
knowledge. IEEE Trans. Sojfw. Eng. SE-IO, 5 (Sept. 1984). 595408. 

CR Categories and Subject Descriptors: D.2.8 [Software Engineer- 
ing]: Metrics-complexity measures; software science; D.m [Miscella- 
neous]: software psychology; K.6.3 [Management of Computing and In- 
formation Systems]: Software Management 

General Terms: Human Factors. Measurement 

Authors’ Present Addresses: Joseph K. Kearney, Dept. of Computer Sci- 
ence. Cornell University, Ithaca, NY 14853; Robert L. Sedlmeyer, Dept. 
of Computer Technology, Purdue University. West Lafayette, IN 47907; 
William B. Thompson, Dept. of Computer Science, University of Minne- 
sota. Minneapolis, MN 55455; Michael A. Gray. MCC, Austin, TX 78712; 
Michael A. Adler, Control Data Corporation, Bloomington, MN 55440. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

1050 Communications of the ACM November 1986 Volume 29 Number 11 


